Sample records for relaxant drug dantrolene

  1. Electroreduction of the muscle relaxant drug dantrolene sodium at the mercury electrode and its determination in bulk form and pharmaceutical formulation.

    Ghoneim, Enass Mohamed


    The electroreduction of the muscle relaxant drug dantrolene sodium at the mercury electrode has been studied in the Britton-Robinson universal buffer of pH 2.5-11.5 containing 20% (v/v) methanol by means of dc-polarography, cyclic voltammetry and controlled-potential coulometry. Its reduction took place via three irreversible cathodic steps in solutions of pH or =10 through the consumption of 10, 8 or 4 electrons, respectively. This behavior was attributed to the reduction of NO(2) group (1st and 2nd steps at pH or =10) and the -CH=N- double bond (3rd step at pH <10). Two polarographic procedures (direct current and differential-pulse modes) and three adsorptive cathodic stripping voltammetric procedures (linear-sweep, differential-pulse and square-wave modes) were described and successfully applied for quantification of dantrolene sodium in its bulk form and in pharmaceutical formulation (Dantrolex tablets).

  2. Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene.

    Cherednichenko, Gennady; Ward, Chris W; Feng, Wei; Cabrales, Elaine; Michaelson, Luke; Samso, Montserrat; López, José R; Allen, Paul D; Pessah, Isaac N


    Dantrolene is the drug of choice for the treatment of malignant hyperthermia (MH) and is also useful for treatment of spasticity or muscle spasms associated with several clinical conditions. The current study examines the mechanisms of dantrolene's action on skeletal muscle and shows that one of dantrolene's mechanisms of action is to block excitation-coupled calcium entry (ECCE) in both adult mouse flexor digitorum brevis fibers and primary myotubes. A second important new finding is that myotubes isolated from mice heterozygous and homozygous for the ryanodine receptor type 1 R163C MH susceptibility mutation show significantly enhanced ECCE rates that could be restored to those measured in wild-type cells after exposure to clinical concentrations of dantrolene. We propose that this gain of ECCE function is an important etiological component of MH susceptibility and possibly contributes to the fulminant MH episode. The inhibitory potency of dantrolene on ECCE found in wild-type and MH-susceptible muscle is consistent with the drug's clinical potency for reversing the MH syndrome and is incomplete as predicted by its efficacy as a muscle relaxant.

  3. Dantrolene versus amiodarone for cardiopulmonary resuscitation: a randomized, double-blinded experimental study

    Wiesmann, Thomas; Freitag, Dennik; Dersch, Wolfgang; Eschbach, Daphne; Irqsusi, Marc; Steinfeldt, Thorsten; Wulf, Hinnerk; Feldmann, Carsten


    Dantrolene was introduced for treatment of malignant hyperthermia. It also has antiarrhythmic properties and may thus be an alternative to amiodarone for the treatment of ventricular fibrillation (VF). Aim of this study was to compare the return of spontaneous circulation (ROSC) with dantrolene and amiodarone in a pig model of cardiac arrest. VF was induced in anesthetized pigs. After 8 min of untreated VF, chest compressions and ventilation were started and one of the drugs (amiodarone 5 mg kg−1, dantrolene 2.5 mg kg−1 or saline) was applied. After 4 min of initial CPR, defibrillation was attempted. ROSC rates, hemodynamics and cerebral perfusion measurements were measured. Initial ROSC rates were 7 of 14 animals in the dantrolene group vs. 5 of 14 for amiodarone, and 3 of 10 for saline). ROSC persisted for the 120 min follow-up in 6 animals in the dantrolene group, 4 after amiodarone and 2 in the saline group (n.s.). Hemodynamics were comparable in both dantrolene group amiodarone group after obtaining ROSC. Dantrolene and amiodarone had similar outcomes in our model of prolonged cardiac arrest, However, hemodynamic stability was not significantly improved using dantrolene. Dantrolene might be an alternative drug for resuscitation and should be further investigated. PMID:28098197

  4. Pharmacokinetic evaluation of oral dantrolene in the dog.

    Haraschak, J L; Langston, V C; Wang, R; Riggs, C; Fellman, C; Ross, M K; Bulla, C; Lunsford, K; Mackin, A; Archer, T


    The pharmacokinetics of dantrolene and its active metabolite, 5-hydroxydantrolene, after a single oral dose of either 5 or 10 mg/kg of dantrolene was determined. The effects of exposure to dantrolene and 5-hydroxydantrolene on activated whole-blood gene expression of the cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ) were also investigated. When dantrolene was administered at a 5 mg/kg dose, peak plasma concentration (Cmax ) was 0.43 μg/mL, terminal half-life (t1/2 ) was 1.26 h, and area under the time-concentration curve (AUC) was 3.87 μg·h/mL. For the 10 mg/kg dose, Cmax was 0.65 μg/mL, t1/2 was 1.21 h, and AUC was 5.94 μg·h/mL. For all calculated parameters, however, there were large standard deviations and wide ranges noted between and within individual dogs: t1/2 , for example, ranged from 0.43 to 6.93 h, Cmax ratios ranged from 1.05 to 3.39, and relative bioavailability (rF) values ranged from 0.02 to 1.56. While activated whole-blood expression of IL-2 and IFN-γ as measured by qRT-PCR was markedly suppressed following exposure to very high concentrations (30 and 50 μg/mL, respectively) of both dantrolene and 5-hydroxydantrolene, biologically and therapeutically relevant suppression of cytokine expression did not occur at the much lower drug concentrations achieved with oral dantrolene dosing. © 2013 John Wiley & Sons Ltd.

  5. Nondepolarizing relaxants: new concepts and new drugs.

    Kopman, A


    Less than a decade ago, the only nondepolarizing neuromuscular blocking drugs available to the anesthetist were traditional long-acting drugs such as pancuronium and d-tubocurarine. The revolution that began 10 years ago in our use of relaxants promises to continue unabated into the next decade. Changes in our clinical use of these drugs will be sparked not just by the introduction of new drugs but also by a greater understanding of the pharmacokinetic/pharmacodynamic principles that govern onset and recovery.

  6. Compound list: dantrolene [Open TG-GATEs

    Full Text Available dantrolene DTL 00119 ...

  7. Dantrolene for the treatment of MDMA toxicity.

    Grunau, Brian E; Wiens, Matthew O; Greidanus, Marc


    MDMA (3,4-methylenedioxymethamphetamine), popularly known as “Ecstasy,” was first introduced and patented by Merck & Co., Inc., in 1914 as an appetite suppressant. Currently, its primary role is as an illegal stimulant used to produce a euphoric effect during parties. This case report de scribes a 31-year-old man who, after taking 3 tablets of Ecstasy, presented to an emergency department with a decreased level of consciousness and became progressively hyperthermic and rigid. During the course of his acute illness, his temperature reached 42.2°C rectally. He was given mechanical ventilation. He was aggressively cooled and dantrolene was initiated. Soon after the administration of dantrolene his temperature decreased and his rigidity began to resolve. The only complication was rhabdomyolysis with a creatine kinase level increasing to over 150 μkat/L. This did not progress to acute renal failure. The patient made a full recovery and was discharged to psychiatry for assessment.

  8. Venous Thromboembolism Following Dantrolene Treatment for Neuroleptic Malignant Syndrome

    Chen, Po-Hao; Lane, Hsien-Yuan; Lin, Chieh-Hsin


    Neuroleptic malignant syndrome (NMS) is one of the most severe iatrogenic emergencies in clinical service. The symptoms including sudden consciousness change, critical temperature elevation and electrolytes imbalance followed by mutli-organ system failure were common in NMS. In addition to aggressive interventions with intravenous fluid resuscitation and antipyretics, several antidotes have been suggested to prevent further progression of the muscle damage. Dantrolene has been reported to be one of the most effective treatments for NMS. However, the adverse effects of dantrolene treatment for NMS have not yet been evaluated thoroughly. Here we report a young male patient with bipolar I disorder who developed NMS after rapid tranquilization with haloperidol. Dantrolene was given intravenously for the treatment of NMS. However, fever accompanied with local tenderness, hardness with clear border and swelling with heat over the patient’s left forearm occurred on the sixth day of dantrolene treatment. Venous thromboembolism (VTE) over intravenous indwelling site at the patient’s forearm was noted and confirmed by Doppler ultrasound. The patient’s VTE recovered after heparin and warfarin thrombolytic therapy. To our knowledge, this is the first case report demonstrating the possible relationship between dantrolene use and VTE in a patient with antipsychotic treatment. Although the causal relationship and the underlying pathogenesis require further studies, dantrolene should be used with caution for patients with NMS. PMID:27776396

  9. Drug: D02347 [KEGG MEDICUS

    Full Text Available odine and IP3 receptors Ryanodine receptor (RYR) ryanodine receptor (RYR1) [HSA:6261] [KO:K...skeletal muscle] Same as: C06939 ATC code: M03CA01 ryanodine receptor antagonist [HSA:6261 6262 6263] [KO:K0...e D02347 Dantrolene (USAN/INN) Target-based classification of drugs [BR:br08310] Ion channels Ryan...04961] Dantrolene [ATC:M03CA01] D02347 Dantrolene (USAN/INN) ryanodine receptor (RYR2) [HSA:6262] [KO:K04962...] Dantrolene [ATC:M03CA01] D02347 Dantrolene (USAN/INN) ryanodine receptor (RYR3)

  10. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Chen Xi


    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  11. Advance in clinical application of dantrolene%丹曲林临床应用的研究进展

    王艳萍; 马民玉


    丹曲林是目前惟一被证实治疗恶性高热(malignant hyperthermia,MH)的特效药物.丹曲林药动学特性为二房室模型,血浆消除半衰期约为10 h,稳态分布容积为26.14L.最近的研究证实ryanodine受体(RYR)为丹曲林的结合部位,阻断该受体抑制Ca2+从肌浆网内释放,从而抑制肌肉收缩和其他的钙依赖胞质代谢过程是其分子作用基础.丹曲林除了用于治疗恶性高热外,临床上还可用于抗精神病药物恶性综合征(neuroleptic malignant syndrome,NMS)、痉挛状态和摇头丸(3,4-亚甲基二氧去氧麻黄碱,MDMA)中毒等的治疗.%Dantolene is the only available drug which has been proven effective and specific for the treatment of malignant hyperthermia. The pharmacokinetics profile of dantrolene is adequately described by a two-compartment model. The plasma elimina-tion half-life time is about 10 h and distribution volume at steady-state is 26.14 L. Recent studies have identified that ryanodine re-ceptor is dantrolene-binding site. Inhibition of ryanodine receptor, blockade of calcium release from the sarcoplasmic reticulum and inhibition of muscle contraction and other calcium-dependent cytoplasmic metabolic processes is thought to be fundamental in the molecular action of dantrolene. Dantrolene has been used for the treatment of neuroleptic malignant syndrome, spasticity and Ecstasy intoxication besides malignant hyperthermia.

  12. The Slow Relaxation Dynamics in the Amorphous Pharmaceutical Drugs Cimetidine, Nizatidine, and Famotidine.

    Viciosa, M Teresa; Moura Ramos, Joaquim J; Diogo, Hermínio P


    The slow molecular mobility in the amorphous solid state of 3 active pharmaceutical drugs (cimetidine, nizatidine, and famotidine) has been studied using differential scanning calorimetry and the 2 dielectric-related techniques of dielectric relaxation spectroscopy and thermally stimulated depolarization currents. The glass-forming ability, the glass stability, and the tendency for crystallization from the equilibrium melt were investigated by differential scanning calorimetry, which also provided the characterization of the main relaxation of the 3 glass formers. The chemical instability of famotidine at the melting temperature and above it prevented the preparation of the amorphous for dielectric studies. In contrast, for cimetidine and nizatidine, the dielectric study yielded the main kinetic features of the α relaxation and of the secondary relaxations. According to the obtained results, nizatidine displays the higher fragility index of the 3 studied glass-forming drugs. The thermally stimulated depolarization current technique has proved useful to identify the Johari-Goldstein relaxation and to measure τβJG in the amorphous solid state, that is, in a frequency range which is not easily accessible by dielectric relaxation spectroscopy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Physical stability and enthalpy relaxation of drug-hydroxypropyl methylcellulose phthalate solvent change co-precipitates.

    Sertsou, Gabriel; Butler, James; Hempenstall, John; Rades, Thomas


    The poorly water-soluble drug GWX was co-precipitated with hydroxypropyl methylcellulose phthalate (HPMCP) using a solvent change method. The two co-precipitate formulations made, with drug-HPMCP ratios of 2:8 and 5:5, were analysed using modulated temperature differential scanning calorimetry. They were found to consist of completely amorphous solid solution and a mixture of amorphous solid solution, crystalline drug and amorphous drug, respectively. Stability with respect to crystallization of the two co-precipitates and pure amorphous drug made by quench cooling was compared by storing preparations at 25 degrees C and 40 degrees C, under vacuum over P(2)O(5), and at 75% relative humidity (r.h.). Humidity (75% r.h. compared with dry) had a larger influence on crystallization of the amorphous drug than temperature (25 degrees C compared with 40 degrees C). The solid solution phase in co-precipitates had a relatively higher stability than amorphous drug alone, with respect to crystallization, in presence of the plasticizer water, and crystalline drug. These findings were partly explained by evidence of decreased molecular mobility in the amorphous solid solution with respect to amorphous drug alone, using enthalpy relaxation measurements. At an ageing temperature of 65 degrees C, the calculated half-life for enthalpy relaxation of the 2:8 drug-HPMCP ratio coprecipitate was about 6 orders of magnitude greater than that of amorphous drug alone, indicating a large difference in relative molecular mobility.

  14. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome


    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  15. Adverse drug reactions and cost effectiveness of non-steroidal anti-inflammatory drugs, muscle relaxants, and neurotropic drugs in patients with low back pain

    I. B. Patel


    Conclusion: Patient on combination of three drugs (NSAIDs, muscle relaxants, and neurotropic agents had maximum ADRs and their prescription cost per day was highest among the three groups. [Int J Basic Clin Pharmacol 2015; 4(2.000: 273-277

  16. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Alyautdin, Renat N.; Torshina, N.L.; Kuznetsov, O.A. E-mail:


    Magnetic liposomes containing submicron-sized ferromagnetic particles were prepared encapsulating the muscle relaxant drugs, diadony or diperony, for local anesthesia. Alternatively, metal phthalocyanines (Photosense or Teraphthal), sensitizers for photodynamic or catalytic cancer therapy were loaded into the magnetic liposomes. Animal trials demonstrated successful magnetically guided transport of the drug-loaded liposomes.

  17. Dantrolene. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in malignant hyperthermia, the neuroleptic malignant syndrome and an update of its use in muscle spasticity.

    Ward, A; Chaffman, M O; Sorkin, E M


    Dantrolene sodium acts primarily by affecting calcium flux across the sarcoplasmic reticulum of skeletal muscle. Recently, dantrolene has been used very successfully in the treatment of several rare hypercatabolic syndromes which have previously been associated with high mortality rates. In malignant hyperthermia, where early diagnosis and treatment usually with intravenous dantrolene in association with other supportive measures (and often subsequent dantrolene therapy) is performed, recovery is seen in virtually 100% of patients. There is a rapid resolution of hyperthermia, dysrhythmias, muscle rigidity, tachycardia, hypercapnia, mottled or cyanotic skin, and metabolic acidosis, and a slower normalisation of myoglobinuria and elevated serum creatine phosphokinase levels. In patients with family history or previous episodes of malignant hyperthermia, prophylactic treatment with dantrolene prior to anaesthesia prevents the syndrome occurring in most cases. Where malignant hyperthermia has developed patients have been successfully treated with further dantrolene therapy. Dantrolene has also been used successfully in the treatment of a few cases of heat stroke and the neuroleptic malignant syndrome--both of which have many similarities to malignant hyperthermia. Dantrolene is well established in the treatment of patients with muscle spasticity where it generally improves at least some of the components of spasticity (i.e. hyper/hypotonia, clonus, muscle cramps and spasms, resistance to stretch and flexor reflexes, articular movement, neurological and motor functions and urinary control). However, in some patients, particularly those with multiple sclerosis, dantrolene may not be effective, and in many cases muscular strength may diminish. Long term dantrolene therapy has been associated with hepatic toxicity and may cause problems in patients treated for disorders of muscle spasticity. Thus, dantrolene offers a unique advance in the therapy available for the

  18. Deep brain stimulation and dantrolene for secondary dystonia in x-linked adrenoleukodystrophy.

    van Karnebeek, Clara; Horvath, Gabriella; Murphy, Tyler; Purtzki, Jacqueline; Bowden, Kristin; Sirrs, Sandra; Honey, Christopher R; Stockler, Sylvia


    Deep brain stimulation (DBS) has been used to treat secondary dystonias caused by inborn errors of metabolism with varying degrees of effectiveness. Here we report for the first time the application of DBS as treatment for secondary dystonia in a 22-year-old male with X-linked adrenoleukodystrophy (X-ALD). The disease manifested at age 6 with ADHD, tics, and dystonic gait, and deteriorated to loss of ambulation by age 11, and speech difficulties, seizures, and characteristic adrenal insufficiency by age 16. DBS in the globus pallidus internus was commenced at age 18. However, after 25 months, no improvement in dystonia was observed (Burke-Fahn-Marsden (BFM) scores of 65.5 and 62 and disability scores of 28 and 26, pre- and post-DBS, respectively) and the DBS device was removed. Treatment with dantrolene reduced skeletal muscle tone and improved movement (Global Dystonia Rating Scores from 5 to 1 and BFM score 42). Therefore, we conclude that DBS was a safe but ineffective intervention in our case with long-standing dystonia, whereas treatment of spasticity with dantrolene did improve the movement disorder in this young man with X-ALD.

  19. Investigation of microenvironmental factors influencing the longitudinal relaxation times of drugs and other compounds

    Dzik-Jurasz, A.S.K.; Leach, M.O.; Rowland, Ian John


    demonstrated that in the presence of competitive binding of other ligands for common binding sites on albumin, the 19F longitudinal relaxation time of 5-fluorouracil can increase by up to 340% from its value in the absence of the competing ligand. The relevance of the findings to in vivo studies is discussed...

  20. [Mydeton: a centrally acting muscle relaxant drug from Gedeon Richter LTD].

    Kocsis, Pál; Tarnawa, István; Kovács, Gyula; Szombathelyi, Zsolt; Farkas, Sándor


    Since its introduction in 1959 tolperisone hydrochloride (Mydeton) is still one of the leading products of Gedeon Richter Ltd. It has been successfully applied for treating different painful muscle spasms. The compound is successfully marketed also by several foreign, mostly Japanese, pharmaceutical companies, as a central muscle relaxant agent. The present summary overviews the pharmacology of tolperisone, with special emphasize on its still partly understood way of action. Data from the scientific literature as well as our own experimental results strongly support the hypothesis that inhibition of voltage gated sodium channels is a major component of the mechanism of action of tolperisone. The paper also summarizes the clinical results with tolperisone and the perspectives of the therapeutic use of centrally acting muscle relaxants.

  1. Small-molecular inhibitors of Ca²⁺-induced mitochondrial permeability transition (MPT) derived from muscle relaxant dantrolene.

    Murasawa, Shinpei; Iuchi, Katsuya; Sato, Shinichi; Noguchi-Yachide, Tomomi; Sodeoka, Mikiko; Yokomatsu, Tsutomu; Dodo, Kosuke; Hashimoto, Yuichi; Aoyama, Hiroshi


    A structure consisting of substituted hydantoin linked to a 5-(halophenyl)furan-2-yl group via an amide bond was identified as a promising scaffold for development of low-molecular-weight therapeutic agents to treat vascular dysfunction, including ischemia/reperfusion injury. Among the compounds synthesized, 5-(3,5-dichlorophenyl)-N-{2,4-dioxo-3-[(pyridin-3-yl)methyl]imidazolidin-1-yl}-2-furamide (17) possessed the most potent inhibitory activity against Ca(2+)-induced mitochondrial swelling. The structural development, synthesis and structure-activity relationship of these compounds are described.

  2. Utility of NBD-Cl for the spectrophotometric determination of some skeletal muscle relaxant and antihistaminic drugs

    Saleh, Hanaa M.; EL-Henawee, Magda M.; Ragab, Gamal H.; El-Hay, Soad S. Abd


    A simple, accurate, precise and sensitive colorimetric method for the determination of some skeletal muscle relaxant drugs, namely orphenadrine citrate ( I), baclofen ( II), antihistaminic drugs as acrivastine ( III) and fexofenadine hydrochloride ( IV) is described. This method is based on the formation of charge transfer complex with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) in non-aqueous medium. The orange color products were measured at 472, 465, 475 and 469 nm for drugs I, II, III and IV, respectively. The optimization of various experimental conditions was described. Beer's Law was obeyed in the range (2.5-17.5), (5-70), (2.5-25) and (10-50) μg/ml for drugs I, II, III and IV, respectively. The molar absorptivity ( ɛ), sandell sensitivity, detection (LOD) and quantitation limits (LOQ) are calculated. The procedure was favorably applied for determination of certain pharmaceutical dosage forms containing the studied drugs. The obtained results were compared with the official and reported methods. There were no significant differences between proposed, reported and the official methods.

  3. On the origin and specificity of antibodies to neuromuscular blocking (muscle relaxant) drugs: an immunochemical perspective.

    Baldo, B A; Fisher, M M; Pham, N H


    Following the demonstration 25 years ago that substituted ammonium groups on neuromuscular blocking drugs (NMBDs) are the main allergenic structures recognized by IgE antibodies in the sera of some patients who experience anaphylaxis during anaesthesia, immunoassays for these drugs were quickly applied to supplement skin tests in the diagnostic assessment of suspected adverse reactions to anaesthetic agents. Many subjects who react to an NMBD do so on first exposure and this led to the speculation that the origin of allergic sensitization is an environmental agent(s) or another drug containing an ammonium ion. Direct antibody binding and hapten inhibition studies revealed that morphine, which contains a tertiary amino group, was strongly recognized by IgE in sera from anaphylactic patients and a morphine-solid phase immunoassay was found to be superior to NMBD-based assays for the detection of NMBD-reactive IgE antibodies. Extensive inhibition experiments indicate the likelihood of antibody combining site heterogeneity with recognition at the fine structural level of features additional, and adjacent to, ammonium ions. Further quantitative investigations are needed to identify these neighbouring groups on different NMBDs. Recent work has implicated the morphine analogue pholcodine as the sensitizing agent in Norway where, unlike Sweden, anaphylactic reactions to NMBDs are not uncommon and the medicament is available over-the-counter. This has led to the suggestion that allergenic sensitization to the ammonium group of pholcodine may account for the different incidences of anaphylaxis during anaesthesia in the two countries. This work is subjected to critical review and some alternative speculations on the nature and origin of the sensitizing agent(s) are presented.

  4. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form

    Salem, Hesham; Mohamed, Dalia


    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  5. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  6. New technique using ( sup 125 I)labeled rose bengal for the quantification in blood samples of pipecuronium bromide, a muscle relaxant drug

    Schopfer, C.; Benakis, A.; Pittet, J.-F.; Tassonyi, E. (Centre Medical Universitaire, Geneva (Switzerland))


    A new technique involving the use of ({sup 125}I)labeled rose bengal for the quantification of pipecuronium bromide (a muscle relaxant drug) is presented. This technique, which is based on the ability of rose bengal to react with pipecuronium and then form a complex which can be extracted into an organic solvent, involves two steps: the purification and labeling of rose bengal with {sup 125}I, and the quantification of pipecuronium. The specific activity of the compound (106 {mu}Ci/mg) allows for the quantification of pipecuronium in biological samples at concentrations as low as 5 ng/ml. (author).

  7. FDA Revisits Rules on Drug and Device Communication: Will the Agency Relax Existing Industry-Opposed Restrictions?

    Barlas, Stephen


    The Food and Drug Administration issued draft guidances in January that tackled health care economic information and product labeling. Do these publications indicate a potential shift in on- and off-label policies for drugs and devices?

  8. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona


    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations.

  9. Hypertonia

    ... Full Definition Treatment Muscle relaxing drugs such as baclofen, diazepam, and dantrolene may be prescribed to reduce ... these drugs can be taken by mouth, but baclofen may also be injected directly into the cerebrospinal ...

  10. Study to determine the improvement in neuropsychiatric symptoms after changing the responsible antiretroviral drug to nevirapine: the RELAX study

    E Pedrol


    Full Text Available Objectives: Primary - evaluate the improvement in psychiatric symptoms attributable to changing the antiretroviral drug responsible for such symptoms to nevirapine (NVP. The tools used were a sleep test (the Pittsburgh Sleep Quality Index [PSQI] and the Hospital Anxiety and Depression Scale (HADS. Secondary - determine the neuropsychiatric disorders and evaluate adherence to treatment and quality of life. Methods: Prospective, observational post-authorisation study that included HIV-1 patients from 36 Spanish hospitals who satisfied the following criteria: age over 18 years; change of antiretroviral treatment to NVP due to CNS side-effects; a PSQI score >5 (significant sleep disturbance; a HADS score ≥10 on the day of starting NVP treatment; and no psychoactive drug treatment initiated during the 6 weeks prior to starting treatment with NVP. Other data gathered from the patients included clinical and demographic details and administration of the Epworth somnolence scale, the Medical Outcomes Study-short form 30 items (MOS-SF-30 quality of life scale and the Simplified Medication Adherence Questionnaire (SMAQ. Evaluations were performed at baseline, 1 and 3 months after the change. Results: 129 patients were included (73.6% men; mean age, 43.2 ± 9.8 years; 36.5% homosexual, 30.2% heterosexual; 28.7% drug users; 38% AIDS; 33.3% co-infection. The drug changed was efavirenz in 89.9% of cases. The reason for the change was sleep disturbances in 75.2%, anxiety in 65.1%, other psychiatric disturbances in 38.7%, attention disturbances in 31%, and other reasons in 31%; a mean of 2.4 neuropsychiatric disturbances were detected in each patient. CD4 rose from 582 ± 261 to 619 ± 299 (non-significant difference. Only three patients had developed an HIV viral load at the end of the study. The differences produced by the change are shown in Table 1. 29 patients withdrew from the study, for the following reasons: 9 for NVP-related toxicity (7 cases of rash

  11. Natural relaxation

    Marzola, Luca; Raidal, Martti


    Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.

  12. Choosing a skeletal muscle relaxant.

    See, Sharon; Ginzburg, Regina


    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions.

  13. Antipyretic, analgesic and muscle relaxant activities of pueraria isoflavonoids and their metabolites from Pueraria lobata Ohwi-a traditional Chinese drug.

    Yasuda, Takaaki; Endo, Miwa; Kon-no, Toshiyuki; Kato, Tomoko; Mitsuzuka, Mariko; Ohsawa, Keisuke


    We evaluated the antipyretic, analgesic, and muscle relaxant activities of Pueraria isoflavonoids and their metabolites in mice. The glycosides daidzin and genistin significantly reduced fever induced by lipopolysaccharide (LPS). Their metabolites, daidzein and p-ethylphenol, also significantly reduced fever induced by LPS. In addition, daidzin, daidzein, dihydrodaidzein, and p-ethylphenol showed analgesic activity as assessed by the acetic acid-induced writhing test. Furthermore, equol and p-ethylphenol showed muscle relaxant activity in the rotarod and horizontal wire test. These results suggest that these compounds play a major role in the therapeutic activity of Pueraria isoflavonoids.

  14. Effect of Dantrolene on Activity of Glycometabolic Enzymes in Rats with Myocardial Ischemia-Reperfusion%丹曲林对缺血再灌注大鼠心肌糖代谢酶活性的影响

    王丽艳; 赵晓丽; 郭彦青; 曹颖; 于公元; 康英姿


    Objective:To investigate the effect of dantrolene on the activity of glycometabolic enzymes in rats with myo-cardial ischemia-reperfusion. Methods: Sixteen healthy male Wistar rats were used in the Langendorff isolated heart perfu-sion system. The heart models were randomly divided into two groups: control group and dantrolene-treated group, with eight rats in each. The hearts in control group were subjected to 30 min of global ischemia and 60 min of retrograde reperfusion. The hearts in dantrolene-treated group were perfused for 20 min in the working mode, in the presence of 5μmol/L dantrolene, and then were subjected to 30 min of global ischemia and 60 min of reperfusion. The activities of phosphofructoki-nase-1 (PFK), pyruvate kinase (PK), hexokinase(HK) and isocitrate dehydrogenase (IDH) were determined by spectrophotome-try. Results: The hemodynamic variables had no change except for increased coronary flow (P < 0.01). Compared with the control group, the activities of PFK, PK, HK and IDH were significantly decreased in dantrolene-treated group (P < 0.05 or P < 0.01). Conclusion: Dantrolene has a protective effect on myocardial ischemia-reperfusion by reducing the activities of glycolytic enzymes and isocitrate dehydrogenase.%研究丹曲林对缺血再灌注损伤的大鼠心肌细胞中糖酵解和异柠檬酸脱氧酶活性的影响.方法:采用健康雄性Wistar大鼠16只建立Langendorff离体心脏灌注模型,分为对照组和丹曲林预处理组,对照组全心缺血30min,再灌注60min;丹曲林预处理组加入5 μmol/L丹曲林后,全心缺血30min,再灌注60min.用分光光度计法测定缺血再灌注后磷酸果糖激酶-1(PFK)、丙酮酸激酶(PK)、己糖激酶(HK)及异柠檬酸脱氢酶(IDH)的活性.结果:与对照组相比,丹曲林预处理组冠脉流量增加(P<0.01),PFK、PK、HK和IDH活性均降低(P<0.05或P<0.01).结论:丹曲林预处理降低了糖代谢中关键酶的活性,对缺血再灌注心脏起到保护作用.

  15. Relaxation Techniques for Health

    ... R S T U V W X Y Z Relaxation Techniques for Health Share: On This Page What’s the ... Bottom Line? How much do we know about relaxation techniques? A substantial amount of research has been done ...

  16. Latent Period of Relaxation.

    Kobayashi, M; Irisawa, H


    The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.

  17. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats.

    Huang, Liyue; Li, Xingwen; Roberts, Jonathan; Janosky, Brett; Lin, Min-Hwa Jasmine


    1. This study was designed to evaluate how the absence of P-glycoprotein (Pgp, Mdr1a), breast cancer-resistance protein (Bcrp, Abcg2) or both affects drug distribution into sciatic nerves, brain and cerebrospinal fluid (CSF) in rats. 2. Pgp substrate (loperamide), BCRP substrates (dantrolene and proprietary compound X) and dual substrates (imatinib and proprietary compound Y) were well distributed into sciatic nerves with comparable nerve to plasma concentration ratios between wild-type and knockout (KO) rats. 3. Brain exposure increased substantially in Mdr1a(-/-) rats for loperamide and in Mdr1a(-/-)/Abcg2(-/-) rats for imatinib and compound Y, but minimally to modestly in Abcg2(-/-) rats for dantrolene and compound X. The deletion of Mdr1a or Abcg2 alone had little effect on brain distribution of compound Y. 4. While CSF to unbound brain concentration ratio remained ≥3 in the KO animals for dantrolene, compounds X and Y, it was reduced to 1 in the Mdr1a(-/-)/Abcg2(-/-) rats for imatinib. 5. The data indicate that Pgp and Bcrp do not play significant roles in drug distribution into peripheral nerve tissues in rats, while working in concert to regulate brain penetration. Our results further support that CSF concentration may not be a good surrogate for unbound brain concentration of efflux substrates.

  18. Indentation load relaxation test

    Hannula, S.P.; Stone, D.; Li, C.Y. (Cornell Univ., Ithaca, NY (USA))

    Most of the models that are used to describe the nonelastic behavior of materials utilize stress-strain rate relations which can be obtained by a load relaxation test. The conventional load relaxation test, however, cannot be performed if the volume of the material to be tested is very small. For such applications the indentation type of test offers an attractive means of obtaining data necessary for materials characterization. In this work the feasibility of the indentation load relaxation test is studied. Experimental techniques are described together with results on Al, Cu and 316 SS. These results are compared to those of conventional uniaxial load relaxation tests, and the conversion of the load-indentation rate data into the stress-strain rate data is discussed.

  19. Relaxation techniques for stress

    ... problems such as high blood pressure, stomachaches, headaches, anxiety, and depression. Using relaxation techniques can help you feel calm. These exercises can also help you manage stress and ease the effects of stress on your body.

  20. Drug use first aid

    ... or extreme social withdrawal. Cannabis drugs such as marijuana may cause relaxation, impaired motor skills, and increased appetite. When prescription drugs are taken in higher than normal amounts, serious side effects may occur.

  1. Perturbations and quantum relaxation

    Kandhadai, Adithya


    We investigate whether small perturbations can cause relaxation to quantum equilibrium over very long timescales. We consider in particular a two-dimensional harmonic oscillator, which can serve as a model of a field mode on expanding space. We assume an initial wave function with small perturbations to the ground state. We present evidence that the trajectories are highly confined so as to preclude relaxation to equilibrium even over very long timescales. Cosmological implications are briefly discussed.

  2. Effect of meditation relaxation training combined drug treatment for anxiety disorders patients%冥想放松训练联合药物治疗焦虑症的效果

    袁水莲; 谢建芳; 黄冬华; 钟华; 刘旺林; 郭隆润


    Obj ective:To observe the effect of meditation relaxation train-ing combined drug treatment for improving anxiety and depression in anxiety patients.Methods:A total of 6 6 cases of anxiety disorders pa-tients were randomly divided into observation group and control group,33 cases in each,both groups of patients were given anti anxiety medica-tion,routine nursing and entertainment activities.Beside that,the medita-tion relaxation training was given to patients in observation group,using Hamilton anxiety scale (HAMA ) and Hamilton depression scale (HAMD)were used to evaluate and compare the anxiety and depression in both groups of patients respectively before intervention,after 2 weeks, 4 weeks and 6 weeks of intervention.Results:After 2 weeks,4 weeks and 6 weeks of intervention,the HAMA and HAMD scores in observation group were lower than that in control group (P<0.05);after 6 weeks of intervention,the curative effect in observation group was better than that of control group (P<0.05).Conclusion:Meditation relaxation training can effectively improve the patient’s anxiety and depression,and improve the effect of treatment.%[目的]观察冥想放松训练改善焦虑症病人焦虑、抑郁情绪的效果。[方法]将66例焦虑症病人随机分为观察组和对照组各33例,两组均给予抗焦虑药物治疗、常规护理和工娱活动,观察组在此上给予冥想放松训练,采用汉密尔顿焦虑量表(HAMA)、汉密尔顿抑郁量表(H AMD)分别对两组病人干预前、干预2周后、4周后、6周后焦虑和抑郁情况进行评定比较。[结果]干预2周后、4周后、6周后观察组 H AMA、H AMD 总分均低于对照组(P<0.05);干预6周后观察组病人疗效优于对照组(P<0.05)。[结论]冥想放松训练能够有效改善焦虑症病人的焦虑、抑郁情绪,提高治疗效果。

  3. Influence of abdominal space using muscle relaxant drug in neonates and younger infants undergoing laparoscopy.%肌松药对新生儿及婴儿腹腔镜手术操作空间的影响

    胡博; 戴春娟; 叶祖萍; 牛军; 刘金; 李戈


    目的 观察新生儿及3个月以内婴儿腹腔镜手术中,使用肌松药对手术操作空间的影响.方法 将40例腹腔镜手术患儿,随机分为对照组(Ⅰ组)和肌松组(Ⅱ组),每组各20例,分别予 5 mmHg和10 mmHg气腹压力建立人工CO2气腹,并记录气腹前、5 mmHg及10 mmHg气腹压力下两组患儿腹围的变化.结果 气腹前Ⅰ组腹围(31.90±2.15)cm,Ⅱ组腹围(32.25±2.37)cm,t=0 489,P=0.628,两组腹围比较,差异无统计学意义(P>0.05);气腹压力5 mmHg时,Ⅰ组腹围(33 98±2.27)cm,Ⅱ组腹围(35.61±2.52)cm,t=2.150,P=0.038,Ⅱ组腹围值高于Ⅰ组(P 0. 05. Conclusion Abdominal cavity volume would be increased by using muscle relaxant drug in identical pneumoperitoneum pressure, so that lower co2 pneumoperitoneum pressure would be used and less circulatory function would be influenced.

  4. 丹曲林对严重烧伤大鼠骨骼肌损害的治疗作用及机制%Effect and mechanism of dantrolene on skeletal muscle of rats with severe scald injury


    Objective To explore the effect and mechanism of ryanodine receptor antagonist dantrolene on skeletal muscle of rats with severe scald injury.Methods A total of 56 Wistar rats were divided into control , scald and dantrolene treatment groups according to a random digital table.Rats in scald and dantrolene treatment groups were subject to 50%total body surface area ( TBSA) full-thickness scald by a 12-second immersion of back and a 6-second immersion of abdomen in 94 ℃water and then received an intraperitoneal injection of Ringer′s solution.At the same time , the rats in scald group received 5%mannitol through caudal vein while those in dantrolene treatment group received dantrolene 2 mg/kg ( dissolved in 5%mannitol ).Rats in control group were sham-injured through an immersion of back and abdomen into 37 ℃warm water.Tibialis anterior muscle samples were harvested at Days 1, 4 and 7 post-scalding.Changes of skeletal muscle ultrastructure were observed by transmission electron microscope , subcellular calcium ion ( Ca2+) contents of skeletal muscle ( including cytoplasm , mitochondria & sarcoplasm reticulum ) were detected by electron probe X-ray microanalysis ( EPMA) and the levels of calpain-1 and calpain-2 protein were determined by Western blot.And the activities of calpain were detected by enzyme-linked immunosorbent assay.Results In scald group , assorted arrangement appeared immediately at Day 1 post-injury and partial disappearance of Z lines at Day 7 post-injury.There were no significant ultrastructure changes in dantrolene treatment group at Day 1 and 4 post-injury.Curled filament and mild fracture occurred merely in dantrolene treatment group at Day 7 post-injury.The cytoplasmic contents of Ca 2+ were significantly higher in scald group than those in control group at Day 1 and 4 ((0.964 ±0.060), (0.639 ± 0.067) vs (0.266 ±0.029) μmol/L respectively, all P0.05).Caplain-1 and calpain-2 protein levels in scald group increased significantly at Day 1

  5. Molecular Relaxation in Liquids

    Bagchi, Biman


    This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs

  6. 丹曲林预先给药对脓毒症大鼠膈肌功能的影响%Effects of dantrolene pretreatment on diaphragmatic function in septic rats

    邱郁薇; 李士通; 徐美英


    目的:评价丹曲林预先给药对脓毒症大鼠膈肌功能的影响。方法雄性SD大鼠30只,体重200~220 g ,9~10周龄。采用随机数字表法,将大鼠分为3组( n=10):假手术组(S组)、脓毒症组(CLP组)和丹曲林组(D组)。D组腹腔注射丹曲林6 mg/kg (用二甲基亚砜稀释至500μl )。1 h后CLP组和D组采用盲肠结扎穿孔法制备脓毒症模型。于术后24 h时取左、右膈肌组织,左膈肌测定收缩功能[单刺激肌颤搐、最大收缩期上升速率(dmax/dt )、最大舒张期下降速率(dmin/dt )、最大强直收缩力、张力-频率曲线和疲劳指数]。结果与S组比较,CLP组膈肌单刺激肌颤搐、dmax/dt和dmin/dt、最大强直收缩力、疲劳指数均降低,D组单刺激肌颤搐、单刺激dmax/dt和dmin/dt、最大强直收缩力降低,疲劳指数升高,CLP组和D组张力-频率曲线下移( P<0.05或0.01);与CLP组比较,D组膈肌单刺激肌颤搐、dmax/dt和dmin/dt、最大强直收缩力和疲劳指数均升高( P<0.05或0.01)。结论丹曲林预先给药可改善脓毒症大鼠膈肌功能。%Objective To evaluate the effects of dantrolene pretreatment on diaphragmatic function in septic rats .Methods Thirty adult male Sprague-Dawley rats , weighing 200-220 g , aged 9-10 weeks , were randomized into 3 groups (n=10 each) using a random number table :sham operation group (group S) ,spesis group (group CLP) and dantrolene group (group D) .The animals were anesthetized with pentobarbital sodium . Dantrolene 6 mg/kg was injected intraperitoneally (in dimethyl sulfoxide 500 μl ) .Sepsis was induced by cecal ligation and puncture 1 h later in CLP and D groups .The left and right diaphragm was rapidly excised at 24 h after cecal ligation and puncture . The left diaphragm was used to detect the systolic function including the single stimulation twitch , dmax/dt , dmin/dt , maximal force of tetanic contraction , force

  7. Hair Dye and Hair Relaxers

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  8. Kinetic Actviation Relaxation Technique

    Béland, Laurent Karim; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand


    We present a detailed description of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si, self-interstitial diffusion in Fe and structural relaxation in amorphous silicon.

  9. Nonlinear fractional relaxation

    A Tofighi


    We define a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we find that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we find a logarithmic enhancement for the relative ratio of susceptibility.

  10. The Basic Researches Progress of the Dantrolene Therapy for Alzheimer Disease%丹曲林用于阿尔茨海默病治疗的基础研究进展

    金月(综述); 梁庆成(审校)


    Alzheimer disease(AD) is a degenerative disease of the central nervous system,which has become one of the most serious diseases affecting the quality of elder people′s life and may even lead to death.Currently there are many pathogeneses about AD,and calcium homeostasis imbalance of neuron may be the initiating factor of the disease.Dantrolene,an antagonist of ryanodine receptors,is now used for the clinical treatment of malignant hyperthermia and muscle spasms,which can also make the level of calcium in impaired neuron return to normal,exhibiting neuroprotective effects,and has been demonstrated to improve cognitive function of AD animal models.%阿尔茨海默病( AD)是一种中枢神经系统退行性疾病,现已成为影响老年人生活质量并导致死亡的最严重疾病之一。目前有关AD的发病机制有很多,神经元内钙稳态失调可能为其发病的始发因素。丹曲林属兰尼碱受体拮抗剂,目前用于恶性高热、肌强直的治疗。同时,丹曲林还可使受损神经元内游离钙离子水平趋于正常化,展现出了神经保护作用,可改善AD动物模型的认知功能。

  11. Grueneisen relaxation photoacoustic microscopy

    Wang, Lidai; Zhang, Chi; Wang, Lihong V.


    The temperature-dependent property of the Grueneisen parameter has been employed in photoacoustic imaging mainly to measure tissue temperature. Here we explore this property using a different approach and develop Grueneisen-relaxation photoacoustic microscopy (GR-PAM), a technique that images non-radiative absorption with confocal optical resolution. GR-PAM sequentially delivers two identical laser pulses with a micro-second-scale time delay. The first laser pulse generates a photoacoustic signal and thermally tags the in-focus absorbers. Owing to the temperature dependence of the Grueneisen parameter, when the second laser pulse excites the tagged absorbers within the thermal relaxation time, a photoacoustic signal stronger than the first one is produced. GR-PAM detects the amplitude difference between the two co-located photoacoustic signals, confocally imaging the non-radiative absorption. We greatly improved axial resolution from 45 µm to 2.3 µm and at the same time slightly improved lateral resolution from 0.63 µm to 0.41 µm. In addition, the optical sectioning capability facilitates the measurement of the absolute absorption coefficient without fluence calibration. PMID:25379919

  12. Magnetoviscosity and relaxation in ferrofluids



    The increase in viscosity of a ferrofluid due to an applied magnetic field is discussed on the basis of a phenomenological relaxation equation for the magnetization. The relaxation equation was derived earlier from irreversible thermodynamics, and differs from that postulated by Shliomis. The two relaxation equations lead to a different dependence of viscosity on magnetic field, unless the relaxation rates are related in a specific field-dependent way. Both planar Couette flow and Poiseuille pipe flow in parallel and perpendicular magnetic field are discussed. The entropy production for these situations is calculated and related to the magnetoviscosity.

  13. [Death in a relaxation tank].

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael


    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  14. Relaxing Behavioural Inheritance

    Nuno Amálio


    Full Text Available Object-oriented (OO inheritance allows the definition of families of classes in a hierarchical way. In behavioural inheritance, a strong version, it should be possible to substitute an object of a subclass for an object of its superclass without any observable effect on the system. Behavioural inheritance is related to formal refinement, but, as observed in the literature, the refinement constraints are too restrictive, ruling out many useful OO subclassings. This paper studies behavioural inheritance in the context of ZOO, an object-oriented style for Z. To overcome refinement's restrictions, this paper proposes relaxations to the behavioural inheritance refinement rules. The work is presented for Z, but the results are applicable to any OO language that supports design-by-contract.

  15. Drug resistant neuroleptic malignant syndrome and the role of electroconvulsive therapy.

    Hashim, Husnain; Zeb-un-Nisa; Alrukn, Suhail Abdulla Mohammad; Al Madani, Abubaker Abdul Rahman Shaffi


    Neuroleptic malignant syndrome is considered as a rare but potentially fatal complication of neuroleptic medications e.g.,antipsychotics, sedatives and anti emetics. It is characterized by hyperthermia, muscle rigidity, an elevated creatine kinase level and autonomic instability. The syndrome often develops after the start of antipsychotic or a sudden increase in dosage of the neuroleptic medication or in states of dehydration. Treatment is mainly supportive and includes withdrawal of the neuroleptic medication and, possibly, administration of drugs such as dantrolene and bromocriptine. In rare cases where drugs treatment remains ineffective a trial of electroconvulsive therapy is being given. The case presented is a drug resistant case of Neuroleptic Malignant Syndrome where finally electroconvulsive therapy was effective.

  16. Magnetic relaxation in anisotropic magnets

    Lindgård, Per-Anker


    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  17. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    Qiu-Ju Jiang


    Full Text Available Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM; however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component was prepared, which completely inhibits high K+- and acetylcholine- (ACH- induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  18. Can Black Hole Relax Unitarily?

    Solodukhin, S. N.


    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  19. Can Black Hole Relax Unitarily?

    Solodukhin, Sergey N.


    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the...

  20. Can Black Hole Relax Unitarily?

    Solodukhin, S N


    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  1. Oral muscle relaxant may induce immediate allergic reactions.

    Hur, Gyu-Young; Hwang, Eui Kyung; Moon, Jae-Young; Ye, Young-Min; Shim, Jae-Jeong; Park, Hae-Sim; Kang, Kyung-Ho


    Eperisone and afloqualone act by relaxing both skeletal and vascular smooth muscles to improve circulation and suppress pain reflex. These drugs are typically prescribed with non-steroidal anti-inflammatory drugs (NSAIDs) as painkillers. However, there have been no reports on serious adverse reactions to oral muscle relaxants; and this is the first report to describe three allergic reactions caused by eperisone and afloqualone. All three patients had histories of allergic reactions after oral intake of multiple painkillers, including oral muscle relaxants and NSAIDs, for chronic muscle pain. An open-label oral challenge test was performed with each drug to confirm which drugs caused the systemic reactions. All patients experienced the same reactions within one hour after oral intake of eperisone or afloqualone. The severity of these reactions ranged from laryngeal edema to hypotension. To confirm that the systemic reaction was caused by eperisone or afloqualone, skin prick testing and intradermal skin tests were performed with eperisone or afloqualone extract in vivo, and basophil activity tests were performed after stimulation with these drugs in vitro. In one patient with laryngeal edema, the intradermal test with afloqualone extract had a positive result, and CD63 expression levels on basophils increased in a dose-dependent manner by stimulation with afloqualone. We report three allergic reactions caused by oral muscle relaxants that might be mediated by non-immunoglobulin E-mediated responses. Since oral muscle relaxants such as eperisone and afloqualone are commonly prescribed for chronic muscle pain and can induce severe allergic reactions, we should prescribe them carefully.

  2. An Exact Relaxation of Clustering

    Mørup, Morten; Hansen, Lars Kai


    of clustering problems such as the K-means objective and pairwise clustering as well as graph partition problems, e.g., for community detection in complex networks. In particular we show that a relaxation to the simplex can be given for which the extreme solutions are stable hard assignment solutions and vice......Continuous relaxation of hard assignment clustering problems can lead to better solutions than greedy iterative refinement algorithms. However, the validity of existing relaxations is contingent on problem specific fuzzy parameters that quantify the level of similarity between the original...... versa. Based on the new relaxation we derive the SR-clustering algorithm that has the same complexity as traditional greedy iterative refinement algorithms but leading to significantly better partitions of the data. A Matlab implementation of the SR-clustering algorithm is available for download....

  3. The relaxation & stress reduction workbook

    Davis, Martha; Eshelman, Elizabeth Robbins; McKay, Matthew


    "The Relaxation & Stress Reduction Workbook broke new ground when it was first published in 1980, detailing easy, step-by-step techniques for calming the body and mind in an increasingly overstimulated world...

  4. Relaxation Dynamics in Heme Proteins.

    Scholl, Reinhard Wilhelm

    A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the

  5. Negative magnetic relaxation in superconductors

    Krasnoperov E.P.


    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  6. Mechanism of resveratrol-induced relaxation in the human gallbladder.

    Tsai, Ching-Chung; Lee, Ming-Che; Tey, Shu-Leei; Liu, Ching-Wen; Huang, Shih-Che


    Resveratrol is a polyphenolic compound extracted from plants and is also a constituent of red wine. Resveratrol produces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Although resveratrol has been reported to cause relaxation of the guinea pig gallbladder, limited data are available about the effect of resveratrol on the gallbladder smooth muscle in humans. The purpose of this study was to investigate the relaxation effects of resveratrol in human gallbladder muscle strips. We studied the relaxant effects of resveratrol in human gallbladder. In addition, we also investigated mechanism of resveratrol-induced relaxation in human gallbladder by tetraethylammonium (a non-selective potassium channels blocker), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channel), glibenclamide (an ATP-sensitive potassium channel blocker), charybdotoxin (an inhibitor of large conductance calcium-activated potassium channels and slowly inactivating voltage-gated potassium channels), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-Nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na(+) channel blocker), and ω-conotoxin GVIA (a selective neuronal Ca(2+) channel blocker). The present study showed that resveratrol has relaxant effects in human gallbladder muscle strips. In addition, we found that resveratrol-induced relaxation in human gallbladder is associated with nitric oxide, ATP-sensitive potassium channel, and large conductance calcium-activated potassium channel pathways. This study provides the first evidence concerning the relaxant effects of resveratrol in human gallbladder muscle strips. Furthermore, these results demonstrate that resveratrol is a potential new drug or health supplement in the treatment of

  7. Relaxation and biofeedback techniques in the management of hypertension.

    Patel, C; Datey, K K


    In a controlled trial, 27 patients with systemic hypertension were given training in relaxation and meditation using biofeedback procedures. As a result there was a significant reduction in both systolic and diastolic pressure in 77% of the patients. In 50% of the patients it was also possible to reduce antihypertensive drugs, ranging from 33 to 100%. Six-month follow up results show that the benefit can be maintained for a long term provided the patients practice relaxation regularly. The response is unlikely to be a "placebo effect" in the usual meaning. Its genuine therapeutic value should be exploited and reevaluated on a larger scale.

  8. Drug: D07273 [KEGG MEDICUS

    Full Text Available D07273 Drug Fazadinium bromide (INN) C28H24N6. 2Br 602.0429 604.3384 D07273.gif ATC...03 MUSCLE RELAXANTS M03A MUSCLE RELAXANTS, PERIPHERALLY ACTING AGENTS M03AC Other quaternary ammonium compounds M03AC08 Fazad...inium bromide D07273 Fazadinium bromide (INN) CAS: 49564-56-9 Pu

  9. Drug: D00782 [KEGG MEDICUS

    Full Text Available 323.9006 D00782.gif Antiparkinsonian; Relaxant [skeletal muscle] ATC code: N04AA04 muscarinic cholinergic re...D00782 Drug Procyclidine hydrochloride (USP); Kemadrin (TN) C19H29NO. HCl 323.2016

  10. Dynamical theory of spin relaxation

    Field, Timothy R.; Bain, Alex D.


    The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the issue of individual spin dynamics. Using stochastic calculus, we develop a dynamical theory of spin relaxation, the origins of which lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation.

  11. A mixed relaxed clock model


    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829


    IGA Prima Dewi AP


    Full Text Available Aromatherapy is a kind of treatment that used aroma with aromatherapy essential oil. Extraction process from essential oil generally doing in three methods, there are distilling with water (boiled, distilling with water and steam, and distilling with steam. One of the most favorite aroma is lavender. The main content from lavender is linalyl acetate and linalool (C10H18O. Linalool is main active contents in lavender which can use for anti-anxiety (relaxation. Based on some research, the conclusion indicates that essential oil from lavender can give relaxation (carminative, sedative, reduce anxiety level and increasing mood.

  13. Statistical mechanics of violent relaxation

    Spergel, David N.; Hernquist, Lars


    We propose a functional that is extremized through violent relaxation. It is based on the Ansatz that the wave-particle scattering during violent dynamical processes can be approximated as a sequence of discrete scattering events that occur near a particle's perigalacticon. This functional has an extremum whose structure closely resembles that of spheroidal stellar systems such as elliptical galaxies. The results described here, therefore, provide a simple framework for understanding the physical nature of violent relaxation and support the view that galaxies are structured in accord with fundamental statistical principles.

  14. Active optomechanics through relaxation oscillations

    Princepe, Debora; Frateschi, Newton


    We propose an optomechanical laser based on III-V compounds which exhibits self-pulsation in the presence of a dissipative optomechanical coupling. In such a laser cavity, radiation pressure drives the mechanical degree of freedom and its back-action is caused by the mechanical modulation of the cavity loss rate. Our numerical analysis shows that even in a wideband gain material, such dissipative coupling couples the mechanical oscillation with the laser relaxation oscillations process. Laser self-pulsation is observed for mechanical frequencies below the laser relaxation oscillation frequency under sufficiently high optomechanical coupling factor.

  15. Thermal relaxation and mechanical relaxation of rice gel

    丁玉琴; 赵思明; 熊善柏


    Rice gel was prepared by simulating the production processes of Chinese local rice noodles,and the properties of thermal relaxation and mechanical relaxation during gelatinization were studied by differential scanning calorimetry(DSC) measurement and dynamic rheometer.The results show that during gelatinization,the molecular chains of rice starch undergo the thermal relaxation and mechanical relaxation.During the first heating and high temperature holding processes,the starch crystallites in the rice slurry melt,and the polymer chains stretch and interact,then viscoelastic gel forms.The cooling and low temperatures holding processes result in reinforced networks and decrease the viscoelasticity of the gel.During the second heating,the remaining starch crystallites further melt,the network is reinforced,and the viscoelasticity increases.The viscoelasticity,the molecular conformation and texture of the gel are adjusted by changing the temperature,and finally construct the gel with the textural characteristics of Chinese local rice noodle.

  16. [A daycare program of animal assisted therapy for affective disorder patients during psychotropic drug therapy: evaluation of the relaxation effect by fNIRS (functional near-infrared spectroscopy)].

    Iwahashi, Kazuhiko; Fukamauchi, Fumihiko; Aoki, Jun; Kurihara, Kouhei; Yoshihara, Eiji; Inoue, Masao; Shibanai, Hiroko; Ishigooka, Jun


    During daycare programs of animal assisted therapy (AAT), we collected data on the brain function of two affective disorder patients who received psychotropic drug therapy with fNIRS, after written informed consent was obtained. A male patient at first showed a bloodstream drop, seen in the lower inside part of frontal lobe. In both patients, at least a slight activation of the function of the frontal lobe was seen during the therapy. Therefore, an activation effect of AAT was seen at least objectively by fNIRS.

  17. Dielectric relaxation of samarium aluminate

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T.P. [Bose Institute, Department of Physics, Kolkata (India)


    A ceramic SmAlO{sub 3} (SAO) sample is synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern has been done to find the crystal symmetry of the sample at room temperature. An impedance spectroscopy study of the sample has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 313 K to 573 K. Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The Cole-Cole model is used to analyze the dielectric relaxation mechanism in SAO. The temperature-dependent relaxation times are found to obey the Arrhenius law having an activation energy of 0.29 eV, which indicates that polaron hopping is responsible for conduction or dielectric relaxation in this material. The complex impedance plane plot of the sample indicates the presence of both grain and grain-boundary effects and is analyzed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The frequency-dependent conductivity spectra follow a double-power law due to the presence of two plateaus. (orig.)

  18. Onsager relaxation of toroidal plasmas

    Samain, A.; Nguyen, F.


    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author). 36 refs.

  19. Relaxation properties in classical diamagnetism

    Carati, A.; Benfenati, F.; Galgani, L.


    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  20. Equivalent Relaxations of Optimal Power Flow

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B


    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  1. Organic semiconductors: What makes the spin relax?

    Bobbert, Peter A.


    Spin relaxation in organic materials is expected to be slow because of weak spin-orbit coupling. The effects of deuteration and coherent spin excitation show that the spin-relaxation time is actually limited by hyperfine fields.

  2. Relaxation Techniques to Manage IBS Symptoms

    ... the Day Art of IBS Gallery Contact Us Relaxation Techniques to Manage IBS Symptoms Details Content Last Updated: ... Topic Psychological Treatments Understanding Stress Cognitive Behavioral Therapy Relaxation Techniques for IBS You’ve been to the doctor ...

  3. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder.

    Blanaru, Monica; Bloch, Boaz; Vadas, Limor; Arnon, Zahi; Ziv, Naomi; Kremer, Ilana; Haimov, Iris


    Posttraumatic stress disorder (PTSD), an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation) in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects' sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc.), and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music relaxation, a highly

  4. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder

    Iris Haimov


    Full Text Available Posttraumatic stress disorder (PTSD, an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects’ sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc., and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music

  5. Plasmon-mediated energy relaxation in graphene

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)


    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  6. Collisionless Relaxation of Stellar Systems

    Kandrup, H E


    The objective of the work summarised here has been to exploit and extend ideas from plasma physics and accelerator dynamics to formulate a unified description of collisionless relaxation that views violent relaxation, Landau damping, and phase mixing as (manifestations of) a single phenomenon. This approach embraces the fact that the collisionless Boltzmann equation (CBE), the basic object of the theory, is an infinite-dimensional Hamiltonian system, with the distribution function f playing the role of the fundamental dynamical variable, and that, interpreted appropriately, an evolution described by the other Hamiltonian system. Equilibrium solutions correspond to extremal points of the Hamiltonian subject to the constraints associated with Liouville's Theorem. Stable equilibria correspond to energy minima. The evolution of a system out of equilibrium involves (in general nonlinear) phase space oscillations which may -- or may not -- interfere destructively so as to damp away.

  7. Collisionless Relaxation of Stellar Systems

    Kandrup, Henry E.


    The objective of the work summarized here has been to exploit and extend ideas from plasma physics and accelerator dynamics to formulate a unified description of collisionless relaxation of stellar systems that views violent relaxation, Landau damping, and phase mixing as (manifestations of) a single phenomenon. This approach embraces the fact that the collisionless Boltzmann equation (CBE), the basic object of the theory, is an infinite-dimensional Hamiltonian system, with the distribution function f playing the role of the fundamental dynamical variable, and that, interpreted appropriately, an evolution described by the CBE is no different fundamentally from an evolution described by any other Hamiltonian system. Equilibrium solutions f0 correspond to extremal points of the Hamiltonian subject to the constraints associated with Liouville's Theorem. Stable equilibria correspond to energy minima. The evolution of a system out of equilibrium involves (in general nonlinear) phase space oscillations which may - or may not - interfere destructively so as to damp away.

  8. Kinetic activation-relaxation technique

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand


    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  9. Kinetic activation-relaxation technique.

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand


    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  10. Brief relaxation training program for hospital employees.

    Balk, Judith L; Chung, Sheng-Chia; Beigi, Richard; Brooks, Maria


    Employee stress leads to attrition, burnout, and increased medical costs. We aimed to assess if relaxation training leads to decreased stress levels based on questionnaire and thermal biofeedback. Thirty-minute relaxation training sessions were conducted for hospital employees and for cancer patients. Perceived Stress levels and skin temperature were analyzed before and after relaxation training.

  11. POS Tagging Using Relaxation Labelling

    Padro, L


    Relaxation labelling is an optimization technique used in many fields to solve constraint satisfaction problems. The algorithm finds a combination of values for a set of variables such that satisfies -to the maximum possible degree- a set of given constraints. This paper describes some experiments performed applying it to POS tagging, and the results obtained. It also ponders the possibility of applying it to word sense disambiguation.

  12. Spin relaxation in metallic ferromagnets

    Berger, L.


    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  13. Arresting relaxation in Pickering Emulsions

    Atherton, Tim; Burke, Chris


    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  14. Relaxation response in femoral angiography.

    Mandle, C L; Domar, A D; Harrington, D P; Leserman, J; Bozadjian, E M; Friedman, R; Benson, H


    Immediately before they underwent femoral angiography, 45 patients were given one of three types of audiotapes: a relaxation response tape recorded for this study, a tape of contemporary instrumental music, or a blank tape. All patients were instructed to listen to their audiotape during the entire angiographic procedure. Each audiotape was played through earphones. Radiologists were not told the group assignment or tape contents. The patients given the audiotape with instructions to elicit the relaxation response (n = 15) experienced significantly less anxiety (P less than .05) and pain (P less than .001) during the procedure, were observed by radiology nurses to exhibit significantly less pain (P less than .001) and anxiety (P less than .001), and requested significantly less fentanyl citrate (P less than .01) and diazepam (P less than .01) than patients given either the music (n = 14) or the blank (n = 16) control audiotapes. Elicitation of the relaxation response is a simple, inexpensive, efficacious, and practical method to reduce pain, anxiety, and medication during femoral angiography and may be useful in other invasive procedures.

  15. Effects of Intermittent Drug Withdraw of Muscle Relaxants in Reducing Incidence of Ventilater-associated Pneumenia on Patients with Brain Injury under Mild Hypothermia%间歇性停用肌松剂降低颅脑损伤患者在亚低温状态下呼吸机相关性肺炎的发生率

    沈春燕; 汤莉伟; 刘忆菁; 邸英莲; 虞丽丽


    Objective To investigate the effects of intermittent drug withdraw of muscle relaxants in reducing the incidence of ventrator-associated pneumonia(VAP) on patients with severe craniocerebral injury under mild hypothermia treatment.Methods A total of 100 patients with severe craniocerebral injury requiring mild hypothermia treatment were enrolled.They were randomly divided into intervention group (n=50) and control group(n=50).All the patients were treated with conventional mild hypothermia therapy.The patients in the intervention group discontinued muscle relaxants for 30 minutes per 6 hours according to the medical advice,and the control group was treated with the conventional therapy constantly.The incidence of VAP after treatment under mild hypothermia for 72 hours and 120 hours.Results There wasn't significant difference between the two groups in the incidence of the VAP after treatment under mild hypothermia for 72 hours(P>0.05).However,significant difference was observed in the VAP between the two groups after treatment over 120 hours(P<0.05).Conclusion Intermittent drug withdraw of muscle relaxants can reduce the incidence of VAP on patients with severe craniocerebral injury under mild hypothermia treatment over 120 hours.%目的 探讨间歇性停用肌松剂降低重型颅脑损伤患者在亚低温治疗状态下呼吸机相关性肺炎发生率的作用.方法 按随机数字表将重型颅脑损伤且需采用亚低温治疗的患者100例分为试验组和对照组各50例,两组患者均采用常规的亚低温治疗方法.试验组根据医嘱每6 h停用肌松弛剂罗库溴铵30 min,对照组按照常规持续使用.比较两组患者亚低温治疗72、120 h后的呼吸机相关性肺炎(ventilator-associated pneumonia,VAP)的发生率.结果 两组患者亚低温治疗72 h后的VAP发生率差异无统计学意义(P>0.05),治疗120 h后的VAP发生率差异有统计学意义(P<0.05).结论 间歇性停用肌松剂可降低重型颅

  16. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng


    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  17. Time of relaxation in dusty plasma model

    Timofeev, A. V.


    Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.

  18. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices

    Alison E. M. Vickers


    Full Text Available Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM, diclofenac (DCF, 1 mM and etomoxir (ETM, 100 μM. Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM and cyclosporin A (CSA, 10 μM, while GSH was affected more than ATP by methimazole (MMI, 500 μM, terbinafine (TBF, 100 μM, and carbamazepine (CBZ 100 μM. Oxidative stress genes were affected by TBF (18%, CBZ, APAP, and ETM (12%–11%, and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%–6%. Apoptosis genes were affected by DCF (14%, while apoptosis plus necrosis were altered by APAP and ETM (15%. Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%, ETM (66%, DCF, TBF, MMI (61%–60%, APAP, CBZ (57%–56%, and DTL (48%. Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%, CBZ and ETM (44%–43%, APAP and DCF (40%–38%, MMI, TBF and CSA (37%–35%. This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects.

  19. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices.

    Vickers, Alison E M; Ulyanov, Anatoly V; Fisher, Robyn L


    Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM), diclofenac (DCF, 1 mM) and etomoxir (ETM, 100 μM). Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM) and cyclosporin A (CSA, 10 μM), while GSH was affected more than ATP by methimazole (MMI, 500 μM), terbinafine (TBF, 100 μM), and carbamazepine (CBZ 100 μM). Oxidative stress genes were affected by TBF (18%), CBZ, APAP, and ETM (12%-11%), and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%-6%). Apoptosis genes were affected by DCF (14%), while apoptosis plus necrosis were altered by APAP and ETM (15%). Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%), ETM (66%), DCF, TBF, MMI (61%-60%), APAP, CBZ (57%-56%), and DTL (48%). Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%), CBZ and ETM (44%-43%), APAP and DCF (40%-38%), MMI, TBF and CSA (37%-35%). This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects.

  20. Silperisone: a centrally acting muscle relaxant.

    Farkas, Sándor


    Silperisone is a tolperisone like organosilicon compound with centrally acting muscle relaxant properties. Studies in mice showed that silperisone may have less propensity to cause CNS depressant or motor side effects than tolperisone or other antispastic drugs. In cats and rats, silperisone was an effective suppressant of monosynaptic and polysynaptic spinal reflexes and decerebrate rigidity. Its suppressant effect on the spinal reflexes was also demonstrated in the isolated hemisected rat spinal cord in vitro. The in vivo potency and efficacy of silperisone by i.v administration were similar to those of tolperisone and eperisone. However, in cats by intraduodenal administration and in mice by oral administration its duration of action was much longer and its functional bioavailability much higher than of the other two drugs. With regard to its profile of actions silperisone was similar to tolperisone with minor differences. The most striking difference was in pontine facilitation and bulbar inhibition of the patellar reflex. Tolperisone depressed both, whereas silperisone inhibited only the former. The mechanism underlying the spinal reflex depressant effects of silperisone involves the blockade of voltage gated neuronal sodium and calcium channels leading to a decreased release of excitatory transmitter and reduced neuronal excitability. In addition, silperisone has potassium channel blocking effect, which is stronger than that of tolperisone. Silperisone is absorbed rapidly and is extensively metabolized in rats. However, its metabolism in dogs and particularly in humans is much less extensive. The elimination half-life of silperisone in humans is 12 to 16 h, so that it can be administered once or twice daily. Phase I clinical studies with silperisone at doses up to 150 mg/day failed to detect any adverse effects at plasma concentrations considered to be effective in the preclinical tests. These findings suggested that silperisone might be a useful antispastic

  1. 5 Things To Know About Relaxation Techniques for Stress

    ... X Y Z 5 Things To Know About Relaxation Techniques for Stress Share: When you’re under stress, ... creating the relaxation response through regular use of relaxation techniques could counteract the negative effects of stress. Relaxation ...

  2. Sugammadex: A revolutionary drug in neuromuscular pharmacology

    Nag, Kusha; Singh, Dewan Roshan; Shetti, Akshaya N.; Kumar, Hemanth; Sivashanmugam, T.; Parthasarathy, S.


    Sugammadex (ORG 25969) is a unique neuromuscular reversal drug; a novel cyclodextrin, the first in a new class of selective relaxant binding agents, which reverse neuromuscular blockade (NMB) with the aminosteroid non-depolarizing muscle relaxants rocuronium and vecuronium. Sugammadex can reverse moderate or deep NMB. The clinical use of sugammadex promises to eliminate many of the shortcomings in current anesthetic practice with regard to antagonism of rocuronium and other aminosteroid muscle relaxants. PMID:25885973

  3. Compaction and relaxation of biofilms

    Valladares Linares, R.


    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  4. Electroconvulsive therapy in drug resistant neuroleptic malignant syndrome: a case report

    Yousefi A


    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Neuroleptic malignant syndrome is an idiosyncratic and potentially fatal reaction to neuroleptic drugs and is characterized by fever, muscular rigidity, altered mental status, autonomic dysfunction, elevated serum CPK and leucocytosis Neuroleptic malignant syndrome is treated with dantrolene, bromocriptin, amantadin and electroconvulsive therapy."n"nCase: A 22 years old, schizophrenic female was refered to the Emergency ward of Roozbeh hospital in Tehran, Iran in December 2008 with aggression, impulsivity, and reduced sleep. After injection of haloperidol, the patient developed a high grade fever, diaphoresis and muscular stiffness. She was diagnosed as neuroleptic malignant syndrome and the treatment with dantrolen, bromocriptin and amantadin initiated. Although fever subsided, other signs continued, therefore we applied electroconvulsive therapy to this case."n"nConclusion: Due to excellent response of the patient to electroconvulsive therapy and the rare reports of electroconvulsive therapy in neuroleptic malignant syndrome in the Iranian population, this case may lead to develop studies for further investigations of this issue.

  5. Plasma Relaxation in Hall Magnetohydrodynamics

    Shivamoggi, B K


    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics.

  6. Spectral Estimation of NMR Relaxation

    Naugler, David G.; Cushley, Robert J.


    In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived. Assuming small Gaussian error, the estimation variance and bias are derived. Minimum bias and minimum variance are shown to be contradictory experimental design objectives. The analytical continuation of spectral estimation is constructed in an optimal manner. An important property of spectral estimation is that it is phase invariant. Hence, hypercomplex data storage is unnecessary. It is shown that, under reasonable assumptions, spectral estimation is unbiased in the context of complex error and its variance is reduced because the modulus of the whole signal is used. Because of phase invariance, the labor of phasing and any error due to imperfect phase can be avoided. A comparison of spectral estimation with nonlinear least squares (NLS) estimation is made analytically and with numerical examples. Compared to conventional sampling for NLS estimation, spectral estimation would typically provide estimation values of comparable precision in one-quarter to one-tenth of the spectrometer time when S/N is high. When S/N is low, the time saved can be used for signal averaging at the sampled points to give better precision. NLS typically provides one estimate at a time, whereas spectral estimation is inherently parallel. The frequency dimensions of conventional nD FT NMR may be denoted D1, D2, etc. As an extension of nD FT NMR, one can view spectral estimation of NMR relaxation as an extension into the zeroth dimension. In nD NMR, the information content of a spectrum can be extracted as a set of n-tuples (ω1, … ωn), corresponding to the peak maxima

  7. Relaxing Chosen-Ciphertext Security

    Canetti, Ran; Krawczyk, Hugo; Nielsen, Jesper Buus


    Security against adaptive chosen ciphertext attacks (or, CCA security) has been accepted as the standard requirement from encryption schemes that need to withstand active attacks. In particular, it is regarded as the appropriate security notion for encryption schemes used as components within...... “for most practical purposes.” We propose a relaxed variant of CCA security, called Replayable CCA (RCCA) security. RCCA security accepts as secure the non-CCA (yet arguably secure) schemes mentioned above; furthermore, it suffices for most existing applications of CCA security. We provide three...

  8. Neuroleptic malignant syndrome associated with haloperidol use in critical care setting: should haloperidol still be considered the drug of choice for the management of delirium in the critical care setting?

    Dixit, Deepali; Shrestha, Pranabh; Adelman, Marc


    A 48-year-old man was brought to the emergency department because of intoxication. The patient was in respiratory distress, subsequently intubated for airway protection. On hospital day 5, he was diagnosed with delirium. Haloperidol was initiated at 5 mg intravenous every 6 h and titrated up to a dose of 60 mg /day over 5 days. On hospital day 18, his temperature peaked to 107.1°F. Other symptoms included mental status change, muscular rigidity and autonomic dysfunction. Neuroleptic malignant syndrome (NMS) associated with haloperidol was suspected. No other causes for these symptoms were present. Concurrent medications were reviewed and ruled out for possible drug-induced fever. Haloperidol was discontinued and dantrolene and bromocriptine was initiated. The temperature decreased to 102.2°F within 3 h and other symptoms resolved overtime. The temporal relationship between the patient's fever decline with the discontinuation of haloperidol, and improvement with dantrolene and bromocriptine, the diagnosis was believed to be haloperidol-induced NMS.

  9. Hyperpolarized nanodiamond with long spin-relaxation times

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.


    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  10. Icariin on relaxation effect of corpus cavernosum smooth muscle


    NO-cGMP pathway in penile corpus cavernosal smooth muscle plays an important role in penile erection. The level of cGMP is regulated by a balance between the rate of synthesis by guanylate cyclase and the rate of hydrolytic breakdown to guanosine 5′monophosphate (GMP) by phos- phodiesterase 5(PDE5). Icariin is isolated from natural drug Epimedii herba, it is shown to have the relaxation effect on corpus cavernosal smooth muscle of rabbit (IC50: 4×10-4 mol/L), and the mechanism of the relaxation effect of Icariin on corpus cavernosum believed to have the inhibiting effect on PDE5 and activation of NO-cGMP pathway to enhancing penile erection.

  11. Drug: D08617 [KEGG MEDICUS

    Full Text Available D08617 Drug Tolperisone (INN); Musclex (TN) C16H23NO 245.178 245.3599 D08617.gif Mu...or joint and muscular pain M02AX06 Tolperisone D08617 Tolperisone (INN) M03 MUSCLE RELAXANTS M03B MUSCLE REL...AXANTS, CENTRALLY ACTING AGENTS M03BX Other centrally acting agents M03BX04 Tolperisone D08617 Tolperisone (

  12. Relaxation of liquid bridge after droplets coalescence

    Jiangen Zheng


    Full Text Available We investigate the relaxation of liquid bridge after the coalescence of two sessile droplets resting on an organic glass substrate both experimentally and theoretically. The liquid bridge is found to relax to its equilibrium shape via two distinct approaches: damped oscillation relaxation and underdamped relaxation. When the viscosity is low, damped oscillation shows up, in this approach, the liquid bridge undergoes a damped oscillation process until it reaches its stable shape. However, if the viscous effects become significant, underdamped relaxation occurs. In this case, the liquid bridge relaxes to its equilibrium state in a non-periodic decay mode. In depth analysis indicates that the damping rate and oscillation period of damped oscillation are related to an inertial-capillary time scale τc. These experimental results are also testified by our numerical simulations with COMSOL Multiphysics.

  13. Cross relaxation in nitroxide spin labels

    Marsh, Derek


    Cross relaxation, and mI -dependence of the intrinsic electron spin-lattice relaxation rate We , are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We , the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI -dependent.

  14. Utilizing RELAX NG Schemas in XML Editors

    Schmied, Martin


    This thesis explores the possibilities of utilizing RELAX NG schemata in the process of editing XML documents. The ultimate goal of this thesis is to prototype a system supporting user while editing XML document with bound RELAX NG schema inside the Eclipse IDE. Such a system comprises two major components -- an integration of RELAX NG validator and an autocompletion engine. Design of the autocompletion engine represents the main contribution of this thesis, because similar systems are almost...

  15. Temperature relaxation in dense plasma mixtures

    Faussurier, Gérald; Blancard, Christophe


    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  16. Baryogenesis via Elementary Goldstone Higgs Relaxation

    Gertov, Helene; Pearce, Lauren; Yang, Louis


    We extend the relaxation mechanism to the Elementary Goldstone Higgs frame- work. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very flat scalar potential directions along which the relaxation mechanism can be implemented. This fact translates into wider regions of applicability of the relaxation mechanism when compared to the Standard Model Higgs case. Our results show that, if the electroweak scale is not fundamental but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism.

  17. Dielectric relaxation studies in polyvinyl butyral

    Mehendru, P. C.; Kumar, Naresh; Arora, V. P.; Gupta, N. P.


    Dielectric measurements have been made in thick films (˜100 μm) of polyvinyl butyral (PVB) having degree of polymerization n=1600, in the frequency range 100 Hz-100 KHz and temperature range 300-373 K. The results indicated that PVB was in the amorphous phase and observed dielectric dispersion has been assigned as the β-relaxation process. The β relaxation is of Debye type with symmetrical distribution of relaxation times. The dielectric relaxation strength Δɛ and the distribution parameters β¯ increase with temperature. The results can be qualitatively explained by assuming the hindered rotation of the side groups involving hydroxyl/acetate groups.

  18. Relaxation and Visualization Strategies for Story Telling



    The importance of training students to tell or retell story is self - evident for mastering English language. The following activity introduces relaxation and visualization strategies for story telling.

  19. Non-Drug Pain Relief: Imagery

    PATIENT EDUCATION Non-Drug Pain Relief: Imagery Relaxation helps lessen tension. One way to help decrease pain is to use imagery. Imagery is using your imagination to create a ...

  20. Nuclear relaxation via paramagnetic impurities

    Dzheparov, F S; Jacquinot, J F


    First part of the work contains a calculation of the kinetics of nuclear relaxation via paramagnetic impurities for systems with arbitrary (including fractal) space dimension d basing on ideas, which run current for 3d objects now. A new mean-field-type theory is constructed in the second part of the work. It reproduces all results of the first part for integer d and gives a possibility to describe the process for longer time, when a crossover to Balagurov-Waks asymptotics starts to develop. Solutions of the equations of the new theory are constructed for integer d. To obtain the solutions a method of calculation of the low-energy and long-wave asymptotics for T matrix of potential scattering out of the mass shell for singular repulsive potentials is developed

  1. Relaxing Chosen-Ciphertext Security

    Canetti, Ran; Krawczyk, Hugo; Nielsen, Jesper Buus


    Security against adaptive chosen ciphertext attacks (or, CCA security) has been accepted as the standard requirement from encryption schemes that need to withstand active attacks. In particular, it is regarded as the appropriate security notion for encryption schemes used as components within...... general protocols and applications. Indeed, CCA security was shown to suffice in a large variety of contexts. However, CCA security often appears to be somewhat too strong: there exist encryption schemes (some of which come up naturally in practice) that are not CCA secure, but seem sufficiently secure...... “for most practical purposes.” We propose a relaxed variant of CCA security, called Replayable CCA (RCCA) security. RCCA security accepts as secure the non-CCA (yet arguably secure) schemes mentioned above; furthermore, it suffices for most existing applications of CCA security. We provide three...

  2. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J


    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR.

  3. The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Seeger, H M; Heimburg, T; Gudmundsson, Marie L.; Heimburg, Thomas; Seeger, Heiko M.


    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases...

  4. Quantification of magnetic nanoparticles with low frequency magnetic fields: compensating for relaxation effects

    Weaver, John B.; Zhang, Xiaojuan; Kuehlert, Esra; Toraya-Brown, Seiko; Reeves, Daniel B.; Perreard, Irina M.; Fiering, Steven


    Quantifying the number of nanoparticles present in tissue is central to many in vivo and in vitro applications. Magnetic nanoparticles can be detected with high sensitivity both in vivo and in vitro using the harmonics of their magnetization produced in a sinusoidal magnetic field. However, relaxation effects damp the magnetic harmonics rendering them of limited use in quantification. We show that an accurate measure of the number of nanoparticles can be made by correcting for relaxation effects. Correction for relaxation reduced errors of 50% for larger nanoparticles in high relaxation environments to 2%. The result is a method of nanoparticle quantification suitable for in vivo and in vitro applications including histopathology assays, quantitative imaging, drug delivery and thermal therapy preparation.

  5. Magnetic Nanoparticle Quantitation with Low Frequency Magnetic Fields: Compensating for Relaxation Effects

    Weaver, John B.; Zhang, Xiaojuan; Kuehlert, Esra; Toraya-Brown, Seiko; Reeves, Daniel B.; Perreard, Irina M.; Fiering, Steven N.


    Quantifying the number of nanoparticles present in tissue is central to many in vivo and in vitro applications. Magnetic nanoparticles can be detected with high sensitivity both in vivo and in vitro using the harmonics of their magnetization produced in a sinusoidal magnetic field. However, relaxation effects damp the magnetic harmonics rendering them of limited use in quantitation. We show that an accurate measure of the number of nanoparticles can be made by correcting for relaxation effects. Correction for relaxation reduced errors of 50% for larger nanoparticles in high relaxation environments to 2%. The result is a method of nanoparticle quantitation capable of in vivo and in vitro applications including histopathology assays, quantitative imaging, drug delivery and thermal therapy preparation. PMID:23867287

  6. Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and (1)H NMR relaxation times.

    Aso, Y; Yoshioka, S; Kojima, S


    Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.

  7. Superparamagnetic relaxation of weakly interacting particles

    Mørup, Steen; Tronc, Elisabeth


    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  8. Postextrasystolic relaxation in the dog heart

    Kuijer, P.J.P.; Heethaar, R.M.; Herbschleb, J.N.; Zimmerman, A.N.E.; Meijler, F.L.


    Left ventricular relaxation was studied in 8 dogs using parameters derived from the left ventricular pressure: the fastest pressure fall and the time constant of pressure decline. Effects of extrasystolic rhythm interventions were examined on the relaxation parameters of the post-relative to the pre

  9. Superparamagnetic relaxation in alpha-Fe particles

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley;


    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies with tem...

  10. Cross relaxation in nitroxide spin labels

    Marsh, Derek


    -label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...

  11. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.


    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  12. Windowing Waveform Relaxation of Initial Value Problems

    Yao-lin Jiang


    We present a windowing technique of waveform relaxation for dynamic systems. An effective estimation on window length is derived by an iterative error expression provided here. Relaxation processes can be speeded up if one takes the windowing technique in advance. Numerical experiments are given to further illustrate the theoretical analysis.

  13. Stress Relaxation in Entangled Polymer Melts

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  14. Stress and Relaxation in Relation to Personality

    Harish Kumar Sharma


    Full Text Available Relaxation plays a significant role in facing stress. The aim of the present study is to see whether personality patterns determine an individual’s ability to relax. As a reaction to stress, coping is the best way to handle stress, which requires rational and conscious thinking. Does this ability to relax anyway facilitate coping reactions? A study was conducted on 100 college students. Results revealed that extraverts relax easily than introverts. In addition, if intelligence level is average or above average, relaxation does play a role in facilitating coping reactions. It suggests that in designing techniques of stress management, the personality and intelligence level must be taken into consideration to make techniques effective.

  15. Size-dependent MR relaxivities of magnetic nanoparticles

    Joos, Alexander; Löwa, Norbert; Wiekhorst, Frank; Gleich, Bernhard; Haase, Axel


    Magnetic nanoparticles (MNPs) can be used as carriers for magnetic drug targeting and for stem cell tracking by magnetic resonance imaging (MRI). For these applications, it is crucial to quantitatively determine the spatial distribution of the MNP concentration, which can be approached by MRI relaxometry. Theoretical considerations and experiments have shown that R2 relaxation rates are sensitive to the aggregation state of the particles, whereas R2* is independent of aggregation state and therefore suited for MNP quantification if the condition of static dephasing is met. We present a new experimental approach to characterize an MNP system with respect to quantitative MRI based on hydrodynamic fractionation. The first results qualitatively confirm the outer sphere relaxation theory for small MNPs and show that the two commercial MRI contrast agents Resovist® and Endorem® should not be used for quantitative MRI because they do not fulfill the condition for static dephasing. Our approach could facilitate the choice of MNPs for quantitative MRI and help clarifying the relationship between size, magnetism and relaxivity of MNPs in the future.

  16. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter


    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T1 and T2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved

  17. Domain Relaxation in Langmuir Films

    Bernoff, Andrew J.; Alexander, James C.; Mann, Elizabeth K.; Mann, J. Adin; Zou, Lu; Wintersmith, Jacob R.


    We report on an experimental, theoretical and computational study of a molecularly thin polymer Langmuir layer domain on the surface of a subfluid. When stretched (by a transient stagnation flow), the Langmuir layer takes the form of a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape relaxes to the circular minimum energy configuration. The tether is never observed to rupture, even when it is more than a hundred times as long as it is thin. We model these experiments as a free boundary problem where motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. We process the digital images of the experiment to extract the domain shape, use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics, and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%.

  18. Supervised Discrete Hashing With Relaxation.

    Gui, Jie; Liu, Tongliang; Sun, Zhenan; Tao, Dacheng; Tan, Tieniu


    Data-dependent hashing has recently attracted attention due to being able to support efficient retrieval and storage of high-dimensional data, such as documents, images, and videos. In this paper, we propose a novel learning-based hashing method called ''supervised discrete hashing with relaxation'' (SDHR) based on ''supervised discrete hashing'' (SDH). SDH uses ordinary least squares regression and traditional zero-one matrix encoding of class label information as the regression target (code words), thus fixing the regression target. In SDHR, the regression target is instead optimized. The optimized regression target matrix satisfies a large margin constraint for correct classification of each example. Compared with SDH, which uses the traditional zero-one matrix, SDHR utilizes the learned regression target matrix and, therefore, more accurately measures the classification error of the regression model and is more flexible. As expected, SDHR generally outperforms SDH. Experimental results on two large-scale image data sets (CIFAR-10 and MNIST) and a large-scale and challenging face data set (FRGC) demonstrate the effectiveness and efficiency of SDHR.

  19. Spin relaxation in organic semiconductors

    Bobbert, Peter


    Intriguing magnetic field effects in organic semiconductor devices have been reported: anomalous magnetoresistance in organic spin valves and large effects of small magnetic fields on the current and luminescence of organic light-emitting diodes. Influences of isotopic substitution on these effects points at the role of hyperfine coupling. We performed studies of spin relaxation in organic semiconductors based on (i) coherent spin precession of the electron spin in an effective magnetic field consisting of a random hyperfine field and an applied magnetic field and (ii) incoherent hopping of charges. These ingredients are incorporated in a stochastic Liouville equation for the dynamics of the spin density matrix of single charges as well as pairs of charges. For single charges we find a spin diffusion length that depends on the magnetic field, explaining anomalous magnetoresistance in organic spin valves. For pairs of charges we show that the magnetic field influences formation of singlet bipolarons, in the case of like charges, and singlet and triplet excitons, in the case of opposite charges. We can reproduce different line shapes of reported magnetic field effects, including recently found effects at ultra-small fields.

  20. Relaxation of a 1-D gravitational system

    Valageas, P


    We study the relaxation towards thermodynamical equilibrium of a 1-D gravitational system. This OSC model shows a series of critical energies $E_{cn}$ where new equilibria appear and we focus on the homogeneous ($n=0$), one-peak ($n=\\pm 1$) and two-peak ($n=2$) states. Using numerical simulations we investigate the relaxation to the stable equilibrium $n=\\pm 1$ of this $N-$body system starting from initial conditions defined by equilibria $n=0$ and $n=2$. We find that in a fashion similar to other long-range systems the relaxation involves a fast violent relaxation phase followed by a slow collisional phase as the system goes through a series of quasi-stationary states. Moreover, in cases where this slow second stage leads to a dynamically unstable configuration (two peaks with a high mass ratio) it is followed by a new sequence ``violent relaxation/slow collisional relaxation''. We obtain an analytical estimate of the relaxation time $t_{2\\to \\pm 1}$ through the mean escape time of a particle from its potent...

  1. Plasma Relaxation Dynamics Moderated by Current Sheets

    Dewar, Robert; Bhattacharjee, Amitava; Yoshida, Zensho


    Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium model all these constraints are relaxed save for global magnetic flux and helicity. A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is developed. These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm and Kulsrud--the formation of an initial shielding current sheet after perturbation by boundary rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed through a reconnection sequence, is calculated using RxMHD. Australian Research Council Grant DP110102881.

  2. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.


    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  3. Le Chatelier's principle with multiple relaxation channels

    Gilmore, R.; Levine, R. D.


    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  4. Neural control of muscle relaxation in echinoderms.

    Elphick, M R; Melarange, R


    Smooth muscle relaxation in vertebrates is regulated by a variety of neuronal signalling molecules, including neuropeptides and nitric oxide (NO). The physiology of muscle relaxation in echinoderms is of particular interest because these animals are evolutionarily more closely related to the vertebrates than to the majority of invertebrate phyla. However, whilst in vertebrates there is a clear structural and functional distinction between visceral smooth muscle and skeletal striated muscle, this does not apply to echinoderms, in which the majority of muscles, whether associated with the body wall skeleton and its appendages or with visceral organs, are made up of non-striated fibres. The mechanisms by which the nervous system controls muscle relaxation in echinoderms were, until recently, unknown. Using the cardiac stomach of the starfish Asterias rubens as a model, it has been established that the NO-cGMP signalling pathway mediates relaxation. NO also causes relaxation of sea urchin tube feet, and NO may therefore function as a 'universal' muscle relaxant in echinoderms. The first neuropeptides to be identified in echinoderms were two related peptides isolated from Asterias rubens known as SALMFamide-1 (S1) and SALMFamide-2 (S2). Both S1 and S2 cause relaxation of the starfish cardiac stomach, but with S2 being approximately ten times more potent than S1. SALMFamide neuropeptides have also been isolated from sea cucumbers, in which they cause relaxation of both gut and body wall muscle. Therefore, like NO, SALMFamides may also function as 'universal' muscle relaxants in echinoderms. The mechanisms by which SALMFamides cause relaxation of echinoderm muscle are not known, but several candidate signal transduction pathways are discussed here. The SALMFamides do not, however, appear to act by promoting release of NO, and muscle relaxation in echinoderms is therefore probably regulated by at least two neuronal signalling systems acting in parallel. Recently, other

  5. Stress Relaxation in Entangled Polymer Melts

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...

  6. Spin relaxation in nanowires by hyperfine coupling

    Echeverria-Arrondo, C. [Department of Physical Chemistry, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); Sherman, E.Ya. [Department of Physical Chemistry, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE Basque Foundation for Science, 48011 Bilbao, Bizkaia (Spain)


    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Compact vs. Exponential-Size LP Relaxations

    Carr, R.D.; Lancia, G.


    In this paper we introduce by means of examples a new technique for formulating compact (i.e. polynomial-size) LP relaxations in place of exponential-size models requiring separation algorithms. In the same vein as a celebrated theorem by Groetschel, Lovasz and Schrijver, we state the equivalence of compact separation and compact optimization. Among the examples used to illustrate our technique, we introduce a new formulation for the Traveling Salesman Problem, whose relaxation we show equivalent to the subtour elimination relaxation.

  8. Relaxation time in disordered molecular systems

    Rocha, Rodrigo P. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC (Brazil); Freire, José A., E-mail: [Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba-PR (Brazil)


    Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

  9. Nuclear magnetic resonance relaxation in multiple sclerosis

    Larsson, H B; Barker, G J; MacKay, A


    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  10. 1H relaxation dispersion in solutions of nitroxide radicals: Influence of electron spin relaxation

    Kruk, D.; Korpała, A.; Kubica, A.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.


    The work presents a theory of nuclear (1H) spin-lattice relaxation dispersion for solutions of 15N and 14N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The 1H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the 1H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against 1H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-15N and 4-oxo-TEMPO-d16-14N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both 14N and 15N systems and explains the features of 1H relaxation dispersion resulting from the electron spin relaxation.

  11. Hydrogen sulfide and vascular relaxation

    SUN Yan; TANG Chao-shu; DU Jun-bao; JIN Hong-fang


    Objective To review the vasorelaxant effects of hydrogen sulfide (H2S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved.Data sources The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and ""vascular relaxation".Study selection Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected.Results H2S plays an important role in the regulation of cardiovascular tone.The vasomodulatory effects of H2S depend on factors including concentration,species and tissue type.The H2S donor,sodium hydrosulfide (NarS),causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner.This effect was more pronounced than that observed in pulmonary arterial rings.The expression of KATP channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings.H2S is involved in the pathogenesis of a variety of cardiovascular diseases.Downregulation of the endogenous H2S pathway is an important factor in the pathogenesis of cardiovascular diseases.The vasorelaxant effects of H2S have been shown to be mediated by activation of KATP channels in vascular smooth muscle cells and via the induction of acidification due to activation of the CI/HCO3 exchanger.It is speculated that the mechanisms underlying the vasoconstrictive function of H2S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation.Conclusion H2S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  12. “I think relax, relax and it flows a lot easier”: Exploring client-generated relax strategies

    Dianne Cirone


    Full Text Available Background. Some adult stroke survivors participating in Cognitive Orientation to daily Occupational Performance (CO-OP treatment programs self-generated relax strategies that have not been explored in previous CO-OP publications. The objective of this study was to describe the process by which adults with stroke used relax strategies and to explore the outcomes associated with their use. Methods. Secondary analysis of transcripts of intervention sessions from five participants was conducted. Results. All five participants applied relax strategies after initially observing a breakdown in performance that was attributed to increased fatigue or tension. The relax strategies used by the participants during their occupations included general relaxation, physical modifications to reduce tension, mental preparation, and pacing. The application of these strategies seemed to result in improved skill performance, reduced fatigue, and transfer to other activities. Conclusion. The relax strategy warrants further investigation as a potentially important therapeutic tool to improve occupational performance in individuals who have had a stroke.

  13. Slow spin relaxation in dipolar spin ice.

    Orendac, Martin; Sedlakova, Lucia; Orendacova, Alzbeta; Vrabel, Peter; Feher, Alexander; Pajerowski, Daniel M.; Cohen, Justin D.; Meisel, Mark W.; Shirai, Masae; Bramwell, Steven T.


    Spin relaxation in dipolar spin ice Dy2Ti2O7 and Ho2Ti2O7 was investigated using the magnetocaloric effect and susceptibility. The magnetocaloric behavior of Dy2Ti2O7 at temperatures where the orientation of spins is governed by ``ice rules`` (T Tice) revealed thermally activated relaxation; however, the resulting temperature dependence of the relaxation time is more complicated than anticipated by a mere extrapolation of the corresponding high temperature data [1]. A susceptibility study of Ho2Ti2O7 was performed at T > Tice and in high magnetic fields, and the results suggest a slow relaxation of spins analogous to the behavior reported in a highly polarized cooperative paramagnet [2]. [1] J. Snyder et al., Phys. Rev. Lett. 91 (2003) 107201. [2] B. G. Ueland et al., Phys. Rev. Lett. 96 (2006) 027216.

  14. Energy landscape of relaxed amorphous silicon

    Valiquette, Francis; Mousseau, Normand


    We analyze the structure of the energy landscape of a well-relaxed 1000-atom model of amorphous silicon using the activation-relaxation technique (ART nouveau). Generating more than 40 000 events starting from a single minimum, we find that activated mechanisms are local in nature, that they are distributed uniformly throughout the model, and that the activation energy is limited by the cost of breaking one bond, independently of the complexity of the mechanism. The overall shape of the activation-energy-barrier distribution is also insensitive to the exact details of the configuration, indicating that well-relaxed configurations see essentially the same environment. These results underscore the localized nature of relaxation in this material.

  15. Precession Relaxation of Viscoelastic Oblate Rotators

    Frouard, Julien


    Various perturbations (collisions, close encounters, YORP) destabilise the rotation of a small body, leaving it in a non-principal spin state. Then the body experiences alternating stresses generated by the inertial forces. The ensuing inelastic dissipation reduces the kinetic energy, without influencing the angular momentum. This yields nutation relaxation, i.e., evolution of the spin towards rotation about the maximal-inertia axis. Knowledge of the timescales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the past, nutation relaxation has been described by an empirical quality factor introduced to parameterise the dissipation rate and to evade the discussion of the actual rheological parameters and their role in dissipation. This approach is unable to describe the dependence of the relaxation rate upon the nutation angle, because we do not know the quality factor's dependence on the frequency (which is a function of the nutation angle). This leaves open the question of relax...

  16. Two-Body Relaxation in Cosmological Simulations

    Binney, J; Binney, James; Knebe, Alexander


    The importance of two-body relaxation in cosmological simulations is explored with simulations in which there are two species of particles. The cases of mass ratio sqrt(2):1 and 4:1 are investigated. Simulations are run with both a fixed softening length and adaptive softening using the publicly available codes GADGET and MLAPM, respectively. The effects of two-body relaxation are detected in both the density profiles of halos and the mass function of halos. The effects are more pronounced with a fixed softening length, but even in this case they are not so large as to suggest that results obtained with one mass species are significantly affected by two-body relaxation. The simulations that use adaptive softening are slightly less affected by two-body relaxation and produce slightly higher central densities in the largest halos. They run about three times faster than the simulations that use a fixed softening length.

  17. Structural relaxation in annealed hyperquenched basaltic glasses

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.


    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary r...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses.......The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...

  18. Vibrational energy relaxation in liquid oxygen

    Everitt, K. F.; Egorov, S. A.; Skinner, J. L.


    We consider theoretically the relaxation from the first excited vibrational state to the ground state of oxygen molecules in neat liquid oxygen. The relaxation rate constant is related in the usual way to the Fourier transform of a certain quantum mechanical force-force time-correlation function. A result from Egelstaff allows one instead to relate the rate constant (approximately) to the Fourier transform of a classical force-force time-correlation function. This Fourier transform is then evaluated approximately by calculating three equilibrium averages from a classical molecular dynamics simulation. Our results for the relaxation times (at two different temperatures) are within a factor of 5 of the experimental relaxation times, which are in the ms range.

  19. Analytical representations for relaxation functions of glasses

    Hilfer, R.


    Analytical representations in the time and frequency domains are derived for the most frequently used phenomenological fit functions for non-Debye relaxation processes. In the time domain the relaxation functions corresponding to the complex frequency dependent Cole-Cole, Cole-Davidson and Havriliak-Negami susceptibilities are also represented in terms of $H$-functions. In the frequency domain the complex frequency dependent susceptibility function corresponding to the time dependent stretche...

  20. Vibrational relaxation in very high temperature nitrogen

    Hansen, C. Frederick


    Vibrational relaxation of N2 molecules is considered at temperatures up to 40,000 K in gas mixtures that contain electrons as well as heavy collision partners. The theory of vibrational relaxation due to N2-N2 collisions is fit to experimental data to 10,000 K by choice of the shape of the intermolecular potential and size of the collision cross section. These values are then used to extrapolate the theory to 40,000 K.

  1. Anomalous enthalpy relaxation in vitreous silica

    Yue, Yuanzheng


    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  2. Message passing with relaxed moment matching

    Qi, Yuan; Guo, Yandong


    Bayesian learning is often hampered by large computational expense. As a powerful generalization of popular belief propagation, expectation propagation (EP) efficiently approximates the exact Bayesian computation. Nevertheless, EP can be sensitive to outliers and suffer from divergence for difficult cases. To address this issue, we propose a new approximate inference approach, relaxed expectation propagation (REP). It relaxes the moment matching requirement of expectation propagation by addin...

  3. Protein dynamics from nuclear magnetic relaxation.

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien


    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  4. Lagrange relaxation and Dantzig-Wolfe decomposition

    Vidal, Rene Victor Valqui


    The paper concerns a large-scale linear programming problem having a block-diagonal structure with coupling constraints. It is shown that there are deep connections between the Lagrange relaxation techniques and the Dantzig-Wolfe decomposition methods......The paper concerns a large-scale linear programming problem having a block-diagonal structure with coupling constraints. It is shown that there are deep connections between the Lagrange relaxation techniques and the Dantzig-Wolfe decomposition methods...

  5. Lagrange relaxation and Dantzig-Wolfe decomposition

    Vidal, Rene Victor Valqui


    The paper concerns a large-scale linear programming problem having a block-diagonal structure with coupling constraints. It is shown that there are deep connections between the Lagrange relaxation techniques and the Dantzig-Wolfe decomposition methods......The paper concerns a large-scale linear programming problem having a block-diagonal structure with coupling constraints. It is shown that there are deep connections between the Lagrange relaxation techniques and the Dantzig-Wolfe decomposition methods...

  6. Orientational relaxation in semiflexible dendrimers.

    Kumar, Amit; Biswas, Parbati


    The orientational relaxation dynamics of semiflexible dendrimers are theoretically calculated within the framework of optimized Rouse-Zimm formalism. Semiflexibility is modeled through appropriate restrictions in the direction and orientation of the respective bond vectors, while the hydrodynamic interactions are included via the preaveraged Oseen tensor. The time autocorrelation function M(i)(1)(t) and the second order orientational autocorrelation function P(i)(2)(t) are analyzed as a function of the branch-point functionality and the degree of semiflexibility. Our approach of calculating M(i)(1)(t) is completely different from that of the earlier studies (A. Perico and M. Guenza J. Chem. Phys., 1985, 83, 3103; J. Chem. Phys., 1986, 84, 510), where the expression of M(i)(1)(t) obtained from earlier studies does not demarcate the flexible dendrimers from the semiflexible ones. The component of global motion of the time autocorrelation function exhibits a strong dependence on both degree of semiflexibility and branch-point functionality, while the component of pulsation motion depends only on the degree of semiflexibility. But it is difficult to distinguish the difference in the extent of pulsation motion among the compressed (0 qualitative behavior of P(i)(2)(t) obtained from our calculations closely matches with the expression for P(exact)(2)(t) in the earlier studies. Theoretically calculated spectral density, J(ω), is found to depend on the degree of semiflexibility and the branch-point functionality for the compressed and expanded conformations of semiflexible dendrimers as a function of frequency, especially in the high frequency regime, where J(ω) decays with frequency for both compressed and expanded conformations of semiflexible dendrimers. This decay of the spectral density occurs after displaying a cross-over behavior with the variation in the degree of semiflexibility in the intermediate frequency regime. The characteristic area increases with the

  7. Dielectric relaxation spectroscopy of phlogopite mica

    Kaur, Navjeet; Singh, Mohan; Singh, Anupinder [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Awasthi, A.M. [Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research, Indore 452001 (India); Singh, Lakhwant, E-mail: [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India)


    An in-depth investigation of the dielectric characteristics of annealed phlogopite mica has been conducted in the frequency range 0.1 Hz-10 MHz and over the temperature range 653-873 K through the framework of dielectric permittivity, electric modulus and conductivity formalisms. These formalisms show qualitative similarities in relaxation processes. The frequency dependence of the M Double-Prime and dc conductivity is found to obey an Arrhenius law and the activation energy of the phlogopite mica calculated both from dc conductivity and the modulus spectrum is similar, indicating that same type of charge carriers are involved in the relaxation phenomena. The electric modulus and conductivity data have been fitted with the Havriliak-Negami function. Scaling of M Prime , M Double-Prime , ac conductivity has also been performed in order to obtain insight into the relaxation mechanisms. The scaling behaviour indicates that the relaxation describes the same mechanism at different temperatures. The relaxation mechanism was also examined using the Cole-Cole approach. The study elaborates that the investigation regarding the temperature and frequency dependence of dielectric relaxation in the phlogopite mica will be helpful for various cutting edge applications of this material in electrical engineering.

  8. Dielectric relaxation of gamma irradiated muscovite mica

    Kaur, Navjeet [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Singh, Mohan, E-mail: [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Singh, Lakhwant [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Awasthi, A.M. [Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research, Indore 452001 (India); Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)


    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  9. Rounded stretched exponential for time relaxation functions.

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B


    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)Cole-Cole plots for dielectric and shear stress relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  10. Stress relaxation in viscous soft spheres.

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P


    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  11. On convex relaxation of graph isomorphism.

    Aflalo, Yonathan; Bronstein, Alexander; Kimmel, Ron


    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving n2 equality and n2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic.

  12. Drug: D08305 [KEGG MEDICUS

    Full Text Available D08305 Drug Orphenadrine (INN); Mialgin (TN) C18H23NO 269.178 269.3813 D08305.gif A... Gastric acid secretion map07220 Cholinergic and anticholinergic drugs USP drug classification [BR:br08302] ...Skeletal Muscle Relaxants Orphenadrine D08305 Orphenadrine (INN) Target-based cla...scarinic cholinergic receptor [HSA:1128 1129 1131 1132 1133] [KO:K04129 K04130 K04131 K04132 K04133] Orphenadrine D0830...5 Orphenadrine (INN) CAS: 83-98-7 PubChem: 96024992 DrugBank: DB01173 LigandBox: D0830

  13. Drug: D02599 [KEGG MEDICUS

    Full Text Available D02599 Drug Orphenadrine hydrochloride; Disipal (TN) C18H23NO. HCl 305.1546 305.8423 D02599.gif Antihistamin...ic; Relaxant [skeletal muscle] ATC code: N04AB02 muscarinic cholinergic receptor an

  14. The use of (double) relaxation oscillation SQUIDs as a sensor

    Duuren, van M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, J.; Rogalla, H.


    Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc voltage

  15. The use of (double) relaxation oscillation SQUIDs as a sensor

    van Duuren, M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, Jakob; Rogalla, Horst


    Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc

  16. Drug Facts

    Full Text Available ... Drug Use Hurts Kids Drug Use Hurts Unborn Children Drug Use Hurts Your Health Drug Use Hurts ... Find Treatment/Rehab Resources Prevent Drug Use Help Children and Teens Stay Drug-Free Talking to Kids ...

  17. Drug Facts

    Full Text Available ... Get Addicted to Drugs? Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? ... Drug Use and Other People Drug Use and Families Drug Use and Kids Drug Use and Unborn ...

  18. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA


    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.

  19. Anomalous Enthalpy Relaxation in Vitreous Silica

    Yuanzheng eYue


    Full Text Available It is a challenge to calorimetrically determine the glass transition temperature (Tg of vitreous silica. Here we demonstrate that this challenge mainly arises from the extreme sensitivity of the Tg to the hydroxyl content in vitreous silica, but also from the irreversibility of its glass transition when repeating the calorimetric scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling has impact on enthalpy relaxation in glass. Here we find that vitreous silica (as a strong system exhibits striking anomalies in both glass transition and enthalpy relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica.

  20. Motional Spin Relaxation in Large Electric Fields

    Schmid, Riccardo; Filippone, B W


    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...

  1. Doppler effect induced spin relaxation boom

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong


    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  2. Increased sensitivity to a nondepolarizing muscle relaxant in a patient with acquired neuromyotonia.

    Ginsburg, Greg; Forde, Ryan; Martyn, Jeevendra A J; Eikermann, Matthias


    Neuromyotonia is a disorder of hyperexcitability of the peripheral nerve. It has electromyographic features of spontaneous, continuous, irregularly occurring doublets, or multiplets of motor unit potential discharges. Neuromyotonia is characterized by both myokymic and neuromyotonic discharges. To our knowledge, this is the first report in the literature to assess the sensitivity of skeletal muscle to a nondepolarizing muscle relaxant drug, rocuronium, in a woman with acquired neuromyotonia. She had a past medical history notable for prolonged postoperative paralysis following anesthesia. The patient showed increased sensitivity to the neuromuscular effects of rocuronium. This increase in sensitivity may be explained by downregulation of acetylcholine receptors in response to chronic high agonist (acetylcholine) concentrations. If patients with neuromyotonia receive anesthesia, we recommend that smaller doses of a nondepolarizing muscle relaxant be administered, accompanied by monitoring of neuromuscular function, so as to provide optimal muscle relaxation while avoiding overdose and prolonged postoperative recovery.

  3. Reduced-Complexity Semidefinite Relaxations of Optimal Power Flow Problems

    Andersen, Martin Skovgaard; Hansson, Anders; Vandenberghe, Lieven


    We propose a new method for generating semidefinite relaxations of optimal power flow problems. The method is based on chordal conversion techniques: by dropping some equality constraints in the conversion, we obtain semidefinite relaxations that are computationally cheaper, but potentially weaker......, than the standard semidefinite relaxation. Our numerical results show that the new relaxations often produce the same results as the standard semidefinite relaxation, but at a lower computational cost....

  4. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Smith, Jonathan C; Joyce, Carol A


    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  5. Asymptotic representation of relaxation oscillations in lasers

    Grigorieva, Elena V


    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  6. On topological relaxations of chromatic conjectures

    Simonyi, Gábor


    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number.

  7. Vibrational and Rotational Energy Relaxation in Liquids

    Petersen, Jakob

    the intramolecular dynamics during photodissociation is investigated. The apparent agreement with quantum mechanical calculations is shown to be in contrast to the applicability of the individual approximations used in deriving the model from a quantum mechanical treatment. In the spirit of the Bersohn-Zewail model......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  8. Relaxation and Diffusion in Complex Systems

    Ngai, K L


    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  9. Substrate stress relaxation regulates cell spreading

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.


    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  10. Nonlinear Model of non-Debye Relaxation

    Zon, Boris A


    We present a simple nonlinear relaxation equation which contains the Debye equation as a particular case. The suggested relaxation equation results in power-law decay of fluctuations. This equation contains a parameter defining the frequency dependence of the dielectric permittivity similarly to the well-known one-parameter phenomenological equations of Cole-Cole, Davidson-Cole and Kohlrausch-Williams-Watts. Unlike these models, the obtained dielectric permittivity (i) obeys to the Kramers-Kronig relation; (ii) has proper behaviour at large frequency; (iii) its imaginary part, conductivity, shows a power-law frequency dependence \\sigma ~ \\omega^n where n1 is also observed in several experiments. The nonlinear equation proposed may be useful in various fields of relaxation theory.

  11. Excited-state relaxation of some aminoquinolines


    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  12. Improved memristor-based relaxation oscillator

    Mosad, Ahmed G.


    This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.

  13. Interactive Image Enhancement by Fuzzy Relaxation

    Shang-Ming Zhou; John Q.Can; Li-Da Xu; Robert John


    In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process according to his/her preference in applications. First, based on an analysis of the convergence of a fuzzy relaxation algorithm for image contrast enhancement, an improved version of this algorithm, which is called FuzzIIE Method 1, is suggested by deriving a relationship between the convergence regions and the parameters in the transformations defined in the algorithm. Then a method called FuzzIIE Method 2 is introduced by using a different fuzzy relaxation function, in which there is no need to re-select the parameter values for interactive image enhancement. Experimental results are presented demonstrating the enhancement capabilities of the proposed methods under different conditions.

  14. Relaxation Dynamics of Semiflexible Fractal Macromolecules

    Jonas Mielke


    Full Text Available We study the dynamics of semiflexible hyperbranched macromolecules having only dendritic units and no linear spacers, while the structure of these macromolecules is modeled through T-fractals. We construct a full set of eigenmodes of the dynamical matrix, which couples the set of Langevin equations. Based on the ensuing relaxation spectra, we analyze the mechanical relaxation moduli. The fractal character of the macromolecules reveals itself in the storage and loss moduli in the intermediate region of frequencies through scaling, whereas at higher frequencies, we observe the locally-dendritic structure that is more pronounced for higher stiffness.

  15. Dynamics of cosmological relaxation after reheating

    Choi, Kiwoon; Sekiguchi, Toyokazu


    We examine if the cosmological relaxation mechanism, which was proposed recently as a new solution to the hierarchy problem, can be compatible with high reheating temperature well above the weak scale. As the barrier potential disappears at high temperature, the relaxion rolls down further after the reheating, which may ruin the successful implementation of the relaxation mechanism. It is noted that if the relaxion is coupled to a dark gauge boson, the new frictional force arising from dark gauge boson production can efficiently slow down the relaxion motion, which allows the relaxion to be stabilized after the electroweak phase transition for a wide range of model parameters, while satisfying the known observational constraints.

  16. Synthetic aperture radar autofocus via semidefinite relaxation.

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C


    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  17. Depicting Vortex Stretching and Vortex Relaxing Mechanisms

    符松; 李启兵; 王明皓


    Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.

  18. Drug: D00759 [KEGG MEDICUS

    Full Text Available D00759 Drug Cisatracurium besylate (USAN); Cisatracurium besilate (INN); Nimbex (TN...E RELAXANTS M03A MUSCLE RELAXANTS, PERIPHERALLY ACTING AGENTS M03AC Other quaternary ammonium compounds M03AC11 Cisatrac...urium D00759 Cisatracurium besylate (USAN); Cisatracurium besilate (I...inic) muscle-type nicotinic cholinergic receptor [HSA:1134 1140 1144 1145 1146] [KO:K04803 K04812 K04816 K04817 K04818] Cisatrac...urium [ATC:M03AC11] D00759 Cisatracurium besylate (USAN); Cisatrac

  19. Drug: D01507 [KEGG MEDICUS

    Full Text Available D01507 Drug Tolperisone hydrochloride (JP16); Muscalm (TN) C16H23NO. HCl 281.1546 2...nsory organs 12 Agents affecting peripheral nervous system 124 Antispasmodics 1249 Others D01507 Tolpe...JOINT AND MUSCULAR PAIN M02AX Other topical products for joint and muscular pain M02AX06 Tolpe...risone D01507 Tolperisone hydrochloride (JP16) M03 MUSCLE RELAXANTS M03B MUSCLE RELAXANTS, CENT...RALLY ACTING AGENTS M03BX Other centrally acting agents M03BX04 Tolperisone D01507 Tolperisone hydrochloride

  20. Experimental study of verapamil on the relaxation of isolated human corpus cavernosum tissues

    Lu-Lin Ma; Yu-Qing Liu; Wen-Hao Tang; Lian-Ming Zhao; Hui Jiang


    Aim: To evaluate the relaxant effect of verapamil on human corpus cavernosum in vitro and to assess the drug's potential as a treatment for erectile dysfunction (ED). Methods: Preparations of the human corpus cavernosum were obtained from recently deceased young men who had had normal erectile function. The isometric tension and detailed curves were recorded when contractions induced by 10 mmol/L phenylephrine were reduced by different doses of verapamil or the vehicle control (sterile water). The tension of human corpus cavernosum preparations are described as a percentage of their top tension before adding verapamil or the vehicle. ANOVA and least significant difference tests were used for statistical analysis. Results: Doses of 1 μmol/L, 10 μmol/L and 100 μmol/L verapamil resulted in relaxation of (35.28 ± 7.96)%, (55.91 ± 6.41)%, (85.68 ± 4.16)% after 30 min, respectively. The vehicle control at the same time point produced relaxation of (-0.06 ± 10.57)% (P<0.05). Conclusion: Verapamil is significantly effective in relaxing normal human corpus cavernous smooth muscle induced by phenylephrine in vitro and the relaxant effect depends on the concentration of verapamil.

  1. Selective reversal of muscle relaxation in general anesthesia: focus on sugammadex

    Sorin J Brull


    Full Text Available Sorin J Brull1, Mohamed Naguib21Department of Anesthesiology, Mayo Clinic College of Medicine, Mayo Clinic Hospital, Jacksonville, FL, USA; 2Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center,  Houston, TX, USAAbstract: Despite the significant improvements in the pharmacology of muscle relaxants in the past six decades, the search for the ideal muscle relaxant continues, mainly because of the incomplete efficacy and persistent side effects associated with their antagonism. Clinical concerns remain about the residual paralysis and hemodynamic side effects associated with the classic pharmacologic reversal agents, the acetylcholinesterase inhibitors. Although the development of the “ideal muscle relaxant” remains illusory, pharmacologic advancements hold promise for improved clinical care and patient safety. Recent clinical advances include the development of short-acting nondepolarizing muscle relaxant agents that have fast onset and a very rapid metabolism that allows reliable and complete recovery; and the development of selective, “designer” reversal agents that are specific for a single drug or class of drugs. This article reviews recent developments in the pharmacology of these selective reversal agents: plasma cholinesterases, cysteine, and sugammadex. Although each of the selective reversal agents is specific in its substrate, the clinical use of the combination of muscle relaxant with its specific reversal agent will allow much greater intraoperative titrating ability, decreased side effect profile, and may result in a decreased incidence of postoperative residual paralysis and improved patient safety.Keywords: selective reversal agents, cysteine, plasma cholinesterases, sugammadex

  2. The slow relaxation dynamics in active pharmaceutical ingredients studied by DSC and TSDC: Voriconazole, miconazole and itraconazole.

    Ramos, Joaquim J Moura; Diogo, Hermínio P


    The slow molecular mobility of three active pharmaceutical drugs (voriconazole, miconazole and itraconazole) has been studied by differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC). This study yielded the main kinetic features of the secondary relaxations and of the main (glass transition) relaxation, in particular their distribution of relaxation times. The dynamic fragility of the three glass formers was determined from DSC data (using two different procedures) and from TSDC data. According to our results voriconazole behaves as a relatively strong liquid, while miconazole is moderately fragile and itraconazole is a very fragile liquid. There are no studies in this area published in the literature relating to voriconazole. Also not available in the literature is a slow mobility study by dielectric relaxation spectroscopy in the amorphous miconazole. Apart from that, the results obtained are in reasonable agreement with published works using different experimental techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Collection Development: Relaxation & Meditation, September 1, 2010

    Lettus, Dodi


    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  4. BRIEF REPORT: The colour relaxation equation

    Xiaofei, Zhang; Jiarong, Li


    Colour diffusion in quark - gluon plasma (QGP) is investigated from the transport equations of QGP. The pure non-Abelian collision term describing the colour diffusion in QGP is obtained, the expression for colour relaxation time is derived and the physical picture of the colour diffusion in QGP is shown.

  5. Control linearity and jitter of relaxation oscillators

    Gierkink, Sander Laurentius Johannes


    The body of this thesis (chapters 3,4 and 5) deals with the analysis and improvement of a specific class of voltage- or current controlled oscillators (VCO’s respectively CCO’s) called relaxation oscillators. Before going into detail on this particular class of oscillators, first the function and ap

  6. Relaxation for Children. (Revised and Expanded Edition.)

    Rickard, Jenny

    Intended as a guide to reduce negative stress in children, this book suggests relaxation and meditation techniques to help children cope with stressful events. Part 1 provides an introduction to the format of the book. Part 2 contains summaries of the 10 sessions that make up the program. Each session has six sequential stages in which students…

  7. Relaxation Processes in Nonlinear Optical Polymer Films

    S.N. Fedosov


    Full Text Available Dielectric properties of the guest-host polystyrene/DR1 system have been studied by the AC dielectric spectroscopy method at frequencies from 1 Hz to 0,5 MHz and by the thermally stimulated depolarization current (TSDC method from – 160 to 0 °C. The relaxation peaks at infra-low frequencies from 10 – 5to 10–2 Hz were also calculated using the Hamon’s approximation. Three relaxation processes, namely, α, β and δ ones were identified from the TSDC peaks, while the ε''(fdependence showed a non-Debye ρ-peak narrowing with temperature. The activation energy of the α-relaxation appeared to be 2,57 eV, while that of the γ-process was 0,52 eV. Temperature dependence of the relaxation time is agreed with the Williams-Landel-Ferry model. The ε''(fpeaks were fitted to Havriliak-Negami’s expression and the corresponding distribution parameters were obtained.

  8. Relaxation of polarized nuclei in superconducting rhodium

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.


    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c

  9. Collection Development: Relaxation & Meditation, September 1, 2010

    Lettus, Dodi


    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  10. Redheffer representations and relaxed commutant lifting

    ter Horst, S.


    It is well known that the solutions of a (relaxed) commutant lifting problem can be described via a linear fractional representation of the Redheffer type. The coefficients of such Redheffer representations are analytic operator-valued functions defined on the unit disc D of the complex plane. In th

  11. Vibrational relaxation of pure liquid water

    Lindner, J; Vohringer, P; Pshenichnikov, MS; Cringus, D; Wiersma, DA; Mostovoy, M; Vöhringer, Peter; Pshenichnikov, Maxim S.


    Multicolor infrared ultrafast spectroscopy is applied to investigate the vibrational relaxation dynamics in liquid water at room temperature. In a sequence of experiments, both the stretching and the bending mode are photoexcited and probed. A unified model, capable of the reproduction of as much as

  12. Relaxation Treatment for Insomnia: A Component Analysis.

    Woolfolk, Robert L.; McNulty, Terrence F.


    Compared four relaxation treatments for sleep onset insomnia with a waiting-list control. Treatments varied in presence or absence of muscular tension-release instructions and in foci of attention. Results showed all treatment conditions reduced latency of sleep onset and fatigue; visual focusing best reduced the number of nocturnal awakenings.…

  13. Generalized approach to non-exponential relaxation

    R M Pickup; R Cywinski; C Pappas; P Fouquet; B Farago; P Falus


    Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin glasses, earthquakes, financial markets and the universe. Complex relaxation results from hierarchically constrained dynamics with the strength of the constraints being directly related to the form of the relaxation, which changes from a simple exponential to a stretched exponential and a power law by increasing the constraints in the system. A global and unified approach to non-exponentiality was first achieved by Weron and was further generalized by Brouers and Sotolongo-Costa, who applied the concept of non-extensive entropy introduced by Tsallis to the relaxation of disordered systems. These concepts are now confronted with experimental results on the classical metallic spin glasses CuMn, AuFe and the insulating system EuSrS. The revisited data have also be complemented by new results on several compositions of the classical CuMn spin glass and on systems, like CoGa and CuCo, the magnetic behaviour of which is believed to arise from magnetic clusters and should be characteristic for superparamagnetism.

  14. Relaxation dynamics of multilayer triangular Husimi cacti

    Galiceanu, Mircea; Jurjiu, Aurel


    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  15. Noise in (double) relaxation oscillation SQUIDs

    Adelerhof, Derk Jan; Adelerhof, Derk Jan; Flokstra, Jakob; Rogalla, Horst


    We have modelled the effect of two intrinsic noise sources on the flux noise spectral density of (Double) Relaxation Oscillation SQUIDs ((D)ROSs) based on hysteretic Josephson tunnel junctions. An important noise source is the spread in the critical current of the SQUID due to thermal fluctuations.

  16. Reactor flush time correction in relaxation experiments

    den Otter, M.W.; Bouwmeester, Henricus J.M.; Boukamp, Bernard A.; Verweij, H.


    The present paper deals with the analysis of experimental data from conductivity relaxation experiments. It is shown that evaluation of the chemical diffusion and surface transfer coefficients for oxygen by use of this technique is possible only if accurate data for the conductivity transient can be

  17. Drug Facts

    Full Text Available ... Addiction? Addiction Risk Factors Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? ... Drug Use Hurts Other People Drug Use Hurts Families Drug Use Hurts Kids Drug Use Hurts Unborn ...

  18. Drug Facts

    Full Text Available ... Use Hurts Unborn Children Drug Use Hurts Your Health Drug Use Hurts Bodies Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen Together The Link Between Drug ...

  19. Drug Allergy

    ... Loss of consciousness Other conditions resulting from drug allergy Less common drug allergy reactions occur days or ... you take the drug. Drugs commonly linked to allergies Although any drug can cause an allergic reaction, ...

  20. Drug Facts

    Full Text Available ... Addiction? Addiction Risk Factors Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? ... Drug Use Hurts Other People Drug Use Hurts Families Drug Use Hurts Kids Drug Use Hurts Unborn ...

  1. Drug Facts

    Full Text Available ... The Link Between Drug Use and HIV/AIDS Recovery & Treatment Drug Treatment Facts Does Drug Treatment Work? ... and Family Can Help Find Treatment/Rehab Resources Prevent Drug Use Help Children and Teens Stay Drug- ...

  2. Collisionless relaxation in beam-plasma systems

    Backhaus, Ekaterina Yu. [Univ. of California, Berkeley, CA (United States)


    This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show

  3. Load Relaxation of Olivine Single Crystals

    Cooper, R. F.; Stone, D. S.; Plookphol, T.


    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  4. The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits.

    Ziv, Naomi; Rotem, Tomer; Arnon, Zahi; Haimov, Iris


    A large percentage of older people suffer from chronic insomnia, affecting many aspects of life quality and well-being. Although insomnia is most often treated with medication, a growing number of studies demonstrate the efficiency of various relaxation techniques. The present study had three aims: first, to compare two relaxation techniques--music relaxation and progressive muscular relaxation--on various objective and subjective measures of sleep quality; second, to examine the effect of these techniques on anxiety and depression; and finally, to explore possible relationships between the efficiency of both techniques and personality variables. Fifteen older adults took part in the study. Following one week of base-line measurements of sleep quality, participants followed one week of music relaxation and one week of progressive muscular relaxation before going to sleep. Order of relaxation techniques was controlled. Results show music relaxation was more efficient in improving sleep. Sleep efficiency was higher after music relaxation than after progressive muscular relaxation. Moreover, anxiety was lower after music relaxation. Progressive muscular relaxation was related to deterioration of sleep quality on subjective measures. Beyond differences between the relaxation techniques, extraverts seemed to benefit more from both music and progressive muscular relaxation. The advantage of non-pharmacological means to treat insomnia, and the importance of taking individual differences into account are discussed.

  5. [Brain activity during different stages of the relaxation process].

    gorev, A S; Kovaleva, A V; Panova, E N; Gorbacheva, A K


    A group of adults participated in experiment in which they were asked to reach relaxed state by using relaxation techniques (active relaxation) and to maintain this state without any technique (passive relaxation). Some changes of EEG-characteristics during relaxation were analyzed. This experiment includes four situations (different functional states): baselinel, active relaxation, passive relaxation, baseline2. EEG was recorded from 10 cortical leads: O1, O2, TPO (left and right), P3, P4, C3, C4, F3 and F4. A comparative EEG analysis was done for 10 frequency bands from 5 to 40 Hz. In each experimental situation we revealed general trends for EEG parameters and also some specific changes in EEG, which characterized brain organization during passive and active relaxed states.

  6. Drugs and Drug Abuse.

    Anastas, Robert, Comp.; And Others.

    GRADES OR AGES: Secondary grades. SUBJECT MATTER: Drugs and drug abuse. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into several sections, each of which is in outline or list form. It is xeroxed and spiral-bound with a paper cover. OBJECTIVES AND ACTIVITIES: No objectives are mentioned. The major portion of the guide contains a…

  7. Tolperisone: a typical representative of a class of centrally acting muscle relaxants with less sedative side effects.

    Quasthoff, Stefan; Möckel, Claudia; Zieglgänsberger, Walter; Schreibmayer, Wolfgang


    Tolperisone, a piperidine derivative, is assigned to the group of centrally acting muscle relaxants and has been in clinical use now for decades. The review summarizes the known pharmacokinetics, pharmacodynamics, toxicology and side effects in humans and the clinical use of tolperisone. A future perspective for further exploration of this drug is given.

  8. Characteristics of the secondary relaxation process in soft colloidal suspensions

    Saha, Debasish; Joshi, Yogesh M.; Bandyopadhyay, Ranjini


    A universal secondary relaxation process, known as the Johari-Goldstein (J-G) β-relaxation process, appears in glass formers. It involves all parts of the molecule and is particularly important in glassy systems because of its very close relationship with the α-relaxation process. However, the absence of a J-G β-relaxation mode in colloidal glasses raises questions regarding its universality. In the present work, we study the microscopic relaxation processes in Laponite suspensions, a model soft glassy material, by dynamic light scattering (DLS) experiments. α- and β-relaxation timescales are estimated from the autocorrelation functions obtained by DLS measurements for Laponite suspensions with different concentrations, salt concentrations and temperatures. Our experimental results suggest that the β-relaxation process in Laponite suspensions involves all parts of the constituent Laponite particle. The ergodicity breaking time is also seen to be correlated with the characteristic time of the β-relaxation process for all Laponite concentrations, salt concentrations and temperatures. The width of the primary relaxation process is observed to be correlated with the secondary relaxation time. The secondary relaxation time is also very sensitive to the concentration of Laponite. We measure primitive relaxation timescales from the α-relaxation time and the stretching exponent (β) by applying the coupling model for highly correlated systems. The order of magnitude of the primitive relaxation time is very close to the secondary relaxation time. These observations indicate the presence of a J-G β-relaxation mode for soft colloidal suspensions of Laponite.

  9. Relaxation of Magnetic Nanoparticle Chain without Applied Field*

    HE Liang-Ming


    The relaxation ofa one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where all magnetic moments of particles lie along the chain (x-axis), back to which the magnetic nanoparticle chain at other state will relax. It is found that the relaxation time Tx is determined by Tx = 10β × a3. This relaxation is compared with that of single magnetic nanoparticle system.

  10. Drug allergies

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... A drug allergy involves an immune response in the body that produces an allergic reaction to a medicine. The ...

  11. Two-temperature reaction and relaxation rates

    Kolesnichenko, E.; Gorbachev, Yu.


    Within the method of solving the kinetic equations for gas mixtures with internal degrees of freedom developed by the authors and based on the approximate summational invariants (ASI) concept, gas-dynamic equations for a multi-temperature model for the spatially inhomogeneous case are derived. For the two-temperature case, the expressions for the non-equilibrium reaction and relaxation rates are obtained. Special attention is drawn to corresponding thermodynamic equations. Different possibilities of introducing the gas-dynamic variables related to the internal degrees of freedom are considered. One is based on the choice of quantum numbers as the ASI, while the other is based on the choice of internal (vibrational) energy as the ASI. Limits to a one-temperature situation are considered in all the cases. For the cutoff harmonic oscillator model, explicit expressions for the reaction and relaxation rates are derived.

  12. Microplastic relaxations of single and polycrystalline molybdenum

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.


    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  13. Electron-vibration relaxation in oxygen plasmas

    Laporta, V.; Heritier, K. L.; Panesi, M.


    An ideal chemical reactor model is used to study the vibrational relaxation of oxygen molecules in their ground electronic state, X3Σg-, in presence of free electrons. The model accounts for vibrational non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The vibrational levels of the molecules are treated as separate species, allowing for non-Boltzmann distributions of their population. The electron and vibrational temperatures are varied in the range [0-20,000] K. Numerical results show a fast energy transfer between oxygen molecules and free electron, which causes strong deviation of the vibrational distribution function from Boltzmann distribution, both in heating and cooling conditions. Comparison with Landau-Teller model is considered showing a good agreement for electron temperature range [2000-12,000] K. Finally analytical fit of the vibrational relaxation time is given.

  14. Modeling aftershocks as a stretched exponential relaxation

    Mignan, A.


    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  15. Relaxation time estimation in surface NMR

    Grunewald, Elliot D.; Walsh, David O.


    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  16. Relaxation Based Electrical Simulation for VLSI Circuits

    S. Rajkumar


    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  17. Electrochemical relaxation at electrically conducting polymers

    Nateghi, M. R.; zarandi, M. B.


    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  18. Electrochemical relaxation at electrically conducting polymers

    Nateghi, M R [Department of Chemistry, Islamic Azad University, Yazd-Branch, Yazd (Iran, Islamic Republic of); Zarandi, M B [Department of physics, Yazd University, Yazd (Iran, Islamic Republic of)


    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  19. Relaxation time estimation in surface NMR

    Grunewald, Elliot D.; Walsh, David O.


    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  20. Multi-region relaxed magnetohydrodynamics with flow

    Dennis, G R; Dewar, R L; Hole, M J


    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  1. Multi-region relaxed magnetohydrodynamics with flow

    Dennis, G. R., E-mail:; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)


    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  2. Braided magnetic fields: equilibria, relaxation and heating

    Pontin, D I; Russell, A J B; Hornig, G


    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling. The key results obtained from recent modelling efforts are summarised, in the context of testable predictions for the laboratory. We discuss the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We discuss the properties of this relaxation, and in particular the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypo...

  3. Relaxation matching algorithm for moving photogrammetry

    Guo, Lei; Liu, Ke; Miao, Yinxiao; Zhu, Jigui


    Moving photogrammetry is an application of close range photogrammetry in industrial measurement to realize threedimensional coordinate measurement within large-scale volume. This paper describes an approach of relaxation matching algorithm applicable to moving photogrammetry according to the characteristics of accurate matching result of different measuring images. This method uses neighborhood matching support to improve the matching rate after coarse matching based on epipolar geometry constraint and precise matching using three images. It reflects the overall matching effect of all points, that means when a point is matched correctly, the matching results of those points round it must be correct. So for one point considered, the matching results of points round it are calculated to judge whether its result is correct. Analysis indicates that relaxation matching can eliminate the mismatching effectively and acquire 100% rate of correct matching. It will play a very important role in moving photogrammetry to ensure the following implement of ray bundle adjustment.

  4. Relaxation and Diffusion for the Kicked Rotor

    Khodas, M A


    The dynamics of the kicked-rotor, that is a paradigm for a mixed system, where the motion in some parts of phase space is chaotic and in other parts is regular is studied statistically. The evolution (Frobenius-Perron) operator of phase space densities in the chaotic component is calculated in presence of noise, and the limit of vanishing noise is taken is taken in the end of calculation. The relaxation rates (related to the Ruelle resonances) to the invariant equilibrium density are calculated analytically within an approximation that improves with increasing stochasticity. The results are tested numerically. The global picture of relaxation to the equilibrium density in the chaotic component when the system is bounded and of diffusive behavior when it is unbounded is presented.

  5. Modeling Aftershocks as a Stretched Exponential Relaxation

    Mignan, Arnaud


    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Considered the second most fundamental empirical law after the Gutenberg-Richter relationship, the power law paradigm has rarely been challenged by the seismological community. By taking a view of aftershock research not biased by prior conceptions of Omori power law decay and by applying statistical methods recommended in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simpler relaxation process than originally thought, in accordance with most other relaxation processes observed in Nature.

  6. Relaxation in Technique Leading to New Beginnings().

    Koritar, Endre


    This paper explores how standard analytic technique may result in a repetition of past traumatic experiences in the transference and countertransference analytic situation. Relaxation and elasticity of technique can lead to re-integration of previously fragmented ego functions, and in remembering and re-experiencing of previously repressed symbolic representations of fragmenting past traumatic experiences, resulting in neocatharsis and working through, thus healing wounds and scars sustained in self development. This healing process will be described through a detailed depiction of an analytic process introducing relaxation of technique, in a response by the analyst, to the patient's Orpha (self-protective) function. Responsiveness to the patient's implicitly or explicitly expressed needs, in the analytic space, may require a departure from standard technique for a deeper level of dynamic work where symbolization of unrepresented emotional experiences becomes possible.



    In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.

  8. Relaxation Techniques for Handicapped Children: A Review of Literature.

    Zipkin, Dvora


    The paper discusses four major relaxation training approaches used with handicapped children: progressive muscle relaxation, biofeedback, yoga, and mental relaxation, which includes guided fantasy, imagery, and meditation. Descriptions of these techniques, the effects of their use with various populations, and reviews of recent studies of their…

  9. Relaxation Criteria for Iterated Traffic Simulations

    Kelly, Terence; Nagel, Kai

    Iterative transportation microsimulations adjust traveler route plans by iterating between a microsimulation and a route planner. At each iteration, the route planner adjusts individuals' route choices based on the preceding microsimulations. Empirically, this process yields good results, but it is usually unclear when to stop the iterative process when modeling real-world traffic. This paper investigates several criteria to judge relaxation of the iterative process, emphasizing criteria related to traveler decision-making.

  10. Dimension reduction for systems with slow relaxation

    Venkataramani, Shankar C; Restrepo, Juan M


    We develop reduced, stochastic models for high dimensional, dissipative dynamical systems that relax very slowly to equilibrium and can encode long term memory. We present a variety of empirical and first principles approaches for model reduction, and build a mathematical framework for analyzing the reduced models. We introduce the notions of universal and asymptotic filters to characterize `optimal' model reductions. We discuss how our methods apply to the practically important problem of modeling oil spills.

  11. p-q growth via relaxation methods

    Irene Benedetti


    Full Text Available Local Lipschitz continuity of local minimizers of vectorial integrals ∫Ω f(x,Dudx is proved when f satisfies p-q growth condition and ξ↦f(x,ξ is not convex. The uniform convexity and the radial structure condition with respect to the last variable are assumed only at infinity. In the proof, we use semicontinuity and relaxation results for functionals with nonstandard growth.

  12. Models of Flux Tubes from Constrained Relaxation

    Α. Mangalam; V. Krishan


    We study the relaxation of a compressible plasma to an equilibrium with flow. The constraints of conservation of mass, energy, angular momentum, cross-helicity and relative magnetic helicity are imposed. Equilibria corresponding to the energy extrema while conserving these invariants for parallel flows yield three classes of solutions and one of them with an increasing radial density profile, relevant to solar flux tubes is presented.

  13. Active nematic gels as active relaxing solids

    Turzi, Stefano S


    I put forward a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standar...

  14. Relaxation time measurements by an electronic method.

    Brousseau, R.; Vanier, J.


    Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.

  15. Controlling spin relaxation with a cavity

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.


    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  16. Effect of relaxation on adiabatic following

    Nayfeh, M.H.


    A solution is presented for the damped optical Bloch equations under the excitation of a smooth pulse by first deriving three independent third-order equations of the Bloch vector components. Each equation is reduced to quadratures by assuming that the logarithmic time derivative of the field amplitude is small compared to the Rabi frequency. This results in an approximate summation of the infinite-order time-dependent perturbation in the field amplitude. The relaxation-dependent induced damping of the population inversion is calculated. Also calculated are additional relaxation-dependent contributions to the intensity-dependent refractive index. The time-integrated intensity contribution tends to cause line asymmetry, which becomes, at later times, linear in ..gamma../sub 2/ when ..gamma../sub 2/ very-much-greater-than ..gamma../sub 1/ and zero when 2..gamma../sub 2/ = ..gamma../sub 1/, where ..gamma../sub 1/ and ..gamma../sub 2/ are the atomic energy and phase-changing relaxations, respectively. The dependence of the spectral broadening on pulse length, pressure, and length of the sample is discussed. (AIP)

  17. Fingerprinting Molecular Relaxation in Deformed Polymers

    Wang, Zhe; Lam, Christopher N.; Chen, Wei-Ren; Wang, Weiyu; Liu, Jianning; Liu, Yun; Porcar, Lionel; Stanley, Christopher B.; Zhao, Zhichen; Hong, Kunlun; Wang, Yangyang


    The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.

  18. Graph Matching: Relax at Your Own Risk.

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo


    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  19. Probing relaxation times in graphene quantum dots

    Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph


    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294

  20. Tension and relaxation in the individual.

    Newbury, C R


    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  1. Relaxation strategies for patients during dermatologic surgery.

    Shenefelt, Philip D


    Patient stress and anxiety are common preoperatively and during dermatologic procedures and surgeries. Stress and anxiety can occasionally interfere with performance of procedures or surgery and can induce hemodynamic instability, such as elevated blood pressure or syncope, as well as producing considerable discomfort for some patients. Detection of excess stress and anxiety in patients can allow the opportunity for corrective or palliative measures. Slower breathing, biofeedback, progressive muscular relaxation, guided imagery, hypnosis, meditation and music can help calm and rebalance the patient's autonomic nervous system and immune functioning. Handheld miniaturized heart rate variability biofeedback devices are now available. The relaxation response can easily be taught. Guided imagery can be recorded or live. Live rapid induction hypnosis followed by deepening and then self-guided imagery requires no experience on the part of the patient but does require training and experience on the part of a provider. Recorded hypnosis inductions may also be used. Meditation generally requires more prior experience and training, but is useful when the patient already is skilled in it. Live, guided meditation or meditation recordings may be used. Relaxing recorded music from speakers or headphones or live performance music may also be employed to ease discomfort and improve the patient's attitude for dermatologic procedures and surgeries.

  2. Ideal relaxation of the Hopf fibration

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk


    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  3. Drug Facts

    Full Text Available ... Use and Unborn Children Drug Use and Your Health Other Effects on the Body Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen Together The Link Between Drug ...

  4. Club Drugs

    ... uses. Other uses of these drugs are abuse. Club drugs are also sometimes used as "date rape" drugs, to make someone unable to say no to or fight back against sexual assault. Abusing these drugs can ...

  5. Drug Facts

    Full Text Available ... Nicotine Facts Other Drugs of Abuse What is Addiction? Do You or a Loved One Have a Drug Use Problem? Signs of Drug Use and Addiction How Does Drug Use Become Addiction? Addiction Risk ...

  6. Drug Facts

    Full Text Available ... Drug Use and Your Health Other Effects on the Body Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen Together The Link Between Drug Use and HIV/AIDS Treatment & ...

  7. Drug: D00765 [KEGG MEDICUS

    Full Text Available D00765 Drug Rocuronium bromide (JAN/USAN/INN); Zemuron (TN) C32H53N2O4. Br 608.3189...scle relaxants 1229 Others D00765 Rocuronium bromide (JAN/USAN/INN) Anatomical Th...CLE RELAXANTS, PERIPHERALLY ACTING AGENTS M03AC Other quaternary ammonium compounds M03AC09 Rocuronium bromide D00765 Rocuronium brom...eceptor [HSA:1134 1140 1144 1145 1146] [KO:K04803 K04812 K04816 K04817 K04818] Rocuronium bromide [ATC:M03AC09] D00765 Rocuronium bro...mide (JAN/USAN/INN) CAS: 119302-91-9 PubChem: 7847830 DrugBank: DB00728 LigandBox:

  8. Psychophysiological Effects of Progressive Relaxation in Anxiety Neurotic Patients and of Progressive Relaxation and Alpha Feedback in Nonpatients.

    Lehrer, Paul M.


    Compared physiological effects of progressive relaxation, alpha feedback, and a no-treatment condition. Nonpatients showed more psychophysiological habituation than patients in response to hearing very loud tones and to reaction time tasks. Patients showed greater physiological response to relaxation than nonpatients. After relaxation, autonomic…

  9. Endomorphins 1 and 2 reduce relaxant non-adrenergic, non-cholinergic neurotransmission in rat gastric fundus.

    Storr, M; Gaffal, E; Schusdziarra, V; Allescher, H-D


    It is now well established that opioids modulate cholinergic excitatory neurotransmission in the gastrointestinal tract. The aim of the present study was to characterize a possible effect of endomorphins on nonadrenergic, noncholinergic (NANC) relaxant neurotransmission in the rat gastric fundus in vitro. The drugs used in the experiments were the endogenous mu-opioid receptors (MORs) endomorphin 1 and 2 and the mu-opioid receptor antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2). CTAP left the basal tonus and the spontaneous activity of the preparation unchanged. Electrical field stimulation (EFS) under NANC conditions at frequencies ranging from 0.5 to 16 Hz caused a frequency-dependent relaxant response on the 5-hydoxytryptamine (5-HT) (10(-7) M) precontracted smooth-muscle strip. Both endomorphin 1 and endomorphin 2 significantly reduced this relaxation in a concentration-dependent manner. Endomorphin 1 proved to be more potent in reducing the relaxant responses. The endomorphin effects were significantly reversed by the MOR antagonist CTAP. CTAP itself did not influence the EFS-induced relaxation. In summary, these data provide evidence that the endogenous MOR agonists endomorphin 1 and 2 can reduce nonadrenergic, noncholinergic neurotransmission in the rat gastric fundus smooth muscle via a pathway involving MORs. The physiological relevance of these findings remains to be established, since the data presented suggest that the endomorphins act as neuromodulators within NANC relaxant neurotransmission.

  10. Sodium-23 NMR spin-lattice relaxation rate studies of mono- and bis-intercalation in DNA

    Eggert, H.; Dinesen, J.; Jacobsen, J.P. (Univ. of Copenhagen (Denmark))


    Sodium-23 spin-lattice relaxation rate measurements have been used to study the intercalation of a series of 9-aminoacridine derivatives in DNA. The {sup 23}Na relaxation rate is strongly dependent upon the amount of intercalator added to a sodium DNA solution. The results are analyzed by a combined use of the ion condensation theory and the quadrupolar relaxation theory of polyelectrolyte solutions. This interpretation shows that the major effect in lowering the relaxation rate by intercalation is not due to the release of sodium ions but is caused by a substantial decrease in the relaxation rate R{sub b} for the remaining bound sodium ions. Likewise, titration of NaDNA solutions with MgCl{sub 2} shows that condensation of Mg{sup 2+} on the DNA double helix reduces R{sub b}. A good agreement between experiment and theory is found if the average lengthening following intercalation of a 9-aminoacridine moiety is assumed to be approximately 2.7 {angstrom}. The distinction between mono- and bis-intercalation is clearly indicated by the results. The two bis-intercalating drugs examined are found to bis-intercalate only up to r {le} 0.02. For r > 0.02 the drugs apparently mono-intercalate.


    Smirnov, A.P.


    Full Text Available The low-frequency dielectric relaxation process in silver stearate layers was studied. The increasing of dielectric permittivity with frequency decreasing and temperature increasing in studied sample are associated with the dipole-relaxation polarization mechanisms. The dispersion of loss factor could be connected with the contribution of relaxation mechanism and conductivity. The shape of the Cole-Cole diagram shows that silver stearate is a non-Debye dielectric material characterized by a wide distribution of relaxators, according to the Cole-Cole relaxation model.


    Hua-zhong Tang


    In this first paper we present a central relaxing scheme for scalar conservation laws, based on using the local relaxation approximation. Our scheme is obtained without using linear or nonlinear Riemann solvers. A cell entropy inequality is studied for the semidiscrete central relaxing scheme, and a second order MUSCL scheme is shown to be TVD in the zero relaxation limit. The next paper will extend the central relaxing scheme to multi-dimensional systems of conservation laws in curvilinear coordinates, including numerical experiments for 1D and 2D problems.

  13. Drug: D07272 [KEGG MEDICUS

    Full Text Available D07272 Drug Dimethyltubocurarine (BAN) C39H45N2O6 637.3278 637.7844 D07272.gif Neur...A MUSCLE RELAXANTS, PERIPHERALLY ACTING AGENTS M03AA Curare alkaloids M03AA04 Dimethyltubocurarine D07272 Dimethyltubo...140 1144 1145 1146] [KO:K04803 K04812 K04816 K04817 K04818] Dimethyltubocurarine [ATC:M03AA04] D07272 Dimethyltubo

  14. Magneto-dependent stress relaxation of magnetorheological gels

    Xu, Yangguang


    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  15. High Relaxivity Gd(III)–DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation

    Rotz, Matthew W.; Culver, Kayla S. B.; Parigi, Giacomo; MacRenaris, Keith W.; Luchinat, Claudio; Odom, Teri W.; Meade, Thomas J.


    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)–DNA), followed by surface conjugation onto gold nanostars (DNA–Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM−1 s−1. Additionally, DNA–Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA–Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA–Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)–DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)–DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs. PMID:25723190

  16. Dielectric Relaxation in Dimethyl Sulfoxide/Water Mixtures Studied by Microwave Dielectric Relaxation Spectroscopy

    Lu, Zijie; Manias, Evangelos; MacDonald, Digby D.; Lanagan, Michael


    Dielectric spectra of dimethyl sulfoxide (DMSO)/water mixtures, over the entire concentration range, have been measured using the transmission line method at frequencies from 45 MHz to 26 GHz and at temperatures of 298-318 K. The relaxation times of the mixtures show a maximum at an intermediate molar fraction of DMSO. The specific structure of mixtures in different concentration regions was determined by the dielectric relaxation dynamics, obtained from the effect of temperature on the relaxation time. A water structure "breaking effect" is observed in dilute aqueous solutions. The average number of hydrogen bonds per water molecule in these mixtures is found to be reduced compared to pure water. The increase in the dielectric relaxation time in DMSO/water mixtures is attributed to the spatial (steric) constraints of DMSO molecules on the hydrogen-bond network, rather than being due to hydrophobic hydration of the methyl groups. The interaction between water and DMSO by hydrogen bonding reaches a maximum at a DMSO molar fraction of 0.33, reflected by the maximum activation enthalpy for dielectric relaxation in this concentration, suggesting the formation of a stoichiometric compound, H2O-DMSO-H2O. In highly concentrated solutions, negative activation entropies are observed, indicating the presence of aggregates of DMSO molecules. A distinct antiparallel arrangement of dipoles is obtained for neat DMSO in the liquid state according to the Kirkwood correlation factor (gK = 0.5), calculated from the static permittivity. The similarity of the dielectric behavior of pure DMSO and DMSO-rich mixtures suggests that dipole-dipole interactions contribute significantly to the rotational relaxation process in these solutions.

  17. Relaxation techniques for pain management in labour.

    Smith, Caroline A; Levett, Kate M; Collins, Carmel T; Crowther, Caroline A


    Many women would like to avoid pharmacological or invasive methods of pain management in labour and this may contribute towards the popularity of complementary methods of pain management. This review examined currently available evidence supporting the use of relaxation therapies for pain management in labour. To examine the effects of relaxation methods for pain management in labour on maternal and perinatal morbidity. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2010), The Cochrane Complementary Medicine Field's Trials Register (November 2011), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 4), MEDLINE (1966 to 30 November 2010), CINAHL (1980 to 30 November 2010), the Australian and New Zealand Clinical Trial Registry (30 November 2010), Chinese Clinical Trial Register (30 November 2010), Current Controlled Trials (30 November 2010),, (30 November 2010) ISRCTN Register (30 November 2010), National Centre for Complementary and Alternative Medicine (NCCAM) (30 November 2010) and the WHO International Clinical Trials Registry Platform (30 November 2010). Randomised controlled trials comparing relaxation methods with standard care, no treatment, other non-pharmacological forms of pain management in labour or placebo. Three review authors independently assessed trials for inclusion and extracted data. Data were checked for accuracy. Two review authors independently assessed trial quality. We attempted to contact study authors for additional information. We included 11 studies (1374 women) in the review. Relaxation was associated with a reduction in pain intensity during the latent phase (mean difference (MD) -1.25, 95% confidence interval (CI) -1.97 to -0.53, one trial, 40 women) and active phase of labour (MD -2.48, 95% CI -3.13 to 0.83, two trials, 74 women). There was evidence of improved outcomes from relaxation instruction with increased satisfaction with pain

  18. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    Smith, Jonathan C; Karmin, Aaron D


    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  19. Isobolographic analysis of non-depolarising muscle relaxant interactions at their receptor site.

    Paul, Matthias; Kindler, Christoph H; Fokt, Ralf M; Dipp, Natalie C J; Yost, C Spencer


    Administration of certain combinations of non-depolarising muscle relaxants produces greater than expected neuromuscular blockade. Synergistic effects may be explained by drug interactions with the postsynaptic muscle nicotinic acetylcholine receptor. To investigate this hypothesis, the adult mouse muscle nicotinic acetylcholine receptor (alpha(2)beta delta epsilon) was heterologously expressed in Xenopus laevis oocytes and activated by the application of acetylcholine (10 microM). The effects of five individually applied muscle relaxants and six combinations of structurally similar and dissimilar compounds were studied. Drug combinations containing equipotent concentrations of two agents were tested and dose-response curves were determined. All compounds tested alone and in combination produced rapid and readily reversible, concentration-dependent inhibition. Isobolographic and fractional analyses indicated additive interactions for all six tested combinations. These findings suggest that synergistic neuromuscular blocking effects, observed for the administration of certain combinations of muscle relaxants, do not result from purely postsynaptic binding events at the muscle nicotinic acetylcholine receptor, but rather from differential actions on pre- and postsynaptic sites.

  20. Structural relaxation in viscous metallic liquids

    Meyer, A. [National Inst. of Standards and Technology (BFRL), Gaithersburg, MD (United States)]|[Technische Univ. Muenchen, Muenchen (Germany); Wuttke, J.; Petry, W. [Technische Univ. Muenchen, Muenchen (Germany); Schober, H. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Randl, O.G. [Manufacture Michelin, Clermont-Ferrand (France)


    Recently, metallic alloys have been found that exhibit extremely large viscosities in the liquid state. These liquids can be quenched into bulk metallic glasses at relatively modest cooling rates. In contrast to simple metals the structural relaxation of these systems show a two step decay in the liquid state. This behaviour has long been known for molecular or ionic glass formers in their under-cooled liquid state. Applying an analysis previously used for the glass formers (mode-coupling theory) a full quantitative description of the neutron data is obtained for these metallic liquids. (authors) 3 refs., 2 figs.

  1. Thermal Stress Relaxation of Nonhomogeneous Coatings


    Nonhomogeneous coatings (NCs) are new type of engineering structures that is not yet fully understood. One important aspect in the mechanical analysis of NCs is to determine the gradient distribution that creates the maximum thermal stress relaxation. This paper employs numerical analysis using the finite element metho d and experimental analysis using moire interference to study the stress distrib ution in NCs. Attention focused on the edge effect stresses in the coating/subst rate structures and their dependence on the different gradient distributions of this new kind of composite structure.

  2. Reflexogenic relaxation gastroduodenography by the acupuncture method

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, then followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect.

  3. Compatible Relaxation and Coarsening in Algebraic Multigrid

    Brannick, J J; Falgout, R D


    We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.

  4. Relaxed Operational Semantics of Concurrent Programming Languages

    Gustavo Petri


    Full Text Available We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.

  5. Dielectric relaxations investigation of a synthesized epoxy resin polymer

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer


    A diglycidylether of bisphenol A (DGEBA) epoxy resin was synthesized, and cured with 3,3'-diaminodiphenyl sulfone (DDS) at a curing temperature of 120 °C. The relaxation properties of the realized polymers were studied by two complementary techniques: dielectric relaxation spectroscopy (DRS), in the temperature range 173-393K and in the frequency interval 10-1-106 Hz, and thermally stimulated depolarization current (TSDC) with a windowing polarization process. Current-voltage (I-V) measurements were also carried out to study interfacial relaxations. Dielectric data were analyzed in terms of permittivity and electric modulus variations. Three relaxation processes ( γ, β and α) have been identified. They were found to be frequency and temperature dependent and were interpreted in terms of the Havriliak-Negami approach. Relaxation parameters were determined by fitting the experimental data. The temperature dependence of the relaxation time was well fitted by the Arrhenius law for secondary relaxations, while the Vogel-Fulcher-Tamann model was found to better fit the τ( T) variations for α relaxation. We found τ 0 = 4.9 10-12 s, 9.6 10-13 s and 1.98 10-7 s for γ, β and α relaxations, respectively. The obtained results were found to be consistent with those reported in the literature. Due to the calculation of the low-frequency data of dielectric loss by the Hamon approximation, the Maxwell-Wagner-Sillars (MWS) relaxation was highlighted.

  6. Relaxation training after stroke: potential to reduce anxiety.

    Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth


    To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p stroke rehabilitation shows potential. Self-reported tension decreased after attendance at relaxation training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.

  7. The mechanics of mouse skeletal muscle when shortening during relaxation.

    Barclay, C J; Lichtwark, G A


    The dynamic properties of relaxing skeletal muscle have not been well characterised but are important for understanding muscle function during terrestrial locomotion, during which a considerable fraction of muscle work output can be produced during relaxation. The purpose of this study was to characterise the force-velocity properties of mouse skeletal muscle during relaxation. Experiments were performed in vitro (21 degrees C) using bundles of fibres from mouse soleus and EDL muscles. Isovelocity shortening was applied to muscles during relaxation following short tetanic contractions. Using data from different contractions with different shortening velocities, curves relating force output to shortening velocity were constructed at intervals during relaxation. The velocity component included contributions from shortening of both series elastic component (SEC) and contractile component (CC) because force output was not constant. Early in relaxation force-velocity relationships were linear but became progressively more curved as relaxation progressed. Force-velocity curves late in relaxation had the same curvature as those for the CC in fully activated muscles but V(max) was reduced to approximately 50% of the value in fully activated muscles. These results were the same for slow- and fast-twitch muscles and for relaxation following maximal tetani and brief, sub-maximal tetani. The measured series elastic compliance was used to partition shortening velocity between SEC and CC. The curvature of the CC force-velocity relationship was constant during relaxation. The SEC accounted for most of the shortening and work output during relaxation and its power output during relaxation exceeded the maximum CC power output. It is proposed that unloading the CC, without any change in its overall length, accelerated cross-bridge detachment when shortening was applied during relaxation.

  8. The Use of Drugs in Sports.

    Roy, Steven

    Indications, precautions, contraindications, and side effects of drugs most frequently used by athletic trainers in treating injuries are discussed: (1) aspirin; (2) arylalkanoic derivatives; (3) butazolidin and tandearil; (4) corticosteroids; (5) oral corticosteroids; (6) muscle relaxants; (7) analgesics; (8) cold medications; (9) antidiarrheal…

  9. Dielectric relaxation of CdO nanoparticles

    Tripathi, Ramna; Dutta, Alo; Das, Sayantani; Kumar, Akhilesh; Sinha, T. P.


    Nanoparticles of cadmium oxide have been synthesized by soft chemical route using thioglycerol as the capping agent. The crystallite size is determined by X-ray diffraction technique and the particle size is obtained by transmission electron microscope. The band gap of the material is obtained using Tauc relation to UV-visible absorption spectrum. The photoluminescence emission spectra of the sample are measured at various excitation wavelengths. The molecular components in the material have been analyzed by FT-IR spectroscopy. The dielectric dispersion of the material is investigated in the temperature range from 313 to 393 K and in the frequency range from 100 Hz to 1 MHz by impedance spectroscopy. The Cole-Cole model is used to describe the dielectric relaxation of the system. The scaling behavior of imaginary part of impedance shows that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are also analyzed in the framework of conductivity and electrical modulus formalisms. The frequency-dependent conductivity spectra are found to obey the power law.

  10. Transverse relaxation of scalar-coupled protons.

    Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey


    In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.

  11. Relaxing effect of rose oil on humans.

    Hongratanaworakit, Tapanee


    One increasingly popular type of alternative therapy is aromatherapy, but scientific validation in this field is still rare. The aim of this study was to investigate the effect of rose oil (Rosa damascena Mill, Rosaceae) on human autonomic parameters and emotional responses in healthy subjects after transdermal absorption. In order to exclude any olfactory stimulation the inhalation of the fragrances was prevented by breathing masks. Forty healthy volunteers participated in the experiments. Five autonomic parameters, i.e. blood pressure, breathing rate, blood oxygen saturation, pulse rate, and skin temperature, were recorded. Emotional responses were assessed by means of rating scales. Compared to placebo, rose oil caused significant decreases of breathing rate, blood oxygen saturation and systolic blood pressure, which indicate a decrease of autonomic arousal. At the emotional level, subjects in the rose oil group rated themselves as more calm, more relaxed and less alert than subjects in the control group. These findings are likely to represent a relaxing effect of the rose oil and provide some evidence for the use of rose oil in aromatherapy, such as causing relief of depression and stress in humans.

  12. Viscosity bound versus the universal relaxation bound

    Hod, Shahar


    For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.

  13. A Simple Holographic Superconductor with Momentum Relaxation

    Kim, Keun-Young; Park, Miok


    We study a holographic superconductor model with momentum relaxation due to massless scalar fields linear to spatial coordinates($\\psi_I = \\beta \\delta_{Ii} x^i$), where $\\beta$ is the strength of momentum relaxation. In addition to the original superconductor induced by the chemical potential($\\mu$) at $\\beta=0$, there exists a new type of superconductor induced by $\\beta$ even at $\\mu=0$. It may imply a new `pairing' mechanism of particles and antiparticles interacting with $\\beta$, which may be interpreted as `impurity'. Two parameters $\\mu$ and $\\beta$ compete in forming superconducting phase. As a result, the critical temperature behaves differently depending on $\\beta/\\mu$. It decreases when $\\beta/\\mu$ is small and increases when $\\beta/\\mu$ is large, which is a novel feature compared to other models. After analysing ground states and phase diagrams for various $\\beta/\\mu$, we study optical electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities. When the system undergo...

  14. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Petrov, Oleg V.; Stapf, Siegfried


    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  15. Effect of asymmetric strain relaxation on dislocation relaxation processes in heteroepitaxial semiconductors

    Andersen, D.; Hull, R.


    The effect of asymmetric interfacial strain configurations upon the generation of misfit dislocation arrays in lattice mismatched epitaxy is considered. For example, elastic strain relaxation for Si1-xGex/Si(110) films is uniaxial, assuming glide on {111} planes as expected for the diamond cubic system, which leads to asymmetric strain relief. Here, we extend our previously developed relaxation model for generation of dislocation arrays in SiGe/Si, by accounting for how the different energetics of asymmetrically strained films affect the kinetics of the relaxation process. Similarly, non-polar III-nitride epitaxial films have asymmetric strain from the outset of growth due to the different c/a lattice parameter ratios. In both systems, the asymmetric strain is represented by an additional term in the misfit dislocation applied stress equation. In SiGe/Si(110), a simple elasticity analysis of the strain produced by the uniaxial array of dislocations predicts that the relaxation orthogonal to the dislocation line direction occurs at a faster rate than predicted by purely biaxial strain relief due to the contributions of the strain parallel to the dislocations. This difference is because the strain parallel to the dislocation line directions continues to resolve stress onto the misfit dislocations even as the orthogonal strain is minimized. As a result, the minimum strain energy is predicted to occur for a dislocation spacing, which produces tensile layer strain in the orthogonal direction. Such tensile strain may modify the (opto)electronic properties of a Si, Ge, or GeSi epilayer but is only predicted to occur for advanced stages of relaxation. These asymmetric derivations are applicable to any thin film system where strain is not strictly biaxial.

  16. Immersed boundary lattice Boltzmann model based on multiple relaxation times.

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli


    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  17. Nuclear spin relaxation in liquids theory, experiments, and applications

    Kowalewski, Jozef


    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  18. Hyperfine relaxation of an optically pumped cesium vapor

    Tornos, J.; Amare, J.C.


    The relaxation of hyperfine orientation indirectly induced by optical pumping with a sigma-polarized D/sub 1/-light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D/sub 0/ = 0.101 +- 0.010 cm/sup 2/s/sup -1/ at 0/sup 0/C and 760 Torr; relaxation cross section by Cs-Ar collisions, sigma/sub c/ = (104 +- 5) x 10/sup -23/ cm/sup 2/; relaxation cross section by Cs-Cs (spin exchange) collisions, sigma/sub e//sub x/ = (1.63 +- 0.13) x 10/sup -14/ cm/sup 2/.

  19. Cross-relaxation in multiple pulse NQR spin-locking

    Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail:; Goren, S. D. [Ben Gurion University, Physics Department (Israel)


    The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

  20. Drug Facts

    Full Text Available ... and Nicotine Facts Other Drugs of Abuse What is Addiction? What are some signs and symptoms of ... to Drugs? Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? Effects of ...

  1. Drug Reactions

    ... problem is interactions, which may occur between Two drugs, such as aspirin and blood thinners Drugs and food, such as statins and grapefruit Drugs and supplements, such as ginkgo and blood thinners ...

  2. Drug Resistance

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  3. Intraband Relaxation and Its Influences on Quantum Dot Lasers

    DENG Sheng-Ling; HUANG Yong-Zhen; YU Li-Juan


    @@ A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.

  4. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Bernabeu, E.; Tornos, J.


    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  5. Measuring Propellant Stress Relaxation Modulus Using Dynamic Mechanical Analyzer


    P. N., Singh, P. P., and Bhattacharya, B., “Determination of Activation Energy of Relaxation Events in Composite Solid Propellants by Dynamic...Article 3. DATES COVERED (From - To) 04 August 2016 – 29 March 2017 4. TITLE AND SUBTITLE Measuring Propellant Stress Relaxation Modulus Using Dynamic...ERC 14. ABSTRACT A method for determining the stress relaxation master curve of solid rocket propellants was developed. The propellant was tested in

  6. On the Relaxation Dynamics of Disordered Systems

    Dobramysl, Ulrich

    We investigate the properties of two distinct disordered systems: the two-species predator-prey Lotka-Volterra model with rate variability, and an elastic line model to simulate vortex lines in type-II superconductors. We study the effects of intrinsic demographic variability with inheritance in the reaction rates of the Lotka-Volterra model via zero-dimensional Monte Carlo simulations as well as two-dimensional lattice simulations. Individuals of each species are assigned inheritable predation efficiencies during their creation, leading to evolutionary dynamics and thus population-level optimization. We derive an effective subspecies mean-field theory and compare its results to our numerical data. Furthermore, we introduce environmental variability via quenched spatial reaction-rate randomness. We investigate the competing effects and relative importance of the two types of variability, and find that both lead to a remarkable enhancement of the species densities, while the aforementioned optimization effects are essentially neutral in the densities. Additionally, we collected extinction time histograms for small systems and find a marked increase in the stability of the populations against extinction due to the presence of variability. We employ an elastic line model to investigate the steady-state properties and non-equilibrium relaxation kinetics of magnetic vortex lines in disordered type-II superconductors. To this end, we developed a versatile and efficient Langevin molecular dynamics simulation code, allowing us to do a careful study of samples with or without vortex-vortex interactions or disorder allows us to disentangle the various complex relaxational features present in this system and investigate their origin. In particular, we compare disordered samples with randomly distributed point defects versus correlated columnar defects. We extract two-time quantities such as the mean-square displacement, the height and density correlations, to investigate the

  7. Relaxation Behaviour of Lithium-Borosilicate Glasses

    D. B. Thombre


    Full Text Available Three systems of lithium borosilicate (LBS glasses namely SI 42.5Li2O: (57.5-x B2O3: xSiO2, SII 42.5Li2O: xB2O3 :( 57.5-x SiO2 where x=0, 5, 10, 20, and 30, and SIII (100-2x Li2O: xB2O3: xSiO2 where x=30, 28.75, 27.5, 25, and 22.5, are prepared using conventional melt quenching technique. Functional dependence of conductivity on temperature in the range from 523- 673K and frequency in the range from 10Hz to 13 MHz is studied. In order to analyze electrical conductivity the microscopic parameters such as ionic jump distance and barrier height are necessary. These parameters can be understood properly on the basis of the models proposed by Almond and Elliott. As frequency increases from 1MHz to 13MHz, the Tmin shifts towards low temperature side. According to this model the charge transfer is a thermally activated process and provides a correlation between the barrier height (W and the hopping length (R. The fitting of conductivity data into Almond-West type power law behavior σ = σ(o + Aωs yielded power law exponent(s. Electrical conductivity data fitted well in Elliott’s model, which is true only for amorphous materials. The temperature dependence of frequency exponent s exhibits a minimum (smin at a particular temperature (Tmin . . From the scaling behavior of the ac conductivity it is seen that all the curves scaled better, suggesting that s is temperature independent. It is observed that smin shifts to lower temperature, which shows that electrical conductivity of glassy solid electrolytes is the manifestation of ionic dynamic processes. The superposition of the reduced conductivity at all temperatures shows relaxation mechanism is temperature independent. Analysis of modulus formalism with a distribution of relaxation times using KWW stretched exponential function, the stretching exponent, β, is depend on temperature. The analysis of the temperature variation of the M″ peak indicates the relaxation process is thermally activated

  8. Electrical Relaxation in ULTEM® and ULTEM® Containing Mesoporous Silica

    Turo, Andrew; Edmondson, Charles E.; Lomax, Joseph F.; Bendler, John T.; Fontanella, John J.; Wintersgill, Mary C.


    Mesoporous silica has been added to Ultem® 1000 polyetherimide using solution casting. The mesoporous silica that was added was either uncoated or coated with polystyrene. Audio frequency dielectric relaxation studies were then carried out over the temperature range 5.5 to 550 K. Several interesting results were obtained. First, the uncoated mesoporous silica caused essentially no change in the relaxation spectrum of pure Ultem®. The polystyrene coated mesoporous silica caused rather large changes. The most striking example is the introduction of a new relaxation. This relaxation occurs at about 150 K and 1000 Hz as showing in fig. 1 via the open circles.

  9. Importance of relaxation techniques in cognitive therapy for anxiety

    Alice Rodrigues Willhelm; Ilana Andretta; Mariana Steiger Ungaretti


    .... The CBT treatment for anxiety disorders suggests cognitive techniques of restructuring and cognitive flexibilization and behavioral techniques such as exposure, systematic desensitization and body relaxation techniques...

  10. Observation of the relaxivity and thickness of surface phase in porous rock with the combination of PFG NMR and relaxation measurements

    肖立志; 杜有如; 叶朝辉


    Nuclear magnetic resonance (NMR) relaxation of fluids in porous media is affected by the solid-liquid interface. Quantitative determination of the surface relaxivity is significantly important for both investigation and application of relaxation mechanisms in porous media. A method to estimate the surface relaxivity with the combination of relaxation and diffusion measurements is proposed. According to this method, a criterion for testing the current diffusion and relaxation theory for porous media is available.

  11. Schools Relax Cellphone Bans, Nodding to Trend

    MattRichtel; 刘小安


    Lunch time means cellphone time for Gray Taylor, 15, and fellow students at Eastern High in Lansing, Mich. The phones, once viewed as a tool of drug gangs, are now increasingly viewed as a tool of Mom and Dad.

  12. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    Krasnov, V M


    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  13. Internal relaxation time in immersed particulate materials

    Rognon, P; Gay, C


    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams.

  14. Spirooxazine Photoisomerization and Relaxation in Polymer Matrices

    Maria Larkowska


    Full Text Available 9′-Hydroxy-1,3,3-trimethylspiro[indoline-2,3′[3H]naphtha[2,1-b]-1,4oxazine] (SPO-7OH was used in studies of photochromic transformations in polymer matrices. Illumination with UV lamp caused opening the spirostructure of the oxazine with formation of open merocyanine species absorbing at ca. 610 nm. The kinetic studies of thermal relaxation of the open form showed that this process can be described with a biexponential function including both photochemical reaction and rheological behaviour of the polymeric environment. Basing on Arrhenius plot of the rate constant ascribed to the photochemical reaction, the activation energy was determined, which was 66.1 and 84.7 kJ/mole for poly(methyl methacrylate-co-butyl methacrylate and poly(vinylpyrrolidone matrix, respectively.

  15. Scheduled Relaxation Jacobi method: improvements and applications

    Adsuara, J E; Cerdá-Durán, P; Aloy, M A


    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential equations from which they result bec...

  16. Relaxation and resonances in fluctuating dielectric systems

    Garcia-Colin, L. S.; del Castillo, L. F.


    In this paper we show how the ideas behind extended irreversible thermodynamics are used to generate a systematic treatment of the relaxation and resonance phenomena in the propagation and absorption of electromagnetic energy in dielectric materials in a nonequilibrium state. Two cases are discussed: the first, in which the forced oscillations arising from the correlation between the fluctuations of the polarization vector and the electric field are neglected, and the second, in which this term is taken into account. In both cases we show how the main equations serve to make a connection between the macroscopic approach followed here and a number of results obtained for both, gases and polar liquids using molecular models. The results obtained here are compared with previous work on this problem, and new effects arising from the second case are pointed out.

  17. Endothelium-dependent relaxation of blood vessels

    Hynes, M.R.


    Dilation of blood vessels in response to a large number of agents has been shown to be dependent on an intact vascular endothelium. The present studies examine some aspects of endothelium-dependent vasodilation in blood vessels of the rabbit and rat. Using the rabbit ear artery and the subtype-selective muscarinic antagonist pirenzepine, muscarinic receptors of the endothelium and smooth muscle cells were shown to be of the low affinity M/sub 2/ subtype. Inhibition of (/sup 3/H)(-)quinuclidinyl benzilate was used to determine affinity for the smooth muscle receptors while antagonism of methacholine induced vasodilation yielded the endothelial cell receptor affinity. The effect of increasing age (1-27 months) on endothelium-dependent relaxation was studied in aortic rings, perfused tail artery and perfused mesenteric bed of the Fisher 344 rat. The influence of endothelium on contractile responses was examined using the perfused caudal artery.

  18. Occupational stress, relaxation therapies, exercise and biofeedback.

    Stein, Franklin


    Occupational stress is a widespread occurrence in the United States. It is a contributing factor to absenteeism, disease, injury and lowered productivity. In general stress management programs in the work place that include relaxation therapies, exercise, and biofeedback have been shown to reduce the physiological symptoms such as hypertension, and increase job satisfaction and job performance. Strategies to implement a successful stress management program include incorporating the coping activities into one's daily schedule, monitoring one's symptoms and stressors, and being realistic in setting up a schedule that is relevant and attainable. A short form of meditation, daily exercise program and the use of heart rate or thermal biofeedback can be helpful to a worker experiencing occupational stress.

  19. The cosmological constant and the relaxed universe

    Bauer, Florian


    We study the role of the cosmological constant (CC) as a component of dark energy (DE). It is argued that the cosmological term is in general unavoidable and it should not be ignored even when dynamical DE sources are considered. From the theoretical point of view quantum zero-point energy and phase transitions suggest a CC of large magnitude in contrast to its tiny observed value. Simply relieving this disaccord with a counterterm requires extreme fine-tuning which is referred to as the old CC problem. To avoid it, we discuss some recent approaches for neutralising a large CC dynamically without adding a fine-tuned counterterm. This can be realised by an effective DE component which relaxes the cosmic expansion by counteracting the effect of the large CC. Alternatively, a CC filter is constructed by modifying gravity to make it insensitive to vacuum energy.

  20. Vibrational energy relaxation pathways of water

    Pakoulev, Andrei; Wang, Zhaohui; Pang, Yoonsoo; Dlott, Dana D.


    Vibrational energy relaxation (VR) of the OH stretch νOH and bend δH 2O in water is studied by the mid-IR pump with anti-Stokes Raman probe technique. The broad νOH band in water consists of two inhomogeneously broadened subbands. VR in the larger red-shifted subband νOHR, with T1=0.55 ps, is shown to occur by the mechanism νOH→ δH 2O (1/3) and νOH → ground state (2/3). VR in the smaller longer-lived blue-shifted subband νOHB, with T1=0.75 ps, occurs by the mechanism νOH → ground state. The bending fundamental δH 2O decays directly to the ground state with T1=1.4 ps.

  1. Holographic thermal relaxation in superfluid turbulence

    Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)


    Holographic duality provides a first-principles approach to investigate real time processes in quantum many-body systems, in particular at finite temperature and far-from-equilibrium. We use this approach to study the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid through numerically solving its gravity dual. We find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process, thus confirm the previous suspicion based on the experimental data for turbulent superfluid in highly oblate Bose-Einstein condensates. Furthermore, the decay rate near the critical temperature is in good agreement with the recently developed effective theory of 2D superfluid turbulence.

  2. Multiscale dipole relaxation in dielectric materials

    Hansen, Jesper Schmidt


    the cross coupling between the electric field fluctuations and dipole moment fluctuations can be ignored. The peak frequencies in the spectra of the autocorrelation functions are also derived. They depend on the wave vector squared which is a fingerprint of the underlying dipole diffusion mechanism....... For the longitudinal direction the simulation results show that the cross coupling between the electric field and the dipole moment is non-negligible compromising the theoretical predictions. The underlying mechanism for this coupling is not clear.......Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...

  3. Relaxed Half-Stochastic Belief Propagation

    Leduc-Primeau, François; Mannor, Shie; Gross, Warren J


    Low-density parity-check codes are attractive for high throughput applications because of their low decoding complexity per bit, but also because all the codeword bits can be decoded in parallel. However, achieving this in a circuit implementation is complicated by the number of wires required to exchange messages between processing nodes. Decoding algorithms that exchange binary messages are interesting for fully-parallel implementations because they can reduce the number and the length of the wires, and increase logic density. This paper introduces the Relaxed Half-Stochastic (RHS) decoding algorithm, a binary message belief propagation (BP) algorithm that achieves a coding gain comparable to the best known BP algorithms that use real-valued messages. We derive the RHS algorithm by starting from the well-known Sum-Product algorithm, and then derive a low-complexity version suitable for circuit implementation. We present extensive simulation results on two standardized codes having different rates and constr...

  4. Grueneisen relaxation photoacoustic microscopy in vivo

    Ma, Jun; Shi, Junhui; Hai, Pengfei; Zhou, Yong; Wang, Lihong V.


    Grueneisen relaxation photoacoustic microscopy (GR-PAM) can achieve optically defined axial resolution, but it has been limited to ex vivo demonstrations so far. Here, we present the first in vivo image of a mouse brain acquired with GR-PAM. To induce the GR effect, an intensity-modulated continuous-wave laser was employed to heat absorbing objects. In phantom experiments, an axial resolution of 12.5 μm was achieved, which is sixfold better than the value achieved by conventional optical-resolution PAM. This axial-resolution improvement was further demonstrated by imaging a mouse brain in vivo, where significantly narrower axial profiles of blood vessels were observed. The in vivo demonstration of GR-PAM shows the potential of this modality for label-free and high-resolution anatomical and functional imaging of biological tissues.

  5. Degravitation and the relaxed Einstein equations

    Dirkes, Alain


    The general idea to modify Einstein's field equations by promoting Newton's constant $G$ to a covariant differential operator $G_\\Lambda(\\Box_g)$ was apparently outlined for the first time in [12-15]. The modification itself originates from the quest of finding a mechanism which is able to degravitate the vacuum energy on cosmological scales. We present in this article a precise covariant coupling model which acts like a high-pass filter with a macroscopic distance filter scale $\\sqrt{\\Lambda}$. In the context of this particular theory of gravity we work out the effective relaxed Einstein equations as well as the effective 1.5 post-Newtonian total near-zone mass of a many body system. We observe that at any step of computation we recover in the limit of vanishing modification parameters the corresponding general relativistic result.

  6. Relaxed excited states of color centers

    Baldacchini, G.


    Color centers in alkali halides display an optical cycle which has been, and it is still today, a model case for similar processes in other materials. Moreover, the luminescence of some color centers is so efficient that it has been used in laser applications. However, the quantum state from which the emission of light is originated, the so called relaxed excited state (RES), is not very well known. Indeed, in spite of the wealth of experimental results collected and of the theoretical approaches attempted, an exact description of the RES is still missing. This paper, confined mainly to F centers which are the simplest point defects in crystals, contains a review of the main experimental evidences which has some light on the nature of the RES, with special emphasis on the latest magneto-optical experiments. Also, a description of the theoretical models is attempted whenever required by a particular argument.

  7. Integrating Biosystem Models Using Waveform Relaxation

    Stephen Baigent


    Full Text Available Modelling in systems biology often involves the integration of component models into larger composite models. How to do this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional, and of variable strengths. We adapt the waveform relaxation (WR method for parallel computation of ODEs as a general methodology for computing systems of linked submodels. Four test cases are presented: (i a cascade of unidirectionally and bidirectionally coupled harmonic oscillators, (ii deterministic and stochastic simulations of calcium oscillations, (iii single cell calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv a multicellular calcium model for a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components, which may be distributed in different computing environments.

  8. Using relaxational dynamics to reduce network congestion

    Piontti, Ana L. Pastore y.; La Rocca, Cristian E.; Toroczkai, Zoltán; Braunstein, Lidia A.; Macri, Pablo A.; López, Eduardo


    We study the effects of relaxational dynamics on congestion pressure in scale-free (SF) networks by analyzing the properties of the corresponding gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from surface-growth physics as single-step load-balancing dynamics, we show that the congestion pressure considerably drops on SF networks when compared with the same dynamics on random graphs. This is due to a structural transition of the corresponding gradient network clusters, which self-organize so as to reduce the congestion pressure. This reduction is enhanced when lowering the value of the connectivity exponent λ towards 2.

  9. Fast Heterogeneous Relaxation Near The Glass Transition

    Russina, Margarita


    More than a decade ago inelastic neutron scattering studies revealed a surprising characteristic feature in the atomic dynamics near the glass transition, which was often called the betta-process, with reference to predictions of the mode coupling theory (MCT). This process appears on the ps time scale, i.e. fast compared to the ordinary flow viscosity governed relaxation and slow compared to usual atomic vibrations, and its nature remained a puzzle over the years. Although inelastic neutron scattering is ideally suited to observe dynamics on microscopic time and length scales, experimental difficulties due to strong multiple scattering effects prevented the exploration of the spatial character of this process. By a new experimental approach to correct for these spurious contributions with a high precision, we were now able to extend the spatial domain of our observations from just about nearest neighbor atomic distances by close to an order of magnitude larger ones, which length scale includes that of the intermediate range order, which can be expected to reveal most sensitively collective, as opposed to the local, behavior. Our results in the fragile glass forming liquid Ca-K-NO3 show, that the betta-process is a first fast step of the structural relaxation, which confirms a most fundamental prediction of MCT. Furthermore, by investigating the Debye-Waller factor associated with this process, we found that its geometrical nature corresponds to quasi-rigid, correlated displacement of mobile groups of atoms, which move much faster than the ordinary flow of the bulk of the supercooled liquid. This is the first direct experimental evidence for the existence of heterogeneous fast flow processes similar to the string-flow motion recently observed in molecular dynamic simulations of model liquids close to the glass transition.

  10. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters.

    Kodaira, Hiroshi; Kusuhara, Hiroyuki; Fuse, Eiichi; Ushiki, Junko; Sugiyama, Yuichi


    A pharmacokinetic model was constructed to explain the difference in brain- and cerebrospinal fluid (CSF)-to-plasma and brain-to-CSF unbound drug concentration ratios (Kp,uu,brain, Kp,uu,CSF, and Kp,uu,CSF/brain, respectively) of drugs under steady-state conditions in rats. The passive permeability across the blood-brain barrier (BBB), PS1, was predicted by two methods using log(D/molecular weight(0.5)) for PS1(1) or the partition coefficient in octanol/water at pH 7.4 (LogD), topologic van der Waals polar surface area, and van der Waals surface area of the basic atoms for PS1(2). The coefficients of each parameter were determined using previously reported in situ rat BBB permeability. Active transport of drugs by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) measured in P-gp- and Bcrp-overexpressing cells was extrapolated to in vivo by introducing scaling factors. Brain- and CSF-to-plasma unbound concentration ratios (Kp,uu,brain and Kp,uu,CSF, respectively) of 19 compounds, including P-gp and Bcrp substrates (daidzein, dantrolene, flavopiridol, genistein, loperamide, quinidine, and verapamil), were simultaneously fitted to the equations in a three-compartment model comprising blood, brain, and CSF compartments. The calculated Kp,uu,brain and Kp,uu,CSF of 17 compounds were within a factor of three of experimental values. Kp,uu,CSF values of genistein and loperamide were outliers of the prediction, and Kp,uu,brain of dantrolene also became an outlier when PS1(2) was used. Kp,uu,CSF/brain of the 19 compounds was within a factor of three of experimental values. In conclusion, the Kp,uu,CSF/brain of drugs, including P-gp and Bcrp substrates, could be successfully explained by a kinetic model using scaling factors combined with in vitro evaluation of P-gp and Bcrp activities.

  11. Effect of pressure relaxation during the laser heating and electron-ion relaxation stages

    Chimier, B.; Tikhonchuk, V.T.; Hallo, L. [Univ Bordeaux 1, CEA, CNRS, CELIA, UMR 5107, 33 - Talence (France)


    The multi-phase equation of state by Bushman et al. (Sov. Tech. Rev. 5:1-44, 2008) is modified to describe states with different electron and ion temperatures and it is applied to the non-equilibrium evolution of an aluminum sample heated by a subpicosecond laser pulse. The sample evolution is described by the two-temperature model for the electron and ion temperatures, while the pressure and density are described by a simplified relaxation equation. The pressure relaxation in the heating stage reduces the binding energy and facilitates the electron-driven ablation. The model is applied to estimate the ablation depth of an Al target irradiated by a subpicosecond laser pulse. It improves the agreement with the experimental data and provides a new explanation of the ablation process. (authors)

  12. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer.

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng


    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  13. Birth Defects: Cerebral Palsy

    ... to help relax muscle spasms, including: Diazepam (Valium®), baclofen (Lioresal®), dantrolene (Dantrium®) and tizanidine (Zanaflex®). Your child takes these by mouth. Baclofen, a medicine that your child gets through a ...

  14. Relaxation in x-space magnetic particle imaging.

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M


    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  15. Energy relaxation in optically excited Si and Ge nanocrystals

    S. Saeed


    The scientific objective of the research presented in this thesis is to explore energy relaxation processes of optically excited Si and Ge nanocrystals. The identification and deeper understanding of unique energy relaxation paths in these materials will open a new window of opportunity for these ma

  16. Stress relaxation of bi-disperse polystyrene melts

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy


    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which a...

  17. Evolving fuzzy rules for relaxed-criteria negotiation.

    Sim, Kwang Mong


    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  18. Experimental study of 199Hg spin anti-relaxation coatings

    Chowdhuri, Z; Horras, M; Kirch, K; Krempel, J; Lauss, B; Mtchedlishvili, A; Rebreyend, D; Roccia, S; Schmidt-Wellenburg, P; Zsigmond, G


    We report on a comparison of spin relaxation rates in a $^{199}$Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.

  19. Noninteracting control of nonlinear systems based on relaxed control

    Jayawardhana, B.


    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  20. Relaxation towards phase-locked dynamics in long Josephson junctions

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm


    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with dire...

  1. Relaxation Training and Expectation in the Treatment of Postpartum Distress.

    Halonen, Jane S.; Passman, Richard H.


    Examined the effectiveness of relaxation training in reducing postpartum distress for 48 first-time mothers-to-be via a treatment-component strategy. Compared with nonrelaxation conditions, relaxation treatments reduced reported postpartal distress. Expectations about treatment effectiveness were not significant factors in treatment outcome.…

  2. Increasing Mathematical Problem-Solving Performance through Relaxation Training.

    Sharp, Conni; Coltharp, Hazel; Hurford, David; Cole, AmyKay


    Studies two intact classes of 30 undergraduate students enrolled in a mathematics course; however, one group received relaxation training during an initial class meeting and during the first 5-7 minutes of each subsequent class. The group which received the relaxation training had significantly lower mathematics anxiety and significantly higher…

  3. Definition, evaluation, and management of brain relaxation during craniotomy.

    Li, J; Gelb, A W; Flexman, A M; Ji, F; Meng, L


    The term 'brain relaxation' is routinely used to describe the size and firmness of the brain tissue during craniotomy. The status of brain relaxation is an important aspect of neuroanaesthesia practice and is relevant to the operating conditions, retraction injury, and likely patient outcomes. Brain relaxation is determined by the relationship between the volume of the intracranial contents and the capacity of the intracranial space (i.e. a content-space relationship). It is a concept related to, but distinct from, intracranial pressure. The evaluation of brain relaxation should be standardized to facilitate clinical communication and research collaboration. Both advantageous and disadvantageous effects of the various interventions for brain relaxation should be taken into account in patient care. The outcomes that matter the most to patients should be emphasized in defining, evaluating, and managing brain relaxation. To date, brain relaxation has not been reviewed specifically, and the aim of this manuscript is to discuss the current approaches to the definition, evaluation, and management of brain relaxation, knowledge gaps, and targets for future research.

  4. A digital Double Relaxation Oscillation SQUID for particle detector readout

    Podt, M.; Keizer, D.; Flokstra, Jakob; Rogalla, Horst


    Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are generated in hysteretic dc SQUIDs by an external L–R shunt. We realized a DROS with the complete flux-locked loop circuitry on one single chip, the Smart DROS. The pulsed output of the Smart DROS enables a

  5. High sensitivity double relaxation oscillation superconducting quantum interference devices

    Adelerhof, Derk Jan; Adelerhof, Derk Jan; Kawai, Jun; Uehara, Gen; Kado, Hisashi


    Double relaxation oscillationsuperconducting quantum interference devices(SQUIDs) (DROSs) have been fabricated with estimated relaxation frequencies up to 14 GHz. Both the intrinsic flux noise and the performance in a flux locked loop with direct voltage readout have been studied. In flux locked

  6. Determination of Relaxation Time of a Josephson Tunnel Junction

    WEN Xue-Da; YU Yang


    We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.

  7. An experiment in multispectral, multitemporal crop classification using relaxation techniques

    Davis, L. S.; Wang, C.-Y.; Xie, H.-C


    The paper describes the result of an experimental study concerning the use of probabilistic relaxation for improving pixel classification rates. Two LACIE sites were used in the study and in both cases, relaxation resulted in a marked improvement in classification rates.

  8. Microscopic origin of shear relaxation in a model viscoelastic liquid.

    Ashwin, J; Sen, Abhijit


    An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τ(M)(ex) of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γ(c) of the Coulomb coupling strength, the lifetime of local atomic connectivity τ(LC) converges to τ(M)(ex) and is the microscopic origin of the relaxation. At Γ≫Γ(c), i.e., in the potential energy dominated regime, τ(M)(ex)→τ(M) (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.

  9. Surface hopping investigation of the relaxation dynamics in radical cations

    Assmann, Mariana; Matsika, Spiridoula, E-mail: [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States); Weinacht, Thomas [Department of Physics, Stony Brook University, Stony Brook, New York 11794 (United States)


    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in these systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.

  10. Correlation of transverse relaxation time with structure of biological tissue

    Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.


    Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.

  11. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G


    that the relaxivity of intravascular contrast agents depends significantly on the host tissue. This agrees with experimental data by Johnson et al. (Magn Reson Med 2000;44:909). In particular, the present results suggest a several-fold increase in the relaxivity of Gd-based contrast agents in brain tissue compared...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size......The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...

  12. Microscopic Origin of Shear Relaxation in a Model Viscoelastic Liquid

    Ashwin, J.; Sen, Abhijit


    An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τMex of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γc of the Coulomb coupling strength, the lifetime of local atomic connectivity τLC converges to τMex and is the microscopic origin of the relaxation. At Γ ≫Γc, i.e., in the potential energy dominated regime, τMex→τM (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.

  13. Relaxing effect of eugenol and essential oils in Pomacea canaliculata

    Adriane Erbice Bianchini


    Full Text Available ABSTRACT: This study evaluated the potential relaxing and/or molluscicidal effects of eugenol and essential oils of Origanum majorana, Ocimum americanum, Hesperozygis ringens, and Piper gaudichaudianum in the gastropod Pomacea canaliculata. Compounds were tested at concentrations of 100, 250, 500, and 750µL L-1 to evaluate the relaxing effects. In the second experiment, animals were exposed to 10, 25, and 50µL L-1 of essential oils of H. ringens and P. gaudichaudianum for a period of 24h for the evaluation of molluscicidal effects. Eugenol and essential oils of O. majorana and O. americanum showed relaxing effects at ≥250µL L-1, but the essential oils of H. ringens and P. gaudichaudianum did not promote relaxing or molluscicidal effects within the times and concentrations studied. Therefore, only eugenol and the essential oils of O. majorana and O. americanum can be used for relaxation purposes in P. canaliculata.

  14. The effects of frontal EMG biofeedback and progressive relaxation upon hyperactivity and its behavioral concomitants.

    Braud, L W


    Hyperactive children (N = 15) and nonhyperactive children (N = 15) were compared. Hyperactive children were found to possess significantly higher (p less than .002) muscular tension levels and, in addition, presented more behavioral problems and had lower test scores. Both electromyographic (EMG) biofeedback and progressive relaxation exercises were successful in the significant reduction of muscular tension, hyperactivity, distractability, irritability, impulsivity, explosiveness, aggressivity, and emotionality in hyperactive children. The greatest improvement was seen in the area of "emotionality-aggression" (irritability, explosiveness, impulsivity, low frustration tolerance, aggresion). No differences were seen in the EMG improvement of drug and nondrug hyperactive children; both made progress under these self-control techniques. However, nondrug children made greater improvements in the behavioral area. Both EMG biofeedback and progressive relaxation resulted in improvements on the test scores of hyperactive subjects (Bender-Gestalt, Visual Sequential Memory, Digit Span, Coding). The therapy would appear to be improved by the inclusion of mental relaxation, concentration, meditation, and mind-blanking exercises for mental control.

  15. Low temperature dielectric relaxation of poly (L-lactic acid) (PLLA) by Thermally Stimulated Depolarization Current

    Mishra Patidar, Manju; Jain, Deepti; Nath, R.; Ganesan, V.


    Poly (L-lactic acid) (PLLA) is a biodegradable and biocompatible polyester that can be produced by renewable resources, like corn. Being non-toxic to human body, PLLA is used in biomedical applications, like surgical sutures, bone fixation devices, or controlled drug delivery. Besides its application studies, very few experiments have been done to study its dielectric relaxation in the low temperature region. Keeping this in mind we have performed a low temperature thermally stimulated depolarization current (TSDC) studies over the temperature range of 80K-400K to understand the relaxation phenomena of PLLA. We could observe a multi modal broad relaxation of small but significant intensity at low temperatures while a sharp and high intense peak around glass transition temperature, Tg∼ 333K, of PLLA has appeared. The fine structure of the low temperature TSDC peak may be attributed to the spherulites formation of crystallite regions inter twinned with the polymer as seen in AFM and appear to be produced due to an isothermal crystallization process. XRD analysis also confirms the semicrystalline nature of the PLLA film.

  16. Drug: D00515 [KEGG MEDICUS

    Full Text Available D00515 Drug Nitroglycerin (JP16/USP); Glyceryl trinitrate; Minitran (TN); Nitro-bid... affecting individual organs 21 Cardiovascular agents 214 Antihypertensives 2149 Others D00515 Nitroglycerin... (JP16/USP) 217 Vasodilators 2171 Coronary dilators D00515 Nitroglycerin (JP16/USP) Anatomical Therapeutic C...RAPY C01D VASODILATORS USED IN CARDIAC DISEASES C01DA Organic nitrates C01DA02 Glyceryl trinitrate D00515 Nitroglycerin...PICAL USE C05AE Muscle relaxants C05AE01 Glyceryl trinitrate D00515 Nitroglycerin (JP16/USP) USP drug classification [BR:br08302] Cardiovascular Agents Vasodilators, Direct-acting Arterial/Venous Nitroglycerin D00515 Nitroglycerin (JP16/USP) CAS: 55-63-0 PubChem: 7847581 DrugBank: DB00727 PDB-CCD: TNG LigandBox: D00515 NIKKAJI: J4.491A ATOM 15 1 C1c C 25.0868 -17.7109 2 C1b C

  17. A Psychophysiological Comparison of the Effects of Three Relaxation Techniques: Respiratory Manipulation Training, Progressive Muscle Relaxation, and Pleasant Imagery.

    Longo, David J.

    A within-subjects, three condition design was employed to examine the effects of three relaxation techniques on blood pressures, pulse rates, and self-report measures of relaxation for 12 college students. Respiratory Manipulation Training incorporated instructions to exhale and not to inhale for as long as possible. When breathing could no longer…

  18. Relaxation Mode Analysis and Markov State Relaxation Mode Analysis for Chignolin in Aqueous Solution at a Transition Temperature

    Mitsutake, Ayori


    It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local-minimum-energy states and the transition between them. The most popular method is principal component analysis, which extracts modes with large conformational fluctuation around an average structure. For protein systems, we recently have applied relaxation mode analysis, which investigate dynamics properties of structural fluctuations of proteins and extract slow relaxation modes. In this article, we apply relaxation mode analysis to extract reaction coordinates for the system, in which there are large conformational changes such as folding/unfolding simulation. We have performed a 750 ns simulation of chignolin at a transition temperature and observed many transitions between the most stable, misfolded and unfolded states. Here, we apply principal component analysis and relaxation mode analysis to the system. In relaxation mode analysis, we extract good reaction coordinates automatic...

  19. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    Bland, Michael; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.


    Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event

  20. Structural changes and relaxations monitored by luminescence.

    Wang, Y; Yang, B; Townsend, P D


    Luminescence data have often been used to study imperfections and to characterize lattice distortions because the signals are sensitive to changes of structure and composition. Previous studies have included intentionally added probe ions such as rare earth ions to sense distortions in local crystal fields caused by modified structural environments. An under-exploited extension of this approach was to use luminescence to monitor crystalline phase changes. A current overview of this new and powerful technique shows that continuous scanning of the sample temperatures immediately offered at least three types of signatures for phase transitions. Because of high sensitivity, luminescence signals were equally responsive to structural changes from inclusions and nanoparticles. These coupled to the host material via long-range interactions and modified the host signals. Two frequently observed examples that are normally overlooked are from nanoparticle inclusions of water and CO2. Examples also indicated that phase transitions were detected in more diverse materials such as superconductors and fullerenes. Finally, luminescence studies have shown that in some crystalline examples, high dose ion implantation of surface layers could induce relaxations and/or structural changes of the entire underlying bulk material. This was an unexpected result and therefore such a possibility has not previously been explored. However, the implications for ion implication are significant and could be far more general than the examples mentioned here.

  1. Anelastic Relaxation Mechanisms Characterization by Moessbauer Spectroscopy

    Soberon Mobarak, Martin Jesus, E-mail: [Secretaria de Educacion Publica (Mexico)


    Anelastic behavior of crystalline solids is generated by several microstructural processes. Its experimental study yields valuable information about materials, namely: modulus, dissipation mechanisms and activation enthalpies. However, conventional techniques to evaluate it are complicated, expensive, time consuming and not easily replicated. As a new approach, in this work a Moessbauer spectrum of an iron specimen is obtained with the specimen at repose being its parameters the 'base parameters'. After that, the same specimen is subjected to an alternated stress-relaxation cycle at frequency {omega}{sub 1} and a new Moessbauer spectrum is obtained under this excited condition; doing the same at several increasing frequencies {omega}{sub n} in order to scan a wide frequencies spectrum. The differences between the Moessbauer parameters obtained at each excitation frequency and the base parameters are plotted against frequency, yielding an 'anelastic spectrum' that reveals the different dissipation mechanisms involved, its characteristic frequency and activation energy. Results are in good agreement with the obtained with other techniques

  2. Dielectric relaxation in Sr modified PST ceramics

    Sen, S.; Choudhary, R. N. P.


    Nanocrystalline powders of strontium modified PbSn0.15Ti0.85O3 (PST) having the formula Pb0.94Sr0.06Sn0.15 have been synthesized by a precursor solution method. The electrical behavior of Pb0.94Sr0.06Sn0.15Ti0.85O3 sintered pellets has been studied by complex impedance spectroscopy analysis. The plot of the real and imaginary parts of the impedance shows that the semicircle exhibits a depression degree with a distribution of relaxation time. The modulus curve indicates the possibility of non-exponential type conductivity. The values of the activation energy calculated from both plots of Z” and M”, are 1.06 and 1.09 eV, which reveals that the species responsible for conduction are same. It also confirms that oxygen vacancies play an important role in conduction. The non-overlapping of the peaks in the plot of M”/M”max and Z”/Z”max as a function of logarithmic frequency measured at 350 °C indicates short-range conduction. The compounds exhibit a negative temperature coefficient of resistance with an α value of -5×10-2 °C at 375 °C. The frequency (ω) dependence of conductivity satisfies the ωn power law. The variation of n with temperature suggests that ac conduction is due to small polaron tunneling.

  3. Relaxed acceleration tolerance in female pilot trainees.

    Navathe, P D; Gomez, G; Krishnamurthy, A


    Female pilots now fly many types of aircraft including military fighters capable of maneuvers that produce high, sustained acceleration in the +Gz axis. Although women have participated as subjects in various centrifuge studies, little is known about the acceleration tolerance of female pilots. Between April 1995 and December 1997, 17 female pilot trainees were studied at the Institute of Aerospace Medicine, Bangalore, India. The subjects were 23.2 +/- 1.4 yr old and led physically active lives. Their relaxed +Gz tolerance limits (defined as peripheral light loss) were tested using the High G and Disorientation Demonstrator. The protocol included a series of rapid onset runs (RORs) to tolerance followed by a single gradual onset run (GOR) to tolerance. The mean ROR tolerance was 4.2 +/- 0.4 G. The mean GOR tolerance was 5.2 +/- 0.6 G. Three of the subjects were unable to complete the GOR due to severe nausea. Two women reported breast discomfort at levels of 3.5 G and beyond. No other problems were reported. The acceleration tolerances for the female pilot trainees were comparable to those for male pilots previously studied in our laboratory.

  4. Ideal Relaxation of the Hopf Fibration

    Smiet, Christopber Berg; Bouwmeester, Dirk


    We study the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. In order to find a stable plasma configuration in which the pressure gradient balances the Lorentz forces, and the magnetic field preserves its Hopf topology we take the following steps. First, we take the magnetic Hopf fibration at constant pressure as initial condition. Second, we let the system evolve under a non-resistive evolution in order to preserve the magnetic field topology while balancing pressure gradients can build up. Third, we add viscosity to damp any oscillatory fluid motion. In this way we find an equilibrium plasma configuration, characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure, and as such the field is in a Grad-Shafranov equilibrium. Such a field configuration is of interest to astrophysical plasma and earth-based fusion plasma.

  5. Mixing, ergodicity and slow relaxation phenomena

    Costa, I. V. L.; Vainstein, M. H.; Lapas, L. C.; Batista, A. A.; Oliveira, F. A.


    Investigations on diffusion in systems with memory [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] have established a hierarchical connection between mixing, ergodicity, and the fluctuation-dissipation theorem (FDT). This hierarchy means that ergodicity is a necessary condition for the validity of the FDT, and mixing is a necessary condition for ergodicity. In this work, we compare those results with recent investigations using the Lee recurrence relations method [M.H. Lee, Phys. Rev. B 26 (1982) 2547; M.H. Lee, Phys. Rev. Lett. 87 (2001) 250601; M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. Lee shows that ergodicity is violated in the dynamics of the electron gas [M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. This reinforces both works and implies that the results of [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] are more general than the framework in which they were obtained. Some applications to slow relaxation phenomena are discussed.

  6. Vertical dimonsion changes after muscle relaxation

    Shahroodi MH


    Full Text Available In this study, 116 edentulous patients in the age group 37-90 yrs were selected. Out of the above,"n12 patients had visited the dept. Of prosthodontics for the first time for treatment. Other 34 of them were"npatients of the dental school and the rest were from Kahrizak and Nikan sanatoriums."nInitially, the V.D. of rest was measured as usual for all the patients. After subjecting them to the excercises of completely opening and closing of the mouth for 15 no. of times, the rest position was measured again. Results show that the changes in V.D.R. after, excercises, relaxing the elevator and depressor muscles and the duration of usage of prosthesis, the following conclusions are obtained."n1. There is an increase in V.D.R. after tiring out the elevator and depressor muscles of the jaws."n2. There is a direct co - relation between the increased V.D.R. and duration of use of prosthesis after excercises."n3. Change in the V.D.R. after excercise is notably more in women."n4. No definite conclusion is obtained in the relationship between changes in V.D.R. after excercises and use of prosthesis during sleep."n5. As above no conclusions as yet can be deduced between changes in V.D.R. and different operators.

  7. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    Phelps, Laura E; Peuler, Jacob D


    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or


    T. V. Dubinina


    Full Text Available Guidelines for the treatment of ankylosing spondylitis (AS lack muscle relaxants. At the same time, the latter are used for combined therapy using nonsteroidal  anti-inflammatory drugs (NSAIDs  in 53.1% of patients in an outpatient  setting. No clear recommendations make the administration of these agents uncontrolled, on the one hand, and substantially restrict therapeutic  possibilities, on the other.Objective: to investigate the short-term effect and safety of using tolperisone hydrochloride  (THC,  Mydocalm®  in patients with AS during group therapeutic  exercise (TE.Subjects and methods. The investigation included 40 patients aged over 18 years with a valid diagnosis of AS who had been treated at the Clinic of the V.A. Nasonova Research Institute of Rheumatology and agreed to participate  in the study. All the patients were randomized  in a 1:1 ratio into two groups: 1 20 patients used NSAIDs in combination with TE; 2 20 patients received NSAIDs,  TE, and THC 450 mg/day. The groups were matched for age, gender, disease duration,  and functional impairments. Before and after completion  of the investigation, the investigators estimated BASDAI, BASFI, patient-rated numerical pain rating scale (NPRS, patient-rated TE performance  scores (NPRS, where 0 (very effective, 10 (ineffective, THC tolerance monitoring  (consideration of adverse events. Spinal motility was evaluated using BASMI and chest excursion measurement.Results and discussion. During TE, both groups showed a significant increase in the volume of movements (p < 0.03, when measuring chest excursion and carrying out modified Schober's test, a decrease in BASDAI (p < 0.01 and BASFI (p < 0.009, as well as a reduction  in patient-rated overall disease activity assessment (p < 0.02 as compared to the baseline values. At the same time the modified Schober test revealed that the increase in motility was significantly higher in Group 2 than in Group 1 (p < 0.05. During the

  9. Relaxing music counters heightened consolidation of emotional memory.

    Rickard, Nikki S; Wong, Wendy Wing; Velik, Lauren


    Emotional events tend to be retained more strongly than other everyday occurrences, a phenomenon partially regulated by the neuromodulatory effects of arousal. Two experiments demonstrated the use of relaxing music as a means of reducing arousal levels, thereby challenging heightened long-term recall of an emotional story. In Experiment 1, participants (N=84) viewed a slideshow, during which they listened to either an emotional or neutral narration, and were exposed to relaxing or no music. Retention was tested 1 week later via a forced choice recognition test. Retention for both the emotional content (Phase 2 of the story) and material presented immediately after the emotional content (Phase 3) was enhanced, when compared with retention for the neutral story. Relaxing music prevented the enhancement for material presented after the emotional content (Phase 3). Experiment 2 (N=159) provided further support to the neuromodulatory effect of music by post-event presentation of both relaxing music and non-relaxing auditory stimuli (arousing music/background sound). Free recall of the story was assessed immediately afterwards and 1 week later. Relaxing music significantly reduced recall of the emotional story (Phase 2). The findings provide further insight into the capacity of relaxing music to attenuate the strength of emotional memory, offering support for the therapeutic use of music for such purposes.

  10. Relaxation dynamics of a protein solution investigated by dielectric spectroscopy.

    Wolf, M; Gulich, R; Lunkenheimer, P; Loidl, A


    In the present work, we provide a dielectric study on two differently concentrated aqueous lysozyme solutions in the frequency range from 1MHz to 40GHz and for temperatures from 275 to 330K. We analyze the three dispersion regions, commonly found in protein solutions, usually termed β-, γ-, and δ-relaxations. The β-relaxation, occurring in the frequency range around 10MHz and the γ-relaxation around 20GHz (at room temperature) can be attributed to the rotation of the polar protein molecules in their aqueous medium and the reorientational motion of the free water molecules, respectively. The nature of the δ-relaxation, which is often ascribed to the motion of bound water molecules, is not yet fully understood. Here we provide data on the temperature dependence of the relaxation times and relaxation strengths of all three detected processes and on the dc conductivity arising from ionic charge transport. The temperature dependences of the β- and γ-relaxations are closely correlated. We found a significant temperature dependence of the dipole moment of the protein, indicating conformational changes. Moreover we find a breakdown of the Debye-Stokes-Einstein relation in this protein solution, i.e., the dc conductivity is not completely governed by the mobility of the solvent molecules. Instead it seems that the dc conductivity is closely connected to the hydration shell dynamics.

  11. Stochastic tools hidden behind the empirical dielectric relaxation laws

    Stanislavsky, Aleksander; Weron, Karina


    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  12. Ultrafast energy relaxation in single light-harvesting complexes.

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk


    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  13. Analysis of 2D NMR relaxation data using Chisholm approximations

    Huber, S.; Haase, A.; Gleich, B.


    To analyze 2D NMR relaxation data based on a discrete delta-like relaxation map we extended the Padé-Laplace method to two dimensions. We approximate the forward Laplace image of the time domain signal by a Chisholm approximation, i.e. a rational polynomial in two dimensions. The poles and residues of this approximation correspond to the relaxation rates and weighting factors of the underlying relaxation map. In this work we explain the principle ideas of our algorithm and demonstrate its applicability. Therefore we compare the inversion results of the Chisholm approximation and Tikhonov regularization method as a function of SNR when the investigated signal is based on a given discrete relaxation map. Our algorithm proved to be reliable for SNRs larger than 50 and is able to compete with the Tikhonov regularization method. Furthermore we show that our method is also able to detect the simulated relaxation compartments of narrow Gaussian distributions with widths less or equal than 0.05 s-1. Finally we investigate the resolution limit with experimental data. For a SNR of 750 the Chisholm approximation method was able to resolve two relaxation compartments in 8 of 10 cases when both compartments differ by a factor of 1.7.

  14. Shear stress relaxation of dental ceramics determined from creep behavior.

    DeHoff, Paul H; Anusavice, Kenneth J


    To test the hypothesis that shear stress relaxation functions of dental ceramics can be determined from creep functions measured in a beam-bending viscometer. Stress relaxation behavior was determined from creep data for the following materials: (1) a veneering ceramic-IPS Empress2 body ceramic (E2V); (2) an experimental veneering ceramic (EXV); (3) a low expansion body porcelain-Vita VMK 68 feldspathic body porcelain (VB); (4) a high expansion body porcelain-Will Ceram feldspathic body porcelain (WCB); (5) a medium expansion opaque porcelain-Vita feldspathic opaque porcelain (VO); and (6) a high expansion opaque porcelain-Will Ceram feldspathic opaque porcelain (WCO). Laplace transform techniques were used to relate shear stress relaxation functions to creep functions for an eight-parameter, discrete viscoelastic model. Nonlinear regression analysis was performed to fit a four-term exponential relaxation function for each material at each temperature. The relaxation functions were utilized in the ANSYS finite element program to simulate creep behavior in three-point bending for each material at each temperature. Shear stress relaxation times at 575 degrees C ranged from 0.03 s for EXV to 195 s for WCO. Knowledge of the shear relaxation functions for dental ceramics at high temperatures is required input for the viscoelastic element in the ANSYS finite element program, which can used to determine transient and residual stresses in dental prostheses during fabrication.

  15. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Boyd, Iain D.; Josyula, Eswar


    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  16. Drug Facts

    Full Text Available ... Marijuana (Weed, Pot) Facts MDMA (Ecstasy, Molly) Facts Meth (Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts ... Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs ...

  17. Drugged Driving

    ... Parents & Educators Children & Teens Search Connect with NIDA : Google Plus Facebook LinkedIn Twitter YouTube Flickr RSS Menu ... misuse of prescription drugs can make driving a car unsafe—just like driving after drinking alcohol. Drugged ...

  18. Drug Facts

    Full Text Available ... abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth ... 662-HELP (4357) at any time to find drug treatment centers near you. I want my daughter ...

  19. Drug Facts

    Full Text Available ... Nicotine Facts Other Drugs of Abuse What is Addiction? What are some signs and symptoms of someone ... use problem? How Does Drug Use Become an Addiction? What Makes Someone More Likely to Get Addicted ...

  20. Drug Facts

    Full Text Available ... Home Drugs That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) ... treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice ( ...

  1. Study Drugs

    ... study drugs: amphetamines like Adderall, Dexedrine, or Vyvanse methylphenidates like Ritalin or Concerta Most people get study ... How Much Sleep Do I Need? Prescription Drug Abuse How to Make Homework Less Work Organizing Schoolwork & ...

  2. Drug Facts

    Full Text Available ... abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth ... 662-HELP (4357) at any time to find drug treatment centers near you. I want my daughter ...

  3. Drug Facts

    Full Text Available ... form Search Menu Home Drugs That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, Crack) Facts ... addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain ...

  4. Drugs (image)

    ... Drugs for fever, cough, stuffy nose, runny nose, diarrhea, and allergies are common drugs which are especially helpful during times of illness. All medications should be kept out of the reach of children.

  5. Drug Facts

    ... drug. "Max" was addicted to prescription drugs. The addiction slowly took over his life. I need different people around me. To stop using marijuana, "Cristina" is making positive changes in her life. She finds support from ...

  6. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Dasch, C.J.


    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  7. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    Sauppe, Joshua


    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from / ne can counter the MHD effect from - in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin

  8. Co-relationship of physical stability of amorphous dispersions with enthalpy relaxation.

    Bansal, S S; Kaushal, A M; Bansal, A K


    Physical stability studies of valdecoxib (VLB) and its solid dispersions with PVP (1, 2, 5, 10, 15 and 20% w/w) were carried out by Differential Scanning Calorimetry (DSC). Change in specific heat with time was measured to determine the degree of crystallinity of amorphous drug and its binary dispersions after storage at 40 degrees C and 75% RH. The rate of crystallization was found to decrease with increasing PVP concentration and time for 10% crystallization (t90%) was found to increase significantly for the amorphous drug when formulated as PVP dispersions. Enthalpy relaxation was found to be inversely correlated with t90% (min) values and was found to be a good predictor of devitrification tendency and hence stability of amorphous VLB.

  9. Drug Facts

    Full Text Available ... Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can call 1-800-662-HELP (4357) at any time to find drug treatment centers near you. I want my daughter to ...

  10. Ultrafast vibrational energy relaxation of the water bridge.

    Piatkowski, Lukasz; Wexler, Adam D; Fuchs, Elmar C; Schoenmaker, Hinco; Bakker, Huib J


    We report the energy relaxation of the OH stretch vibration of HDO molecules contained in an HDO:D(2)O water bridge using femtosecond mid-infrared pump-probe spectroscopy. We found that the vibrational lifetime is shorter (~630 ± 50 fs) than for HDO molecules in bulk HDO:D(2)O (~740 ± 40 fs). In contrast, the thermalization dynamics following the vibrational relaxation are much slower (~1.5 ± 0.4 ps) than in bulk HDO:D(2)O (~250 ± 90 fs). These differences in energy relaxation dynamics strongly indicate that the water bridge and bulk water differ on a molecular scale.

  11. Chemical relaxation times in a hadron gas at finite temperature

    Goity, J L


    The relaxation times of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations. Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of $10^{3}$ fm at temperatures around 100 MeV. As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.

  12. The β relaxation in metallic glasses: an overview

    Hai-Bin Yu


    Full Text Available Metallic glasses, combining metallic bonding and disordered atomic structures, are at the cutting edge of metallic materials research. Recent advances in this field have revealed that many key questions in glassy physics are inherently connected to one important relaxation mode: the so-called secondary (β relaxation. Here, in metallic glasses, we review the features of β relaxations and their relations to other processes and properties. Special emphasis is put on their current roles and future promise in understanding the glass transition phenomenon, mechanical properties and mechanisms of plastic deformation, diffusion, physical aging, as well as the stability and crystallization of metallic glasses.

  13. On semidefinite programming relaxations of the traveling salesman problem

    de Klerk, Etienne; Sotirov, Renata; 10.1137/070711141


    We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP) that may be obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in [D. Cvetkovic, M. Cangalovic, and V. Kovacevic-Vujcic, Semidefinite programming methods for the symmetric traveling salesman problem, in Proc. 7th Int. IPCO Conference, Springer, London, 1999, pp. 126--136]. Unlike the bound of Cvetkovic et al., the new SDP bound is not dominated by the Held-Karp linear programming bound, or vice versa.

  14. Relaxation dynamics of amorphous dibucaine using dielectric studies

    Sahra, M.; Jumailath, K.; Thayyil, M. Shahin; Capaccioli, S.


    Using broadband dielectric spectroscopy the molecular mobility of dibucaine is investigated in the supercooled liquid and gassy states, over a wide temperature range for some test frequencies. Above the glass transition temperature Tg, the presence of structural α- relaxation peak was observed due to the cooperative motions of the molecule and upon cooling frozen kinetically to form the glass. The secondary relaxation process was perceivable below Tg due to localized motions. The peak loss frequency of α-relaxation process shows non-Arrhenius behavior and obeys Vogel-Fulcher-Tammann equation over the measured temperature range whereas the β- process shows Arrhenius behavior.


    Mohammed Sea(l)d


    We construct and implement a non-oscillatory relaxation scheme for multidimensional hyperbolic systems of conservation laws. The method transforms the nonlinear hyperbolic system to a semilinear model with a relaxation source term and linear characteristics which can be solved numerically without using either Riemann solver or linear iterations.To discretize the relaxation system we consider a high-resolution reconstruction in space and a TVD Runge-Kutta time integration. Detailed formulation of the scheme is given for problems in three space dimensions and numerical experiments are implemented in both scalar and system cases to show the effectiveness of the method.

  16. Anelastic Relaxation of Point Defects in Cubic Crystals

    Weller, M.


    Point defects in solids can give rise to anelastic relaxation provided that the defects behave as elastic dipoles. Experiments with single crystals give information on the atomic configuration of the point defects. Measurements of the orientation dependence of the relaxation strength allow determination of the defect symmetry and the dipole shape factor δλ=|λ1-λ2|. This is demonstrated for two examples : (i) The Snoek relaxation of O and N in Nb and Ta single crystals : The δλ values for O an...

  17. Mechanism of latency relaxation in frog skeletal muscle.

    Yagi, N


    The latency relaxation is a small drop of tension before skeletal muscle begins to develop active tension. This phenomenon was found nearly one century ago but its origin has not been clarified. In this review, the hypotheses for its mechanism are discussed in terms of the recent experimental results using X-ray diffraction. The latency relaxation takes place almost simultaneously as the structural change of the regulatory protein troponin, an unspecified structural change of the thick filament, and increase in stiffness. It seems difficult to associate all of these with the latency relaxation by assuming a simple mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Developing a Learning Algorithm-Generated Empirical Relaxer

    Mitchell, Wayne [Univ. of Colorado, Boulder, CO (United States). Dept. of Applied Math; Kallman, Josh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Toreja, Allen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gallagher, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jiang, Ming [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Laney, Dan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  19. Diffusive mesh relaxation in ALE finite element numerical simulations

    Dube, E.I.


    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  20. Accelerating convergence of molecular dynamics-based structural relaxation

    Christensen, Asbjørn


    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...

  1. Transverse relaxation dispersion of the p7 membrane channel from hepatitis C virus reveals conformational breathing

    Dev, Jyoti; Brüschweiler, Sven [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Ouyang, Bo [Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology (China); Chou, James J., E-mail: [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)


    The p7 membrane protein encoded by hepatitis C virus (HCV) assembles into a homo-hexamer that selectively conducts cations. An earlier solution NMR structure of the hexameric complex revealed a funnel-like architecture and suggests that a ring of conserved asparagines near the narrow end of the funnel are important for cation interaction. NMR based drug-binding experiments also suggest that rimantadine can allosterically inhibit ion conduction via a molecular wedge mechanism. These results suggest the presence of dilation and contraction of the funnel tip that are important for channel activity and that the action of the drug is attenuating this motion. Here, we determined the conformational dynamics and solvent accessibility of the p7 channel. The proton exchange measurements show that the cavity-lining residues are largely water accessible, consistent with the overall funnel shape of the channel. Our relaxation dispersion data show that residues Val7 and Leu8 near the asparagine ring are subject to large chemical exchange, suggesting significant intrinsic channel breathing at the tip of the funnel. Moreover, the hinge regions connecting the narrow and wide regions of the funnel show strong relaxation dispersion and these regions are the binding sites for rimantadine. Presence of rimantadine decreases the conformational dynamics near the asparagine ring and the hinge area. Our data provide direct observation of μs–ms dynamics of the p7 channel and support the molecular wedge mechanism of rimantadine inhibition of the HCV p7 channel.

  2. Scheduled Relaxation Jacobi method: Improvements and applications

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.


    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.

  3. Drug allergy

    Warrington Richard


    Full Text Available Abstract Drug allergy encompasses a spectrum of immunologically-mediated hypersensitivity reactions with varying mechanisms and clinical presentations. This type of adverse drug reaction (ADR not only affects patient quality of life, but may also lead to delayed treatment, unnecessary investigations, and even mortality. Given the myriad of symptoms associated with the condition, diagnosis is often challenging. Therefore, referral to an allergist experienced in the identification, diagnosis and management of drug allergy is recommended if a drug-induced allergic reaction is suspected. Diagnosis relies on a careful history and physical examination. In some instances, skin testing, graded challenges and induction of drug tolerance procedures may be required. The most effective strategy for the management of drug allergy is avoidance or discontinuation of the offending drug. When available, alternative medications with unrelated chemical structures should be substituted. Cross-reactivity among drugs should be taken into consideration when choosing alternative agents. Additional therapy for drug hypersensitivity reactions is largely supportive and may include topical corticosteroids, oral antihistamines and, in severe cases, systemic corticosteroids. In the event of anaphylaxis, the treatment of choice is injectable epinephrine. If a particular drug to which the patient is allergic is indicated and there is no suitable alternative, induction of drug tolerance procedures may be considered to induce temporary tolerance to the drug. This article provides a backgrounder on drug allergy and strategies for the diagnosis and management of some of the most common drug-induced allergic reactions, such allergies to penicillin, sulfonamides, cephalosporins, radiocontrast media, local anesthetics, general anesthetics, acetylsalicylic acid (ASA and non-steroidal anti-inflammatory drugs.

  4. Drug: D00767 [KEGG MEDICUS

    Full Text Available D00767 Drug Vecuronium bromide (JAN/USAN/INN); Norcuron (TN) C34H57N2O4. Br system 122 Skeletal muscle relaxants 1229 Others D00767 Vecuronium bromide (JA... M03AC03 Vecuronium D00767 Vecuronium bromide (JAN/USAN/INN) Target-based classif...ATC:M03AC03] D00767 Vecuronium bromide (JAN/USAN/INN) CAS: 50700-72-6 PubChem: 7847832 LigandBox: D00767 NIK

  5. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4 +

    Werbeck, Nicolas D; Hansen, D. Flemming


    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4 +, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exc...

  6. Cole-Cole broadening in dielectric relaxation and strange kinetics.

    Puzenko, Alexander; Ishai, Paul Ben; Feldman, Yuri


    We present a fresh appraisal of the Cole-Cole (CC) description of dielectric relaxation. While the approach is phenomenological, it demonstrates a fundamental connection between the parameters of the CC dispersion. Based on the fractal nature of the time set representing the interaction of the relaxing dipole with its encompassing matrix, and the Kirkwood-Froehlich correlation factor, a new 3D phase space linking together the kinetic and structural properties is proposed. The evolution of the relaxation process is represented in this phase space by a trajectory, which is determined by the variation of external macroscopic parameters. As an example, the validity of the approach is demonstrated on two porous silica glasses exhibiting a CC relaxation process.


    Baalbergen, J.; Ong, T; Van Duyneveldt, A.; Verstelle, J.


    Ac susceptibility measurements in spin glasses over an extended frequency range indicate a Cole-Cole behaviour at temperatures from well above to far below the freezing temperature. The consequences of this kind of relaxation are discussed.

  8. Relaxation Dynamics of Non-Power-Law Fluids

    Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong


    The relaxation of non-Newtonian liquids with non-power-law rheology on partially wetted surfaces is rarely investigated. This study assesses the relaxation behavior of 14 partial wetting systems with non-power-law fluids by sessile drop method. These systems are two carboxymethylcellulose sodium solutions on two kinds of slides, cover glass, and silicon wafer surfaces; three polyethylene glycol (PEG400) + silica nanoparticle suspensions on polymethyl methacrylate and polystyrene surfaces. The dynamic contact angle and moving velocity of contact line relationship data for relaxation drops of the 14 tested systems demonstrate a power-law fluid-like behavior, and the equivalent power exponent for a certain fluid on different solid substrates are uniform. By analyzing the relationship between the equivalent power exponent and shear rate, it is proposed that a fluid regime with shear rates of a few tens of s controls relaxation dynamics.

  9. Relaxation Dynamics in Condensation on Weighted Scale-Free Networks

    MENG Xin-He; TANG Ming; WANG Peng; LIU Zong-Hua


    Most of the realistic networks are weighted scale-free networks. How this structure influences the conden-sation on it is a challenging problem. Recently, we make a first step to discuss its condensation [Phys. Rev. E 74 (2006) 036101] and here we focus on its evolutionary process of phase transition. In order to show how the weighted transport influences the dynamical properties, we study the relaxation dynamics in a zero range process on weighted scale-free networks. We find that there is a hierarchical relaxation dynamics in the evolution and there is a scaling relation between the relaxation time and the jumping exponent. The relaxation dynamics can be illustrated by a mean-field equation. The theoretical predictions are confirmed by our numerical simulations.

  10. Multi-region relaxed Hall magnetohydrodynamics with flow

    Lingam, Manasvi; Hudson, Stuart R


    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation, and flow. In this paper, we generalize MRxMHD with flow to include Hall effects (MRxHMHD), and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the relaxed states.


    G.Q. Jia; H.W. Shen; Y.M. Zhu


    Stress relaxation behavior of two turbine bolt steels was evaluated by the manualcontrolled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manualcontrolled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.

  12. Multi-region relaxed Hall magnetohydrodynamics with flow

    Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.


    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  13. Spin relaxation of radicals in low and zero magnetic field

    Fedin, M. V.; Purtov, P. A.; Bagryanskaya, E. G.


    Spin relaxation of radicals in solution in low and zero magnetic field has been studied theoretically. The main relaxation mechanisms in low magnetic field [modulation of anisotropic and isotropic hyperfine interaction, and modulation of spin-rotational interaction] are considered within a Redfield theory. The analytical results for a radical with one magnetic nucleus (I=1/2) and for a radical with two equivalent magnetic nuclei (I=1/2) are obtained and analyzed. It is shown that the probabilities of relaxational transitions in low and zero magnetic fields differ significantly from the probabilities in high magnetic fields. The use of high-field expressions in low and zero magnetic fields is not correct. Taking exact account of spin relaxation is important in calculations of much low-field magnetic resonance data.

  14. Levitation force relaxation under reloading in a HTS Maglev system

    He, Qingyong; Wang, Jiasu; Wang, Suyu; Wang, Jiansi; Dong, Hao; Wang, Yuxin; Shao, Senhao


    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  15. Hypnotizability modulates the cardiovascular correlates of subjective relaxation.

    Santarcangelo, Enrica L; Paoletti, Giulia; Balocchi, Rita; Carli, Giancarlo; Morizzo, Carmela; Palombo, Carlo; Varanini, Maurizio


    Mean values and the spectral variability of heart rate (HRV), blood pressure, and skin blood flow were studied in high and low hypnotizable subjects during simple relaxation. Similar subjective relaxation was reported by highs and lows. A parasympathetic prevalence (indicated by a higher High-Frequency component of HRV and a lower High/Low-Frequency ratio) and lower renin-angiotensin activity (indicated by a lower Very-Low-Frequency component of HRV) could be attributed to highs with respect to lows. Hypnotizability did not affect blood pressure and its variability and modulated the skin blood flow across the session only in lows. The findings confirm that relaxation cannot be defined solely on cardiovascular parameters and also indicate that hypnotizability modulates cardiovascular activity during simple relaxation and suggest it may have a protective role against cardiovascular disease.

  16. Dynamics of Sulfonated Polystyrene Ionomers by Dielectric Relaxation Spectroscopy

    Castagna, Alicia; Wang, Wenqin; Winey, Karen; Runt, James


    Broadband dielectric spectroscopy was used to investigate the dynamics of sulfonated polystyrene (SPS) ionomers, in both the acid and neutralized form. This study seeks to elucidate the role of counter ion type (Zn, Na, and Cs), degree of sulfonation (9 and 6%), and ion cluster morphology on the relaxation phenomena of SPS. Degree of neutralization and ion type have been found to significantly impact the breadth and time scale of the segmental relaxation process. High temperature relaxation processes, tentatively proposed to arise from Maxwell-Wagner-Sillars interfacial polarization and a hydrogen bonding relaxation, have also been identified. Bands in the sulfonate stretching region of FTIR spectra reveal information about ion coordination in the local aggregate environment. A combination of scanning transmission electron microscopy imaging and X-ray scattering confirmed the presence of homogeneously distributed, nearly monodisperse spherical ionic aggregates in the polymer matrix.

  17. Ferrohydrodynamic evaluation of rotational viscosity and relaxation in certain ferrofluids.

    Patel, Rajesh


    A significant effect of aggregation dynamics for aqueous ferrofluid (AF) and kerosene based ferrofluid (KF) using magnetic field dependent capillary viscosity and magneto-optical relaxation measurements is studied. For better comparison parameters of AF and KF are kept similar. Ferrohydrodynamic equations of chain forming ferrofluids, dilute ferrofluids, and Brownian dynamic simulations are compared. It is observed that the rotational viscosity of AF is larger than that of KF due to field induced aggregates in it and strong dipolar interactions. It is also observed that at Ωτ ~ 0.04 both AF and KF viscosity becomes almost similar, suggesting similar behavior at that shear rate. The magneto-optical relaxation in AF exhibits nonexponential behavior when relaxed from higher magnetic field and follows irreversible thermodynamics, whereas for KF the relaxation is exponential and follows the effective field method. This discrepancy is explained based on aggregation dynamics of magnetic particles. Results are well described by the corresponding theoretical models.

  18. Local fluctuations in the relaxation rate in a glassy system

    Pandit, Rajib; Flenner, Elijah; Castillo, Horacio E.

    We numerically study the equilibrium dynamics of a glass-forming binary hard-sphere mixture, for different packing fractions. We extract a correlator that probes the integrated fluctuations in the local relaxation rate in the system. We find that the strength of this correlator at t =τα (the α-relaxation time) grows with packing fraction approximately as a power of τα. We also find that for a fixed packing fraction, the correlator grows as a power of time, for very long times, with an exponent that depends on the packing fraction. This exponent probes the time correlations of the relaxation rate fluctuations. We find that the exponent is around 3 for very low packing fractions, and gradually decreases to a value below 2 as the glass transition is approached. We conclude that a description of fluctuations in terms of local relaxation rates is only applicable at long times and for packing fractions close to the glass transition.

  19. Electron Spin Relaxation in Intrinsic Bulk InP Semiconductor

    Ma, Hong; Wang, Lihua; Ma, Guohong


    Electron spin dynamics is studied by time resolved pump probe reflectivity (TRPPR) technique using the co- and counter-circularly polarized femtosecond pulses in intrinsic bulk Indium Phosphide (InP) crystal at room temperature and 70 K. The reflectivity change from bleaching into absorption enhancement is observed with increasing pump photon energy. This phenomenon can be explained in terms of the spin sensitive band filling and band gap renormalization effects. Although electron spin relaxation process at room temperature is much faster than that at 70K, carrier density dependence of electron spin relaxation shows similar tendency. With increasing carrier density, the electron spin relaxation time increases initially and then decreases after reaching a maximum value. Our experimental results agree well with the recent theoretical prediction and D'yakonov-Perel' mechanism is considered as a dominating contribution to the electron spin relaxation in intrinsic bulk InP semiconductor.

  20. Ber analysis of the box relaxation for BPSK signal recovery

    Thrampoulidis, Christos


    We study the problem of recovering an n-dimensional BPSK signal from m linear noise-corrupted measurements using the box relaxation method which relaxes the discrete set {±1}n to the convex set [-1,1]n to obtain a convex optimization algorithm followed by hard thresholding. When the noise and measurement matrix have iid standard normal entries, we obtain an exact expression for the bit-wise probability of error Pe in the limit of n and m growing and m/n fixed. At high SNR our result shows that the Pe of box relaxation is within 3dB of the matched filter bound (MFB) for square systems, and that it approaches the (MFB) as m grows large compared to n. Our results also indicate that as m, n → ∞, for any fixed set of size k, the error events of the corresponding k bits in the box relaxation method are independent.

  1. Cosmology and Astrophysics from Relaxed Galaxy Clusters I: Sample Selection

    Mantz, Adam B; Morris, R Glenn; Schmidt, Robert W; von der Linden, Anja; Urban, Ondrej


    This is the first in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here we present a new, automated method for identifying relaxed clusters based on their morphologies in X-ray imaging data. While broadly similar to others in the literature, the morphological quantities that we measure are specifically designed to provide a fair basis for comparison across a range of data quality and cluster redshifts, to be robust against missing data due to point-source masks and gaps between detectors, and to avoid strong assumptions about the cosmological background and cluster masses. Based on three morphological indicators - Symmetry, Peakiness and Alignment - we develop the SPA criterion for relaxation. This analysis was applied to a large sample of cluster observations from the Chandra and ROSAT archives. Of the 361 clusters which received the SPA treatment, 57 (16 per cent) were subsequently found to be relaxed according to our criterion. We compare our me...

  2. Effect of Progressive Muscle Relaxation on the Adverse ...

    less in subjects practicing relaxation exercises, as compared to subjects only on ... be associated with mood and eating disorders. ... mental state, reduce anticipatory anxiety, reduce anxiety as .... A higher degree and longer duration.

  3. Modified relaxation technique for treating hypertension in Thai postmenopausal women

    Saensak, Suprawita; Vutyavanich, Teraporn; Somboonporn, Woraluk; Srisurapanont, Manit


    To examine the effectiveness of a modified relaxation (MR) technique in reducing blood pressure levels in Thai postmenopausal women with mild hypertension, compared with a control group who received health education...

  4. Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms

    Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj


    We give a detailed study of the semiconverg ence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard...

  5. Dipolar relaxation of cold sodium atoms in a magnetic field

    Zygelman, B


    A quantum mechanical close coupling theory of spin relaxation in the stretched hyperfine level of sodium is presented. We calculate the dipolar relaxation rate of magnetically trapped cold sodium atoms in the magnetic field. The influence of shape resonances and the anisotropy of the dipolar interaction on the collision dynamics are explored. We examine the sensitivity of the calculated cross sections on the choice of asymptotic atomic state basis.

  6. Relaxation versus adiabatic quantum steady-state preparation

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo


    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  7. Relaxation of a qubit measured by a driven Duffing oscillator

    Serban, I; Wilhelm, F K


    We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are different in different states. They can display strong dependence on the qubit frequency and resonant enhancement, which is due to {\\em quasienergy resonances}. Coupling to the driven oscillator changes the effective temperature of the qubit.

  8. Control of Transport-barrier relaxations by Resonant Magnetic Perturbations

    Leconte, M; Garbet, X; Benkadda, S


    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual residual magnetic island chains and a stochastic layer.

  9. Peace of Mind, Best-ever for Relaxation


    @@ Relaxation and peace of mind are words that come to mind when most people who have been to the region think of this country in Central Europe-the Czech Republic. They discovered that this new member of the EU has glorious countryside crisscrossed with thousands of kilometres of hiking trails, an incredible amount of cultural sites, picturesque historical towns and renowned spas where people come to receive treatment and relax.

  10. Vibrational relaxation of guest and host in mixed molecular crystals

    Hill, Jeffrey R.; Chronister, Eric L.; Chang, Ta-Chau; Kim, Hackjin; Postlewaite, Jay C.; Dlott, Dana D.


    Vibrational relaxation (VR) of dilute impurity molecules (naphthalene, anthracene) in crystalline host matrices (durene, naphthalene) is studied with the ps photon echo technique. The results obtained by echoes on vibrations in the electronically excited state are compared to previous ps time delayed coherent Raman studies of ground state vibrations of the pure host matrix. The relaxation channels for guest and host, and the effects of molecular and crystal structure on VR rates are determined.

  11. Relaxation oscillations in a laser with a Gaussian mirror.

    Mossakowska-Wyszyńska, Agnieszka; Witoński, Piotr; Szczepański, Paweł


    We present an analysis of the relaxation oscillations in a laser with a Gaussian mirror by taking into account the three-dimensional spatial field distribution of the laser modes and the spatial hole burning effect. In particular, we discuss the influence of the Gaussian mirror peak reflectivity and a Gaussian parameter on the damping rate and frequency of the relaxation oscillation for two different laser structures, i.e., with a classically unstable resonator and a classically stable resonator.

  12. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Kosuke Hayashi


    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  13. Relaxation Mechanisms in Glassy Dynamics: the Arrhenius and Fragile Regimes

    Hentschel, H. George E.; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques


    Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature, and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Ar...

  14. Relaxation Effect of Abacavir on Rat Basilar Arteries

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng


    Background The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. Methods The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5′ nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Results Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5’ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Conclusion Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may

  15. The use of relaxation, hypnosis, and imagery in sport psychiatry.

    Newmark, Thomas S; Bogacki, David F


    Hypnosis is a procedure during which a mental health professional suggests that a patient experience changes in sensations, perceptions, thoughts, or behavior. The purpose of this article is to briefly describe the use of various methods of relaxation, hypnosis, and imagery techniques available to enhance athletic performance. The characteristics that these techniques have in common include relaxation, suggestibility, concentration, imaginative ability, reality testing, brain function, autonomic control, and placebo effect. Case studies are provided for illustration.

  16. Synoptic forcing of wind relaxations at Pt. Conception, California

    Fewings, Melanie R.; Washburn, Libe; Dorman, Clive E.; Gotschalk, Christopher; Lombardo, Kelly


    Over the California Current upwelling system in summer, the prevailing upwelling-favorable winds episodically weaken (relax) or reverse direction for a few days. Near Pt. Conception, California, the wind usually does not reverse, but wind relaxation allows poleward oceanic coastal flow with ecological consequences. To determine the offshore extent and synoptic forcing of these wind relaxations, we formed composite averages of wind stress from the QuikSCAT satellite and atmospheric pressure from the North American Regional Reanalysis (NARR) using 67 wind relaxations during summer 2000-2009. Wind relaxations at Pt. Conception are the third stage of an event sequence that repeatedly affects the west coast of North America in summer. First, 5-7 days before the wind weakens near Pt. Conception, the wind weakens or reverses off Oregon and northern California. Second, the upwelling-favorable wind intensifies along central California. Third, the wind relaxes at Pt. Conception, and the area of weakened winds extends poleward to northern California over 3-5 days. The NARR underestimates the wind stress within ˜200 km of coastal capes by a factor of 2. Wind relaxations at Pt. Conception are caused by offshore extension of the desert heat low. This synoptic forcing is related to event cycles that cause wind reversal as in Halliwell and Allen (1987) and Mass and Bond (1996), but includes weaker events. The wind relaxations extend ˜600 km offshore, similarly to the California-scale hydraulic expansion fan shaping the prevailing winds, and ˜1000 km alongshore, limited by an opposing pressure gradient force at Cape Mendocino.

  17. Relaxation effect of abacavir on rat basilar arteries.

    Rachel Wai Sum Li

    Full Text Available The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels.The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate.Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries.Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to

  18. Spin relaxation in geometrically frustrated pyrochlores

    Dunsiger, Sarah Ruth

    This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be

  19. Relaxation cracking in the process industry, an underestimated problem

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)


    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  20. Intestinal, Airway, and Cardiovascular Relaxant Activities of Thymoquinone

    Muhammad Nabeel Ghayur


    Full Text Available Thymoquinone (TQ is a bioactive component found in many medicinal herbs. In this study, we report the smooth and cardiac muscle relaxant activities of this compound. TQ concentration dependently suppressed spontaneously contracting rabbit jejunum while also relaxed high K+-(80 mM induced contractions in jejunum and guinea-pig ileum, indicating activity at voltage-operated Ca++ channels (VOCC. Further, TQ displaced Ca++ concentration-response curves, obtained in a Ca++-free environment, to the right, showing blockade of VOCC. Similar activity was observed with verapamil, a standard VOCC blocker. TQ also exhibited nonadrenergic relaxation of agonist-induced contractions in guinea-pig trachea. When tested in fluo-4-loaded mouse lung slices, TQ inhibited ACh-induced airway narrowing and Ca++ signalling in airway smooth muscle cells. In endothelium-intact and endothelium-denuded rat aorta, TQ inhibited high K+-induced contractions at significantly lower concentrations than phenylephrine-(PE- (1 microM induced contractions. Relaxation of PE-induced contractions was resistant to blockade by L-NAME and atropine. In guinea-pig atria, TQ showed noncholinergic relaxation of atrial force and rate of contractions. These data suggest smooth and cardiac muscle relaxant activity of TQ possibly mediated, in part, via blockade of VOCC. The results also justify the use of TQ containing plants in related health disorders like colic, diarrhoea, cough, and asthma.

  1. Anomaly diffuse and dielectric relaxation in strontium doped lanthanum molybdate

    Liu, Xiao [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Fan, Huiqing, E-mail: [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Shi, Jing [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)


    Highlights: Black-Right-Pointing-Pointer The anomaly diffuse and dielectric relaxation behaviors are fitted by the Cole-Cole approach. Black-Right-Pointing-Pointer The peak in the LSMO is corresponding to different oxygen ion diffusion process. Black-Right-Pointing-Pointer We first give better explanation about the strange conductivity change caused by doping. Black-Right-Pointing-Pointer The oxygen ion diffusion is due to a combination of the dipolar relaxation and the motion of ions. -- Abstract: The dielectric properties of the La{sub 2-x}Sr{sub x}Mo{sub 2}O{sub 9-{delta}} (x = 0-0.2) ceramics were investigated in the temperature range of 300-800 K. Dielectric measurement reveals that two dielectric anomalies, associated with the oxygen ion diffusion, exist in frequency spectrum with x = 0.5. The broad dielectric peaks in tan {delta}({omega}) can be well fitted by a modified Cole-Cole approach. When x = 0.1, only one dielectric relaxation peak is observed, corresponding to different oxygen ion diffusion processes, as distinct from the only relaxation peak in the pure La{sub 2}Mo{sub 2}O{sub 9}. The relaxation parameters {tau}{sub 0}, the dielectric relaxation strength {Delta}, and the activation energy E{sub a} were obtained. The result of this work shows that, the conductivity change caused by doping between the two phases is due to the combination of the dipolar effects and motion of ions.

  2. Difference and similarity of dielectric relaxation processes among polyols

    Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke


    Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.


    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)


    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M{sub r} < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  4. Search Trees with Relaxed Balance and Near-Optimal Height

    Fagerberg, Rolf; Larsen, Kim Skak; Jensen, Rune E.


    We introduce a relaxed k-tree, a search tree with relaxed balance and a height bound, when in balance, of (1+epsilon)log_2 n + 1, for any epsilon > 0. The number of nodes involved in rebalancing is O(1/epsilon) per update in the amortized sense, and O(log n/epsilon) in the worst case sense. This ...... constant rebalancing, which is an improvement over the current definition. World Wide Web search engines are possible applications for this line of work.......We introduce a relaxed k-tree, a search tree with relaxed balance and a height bound, when in balance, of (1+epsilon)log_2 n + 1, for any epsilon > 0. The number of nodes involved in rebalancing is O(1/epsilon) per update in the amortized sense, and O(log n/epsilon) in the worst case sense....... This is the first binary search tree with relaxed balance having a height bound better than c log_2 n for a fixed constant c. In all previous proposals, the constant is at least 1/log_2 phi>1.44, where phi is the golden ratio. As a consequence, we can also define a standard (non-relaxed) k-tree with amortized...

  5. Stretched exponential relaxation and ac universality in disordered dielectrics

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens


    This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...... are stretched exponential character of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coefficient on frequency. We propose a self-consistent model of dielectric relaxation in which the relaxations are described by a stretched exponential decay function....... Mathematically, our study refers to the expanding area of fractional calculus and we propose a systematic derivation of the fractional relaxation and fractional diffusion equations from the property of ac universality....

  6. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Andrienko, Daniil A.; Boyd, Iain D.


    Investigation of O2-N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound-bound and bound-free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO2 complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N2-O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  7. Weak nanoscale chaos and anomalous relaxation in DNA

    Mazur, Alexey K.


    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  8. Repeated load relaxations of type 316 austenitic stainless steel

    Hannula, S.P.; Li, C.Y.


    Several experiments have shown that the shape of the load relaxation curve after reloading in a logarithmic stress vs. logarithmic strain rate plot may differ from that after the initial loading. In a recent study Korhonen and Li showed that the apparent kink in a log sigma versus log epsilon plot of the stress relaxation data, after mainly elastic and anelastic loading, is due to change of the deformation mode from an anelasticity dominated one to a plasticity dominated one. According to the state variable model by Hart, the relaxation curve in reloading should overlap with the original one after this transition in the absence of structural changes. Therefore, the crossing of stress relaxation curves after an initial plastic loading and subsequent elastic and anelastic reloadings in commercially pure aluminum at room temperature was accounted for by thermally induced effects. In the same study, consecutive stress relaxation runs were conducted on 316 SS, and no cross-over behavior was observed, which was associated with the lack of thermal effects in 316 SS at room temperature. The results demonstrate that strain aging has an effect on relaxation behavior even at room temperature, the effect being more pronounced at high strains. The phenomena can be accounted for according to a state variable model by modifying the rate constant, which is affected by the amount of mobile dislocations as well as dislocation mobility.


    Muhammad Abid


    Full Text Available Loss of pre-load with time, commonly known as ‘Relaxation’ is an established phenomena. Behaviour of a bolted joint depends upon the pre-load in the bolts in use, not the pre-load introduced by the mechanic. Loss of pre-load is expected due to the many factors such as embedment relaxation, gasket creep, elastic interactions, and vibration loosening or stress relaxation. In a gasketed joint, due to the gasket flexibility, relaxation is always substantial during preliminary passes, as 80 to 100% loss is not uncommon in almost all the bolts, resulting in a dynamic behaviour. Pre-load in a gasketed joint is stabilized and retained to certain extent in the final passes only. In a non-gasketed joint, due to no gasket and no rotation its static behaviour is concluded. This paper highlights the factors affecting the amount of relaxation with time and presents important considerations that can reduce this. Both the short and long term relaxations are recorded and a ‘best fit’ model for relaxation behaviour is derived.

  10. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    Hull, P. V.; Tinker, M. L.


    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  11. PREFACE: Muon spin rotation, relaxation or resonance

    Heffner, Robert H.; Nagamine, Kanetada


    To a particle physicist a muon is a member of the lepton family, a heavy electron possessing a mass of about 1/9 that of a proton and a spin of 1/2, which interacts with surrounding atoms and molecules electromagnetically. Since its discovery in 1937, the muon has been put to many uses, from tests of special relativity to deep inelastic scattering, from studies of nuclei to tests of weak interactions and quantum electrodynamics, and most recently, as a radiographic tool to see inside heavy objects and volcanoes. In 1957 Richard Garwin and collaborators, while conducting experiments at the Columbia University cyclotron to search for parity violation, discovered that spin-polarized muons injected into materials might be useful to probe internal magnetic fields. This eventually gave birth to the modern field of muSR, which stands for muon spin rotation, relaxation or resonance, and is the subject of this special issue of Journal of Physics: Condensed Matter. Muons are produced in accelerators when high energy protons (generally >500 MeV) strike a target like graphite, producing pions which subsequently decay into muons. Most experiments carried out today use relatively low-energy (~4 MeV), positively-charged muons coming from pions decaying at rest in the skin of the production target. These muons have 100% spin polarization, a range in typical materials of about 180 mg cm-2, and are ideal for experiments in condensed matter physics and chemistry. Negatively-charged muons are also occasionally used to study such things as muonic atoms and muon-catalysed fusion. The muSR technique provides a local probe of internal magnetic fields and is highly complementary to inelastic neutron scattering and nuclear magnetic resonance, for example. There are four primary muSR facilities in the world today: ISIS (Didcot, UK), KEK (Tsukuba, Japan), PSI (Villigen, Switzerland) and TRIUMF (Vancouver, Canada), serving about 500 researchers world-wide. A new facility, JPARC (Tokai, Japan

  12. Comparative efficacy of Combination of Propofol or Thiopental with Remifentanil on Tracheal Intubation without Muscle Relaxants

    k Naseri


    Full Text Available Introduction & Objective: In some medical situations administration of muscle relaxants after intravenous anesthetics for tracheal intubation may be unnecessary or sometimes could be hazardous. In such situations, replacing an alternative drug for the facilitation of tracheal intubation is obvious. Remifentanil is a short acting opioid drug which may be useful in solving this problem. The aim of this study was to compare the effects of propofol or thiopental in combination with remifentanil in the absence of muscle relaxants on larengoscopy and intubation conditions in general anesthesia. Materials & Methods: This is a randomized double-blind clinical trial which was performed in 1386 in Be’sat hospital of Sanandaj. Forty two ASA 1 and 2 patients recruited to receive propofol, 2 Mg/Kg, or thiopental, 5Mg/K. All patients received lidocaine, 1.5 Mg/Kg, and remifentanil, 2.5 µg/Kg, 30 seconds before anesthetics administration. larengoscopy and tracheal intubation were done 90 seconds after induction of anesthesia. On the basis of mask ventilation, jaw relaxation, vocal cords position and patient's response to intubations and endotracheal tube cuff inflation the intubation conditions were assessed and recorded as excellent, good ,acceptable or poor. The mean arterial pressure and heart rate were measured before and after anesthetics administration and also 45 seconds and two and five minutes after intubations. Data were analyzed by X2, fisher exact test ant student T-test using SPSS software. Results: Excellent or good larengoscopy and intubation conditions were observed in 9 (%42.9 of thiopental patients and 20 (%95.2 of propofol patients (p<0.05. Mean arterial pressure and heart rate decreased more significantly in propofol group in comparison with the thiopental group (p<0.05. Conclusion: Combination of remifentanil and propofol or thiopental could facilitate ventilation via face mask in all patients. Although combination of propofol and

  13. Orphan drugs

    Goločorbin-Kon Svetlana


    Full Text Available Introduction. Drugs used for treatment of rare diseases are known worldwide under the term of orphan drugs because pharmaceutical companies have not been interested in ”adopting” them, that is in investing in research, developing and producing these drugs. This kind of policy has been justified by the fact that these drugs are targeted for small markets, that only a small number of patients is available for clinical trials, and that large investments are required for the development of drugs meant to treat diseases whose pathogenesis has not yet been clarified in majority of cases. The aim of this paper is to present previous and present status of orphan drugs in Serbia and other countries. The beginning of orphan drugs development. This problem was first recognized by Congress of the United States of America in January 1983, and when the ”Orphan Drug Act” was passed, it was a turning point in the development of orphan drugs. This law provides pharmaceutical companies with a series of reliefs, both financial ones that allow them to regain funds invested into the research and development and regulatory ones. Seven years of marketing exclusivity, as a type of patent monopoly, is the most important relief that enables companies to make large profits. Conclusion. There are no sufficient funds and institutions to give financial support to the patients. It is therefore necessary to make health professionals much more aware of rare diseases in order to avoid time loss in making the right diagnosis and thus to gain more time to treat rare diseases. The importance of discovery, development and production of orphan drugs lies in the number of patients whose life quality can be improved significantly by administration of these drugs as well as in the number of potential survivals resulting from the treatment with these drugs. [Projekat Ministarstva nauke Republike Srbije, br. III 41012

  14. Club Drugs

    ... Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/Nicotine Other Drugs Related Topics Addiction Science Adolescent Brain Comorbidity College-Age & Young Adults ...

  15. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio


    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.


    Zoran Bojanić


    Full Text Available Diazepam is a benzodiazepine derivative with anxyolitic, anticonvulsant, hypnotic, sedative, skeletal muscle relaxant, antitremor, and amnestic activity. It is metabolized in the liver by the cytochrome P (CYP 450 enzyme system. Diazepam is N-demethylated by CYP3A4 and CYP2C19 to the active metabolite N-desmethyldiazepam, and is hydroxylated by CYP3A4 to the active metabolite temazepam. N-desmethyl-diazepam and temazepam are both further metabolized to oxazepam. Concomitant intake of inhibitors or inducers of the CYP isozymes involved in the biotransformation of diazepam may alter plasma concentrations of this drug, although this effect is unlikely to be associated with clinically relevant interactions.The goal of this article was to review the current literature on clinically relevant pharmacokinetic drug interactions with diazepam.A search of MEDLINE and EMBASE was conducted for original research and review articles published in English between January 1971. and May 2011. Among the search terms were drug interactions, diazepam, pharmacokinetics, drug metabolism, and cytochrome P450. Only articles published in peer-reviewed journals were included, and meeting abstracts were excluded. The reference lists of relevant articles were hand-searched for additional publications.Diazepam is substantially sorbed by the plastics in flexible containers, volume control set chambers, and tubings of intravenous administration sets. Manufacturers recommend not mixing with any other drug or solution in syringe or solution, although diazepam is compatible in syringe with cimetidine and ranitidine, and in Y-site with cisatracurium, dobutamine, fentanyl, hydromorphone, methadone, morphine, nafcillin, quinidine gluconate, remifentanil, and sufentanil. Diazepam is compatible with: dextrose 5% in water, Ringers injection, Ringers injection lactated and sodium chloride 0.9%. Emulsified diazepam is compatible with Intralipid and Nutralipid.Diazepam has low potential

  17. Synthesis, characterization, and relaxation studies of Gd-DO3A conjugate of chlorambucil as a potential theranostic agent.

    Kaur, Jasleen; Tsvetkova, Yoanna; Arroub, Karim; Sahnoun, Sabri; Kiessling, Fabian; Mathur, Sanjay


    DO3A-based macrocycles serve as attractive templates from which clinically useful theranostic agents can be obtained after coupling with molecular targeted therapeutic drugs. In this study, we describe the chemical synthesis, relaxation, and cytotoxicity studies of a new DO3A conjugate of chlorambucil (CHL) as a magnetic resonance imaging (MRI) theranostic agent. A convenient route of synthesis is reported, which allowed conjugation of the macrocyclic ligand (DO3A) to the chemotherapeutic drug (CHL) via tyrosine for the preparation of an attractive chelate-drug ensemble (DO3A-TR-CHL). The structures of all intermediates and final compound have been determined by (1) H, (13) C NMR, and MS. The efficacy of DO3A-TR-CHL as a non-ionic magnetic contrast agent was tested by performing relaxometric studies on its gadolinium complex. The complex exhibited relaxivities (7.11 mm(-1) /s) higher than that of currently used MR contrast agents and showed enhanced contrast in T1 -weighted images. MTT assays revealed that both DO3A-TR-CHL and Gd(III)-DO3A-TR-CHL conjugates exhibited dose-dependent toxicity and an enhanced antiproliferative activity against tumor (A549 and HeLa) cell lines compared to that of parent drug (CHL), thereby demonstrating their potential to be used as a magnetic resonance imaging theranostic for improved molecular imaging and therapy of human cancers. © 2017 John Wiley & Sons A/S.

  18. Ice sheet growth with laterally varying bedrock relaxation time

    van der Wal, Wouter; Vizcaino Rubio, Pablo; De Boer, Bas; van de Wal, Roderik


    Isostatic response of the bedrock, or glacial isostatic adjustment (GIA) in included in most ice sheet models. This is important because the surface elevation determines the mass balance and thereby implicitly also the strength of the mass balance feedback where higher surface elevation yields lower temperatures implying less melt and vice versa. Usually a single relaxation time or a set of relaxation times is used to model the response everywhere on Earth or at least for an entire ice sheet. In reality the viscosity in the Earth's mantle, and hence the relaxation time experienced by the ice, varies with location. Seismic studies indicate that several regions that were covered by ice during the last glacial cycle are underlain by mantle in which viscosity varies with orders of magnitude, such as Antarctica and North America. The question is whether such a variation of viscosity influences ice evolution. Several GIA models exist that can deal with 3D viscosity, but their large computation times make it nearly impossible to couple them to ice sheet models. Here we use the ANICE ice-sheet model (de Boer et al. 2013) with a simple bedrock-relaxation model in which a different relaxation time is used for separate regions. A temperature anomaly is applied to grow a schematic ice sheet on a flat earth, with other forcing mechanisms neglected. It is shown that in locations with a fast relaxation time of 300 years the equilibrium ice sheet is significantly thinner and narrower but also ice thickness in neighbouring regions (with the more standard relaxation time of 3000 years) is affected.

  19. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith


    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  20. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas; Zeitler, J Axel


    There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond-to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari-Goldstein (JG) secondary relaxation as a facilitator of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization in several chosen amorphous drugs. We believe that this technique has immediate applications to quantify the stability of amorphous drug materials.

  1. Herbal drugs and drug interactions

    Gül Dülger


    Herbal drugs are defined as any form of a plant or plant product that contains a single herb or combinations of herbs that are believed to have complementary effects. Although they are considered to be safe, because they are natural, they may have various adverse effects, and may interact with other herbal products or conventional drugs. These interactions are especially important for drugs with narrow therapeutic indices.In the present study, pharmacokinetic and pharmacodynamic interactions ...

  2. Drugged Driving

    ... Age Adults in 2015 Teens and E-cigarettes Abuse of Prescription (Rx) Drugs Affects Young Adults Most Substance Use in Women and Men View All NIDA's Publication Series Brain Power DrugFacts Mind Over Matter Research Reports NIDA Home ...

  3. Drug treatment


    2010263 Drug resistance mechanism of non-small cell lung cancer PC9/AB2 cell line with acquired drug resistance to gefitinib.JU Lixia(鞠立霞),et al. Dept Oncol,Shanghai Pulm Hosp,Tongji Univ,Shanghai 200433. Chin J Tuberc Respir Dis 2010;33(5):354-358. Objective To

  4. Drug Education.

    Sardana, Raj K.

    This autoinstructional lesson deals with the study of such drugs as marijuana and LSD, with emphasis on drug abuse. It is suggested that it can be used in science classes at the middle level of school. No prerequisites are suggested. The teacher's guide lists the behavioral objectives, the equipment needed to complete the experience and suggests…

  5. Thermally induced magnetic relaxation in square artificial spin ice

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.


    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice – we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  6. Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory

    Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan


    This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.

  7. Relaxation phenomena in rubber/layered silicate nanocomposites


    Full Text Available Broadband Dielectric Spectroscopy (BDS is employed in order to investigate relaxation phenomena occurring in natural rubber (NR, polyurethane rubber (PUR and PUR/NR blend based nanocomposites, reinforced by 10 parts per hundred (phr Layered Silicates (LS. Nanocomposites and matrices were examined under identical conditions in a wide frequency (10–1 to 106 Hz and temperature (–100 to 50°C range. Experimental data are analyzed in terms of electric modulus formalism. The recorded relaxation phenomena include contributions from both the polymer matrices and the nanofiller. Natural rubber is a non-polar material and its performance is only slightly affected by the presence of layered silicates. Polyurethane rubber exhibits four distinct relaxation processes attributed, with ascending relaxation rate, to Interfacial Polarization (IP, glass/rubber transition (α-mode, local motions of polar side groups and small segments of the polymer chain (β, γ-mode. The same processes have been detected in all systems containing PUR. IP is present in all nanocomposites being the slowest recorded process. Finally, pronounced interfacial relaxation phenomena, occurring in the PUR+10 phr LS spectra, are attributed to nanoscale effects of intercalation and exfoliation.

  8. Thermally induced magnetic relaxation in square artificial spin ice.

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V


    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  9. Ultrafast Energy Relaxation in Single Light-Harvesting Complexes

    Malý, Pavel; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk


    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100 fs range. At the same time much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work we employ a pump-probe type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behaviour agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repe...

  10. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  11. Predictability of the large relaxations in a cellular automaton model

    Tejedor, Alejandro; Ambroj, Samuel; Gomez, Javier B; Pacheco, Amalio F [Faculty of Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)


    A simple one-dimensional cellular automaton model with threshold dynamics is introduced. It is loaded at a uniform rate and unloaded by abrupt relaxations. The cumulative distribution of the size of the relaxations is analytically computed and behaves as a power law with an exponent equal to -1. This coincides with the phenomenological Gutenberg-Richter behavior observed in seismology for the cumulative statistics of earthquakes at the regional or global scale. The key point of the model is the zero-load state of the system after the occurrence of any relaxation, no matter what its size. This leads to an equipartition of probability between all possible load configurations in the system during the successive loading cycles. Each cycle ends with the occurrence of the greatest-or characteristic-relaxation in the system. The duration of the cycles in the model is statistically distributed with a coefficient of variation ranging from 0.5 to 1. The predictability of the characteristic relaxations is evaluated by means of error diagrams. This model illustrates the value taking into account the refractory periods to obtain a considerable gain in the quality of the predictions.

  12. Effects of relaxation on the energy landscape of amorphous silicon

    Kallel, Houssem; Mousseau, Normand; Schiettekatte, Francois


    Amorphous silicon is used in many devices around us, included as a thin-film transistor in most flat screens, it also serves as the reference for the study of disordered network systems. Recently, differential scanning calorimetry and nanocalorimetry measurements (DSC) ^1 have shown that the heat released as the temperature of the sample is raised following implantation, is temperature independent. To understand this behaviour, we characterize the energy landscape of model a-Si. Using the activation-relaxation technique (ART nouveau) with the modified Stillinger-Weber potential, we generate models at four levels of relaxation and identify the relaxation mechanisms by analysing 100 000 events for each model. We find that while the distribution of the activation barriers shifts to higher energy as the system is relaxed, the distribution of the relaxation energies is almost unchanged. The relation between these two phenomena is consistent with the DSC measurements. This work is supported, in part, by NSERC, FQRNT and the CRC Foundation. HK is grateful for a scholarship from the Tunisian Ministry of Higher Education, Scientific Research and Technology. ^1 R. Karmouch et al., Phys. Rev. B 75, 075304 (2007)

  13. High fidelity modeling of thermal relaxation and dissociation of oxygen

    Andrienko, Daniil A., E-mail:; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)


    A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O{sub 2}–O transition rates, generated by extensive trajectory simulations. Both O{sub 2}–O and O{sub 2}–O{sub 2} collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O{sub 2}–O{sub 2} collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O{sub 3} complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O{sub 2} vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.

  14. Spin injection and relaxation in a mesoscopic superconductor

    Aprili, Marco; Quay, Charis; Chevalier, Denis; Dutreix, Clement [Laboratoire de Physique des Solides, CNRS UMR-8502, Bat. 510, Universite Paris-Sud, 91405 Orsay Cedex (France); Bena, Cristina [Institut de Physique Theorique, CEA/Saclay, Orme des Merisiers, 91190 Gif-sur-Yvette Cedex (France); Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg (Germany)


    Injecting spin-polarized electrons or holes into a superconductor and removing Cooper pairs creates both spin and charge imbalances. We have investigated the relaxation of the out-of-equilibrium magnetization induced by spin injection. First, we measured the spin and charge relaxation times (t{sub S} and t{sub Q}) by creating a dynamic equilibrium between continuous injection and relaxation, this leads to constant-in-time spin and charge accumulation proportional to their respective relaxation times. Using a mesoscopic ''absolute'' spin-valve, we obtained t{sub S} and t{sub Q} by probing the difference on the chemical potential between quasiparticles and Cooper pairs. We observed that spin (charge) accumulation dominates at low (high) injection current. This artificially generates spin-charge separation as theoretically first predicted by Kivelson and Rokhsar. Second, we directly measured the spin relaxation time in the frequency space and found t{sub S} = 1-10 ns consistent with results from constant current injection. Finally, we measured the spin coherence time of the out-of-equilibrium quasi-particles by performing an electron spin resonance experiment.

  15. Control Strategies for Accurate Force Generation and Relaxation.

    Ohtaka, Chiaki; Fujiwara, Motoko


    Characteristics and motor strategies for force generation and force relaxation were examined using graded tasks during isometric force control. Ten female college students (M age = 20.2 yr., SD = 1.1) were instructed to accurately control the force of isometric elbow flexion using their right arm to match a target force level as quickly as possible. They performed: (1) a generation task, wherein they increased their force from 0% maximum voluntary force to 20% maximum voluntary force (0%-20%), 40% maximum voluntary force (0%-40%), or 60% maximum voluntary force (0%-60%) and (2) and a relaxation task, in which they decreased their force from 60% maximum voluntary force to 40% maximum voluntary force (60%-40%), 20% maximum voluntary force (60%-20%), or to 0% maximum voluntary force (60%-0%). Produced force parameters of point of accuracy (force level, error), quickness (reaction time, adjustment time, rate of force development), and strategy (force wave, rate of force development) were analyzed. Errors of force relaxation were all greater, and reaction times shorter, than those of force generation. Adjustment time depended on the magnitude of force and peak rates of force development and force relaxation differed. Controlled relaxation of force is more difficult with low magnitude of force control.

  16. Tunable finite-sized chains to control magnetic relaxation

    Ekstrand, Paul D.; Javier, Daniel J.; Gredig, Thomas


    The magnetic dynamics of low-dimensional iron ion chains have been studied with regards to the tunable finite-sized chain length using iron phthalocyanine thin films. The deposition temperature varies the diffusion length during thin-film growth by limiting the average crystal size in the range from 40 to 110 nm . Using a method common for single chain magnets, the magnetic relaxation time for each chain length is determined from temporal remanence data and fit to a stretched exponential form in the temperature range below 5 K , the onset for magnetic hysteresis. A temperature-independent master curve is generated by scaling the remanence by its relaxation time to fit the energy barrier for spin reversal, and the single spin-relaxation time. The energy barrier of 95 K is found to be independent of the chain length. In contrast, the single spin-relaxation time increases with longer chains from under 1 ps to 800 ps. We show that thin films provide the nanoarchitecture to control magnetic relaxation and a testbed to study finite-size effects in low-dimensional magnetic systems.

  17. Relaxation to the Invariant Density for Kicked Rotor

    Khodas, M A


    The relaxation rates to the invariant density in the chaotic phase space component of the kicked rotor (standard map) are calculated analytically for a large stochasticity parameter, K. For hyperbolic systems these are the logarithms of the poles of the matrix elements of the resolvent $ These poles are inside the unit circle. For hyperbolic systems it is a rigorous result, while very little is known about mixed systems such as the kicked rotor, that is studied in this work. Here the relaxation rates are calculated in presence of noise, in powers of $1/\\sqrt{K}$, then the limit of vanishing noise is taken and the rates are found to be non vanishing, corresponding to poles inside the unit circle. It is found that the slow relaxation rates reduce to the ones found for diffusion in the momentum direction. The fast relaxation modes are related to relaxation of inhomogeneities in the angle direction. The analytical results are compared with numerical simulations, and small deviations from the analytical formulas r...

  18. A Graphical User Interface for RELAX3D

    Jones, F. W.


    The Laplace/Poisson solver RELAX3D has been used extensively in cyclotron central region design and other accelerator and beam physics applications. It is typically run in an interactive mode where the user types in commands and parameters to initiate and control the solution process and to view or output the results. This paper describes a prototype graphical user interface (GUI), developed using Tcl/Tk, that eliminates most of this typing and makes for more efficient user interaction. The use of a unique package called Expect (a Tcl/Tk extension) allows the interface to be implemented as an independent front-end process that communicates with the running RELAX3D program, thus requiring minimal modifications to RELAX3D itself. Since Expect can control multiple processes, and since RELAX3D results are often sent to some subsequent program for visualization, particle tracking, etc., there are interesting opportunities to integrate these post-processing tasks into the same GUI that is used for RELAX3D.

  19. Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of Euphorbia milii.

    Islam, Nazar Ul; Khan, Ibrahim; Rauf, Abdur; Muhammad, Naveed; Shahid, Muhammad; Shah, Mohammad Raza


    Nanotechnology has potential future for enhancing therapeutic efficacy and reducing the unwanted effects of herbal drugs. The biological research on Euphorbia species has been supported by the use of some plants in traditional medicines. Many species of Euphorbia have been reported as having strong sedative and analgesic effects. In the present research work gold nanoparticles of Euphorbia milii methanolic extract (Au-EM) were synthesized, characterized and tested for antinociceptive, muscle relaxant and sedative activities. Au-EM was prepared by stirring 1 mM warm trihydrated tetrachloroaurate solution with E. milii methanolic extract without using any external reducing agents. The gold nanoparticles were characterized by UV-Visible spectroscopy, infrared spectrophotometery, atomic force microscopy and scanning electron microscopy while their stability was evaluated against varying pH and different volumes of sodium chloride (NaCl). The metal sensing capacity of Au-EM was tested towards cobalt, copper, lead, mercury and nickel. Au-EM was evaluated in BALB/c mice at a dose of 10 and 20 mg/kg for antinociceptive, muscle relaxant and sedative activities in comparison with the crude E. milii methanolic extract. Au-EM showed remarkable stability in different NaCl and pH solutions. Au-EM produced significant (P nanoparticles improved the potency of E. milii methanolic extract and exhibited significant analgesic, muscle relaxant and sedative properties. The significant metals sensing ability and enhanced stability in different NaCl and pH solutions may enable us to explore different formulations of E. milii gold nanoparticles for potentially effective and safe nano-herbal therapy.

  20. Complimentary effect of yogic sound resonance relaxation technique in patients with common neck pain

    Yogitha Bali


    Full Text Available Background: Studies have shown that conventional treatment methods with drugs, physiotherapy and exercises for common neck pain (CNP may be inadequate. Yoga techniques have been found to be effective complimentary therapies in chronic low back pain and also for stress reduction in other diseases. Objective: The aim of the study was to examine the complimentary role of a yogic relaxation called mind sound resonance technique (MSRT in non-surgical management of CNP. Materials and Methods: In this randomized controlled study, 60 patients with CNP were assigned to two groups (yoga, n=30 and (control, n=30. The yoga group received yogic MSRT for 20 minutes in supine position after the conventional physiotherapy program for 30 minutes using pre-recorded audio CD and the control group had non-guided supine rest for 20 minutes (after physiotherapy, for 10 days. MSRT provides deep relaxation for both mind and body by introspective experience of the sound resonance in the whole body while repeating the syllables A, U, M and Om and a long chant (Mahamrityunjaya mantra several times in a meaningful sequence. Both the groups had pre and post assessments using visual pain analog scale, tenderness scoring key, neck disability score (NDS questionnaire, goniometric measurement of cervical spinal flexibility, and state and trait anxiety inventory-Y1 (STAI-Y1. Results: Mann-Whitney U test showed significant difference between groups in pain (P<0.01, tenderness (P<0.01, neck movements (P<0.01. NDS (P<0.01 and state anxiety (STAI-Y1 showed higher reduction in yoga (P<0.01 than that in the control group. Wilcoxon′s test showed a significant improvement in both groups on all variables (P<0.01. Conclusions : Yoga relaxation through MSRT adds significant complimentary benefits to conventional physiotherapy for CNP by reducing pain, tenderness, disability and state anxiety and providing improved flexibility.

  1. Review: Drug and nondrug treatment in tension-type headache

    Bendtsen, Lars


    . Combination analgesics, triptans, muscle relaxants and opioids should not be used, and it is crucial to avoid frequent and excessive use of simple analgesics to prevent the development of medication-overuse headache. The tricyclic antidepressant amitriptyline is drug of first choice for the prophylactic...

  2. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    Swindeman, R.W.


    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650/sup 0/C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength.


    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.


    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  4. A Dynamic Job Shop Scheduling Method Based on Lagrangian Relaxation


    Due to the complexity of dynamic job shop scheduling in flexible manufacturing s ystem(FMS), many heuristic rules are still used today. A dynamic scheduling appr oach based on Lagrangian relaxation is proposed to improve the quality and guara ntee the real-time capability of dynamic scheduling. The proposed method makes use of the dynamic predictive optimal theory combined with Lagrangian relaxation to obtain a good solution that can be evaluated quantitatively. The Lagrangian multipliers introduced here are capable of describing machine predictive states and system capacity constraints. This approach can evaluate the suboptimality of the scheduling systems. It can also quickly obtain high quality feasible schedu les, thus enabling Lagrangian relaxation to be better used in the dynamic schedu ling of manufacturing system. The efficiency and effectiveness of this method ar e verified by numerical experiments.

  5. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf


    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  6. Mindfulness meditation and relaxation training increases time sensitivity.

    Droit-Volet, S; Fanget, M; Dambrun, M


    Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing.

  7. Velocity and energy relaxation in two-phase flows

    Meyapin, Yannick; Gisclon, Marguerite


    In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...

  8. Distribution of NMR relaxations in a random Heisenberg chain.

    Shiroka, T; Casola, F; Glazkov, V; Zheludev, A; Prša, K; Ott, H-R; Mesot, J


    NMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations. This distribution, which is reflected in a stretched exponential NMR relaxation, exhibits a progressive broadening with decreasing temperature, caused by a growing inequivalence of magnetic sites. Compelling independent evidence for the influence of randomness is also obtained from magnetization data and Monte Carlo calculations. These results suggest the formation of random-singlet states in this class of materials, as previously predicted by theory.


    Y.W.Bao; Y.F.Han; F.T.Gong


    Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stressuniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.

  10. Alternating-current relaxation of a rotating metallic particle

    Guo-Xi, Nie; Wen-Jia, Tian; Ji-Ping, Huang; Guo-Qing, Gu


    Based on a first-principles approach, we establish an alternating-current (AC) relaxation theory for a rotating metallic particle with complex dielectric constant . Here is the real part, the conductivity, ω 0 the angular frequency of an AC electric field, and . Our theory yields an accurate interparticle force, which is in good agreement with the existing experiment. The agreement helps to show that the relaxations of two kinds of charges, namely, surface polarized charges (described by ) and free charges (corresponding to ), contribute to the unusually large reduction in the attracting interparticle force. This theory can be adopted to determine the relaxation time of dynamic particles in various fields. Project supported by the National Natural Science Foundation of China (Grant No. 11222544), the Fok Ying Tung Education Foundation (Grant No. 131008), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0121), and the National Key Basic Research Program of China (Grant No. 2011CB922004).

  11. Efficient relaxed-Jacobi smoothers for multigrid on parallel computers

    Yang, Xiang; Mittal, Rajat


    In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.

  12. Experimental study on relaxation time in direction changing movement

    Liu, Chi; Song, Weiguo; Fu, Libi; Lian, Liping; Lo, Siuming


    Controlled experiments were conducted to clarify the movement characteristics of pedestrians in direction changing processes. We track pedestrians' trajectories and map them into real space coordinates by the direct linear transformation method. In the acceleration process, the relaxation time and free moving speed in our experiments respectively equal 0.659 s and 1.540 m/s, which are consistent with those for Chinese participants in other experiments. Meanwhile, the values of relaxation time in the direction changing process are calculated by a derived equation from the concept of the social force model. It is observed that the relaxation time is not an invariable parameter, and tends to increase with an increase in the angular difference. Furthermore, results show that pedestrians are insensitive to a tiny angular difference between instantaneous velocity and desired velocity. These experimental results presented in this work can be applied in model development and validation.

  13. Relaxation of polymers modeled by generalized Husimi cacti

    Galiceanu, M.


    We focus on the generalized Husimi cacti, which are dual structures to the dendrimers but, distinct from the latter, contain loops. We determine their complete spectra by making use of the normal mode analysis. These spectra have been used in computing some physical quantities, such as the averaged monomer displacement and the mechanical relaxation moduli with its two components: the storage and the loss modulus. We also study the dynamics of Husimi cacti in solutions, introducing the hydrodynamic interactions in a preaveraged Oseen fashion, the so-called Zimm model. We observe that the relaxation quantities mentioned above do not scale, in the presence or in the absence of the hydrodynamic interactions. Our results show that all the relaxation forms depend on the number of monomers in the networks in the absence of the hydrodynamic interactions (Rouse model), while by taking into account the hydrodynamic interactions the results do not vary too much.

  14. Relaxation of polymers modeled by generalized Husimi cacti

    Galiceanu, M, E-mail: mircea@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba (Brazil)


    We focus on the generalized Husimi cacti, which are dual structures to the dendrimers but, distinct from the latter, contain loops. We determine their complete spectra by making use of the normal mode analysis. These spectra have been used in computing some physical quantities, such as the averaged monomer displacement and the mechanical relaxation moduli with its two components: the storage and the loss modulus. We also study the dynamics of Husimi cacti in solutions, introducing the hydrodynamic interactions in a preaveraged Oseen fashion, the so-called Zimm model. We observe that the relaxation quantities mentioned above do not scale, in the presence or in the absence of the hydrodynamic interactions. Our results show that all the relaxation forms depend on the number of monomers in the networks in the absence of the hydrodynamic interactions (Rouse model), while by taking into account the hydrodynamic interactions the results do not vary too much.

  15. Stress retardation versus stress relaxation in linear viscoelasticity

    Christov, Ivan C


    We present a preliminary examination of a new approach to a long-standing problem in non-Newtonian fluid mechanics. First, we summarize how a general implicit functional relation between stress and rate of strain of a continuum with memory is reduced to the well-known linear differential constitutive relations that account for "relaxation" and "retardation." Then, we show that relaxation and retardation are asymptotically equivalent for small Deborah numbers, whence causal pure relaxation models necessarily correspond to ill-posed pure retardation models. We suggest that this dichotomy could be a possible way to reconcile the discrepancy between the theory of and certain experiments on viscoelastic liquids that are conjectured to exhibit only stress retardation.

  16. Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods

    Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.

    The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Schwarz waveform relaxation algorithm for heat equations with distributed delay

    Wu Shu-Lin


    Full Text Available Heat equations with distributed delay are a class of mathematic models that has wide applications in many fields. Numerical computation plays an important role in the investigation of these equations, because the analytic solutions of partial differential equations with time delay are usually unavailable. On the other hand, duo to the delay property, numerical computation of these equations is time-consuming. To reduce the computation time, we analyze in this paper the Schwarz waveform relaxation algorithm with Robin transmission conditions. The Robin transmission conditions contain a free parameter, which has a significant effect on the convergence rate of the Schwarz waveform relaxation algorithm. Determining the Robin parameter is therefore one of the top-priority matters for the study of the Schwarz waveform relaxation algorithm. We provide new formula to fix the Robin parameter and we show numerically that the new Robin parameter is more efficient than the one proposed previously in the literature.

  18. Vibrational and structural relaxation of hydrated protons in Nafion membranes

    Liu, Liyuan; Lotze, Stephan; Bakker, Huib J.


    We study the vibrational dynamics of the bending mode at 1730 cm-1 of proton hydration structures in Nafion membranes with polarization-resolved infrared (IR) pump-probe spectroscopy. The bending mode relaxes to an intermediate state with a time constant T1 of 170 ± 30 fs. Subsequently, the dissipated energy equilibrates with Teq of 1.5 ± 0.2 ps. The transient absorption signals show a long-living anisotropy, which indicates that for part of the excited proton hydration clusters the vibrational energy dissipation results in a local structural change, e.g. the breaking of a local hydrogen bond. This structural relaxation relaxes with a time constant of 38 ± 4 ps.

  19. Vascular relaxation and cyclic guanosine monophosphate in hypertension

    Otsuka, Y.; DiPiero, A.; Lockette, W.


    Isolated aortae from hypertensive rats have a decreased relaxation response to acetylcholine (Ach), A23187, and nitroprusside (SNP). Since cyclic guanosine monophosphate (cGMP) has been shown to increase in response to these vasodilators, the authors measured cGMP in response to these agents in isolated aortae from normotensive rats and DOCA, 1K1C, and coarctation induced hypertension. cGMP was measured by radioimmunoassay in vessels after exposure to phenylephrine followed by either Ach, A23187, or SNP. The aortae from the hypertensive rats had decreased basal levels of cGMP and attenuated increases in cGMP in response to Ach and A23187. Rises in cGMP in response to SNP were also attenuated in aortae from the hypertensive rats, even at concentrations which induced similar relaxation in normotensive and hypertensive blood vessels. The data suggest that changes in cGMP do not necessarily reflect changes in endothelium independent vascular relaxation in hypertension.

  20. 14N NQR and relaxation in ammonium nitrate

    Stephenson, David


    The complete 14N nuclear quadrupole resonance (NQR) spectrum of ammonium nitrate is presented recorded using two double resonance techniques - double contact cross relaxation and zero field NQR. The spectra gave the quadrupole coupling constant (Qcc) and asymmetry parameter ( η) values for the nitro of 611 kHz, 0.229 and that for the ammonium nitrogen of 242 kHz, 0.835. The three relaxation transition probabilities have been determined for both the nitro and ammonium nitrogen atoms. The bi-exponential relaxation times (T 1) were measured at 295 K. The values for nitro are 16.9 s and 10.5 s and that of the ammonium are 23.0 s and 16.4 s.