A J John; S D Maharaj
2011-09-01
We obtain a class of solutions to the Einstein–Maxwell equations describing charged static spheres. Upon specifying particular forms for one of the gravitational potentials and the electric ﬁeld intensity, the condition for pressure isotropy is transformed into a hypergeometric equation with two free parameters. For particular parameter values we recover uncharged solutions corresponding to speciﬁc neutron star models. We ﬁnd two charged solutions in terms of elementary functions for particular parameter values. The ﬁrst charged model is physically reasonable and the metric functions and thermodynamic variables are well behaved. The second charged model admits a negative energy density and violates the energy conditions.
De Rijcke, Sven; Boelens, Thomas
2014-01-01
We show that the general relativistic theory of the dynamics of isotropic stellar clusters can be developed essentially along the same lines as the Newtonian theory. We prove that the distribution function can be derived from any isotropic momentum moment and that every higher-order moment of the distribution can be written as an integral over a zeroth-order moment. We propose a mathematically simple expression for the distribution function of a family of isotropic general relativistic cluster models and investigate their dynamical properties. In the Newtonian limit, these models obtain a distribution function of the form F(E) ~ (E-E_0)^alpha, with E binding energy and E_0 a constant that determines the model's outer radius. The slope alpha sets the steepness of the distribution function and the corresponding radial density and pressure profiles. We show that the field equations only yield solutions with finite mass for alpha3.5, only Newtonian models exist. In other words: within the context of this family o...
Murad, Mohammad Hassan; Pant, Neeraj
2014-03-01
In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.
Murad, Mohammad Hassan
2014-01-01
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving Einstein-Maxwell field equations with preferred form of one of the metric potentials, a suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for matter distribution obtained in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). These models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated numerically that the maximum compactness and mass increase in the presence of electric field and anisotropic pressures. Based on the a...
The relativistic inverse stellar structure problem
Lindblom, Lee [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)
2014-01-14
The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein’s equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein’s equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or three neutron stars become available. This talk will also show that this method can be used with measurements of other macroscopic observables, like the masses and tidal deformabilities, which can (in principle) be measured by gravitational wave observations of binary neutron-star mergers.
The Relativistic Inverse Stellar Structure Problem
Lindblom, Lee
2014-01-01
The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein's equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein's equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or thr...
Murad, Mohammad Hassan [BRAC University, Department of Mathematics and Natural Sciences, Dhaka (Bangladesh); Fatema, Saba [Daffodil International University, Department of Natural Sciences, Dhaka (Bangladesh)
2015-11-15
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving the Einstein-Maxwell field equations with a preferred form of one of the metric potentials, and suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for the matter distribution considered in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g., electrically charged bare strange stars). Furthermore these models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated, numerically, that the maximum compactness and mass increase in the presence of an electric field and anisotropic pressures. Based on the analytic models developed in this present work, the values of some relevant physical quantities have been calculated by assuming the estimated masses and radii of some well-known potential strange star candidates like PSR J1614-2230, PSR J1903+327, Vela X-1, and 4U 1820-30. (orig.)
Relativistic stellar aberration for the Space Interferometry Mission
Turyshev, S G
2002-01-01
This paper analyses the relativistic stellar aberration requirements for the Space Interferometry Mission (SIM). We address the issue of general relativistic deflection of light by the massive self-gravitating bodies. Specifically, we present estimates for corresponding deflection angles due to the monopole components of the gravitational fields of a large number of celestial bodies in the solar system. We study the possibility of deriving an additional navigational constraints from the need to correct for the gravitational bending of light that is traversing the solar system. It turns out that positions of the outer planets presently may not have a sufficient accuracy for the precision astrometry. However, SIM may significantly improve those simply as a by-product of its astrometric program. We also consider influence of the higher gravitational multipoles, notably the quadrupole and the octupole ones, on the gravitational bending of light. Thus, one will have to model and account for their influence while o...
Relativistic stellar jets: dynamics and non-thermal radiation
Bosch-Ramon Valentí
2013-12-01
Full Text Available Relativistic stellar jets, produced in binary systems called microquasars, propagate through media with different spatial scales releasing their energy in the form of work and radiation from radio to gamma rays. There are several medium-interaction scenarios that these jets can face. In particular, in relativistic stellar jets the presence of a star is an unavoidable element whose importance deserves to be studied. In the case of highmass stars, their powerful winds are likely to interact dynamically with the jet, but also low-mass stars in the post-main sequence phase can present dense winds that will act as an obstacle for the jet propagation. In this work, we present a semi-qualitative discussion on the importance of the star for the evolution of relativistic stellar jets.
A Short Review of Relativistic Iron Lines from Stellar-Mass Black Holes
Miller, J M
2006-01-01
In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar-mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert-1 AGN. In particular, the lines observed in stellar-mass black holes are not complicated by complex low-energy absorption or partial-covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad-band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics-plagued disk continuum. If accretion onto stellar-mass black holes simply scales with mass, then the widespread nature of lines in stellar-mass black holes may indicate that lines should be common in Seyfert-1 AGN, though perhaps harder to detect.
Niu, YiFei; Vretenar, Dario; Meng, Jie
2011-01-01
We introduce a self-consistent microscopic theoretical framework for modelling the process of electron capture on nuclei in stellar environment, based on relativistic energy density functionals. The finite-temperature relativistic mean-field model is used to calculate the single-nucleon basis and the occupation factors in a target nucleus, and $J^{\\pi} = 0^{\\pm}$, $1^{\\pm}$, $2^{\\pm}$ charge-exchange transitions are described by the self-consistent finite-temperature relativistic random-phase approximation. Cross sections and rates are calculated for electron capture on 54,56Fe and 76,78Ge in stellar environment, and results compared with predictions of similar and complementary model calculations.
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Bonolis, Luisa
2017-06-01
Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
Steady state relativistic stellar dynamics around a massive black hole
Bar-Or, Ben
2015-01-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the "loss-cone", which take them directly into the MBH, or close enough to interact strongly with it. The resulting phenomena: tidal heating and tidal disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, are of interest as they can produce observable signatures and thereby reveal the existence of the MBH, affect its mass and spin evolution, probe strong gravity, and provide information on stars and gas near the MBH. The continuous loss of stars and the processes that resupply them shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss-cone of a non-spinning MBH in steady-state analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclos...
Pais, Helena
2016-01-01
The Vlasov formalism is extended to relativistic mean-field hadron models with non-linear terms up to fourth order and applied to the calculation of the crust-core transition density. The effect of the nonlinear $\\omega\\rho$ and $\\sigma\\rho$ coupling terms on the crust-core transition density and pressure, and on the macroscopic properties of some families of hadronic stars is investigated. For that purpose, six families of relativistic mean field models are considered. Within each family, the members differ in the symmetry energy behavior. For all the models, the dynamical spinodals are calculated, and the crust-core transition density and pressure, and the neutron star mass-radius relations are obtained. The effect on the star radius of the inclusion of a pasta calculation in the inner crust is discussed. The set of six models that best satisfy terrestrial and observational constraints predicts a radius of 13.6$\\pm$0.3 km and a crust thickness of $1.36\\pm 0.06$km for a 1.4 $M_\\odot$ star.
Relativistic models of a class of compact objects
Rumi Deb; Bikash Chandra Paul; Ramesh Tikekar
2012-08-01
A class of general relativistic solutions in isotropic spherical polar coordinates which describe compact stars in hydrostatic equilibrium are discussed. The stellar models obtained here are characterized by four parameters, namely, , , and of geometrical significance related to the inhomogeneity of the matter content of the star. The stellar models obtained using the solutions are physically viable for a wide range of values of the parameters. The physical features of the compact objects taken up here are studied numerically for a number of admissible values of the parameters. Observational stellar mass data are used to construct suitable models of the compact stars.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
On relativistic models of strange stars
Ramesh Tikekar; Kanti Jotania
2007-03-01
The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption
Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C
2015-01-01
We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...
Cosmology and stellar equilibrium using Newtonian hydrodynamics with general relativistic pressure
Baqui, P O; Piattella, O F
2015-01-01
We revisit the analysis made by Hwang and Noh [JCAP 1310 (2013)] aiming the construction of a Newtonian set of equations incorporating pressure effects typical of General Relativity theory. We perform in an explicit way the deduction of the Hwang-Noh equations, comparing it with similar computations found in the literature. Later, we investigate stellar equilibrium and cosmology, at background and perturbative levels, using the new set of equations. It is shown that, in this context, the predictions for the background evolution of the universe are deeply changed with respect to the full relativistic theory: the acceleration of the universe is achieved with positive pressure. The properties of neutron stars are reproduced qualitatively, but the upper mass is at least one order of magnitude higher than that obtained in General Relativity. However, the perturbed cosmological equations at small scales reproduce those found in the relativistic context. We argue that this last result may open new possibilities for ...
Magnetohydrostatic modelling of stellar coronae
MacTaggart, David; Neukirch, Thomas; Donati, Jean-Francois
2015-01-01
We introduce to the stellar physics community a method of modelling stellar coronae that can be considered to be an extension of the potential field. In this approach, the magnetic field is coupled to the background atmosphere. The model is magnetohydrostatic (MHS) and is a balance between the Lorentz force, the pressure gradient and gravity. Analytical solutions are possible and we consider a particular class of equilibria in this paper. The model contains two free parameters and the effects of these on both the geometry and topology of the coronal magnetic field are investigated. A demonstration of the approach is given using a magnetogram derived from Zeeman-Doppler imaging of the 0.75 M$_{\\odot}$ M-dwarf star GJ 182.
Relativistic Model for two-band Superconductivity
Ohsaku, Tadafumi
2003-01-01
To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.
Stellar models in Brane Worlds
Linares, Francisco X; Ureña-Lopez, L Arturo
2015-01-01
We consider here a full study of stellar dynamics from the brane-world point of view in the case of constant density and of a polytropic fluid. We start our study cataloguing the minimal requirements to obtain a compact object with a Schwarszchild exterior, highlighting the low and high energy limit, the boundary conditions, and the appropriate behavior of Weyl contributions inside and outside of the star. Under the previous requirements we show an extensive study of stellar behavior, starting with stars of constant density and its extended cases with the presence of nonlocal contributions. Finally, we focus our attention to more realistic stars with a polytropic equation of state, specially in the case of white dwarfs, and study their static configurations numerically. One of the main results is that the inclusion of the Weyl functions from braneworld models allow the existence of more compact configurations than within General Relativity.
Relativistic Corrections to the Bohr Model of the Atom
Kraft, David W.
1974-01-01
Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)
Ways to constrain neutron star equation of state models using relativistic disc lines
Bhattacharyya, Sudip
2011-01-01
Relativistic spectral lines from the accretion disc of a neutron star low-mass X-ray binary can be modelled to infer the disc inner edge radius. A small value of this radius tentatively implies that the disc terminates either at the neutron star hard surface, or at the innermost stable circular orbit (ISCO). Therefore an inferred disc inner edge radius either provides the stellar radius, or can directly constrain stellar equation of state (EoS) models using the theoretically computed ISCO radius for the spacetime of a rapidly spinning neutron star. However, this procedure requires numerical computation of stellar and ISCO radii for various EoS models and neutron star configurations using an appropriate rapidly spinning stellar spacetime. We have fully general relativistically calculated about 16000 stable neutron star structures to explore and establish the above mentioned procedure, and to show that the Kerr spacetime is inadequate for this purpose. Our work systematically studies the methods to constrain Eo...
Chiral quark model with relativistic kinematics
Garcilazo, H
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE
Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)
2016-04-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.
Exact quantisation of the relativistic Hopfield model
Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)
2016-11-15
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Exact quantisation of the relativistic Hopfield model
Belgiorno, F; Piazza, F Dalla; Doronzo, M
2016-01-01
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Theory of stellar convection - II. First stellar models
Pasetto, S.; Chiosi, C.; Chiosi, E.; Cropper, M.; Weiss, A.
2016-07-01
We present here the first stellar models on the Hertzsprung-Russell diagram, in which convection is treated according to the new scale-free convection theory (SFC theory) by Pasetto et al. The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few per cent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients ∇ and ∇e, and energy fluxes that are very similar to those derived from the `calibrated' MT theory for main-sequence stars. We conclude that the old scale dependent ML theory can now be replaced with a self-consistent scale-free theory able to predict correct results, as it is more physically grounded than the ML theory. Fundamentally, the SFC theory offers a deeper insight of the underlying physics than numerical simulations.
Theory of stellar convection II: first stellar models
Pasetto, S; Chiosi, E; Cropper, M; Weiss, A
2015-01-01
We present here the first stellar models on the Hertzsprung-Russell diagram (HRD), in which convection is treated according to the novel scale-free convection theory (SFC theory) by Pasetto et al. (2014). The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few percent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients of the ambient and of the convective element, and energy fluxes that are very similar to those derived from the "calibrated" MT theory for main s...
Optimized $\\delta$ expansion for relativistic nuclear models
Krein, G I; Peres-Menezes, D; Nielsen, M; Pinto, M B
1998-01-01
The optimized $\\delta$-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the $\\lambda \\phi^4$ model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the $\\delta$ expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.
Relativistic hadronic models in LDA
Silva, J.B.; Delfino, A.; Malheiro, M. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica
2001-07-01
In the framework of the Walecka model we perform a model approximation ({rho}{sub s} = {rho}), in which some nuclear matter observable are calculated analytically. The results are very close to those obtained by the original Walecka model. (author)
Chemical element transport in stellar evolution models
Cassisi, Santi
2017-01-01
Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.
Relativistic Fermi-Ulam map: Application to WEGA stellarator lower hybrid power operation
Fuchs, V.; Seidl, J.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Urban, J. [Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Laqua, H. P. [Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany)
2014-06-15
Analytical and numerical support is here provided in support of the explanation [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)] for the observation of ∼MeV electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [Otte et al., Nukleonika, 57, 171 (2012)]. In the quoted experiments, LH power from the WEGA TE{sub 11} circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B ≅ 0.5 T, n{sup ¯}{sub e} ≅ 5 × 10{sup 17} 1/m{sup 3} plasma at T{sub e} ≅ 10 eV bulk temperature with an EC-generated 50 keV population of electrons. In response, the fast electrons travel around flux or drift surfaces essentially without collisions, repeatedly interacting with the rf field close to the antenna mouth, and gaining energy in the process. Our WEGA antenna calculations indicate a predominantly standing electric field pattern at the antenna mouth. From a simple approximation of the corresponding Hamiltonian equations of motion, we derive here a relativistic generalization of the simplified area-preserving Fermi-Ulam (F-U) map [M. A. Lieberman and A. J. Lichtenberg, Phys. Rev. A 5, 1852 (1972), Lichtenberg et al., Physica D 1, 291 (1980)], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, and with correlated phases between electron–antenna electric field interaction events, the F-U map and supporting numerical simulations predict an absolute energy barrier in the range of 300 keV. In contrast, with random phases intervening between interaction events, the electron energy can reach ∼MeV values, compatible with the measurements on WEGA [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)].
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Recent advances in modeling stellar interiors (u)
Guzik, Joyce Ann [Los Alamos National Laboratory
2010-01-01
Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.
Proton relativistic model; Modelo relativistico do proton
Araujo, Wilson Roberto Barbosa de
1995-12-31
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.
Magnetic monopoles and relativistic cosmological models
Stein-Schabes, J.A.
1984-01-01
A dissertation is presented on magnetic monopoles and relativistic cosmological models. The maximum number density of monopoles in various astrophysical scenarios was investigated along with: the monopole flux in the galaxy, the allowed monopole abundance, and the formation of stable monopole orbits. Limits on the mass and lifetime of monopolonium were calculated. Boltzmann's equation was used to calculate the monopole abundance in a magnetic axisymmetric Bianchi I cosmological model, and a solution was found describing an axisymmetric Bianchi I magnetic cosmology with monopoles. New inhomogeneous solutions to Einstein's equations were found. Finally, stability and inflation in Kaluza-Klein cosmologies in d + D + 1 dimensions was studied.
Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field
LI Yan-Song; LONG Gui-Lu
2004-01-01
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Longhi, Stefano
2011-01-01
Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating.
Approximate input physics for stellar modelling
Pols, O R; Eggleton, P P; Han, Z; Pols, O R; Tout, C A; Eggleton, P P; Han, Z
1995-01-01
We present a simple and efficient, yet reasonably accurate, equation of state, which at the moderately low temperatures and high densities found in the interiors of stars less massive than the Sun is substantially more accurate than its predecessor by Eggleton, Faulkner & Flannery. Along with the most recently available values in tabular form of opacities, neutrino loss rates, and nuclear reaction rates for a selection of the most important reactions, this provides a convenient package of input physics for stellar modelling. We briefly discuss a few results obtained with the updated stellar evolution code.
Nuclear Transparency in a Relativistic Quark Model
Iwama, T; Yazaki, K; Iwama, Tetsu; Kohama, Akihisa; Yazaki, Koichi
1998-01-01
We examine the nuclear transparency for the quasi-elastic ($e, e'p$) process at large momentum transfers in a relativistic quantum-mechanical model for the internal structure of the proton, using a relativistic harmonic oscillator model. A proton in a nuclear target is struck by the incident electron and then propagates through the residual nucleus suffering from soft interactions with other nucleons. We call the proton "dynamical" when we take into account of internal excitations, and "inert" when we freeze it to the ground state. When the dynamical proton is struck with a hard (large-momentum transfer) interaction, it shrinks, i.e., small-sized configuration dominates the process. It then travels through nuclear medium as a time-dependent mixture of intrinsic excited states and thus changing its size. Its absorption due to the soft interactions with nuclear medium depends on its transverse-size. Since the nuclear transparency is a measure of the absorption strength, we calculate it in our model for the dyna...
Galactic stellar haloes in the CDM model
Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Helly, J.; Benson, A. J.; De Lucia, G.; Helmi, A.; Jenkins, A.; Navarro, J. F.; Springel, V.; Wang, J.
2010-01-01
We present six simulations of galactic stellar haloes formed by the tidal disruption of accreted dwarf galaxies in a fully cosmological setting. Our model is based on the Aquarius project, a suite of high-resolution N-body simulations of individual dark matter haloes. We tag subsets of particles in
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Stellar wind models of subluminous hot stars
Krticka, J; Krtickova, I
2016-01-01
Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influence of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived...
Stellar model atmospheres with magnetic line blanketing
Kochukhov, O; Shulyak, D
2004-01-01
Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
Hypervirial Models of Stellar Systems
Evans, N W
2005-01-01
A family of cusped potential-density pairs is introduced for modelling galaxies and dark haloes. The density profile is cusped like 1/r^(2-p) at small radii. The distribution function takes the simple form L^(p-2) E^([3p+1]/2) (where E is the binding energy and L is the angular momentum). The models all possess the remarkable property that the virial theorem holds locally, from which they earn their name as the hypervirial family. Famously, this property was first discovered by Eddington to hold for the Plummer model in 1916. In fact, the seductive properties of the Plummer model extend to the whole hypervirial family, including the members possessing the cosmologically important cusps with density behaving like 1/r or 1/r^1.5 or 1/r^1.33. The intrinsic and projected properties of the family of models are discussed in some detail.
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
Numerical simulations of stellar winds polytropic models
Keppens, R
1999-01-01
We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the...
Reisswig, C; Ott, C D; Abdikamalov, E; Moesta, P; Pollney, D; Schnetter, E
2013-01-01
We present a new three-dimensional general-relativistic hydrodynamic evolution scheme coupled to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated neutron stars, black hole formation, and binary neutron star coalescence. We make use of a set of adapted curvi-linear grids (multipatches) coupled with flux-conservative cell-centered adaptive mesh refinement. This allows us to significantly enlarge our computational domains while still maintaining high resolution in the gravitational-wave extraction zone, the exterior layers of a star, or the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution shock capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite differences. We employ a multi-rate Runge-Kutta time integration scheme for efficiency, evolving the fluid with second-order and the spacetime geometry with fourth-order integration, respectively. We validate our code by a number ...
A Bilocal Model for the Relativistic Spinning Particle
Rempel, Trevor
2016-01-01
In this work we show that a relativistic spinning particle can be described at the classical and the quantum level as being composed of two physical constituents which are entangled and separated by a fixed distance. This bilocal model for spinning particles allows for a natural description of particle interactions as a local interaction at each of the constituents. This form of the interaction vertex provides a resolution to a long standing issue on the nature of relativistic interactions for spinning objects in the context of the worldline formalism. It also potentially brings a dynamical explanation for why massive fundamental objects are naturally of lowest spin. We analyze first a non-relativistic system where spin is modeled as an entangled state of two particles with the entanglement encoded into a set of constraints. It is shown that these constraints can be made relativistic and that the resulting description is isomorphic to the usual description of the phase space of massive relativistic particles ...
Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.
Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-12-12
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.
Relativistic mean-field mass models
Peña-Arteaga, D.; Goriely, S.; Chamel, N.
2016-10-01
We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented.
Relativistic mean-field mass models
Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2016-10-15
We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)
Mueller, B; Marek, A
2012-01-01
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated ele...
Nucleon Spin Content in a Relativistic Quark Potential Model Approach
DONG YuBing; FENG QingGuo
2002-01-01
Based on a relativistic quark model approach with an effective potential U(r) = (ac/2)(1 + γ0)r2, the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.
Relativistic Modeling of Quark Stars with Tolman IV Type Potential
Malaver, Manuel
2015-01-01
In this paper, we studied the behavior of relativistic objects with anisotropic matter distribution considering Tolman IV form for the gravitational potential Z. The equation of state presents a quadratic relation between the energy density and the radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as the presence of an electrical field modifies the energy density, the radial pressure and the mass of the stellar object and generates a singular charge density.
Relativistic Landau models and generation of fuzzy spheres
Hasebe, Kazuki
2016-07-01
Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.
2001-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experi...
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R; Gignoux, C
2002-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.
Glueball Masses in Relativistic Potential Model
Shpenik, A; Kis, J; Fekete, Yu
2000-01-01
The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.
Computational Models of Stellar Collapse and Core-Collapse Supernovae
Ott, C D; Burrows, A; Livne, E; O'Connor, E; Löffler, F
2009-01-01
Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar col...
Improvements on analytic modelling of stellar spots
Montalto, M; Oshagh, M; Boisse, I; Bruno, G; Santos, N C
2014-01-01
In this work we present the solution of the stellar spot problem using the Kelvin-Stokes theorem. Our result is applicable for any given location and dimension of the spots on the stellar surface. We present explicitely the result up to the second degree in the limb darkening law. This technique can be used to calculate very efficiently mutual photometric effects produced by eclipsing bodies occulting stellar spots and to construct complex spot shapes.
A Novel Approach to Constraining Uncertain Stellar Evolution Models
Rosenfield, Philip; Girardi, Leo; Dalcanton, Julianne; Johnson, L. C.; Williams, Benjamin F.; Weisz, Daniel R.; Bressan, Alessandro; Fouesneau, Morgan
2017-01-01
Stellar evolution models are fundamental to nearly all studies in astrophysics. They are used to interpret spectral energy distributions of distant galaxies, to derive the star formation histories of nearby galaxies, and to understand fundamental parameters of exoplanets. Despite the success in using stellar evolution models, some important aspects of stellar evolution remain poorly constrained and their uncertainties rarely addressed. We present results using archival Hubble Space Telescope observations of 10 stellar clusters in the Magellanic Clouds to simultaneously constrain the values and uncertainties of the strength of core convective overshooting, metallicity, interstellar extinction, cluster distance, binary fraction, and age.
Baryons in the relativistic jets of the stellar-mass black hole candidate 4U 1630-47
Trigo, María Díaz; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-01-01
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and hence the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. While energetic considerations and circular polarisation measurements have provided conflicting circumstantial evidence for the presence or absence of baryons, the only system in which baryons have been unequivocally detected in the jets is the X-ray binary SS 433. Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black hole candidate X-ray binary, 4U1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise in a jet with velocity 0.66c, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the a...
Role of f(T) gravity on the evolution of collapsing stellar model
Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.; Hanif, Sonia
2017-06-01
The aim of this paper is to exhibit the instability epochs of self-gravitating objects coupled with anisotropic radiative matter content. We perform our analysis in the background of f(T) gravity which is the extended version of teleparallel gravity. We probe the instability regions by taking a peculiar model f(T) = T + αT2. We explore the basic equations in order to model stellar interior, including field, dynamical and junction equations. We then study linear perturbations of our system. We formulate the modified collapse equation by using Harrison-Wheeler equation of state. We develop the instability constraints at Newtonian and post-Newtonian regimes. The major outcome of our work reveals that the stiffness parameter plays a significant role in the stability of relativistic anisotropic stellar interior in f(T) gravity.
Geometric Models of the Quantum Relativistic Rotating Oscillator
Cotaescu, I I
1997-01-01
A family of geometric models of quantum relativistic rotating oscillator is defined by using a set of one-parameter deformations of the static (3+1) de Sitter or anti-de Sitter metrics. It is shown that all these models lead to the usual isotropic harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is different. As in the case of the (1+1) models, these will have even countable energy spectra or mixed ones, with a finite discrete sequence and a continuous part. In addition, all these spectra, except that of the pure anti-de Sitter model, will have a fine-structure, given by a rotator-like term.
Relativistic models for quasielastic electron and neutrino-nucleus scattering
Meucci Andrea
2012-12-01
Full Text Available Relativistic models developed within the framework of the impulse approximation for quasielastic (QE electron scattering and successfully tested in comparison with electron-scattering data have been extended to neutrino-nucleus scattering. Different descriptions of final-state interactions (FSI in the inclusive scattering are compared. In the relativistic Green’s function (RGF model FSI are described consistently with the exclusive scattering using a complex optical potential. In the relativistic mean field (RMF model FSI are described by the same RMF potential which gives the bound states. The results of the models are compared for electron and neutrino scattering and, for neutrino scattering, with the recently measured charged-current QE (CCQE MiniBooNE cross sections.
Geometric models of (d+1)-dimensional relativistic rotating oscillators
Cotaescu, I I
2000-01-01
Geometric models of quantum relativistic rotating oscillators in arbitrary dimensions are defined on backgrounds with deformed anti-de Sitter metrics. It is shown that these models are analytically solvable, deriving the formulas of the energy levels and corresponding normalized energy eigenfunctions. An important property is that all these models have the same nonrelativistic limit, namely the usual harmonic oscillator.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Confronting Substellar Theoretical Models with Stellar Ages
Dupuy, Trent J; Ireland, Michael J
2009-01-01
By definition, brown dwarfs never reach the main-sequence, cooling and dimming over their entire lifetime, thus making substellar models challenging to test because of the strong dependence on age. Currently, most brown dwarfs with independently determined ages are companions to nearby stars, so stellar ages are at the heart of the effort to test substellar models. However, these models are only fully constrained if both the mass and age are known. We have used the Keck adaptive optics system to monitor the orbit of HD 130948BC, a brown dwarf binary that is a companion to the young solar analog HD 130948A. The total dynamical mass of 0.109+/-0.003 Msun shows that both components are substellar, and the ensemble of available age indicators from the primary star suggests an age comparable to the Hyades, with the most precise age being 0.79 Gyr based on gyrochronology. Therefore, HD 130948BC is unique among field L and T dwarfs as it possesses a well-determined mass, luminosity, and age. Our results indicate tha...
Relativistic quark model and pentaquark spectroscopy
Gerasyuta, S M
2002-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks are calculated under the condition that flavor SU(3) symmetry holds. The poles of five-quark amplitudes determine the masses of the lowest pentaquarks. The mass spectra of pentaquarks which contain only light quarks are calculated. The calculation of pentaquark amplitudes estimates the contributions of three subamplitudes. The main contributions to the pentaquark amplitude are determined by the subamplitudes, which include the meson states.
An updated MILES stellar library and stellar population models (Research Note)
Falcon-Barroso, J.; Sanchez-Blazquez, P.; Vazdekis, A.; Ricciardelli, E.; Cardiel, N.; Cenarro, A. J.; Gorgas, J.; Peletier, R. F.
Aims: We present a number of improvements to the MILES library and stellar population models. We correct some small errors in the radial velocities of the stars, measure the spectral resolution of the library and models more accurately, and give a better absolute flux calibration of the models.
Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2012-09-01
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
Starspots, stellar cycles and stellar flares: Lessons from solar dynamo models
Choudhuri, Arnab Rai
2017-01-01
In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars: (i) data pertaining to stellar cycles from Ca H/K emission over many years; (ii) X-ray data indicating hot coronal activity; (iii) starspot data (especially about giant polar spots); and (iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.
Spurious Shell Closures in the Relativistic Mean Field Model
Geng, L S; Toki, H; Long, W H; Shen, G
2006-01-01
Following a systematic theoretical study of the ground-state properties of over 7000 nuclei from the proton drip line to the neutron drip line in the relativistic mean field model [Prog. Theor. Phys. 113 (2005) 785], which is in fair agreement with existing experimental data, we observe a few spurious shell closures, i.e. proton shell closures at Z=58 and Z=92. These spurious shell closures are found to persist in all the effective forces of the relativistic mean field model, e.g. TMA, NL3, PKDD and DD-ME2.
A relativistic quark–diquark model for the nucleon
Cristian Leonardo Gutierrez; Maurizio De Sanctis
2009-02-01
We developed a constituent quark–diquark model for the nucleon and its resonances using a harmonic oscillator potential for the interaction. The effects due to relativistic kinetic energy correction are studied. Finally, charge form factor of the model is calculated and compared with experimental data.
An analytic toy model for relativistic accretion in Kerr spacetime
Tejeda, Emilio; Miller, John C
2013-01-01
We present a relativistic model for the stationary axisymmetric accretion flow of a rotating cloud of non-interacting particles falling onto a Kerr black hole. Based on a ballistic approximation, streamlines are described analytically in terms of timelike geodesics, while a simple numerical scheme is introduced for calculating the density field. A novel approach is presented for describing all of the possible types of orbit by means of a single analytic expression. This model is a useful tool for highlighting purely relativistic signatures in the accretion flow dynamics coming from a strong gravitational field with frame-dragging. In particular, we explore the coupling due to this between the spin of the black hole and the angular momentum of the infalling matter. Moreover, we demonstrate how this analytic solution may be used for benchmarking general relativistic numerical hydrodynamics codes by comparing it against results of smoothed particle hydrodynamics simulations for a collapsar-like setup. These simu...
The relativistic feedback discharge model of terrestrial gamma ray flashes
Dwyer, Joseph R.
2012-02-01
As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.
Relativistic superfluid models for rotating neutron stars
Carter, B
2001-01-01
This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.
Relativistic reflection: Review and recent developments in modeling
Dauser, T.; García, J.; Wilms, J.
2016-05-01
Measuring relativistic reflection is an important tool to study the innermost regions of the an accreting black hole system. In the following we present a brief review on the different aspects contributing to the relativistic reflection. The combined approach is for the first time incorporated in the new ``relxill'' model. The advantages of this more self-consistent approach are briefly summarized. A special focus is put on the new definition of the intrinsic reflection fraction in the lamp post geometry, which allows to draw conclusions about the primary source of radiation in these system. Additionally the influence of the high energy cutoff of the primary source on the reflection spectrum is motivated, revealing the remarkable capabilities of constraining E_cut by measuring relativistic reflection spectra from NuSTAR, preferably with lower energy coverage.
A relativistic toy model for Unruh black holes
Carbonaro, P.
2014-08-01
We consider the wave propagation in terms of acoustic geometry in a quantum relativistic system. This reduces, in the hydrodynamic limit, to the equations which govern the motion of a relativistic Fermi-degenerate gas in one space dimension. The derivation of an acoustic metric for one-dimensional (1D) systems is in general plagued with the impossibility of defining a conformal factor. Here we show that, although the system is intrinsically one-dimensional, the Unruh procedure continues to work because of the particular structure symmetry of the model. By analyzing the dispersion relation, attention is also paid to the quantum effects on the wave propagation.
Heavy Baryon Transitions in a Relativistic Three-Quark Model
Ivanov, M A; Kroll, P; Lyubovitskij, V E
1997-01-01
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges
Liu, Ningyu; Dwyer, Joseph R.
2013-05-01
This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However
Improving 1D Stellar Models with 3D Atmospheres
Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner
2016-01-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
Byler, Nell; Conroy, Charlie; Johnson, Benjamin D
2016-01-01
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$\\alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies...
GrayStar: Web-based pedagogical stellar modeling
Short, C. Ian
2017-01-01
GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.
Relativistic HD and MHD modelling for AGN jets
Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.
2013-12-01
Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed
Relativistic models of magnetars: structure and deformations
Colaiuda, A; Gualtieri, L; Pons, J A
2007-01-01
We find numerical solutions of the coupled system of Einstein-Maxwell's equations with a linear approach, in which the magnetic field acts as a perturbation of a spherical neutron star. In our study, magnetic fields having both poloidal and toroidal components are considered, and higher order multipoles are also included. We evaluate the deformations induced by different field configurations, paying special attention to those for which the star has a prolate shape. We also explore the dependence of the stellar deformation on the particular choice of the equation of state and on the mass of the star. Our results show that, for neutron stars with mass M = 1.4 Msun and surface magnetic fields of the order of 10^15 G, a quadrupole ellipticity of the order of 10^(-6) - 10^(-5) should be expected. Low mass neutron stars are in principle subject to larger deformations (quadrupole ellipticities up to 10^(-3) in the most extreme case). The effect of quadrupolar magnetic fields is comparable to that of dipolar componen...
A RELATIVISTIC QUASI-STATIC MODEL FOR ELECTRONS IN INTENSE LASER FIELDS
CHEN BAO-ZHEN
2001-01-01
A relativistic quasi-static model for the motion of the electrons in relativistic laser fields is proposed. Using the model, the recent experimental results about the generation of the hot electrons in relativistic laser fields can be fit quite well and the important role of the rescattering can be shown clearly.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
The s Process: Nuclear Physics, Stellar Models, Observations
Kaeppeler, Franz; Bisterzo, Sara; Aoki, Wako
2010-01-01
Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear...
Uncertainties in stellar evolution models: convective overshoot
Bressan, Alessandro; Marigo, Paola; Rosenfield, Philip; Tang, Jing
2014-01-01
In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.
Uncertainties in Stellar Evolution Models: Convective Overshoot
Bressan, Alessandro; Girardi, Léo; Marigo, Paola; Rosenfield, Philip; Tang, Jing
In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.
Silich, Sergiy; Tenorio-Tagle, Guillermo; Martinez-Gonzalez, Sergio [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico); Bisnovatyi-Kogan, Gennadiy, E-mail: silich@inaoep.mx, E-mail: gkogan@iki.rssi.ru [Space Research Institute, 84/32 Profsoyuznaya, Moscow 117810 (Russian Federation)
2011-12-20
A hydrodynamic model for steady-state, spherically symmetric winds driven by young stellar clusters with an exponential stellar density distribution is presented. Unlike in most previous calculations, the position of the singular point R{sub sp}, which separates the inner subsonic zone from the outer supersonic flow, is not associated with the star cluster edge, but calculated self-consistently. When the radiative losses of energy are negligible, the transition from the subsonic to the supersonic flow occurs always at R{sub sp} Almost-Equal-To 4R{sub c} , where R{sub c} is the characteristic scale for the stellar density distribution, irrespective of other star cluster parameters. This is not the case in the catastrophic cooling regime, when the temperature drops abruptly at a short distance from the star cluster center, and the transition from the subsonic to the supersonic regime occurs at a much smaller distance from the star cluster center. The impact from the major star cluster parameters to the wind inner structure is thoroughly discussed. Particular attention is paid to the effects which radiative cooling provides to the flow. The results of the calculations for a set of input parameters, which lead to different hydrodynamic regimes, are presented and compared to the results from non-radiative one-dimensional numerical simulations and to those from calculations with a homogeneous stellar mass distribution.
Relativistic Lagrangian model of a nematic liquid crystal
Obukhov, Yuri N; Rubilar, Guillermo F
2012-01-01
We develop a relativistic variational model for a nematic liquid crystal interacting with the electromagnetic field. The constitutive relation for an anisotropic uniaxial diamagnetic and dielectric medium is analyzed. We discuss light wave propagation in this moving uniaxial medium, for which the corresponding optical metrics are identified explicitly. A Lagrangian for the coupled system of a nematic liquid crystal and the electromagnetic field is constructed. We derive a complete set of equations of motion for the system. The canonical energy-momentum and spin tensors are systematically obtained. We compare our results with those within the non-relativistic models. As an application of our general formalism, we discuss the so-called Abraham-Minkowski controversy on the momentum of light in a medium.
Stellar models: firm evidence, open questions and future developments
Cassisi, Santi
2009-01-01
During this last decade our knowledge of the evolutionary properties of stars has significantly improved. This result has been achieved thanks to our improved understanding of the physical behavior of stellar matter in the thermal regimes characteristic of the different stellar mass ranges and/or evolutionary stages. This notwithstanding, the current generation of stellar models is still affected by several, not negligible, uncertainties related to our poor knowledge of some thermodynamical processes and nuclear reaction rates, as well as the efficiency of mixing processes. These drawbacks have to be properly taken into account when comparing theory with observations, to derive evolutionary properties of both resolved and unresolved stellar populations. In this paper we review the major sources of uncertainty along the main evolutionary stages, and emphasize their impact on population synthesis techniques.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Modelling early stages of relativistic heavy-ion collisions
Ruggieri M.
2016-01-01
Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.
Baryon Wave Functions in Covariant Relativistic Quark Models
Dillig, M
2002-01-01
We derive covariant baryon wave functions for arbitrary Lorentz boosts. Modeling baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to a covariant 3-dimensional form by projecting on the relative quark-diquark energy. Guided by a phenomenological multigluon exchange representation of a covariant confining kernel, we derive for practical applications explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly comment on the interplay of boosts and center-of-mass corrections in relativistic quark models.
Meier, D L
2003-01-01
I review recent progress in the theory of relativistic jet production, with special emphasis on unifying black hole sources of stellar and supermassive size. Observations of both classes of objects, as well as theoretical considerations, indicate that such jets may be launched with a spine/sheath flow structure, having a much higher Lorentz factor ($\\sim 50$) near the axis and a lower speed ($\\Gamma \\sim 10$ or so) away from the axis. It has become clear that one can no longer consider models of accretion flows without also considering the production of a jet by that flow. Furthermore, the rotation rate of the black hole also must be taken into account. It provides a third parameter that should break the mass/accretion rate degeneracy and perhaps explain why some sources are radio loud and some radio quiet. Slow jet acceleration and collimation is expected theoretically, and can explain some of the observed features of AGN jet sources. Finally, relativistic jets launched by MHD/ED processes are Poynting flux ...
Accurate Low-Mass Stellar Models of KOI-126
Feiden, Gregory A; Dotter, Aaron
2011-01-01
The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. (2011) appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M-dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.
2017-05-01
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.
Relativistic Mean-Field Models and Nuclear Matter Constraints
Dutra, M; Carlson, B V; Delfino, A; Menezes, D P; Avancini, S S; Stone, J R; Providência, C; Typel, S
2013-01-01
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \\sigma^3+\\sigma^4 models, (iii) \\sigma^3+\\sigma^4+\\omega^4 models, (iv) models containing mixing terms in the fields \\sigma and \\omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \\sigma (\\omega) field. The isospin dependence of the interaction is modeled by the \\rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Silich, Sergiy; Tenorio-Tagle, Guillermo; Martinez-Gonzalez, Sergio
2011-01-01
A hydrodynamic model for steady state, spherically-symmetric winds driven by young stellar clusters with an exponential stellar density distribution is presented. Unlike in most previous calculations, the position of the singular point R_sp, which separates the inner subsonic zone from the outer supersonic flow, is not associated with the star cluster edge, but calculated self-consistently. When the radiative losses of energy are negligible, the transition from the subsonic to the supersonic flow occurs always at R_sp ~ 4 R_c, where R_c is the characteristic scale for the stellar density distribution, irrespective of other star cluster parameters. This is not the case in the catastrophic cooling regime, when the temperature drops abruptly at a short distance from the star cluster center and the transition from the subsonic to the supersonic regime occurs at a much smaller distance from the star cluster center. The impact from the major star cluster parameters to the wind inner structure is thoroughly discusse...
Particle energisation in a collapsing magnetic trap model: the relativistic regime
Oskoui, Solmaz Eradat
2014-01-01
In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...
Heavy-light mesons in a relativistic model
Liu, Jing-Bin; Yang, Mao-Zhi
2016-07-01
We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)
Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei
Ebran, J -P; Arteaga, D Pena; Vretenar, D
2010-01-01
The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is introduced. The model is based on an effective Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel, and the pairing part of the Gogny force is used in the pairing channel. The RHFBz quasiparticle equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Carbon, Neon and Magnesium isotopes. The effect of the explicitly including the pion field is investigated for binding energies, deformation parameters, and charge radii.
Relativistic tight-binding model: Application to Pt surfaces
Tchernatinsky, A.; Halley, J. W.
2011-05-01
We report a parametrization of a previous self-consistent tight-binding model, suitable for metals with a high atomic number in which nonscalar-relativistic effects are significant in the electron physics of condensed phases. The method is applied to platinum. The model is fitted to density functional theory band structures and cohesive energies and spectroscopic data on platinum atoms in five oxidation states, and is then shown without further parametrization to correctly reproduce several low index surface structures. We also predict reconstructions of some vicinal surfaces.
Model stars for the modelling of galaxies: $\\alpha$-enhancement in stellar populations models
Coelho, P
2008-01-01
Stellar population (SP) models are an essential tool to understand the observations of galaxies and clusters. One of the main ingredients of a SP model is a library of stellar spectra, and both empirical and theoretical libraries can been used for this purpose. Here I will start by giving a short overview of the pros and cons of using theoretical libraries, i.e. model stars, to produce our galaxy models. Then I will address the question on how theoretical libraries can be used to model stellar populations, in particular to explore the effect of $\\alpha$-enhancement on spectral observables.
MODEL STARS FOR THE MODELLING OF GALAXIES: a-ENHANCEMENT IN STELLAR POPULATIONS MODELS
P. Coelho
2009-01-01
Full Text Available Stellar population (SP models are an essential tool to understand the observations of galaxies and clusters. One of the main ingredients of a SP model is a library of stellar spectra, and both empirical and theoretical libraries can been used for this purpose. Here I will start by giving a short overview of the pros and cons ofusing theoretical libraries, i.e. model stars, to produce our galaxy models. Then I will address the question on how theoretical libraries can be used to model stellar populations, in particular to explore the e ect of -enhancement on spectral observables.
Testing galaxy formation models with galaxy stellar mass functions
Lim, S. H.; Mo, H. J.; Lan, Ting-Wen; Ménard, Brice
2016-10-01
We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF) of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift zc ˜ 2. There is also tentative evidence that this characteristic redshift depends on environment, becoming zc ˜ 4 in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter halos, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high z, the star formation and stellar mass assembly histories in dark matter halos. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.
Testing galaxy formation models with galaxy stellar mass functions
Lim, S. H.; Mo, H. J.; Lan, T.-W.; Ménard, B.
2017-01-01
We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass haloes changes behaviour at a characteristic redshift zc ˜ 2. There is also tentative evidence that this characteristic redshift depends on environment, becoming zc ˜ 4 in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter haloes, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high z, the star formation, and stellar mass assembly histories in dark matter haloes. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.
Detailed opacity calculations for stellar models
Pain, Jean-Christophe; Gilleron, Franck
2016-10-01
We present a state of the art of precise spectral opacity calculations illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments of hot dense plasmas produced by ultra-high-intensity laser interaction. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. Focus is put on iron, due to its crucial role in the understanding of asteroseismic observations of Beta Cephei-type and Slowly Pulsating B stars, as well as in the Sun. For instance, in Beta Cephei-type stars (which should not be confused with Cepheid variables), the iron-group opacity peak excites acoustic modes through the kappa-mechanism. A particular attention is paid to the higher-than-predicted iron opacity measured on Sandia's Z facility at solar interior conditions (boundary of the convective zone). We discuss some theoretical aspects such as orbital relaxation, electron collisional broadening, ionic Stark effect, oscillator-strength sum rules, photo-ionization, or the ``filling-the-gap'' effect of highly excited states.
A Unified Computational Model for Solar and Stellar Flares
Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats
2015-01-01
We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.
New shear-free relativistic models with heat flow
Msomi, A M; Maharaj, S D
2013-01-01
We study shear-free spherically symmetric relativistic models with heat flow. Our analysis is based on Lie's theory of extended groups applied to the governing field equations. In particular, we generate a five-parameter family of transformations which enables us to map existing solutions to new solutions. All known solutions of Einstein equations with heat flow can therefore produce infinite families of new solutions. In addition, we provide two new classes of solutions utilising the Lie infinitesimal generators. These solutions generate an infinite class of solutions given any one of the two unknown metric functions.
Stellar Models and Yields of Asymptotic Giant Branch Stars
Karakas, Amanda I
2007-01-01
We present stellar yields calculated from detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars. We evolve models with a range of mass from 1 to 6Msun, and initial metallicities from solar to 1/200th of the solar metallicity. Each model was evolved from the zero age main sequence to near the end of the thermally-pulsing AGB phase, and through all intermediate phases including the core He-flash for stars initially less massive than 2.5Msun. For each mass and metallicity, we provide tables containing structural details of the stellar models during the TP-AGB phase, and tables of the stellar yields for 74 species from hydrogen through to sulphur, and for a small number of iron-group nuclei. All tables are available for download. Our results have many applications including use in population synthesis studies and the chemical evolution of galaxies and stellar systems, and for comparison to the composition of AGB and post-AGB stars and planetary nebulae.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Quadrature-based Lattice Boltzmann Model for Relativistic Flows
Blaga, Robert
2016-01-01
A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.
Cyclic models of the relativistic universe: the early history
Kragh, Helge
2013-01-01
Within the framework of relativistic cosmology oscillating or cyclic models of the universe were introduced by A. Friedmann in his seminal paper of 1922. With the recognition of evolutionary cosmology in the 1930s this class of closed models attracted considerable interest and was investigated by several physicists and astronomers. Whereas the Friedmann-Einstein model exhibited only a single maximum value, R. Tolman argued for an endless series of cycles. After World War II, cyclic or pulsating models were suggested by W. Bonnor and H. Zanstra, among others, but they remained peripheral to mainstream cosmology. The paper reviews the development from 1922 to the 1960s, paying particular attention to the works of Friedmann, Einstein, Tolman and Zanstra. It also points out the role played by bouncing models in the emergence of modern big-bang cosmology.
Spectra of heavy-light mesons in a relativistic model
Liu, Jing-Bin
2016-01-01
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model, which is derived from the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation on the heavy quark. The kernel we choose is based on scalar confining and vector Coulomb potentials. The Hamiltonian for heavy-light quark-antiquark system is calculated up to order $1/m_Q^2$. The results are in good agreement with available experimental data except for the masses of the anomalous $D_{s0}^*(2317)$ and $D_{s1}(2460)$ states. The newly observed charmed meson states can be accommodated successfully in the relativistic model and their assignments are presented, the $D_{sJ}^*(2860)$ can be interpreted as the $|1^{3/2}D_1\\rangle$ and $|1^{5/2}D_3\\rangle$ states being the $J^P=1^-$ and $3^-$ members of the 1D family in our model.
Stellar yields from metal-rich asymptotic giant branch models
Karakas, Amanda I
2016-01-01
We present new theoretical stellar yields and surface abundances for three grids of metal-rich asymptotic giant branch (AGB) models. Post-processing nucleosynthesis results are presented for stellar models with initial masses between 1$M_{\\odot}$ and 7.5$M_{\\odot}$ for $Z=0.007$, and 1$M_{\\odot}$ and 8$M_{\\odot}$ for $Z=0.014$ (solar) and $Z=0.03$. We include stellar surface abundances as a function of thermal pulse on the AGB for elements from C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g., $^{12}$C/$^{13}$C), which can be obtained from observations of molecules in stars and from the laboratory analysis of meteoritic stardust grains. Ratios of elemental abundances of He/H, C/O, and N/O are also included, which are useful for direct comparison to observations of AGB stars and their progeny including planetary nebulae. The integrated elemental stellar yields are presented for each model in the grid for hydrogen, helium and all stable elements from C to Bi. Yields of Li are al...
Dense Molecular Gas: A Sensitive Probe of Stellar Feedback Models
Hopkins, Philip F; Murray, Norman; Quataert, Eliot
2012-01-01
We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-de...
Late stages of stellar evolution in population models
Maraston, Claudia
2015-04-01
My contribution to Roger's celebration symposium focuses on the treatment of late stellar evolutionary phases in stellar population models, reviewing the state of art and discussing some very recent developments, ranging from local stellar clusters up to distant galaxies at high redshift. I shall focus in particular on the Thermally Pulsating Asymptotic Giant Branch, about which a vivid discussion has been ongoing since a few years. I shall present renewed evidence in favour of a sizable contribution from this phase for matching the observed spectral energy distribution of distant massive galaxies. I shall also discuss the possible reasons why such a conclusion has been controversial in the recent literature. Stellar population models are the magic tool to shape the physics of galaxies out of their observed light, and enter virtually all papers presented at this symposium. In a collective effort to properly treat all relevant aspects of the modelling, we split the discussion into six contributions given by experts in the field, as our present to Roger and his outstanding career.
The Impact of Stellar Model Spectra in Disk Detection
Sinclair, J A; Greaves, J S
2010-01-01
We present a study of the impact of different model groups in the detection of circumstellar debris disks. Almost all previous studies in this field have used Kurucz model spectra to predict the stellar contribution to the flux at the wavelength of observation thus determining the existence of a disk excess. Only recently have other model groups or families like Marcs and NextGen-Phoenix become available to the same extent. This study aims to determine whether the predicted stellar flux of a disk target can change with the choice of model family - can a disk excess be present in the use of one model family whilst being absent from another? A simple comparison of Kurucz model spectra with Mrcs and NextGen model spectra of identical stellar parameters was conducted and differences were present at near-infrared wavelengths. Model spectra often do not extend in wavelength to that of observation and therefore extrapolation of the spectrum is required. In extrapolation of model spectra to the Spitzer MIPS passbands...
A "Boosted Fireball" Model for Structured Relativistic Jets
Duffell, Paul C
2013-01-01
We present a model for relativistic jets which generates a particular angular distribution of Lorentz factor and energy per solid angle. We consider a fireball with specific internal energy E/M launched with bulk Lorentz factor \\gamma_B. This "boosted fireball" model is motivated by the phenomenology of collapsar jets, but is applicable to a wide variety of relativistic flows. In its center-of-momentum frame the fireball expands isotropically, converting its internal energy into radially expanding flow with asymptotic Lorentz factor \\eta_0 \\sim E/M. In the lab frame the flow is beamed, expanding with Lorentz factor \\Gamma = 2 \\eta_0 \\gamma_B in the direction of its initial bulk motion and with characteristic opening angle \\theta_0 \\sim 1/\\gamma_B. The flow is jet-like with \\Gamma \\theta_0 \\sim 2 \\eta_0 such that jets with \\Gamma > 1/\\theta_0 are naturally produced. The choice \\eta_0 \\sim \\gamma_B \\sim 10 yields a jet with \\Gamma \\sim 200 on-axis and angular structure characterized by opening angle \\theta_0 \\s...
Spectra of heavy-light mesons in a relativistic model
Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)
2017-05-15
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)
Towards 21st Century Stellar Models: Star Clusters, Supercomputing, and Asteroseismology
Campbell, S. W.; Constantino, T. N.; D'Orazi, V.;
2016-01-01
Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutin...
A new simple dynamo model for stellar activity cycle
Yokoi, Nobumitsu; Pipin, Valery; Hamba, Fujihiro
2016-01-01
A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous mean flow effect on turbulence, it is shown that turbulent cross helicity (velocity--magnetic-field correlation) should enter the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. The inclusion of the cross-helicity effect makes the present model different from the current $\\alpha$--$\\Omega$-type models mainly in two points. First, in addition to the usual $\\alpha$ (helicity effect) and $\\beta$ (turbulent magnetic diffusivity), we consider the $\\gamma$ coefficient (cross-helicity effect). Second, unlike the $\\alpha$ and $\\beta$ coefficients, which are often treated as an adjustable parameter in the current studies, the spatiotemporal evolution of $\\gamma$ coefficient should be solved simultaneously with the mean magnetic-field equations. The basic scenario for the stellar activity cycle in the present model is as follows: In the presence of turbulent cross he...
Old star clusters: Bench tests of low mass stellar models
Salaris M.
2013-03-01
Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.
The Thomas-Fermi Quark Model: Non-Relativistic Aspects
Liu, Quan
2012-01-01
Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.
Unified relativistic physics from a standing wave particle model
Vera, R A
1995-01-01
An extremely simple and unified base for physics comes out by starting all over from a single postulate on the common nature of matter and stationary forms of radiation quanta. Basic relativistic, gravitational (G) and quantum mechanical properties of a standing wave particle model have been derived. This has been done from just dual properties of radiation's and strictly homogeneous relationships for nonlocal cases in G fields. This way reduces the number of independent variables and puts into relief (and avoid) important inhomogeneity errors of some G theories. It unifies and accounts for basic principles and postulates physics. The results for gravity depend on linear radiation properties but not on arbitrary field relations. They agree with the conventional tests. However they have some fundamental differences with current G theories. The particle model, at a difference of the conventional theories, also fixes well-defined cosmological and astrophysical models that are different from the rather convention...
The regular conducting fluid model for relativistic thermodynamics
Carter, Brandon
2012-01-01
The "regular" model presented here can be considered to be the most natural solution to the problem of constructing the simplest possible relativistic analogue of the category of classical Fourier--Euler thermally conducting fluid models as characterised by a pair of equations of state for just two dependent variables (an equilibrium density and a conducting scalar). The historically established but causally unsatisfactory solution to this problem due to Eckart is shown to be based on an ansatz that is interpretable as postulating a most unnatural relation between the (particle and entropy) velocities and their associated momenta, which accounts for the well known bad behaviour of that model which has recently been shown to have very pathological mixed-elliptic-hyperbolic comportments. The newer (and more elegant) solution of Landau and Lifshitz has a more mathematically respectable parabolic-hyperbolic comportment, but is still compatible with a well posed initial value problem only in such a restricted limi...
Parker's Model for Stellar Wind and Magnetohydrodynamic Extensions
Shivamoggi, B K
2016-01-01
In this paper, we first revisit Parker's hydrodynamic model for a stellar wind and make further analytic considerations. We show that the visualization of an effective de Laval type nozzle associated with Parker's model is valid only in a superficial sense and not on the dynamical level. We then make an analytic considerations on the Weber-Davis magnetohydrodynamic (MHD) extension of Parker's model with a view to provide a qualitative understanding of the coupling between the magnetic field and the plasma motion in the stellar wind. We find that, *the MHD azimuthal velocity profile actually resembles that for hydrodynamic Lamb-Oseen vortex; *Keplerian-orbit conditions prevail near a strong rotator even in a magnetized situation; *Parker's hydrodynamic scenario \\cite{Par} seems to reappear in the strong magnetization regime.\\end{itemize}
A Unified Computational Model for Solar and Stellar Flares
Allred, Joel C; Carlsson, Mats
2015-01-01
We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and...
Subrata Pal
2015-05-01
We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.
Path integral quantization of the relativistic Hopfield model
Belgiorno, F; Piazza, F Dalla; Doronzo, M
2016-01-01
The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenco, O.; Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos, SP (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-150, Boa Viagem, Niteroi, RJ (Brazil); Menezes, D. P.; Avancini, S. S. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianopolis, SC (Brazil); Stone, J. R. [Oxford Physics, University of Oxford, OX1 3PU Oxford (United Kingdom) and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Providencia, C. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Theorie, Planckstrasse 1,D-64291 Darmstadt (Germany)
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Spiral Structure Dynamics in Pure Stellar Disk Models
Valencia-Enriquez, Diego
2013-01-01
In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion and the disk scale height.
Anisotropic stellar models admitting conformal motion
Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali
2017-04-01
We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.
Dubus, Guillaume; Fromang, Sébastien
2015-01-01
Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $i\\approx 35^{\\rm o}$. There is a tension between th...
New charged shear-free relativistic models with heat flux
Nyonyi, Y; Govinder, K S
2014-01-01
We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein-Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conform...
Relativistic effects in model calculations of double parton distribution function
Rinaldi, Matteo
2016-01-01
In this paper we consider double parton distribution functions (dPDFs) which are the main non perturbative ingredients appearing in the double parton scattering cross section formula in hadronic collisions. By using recent calculation of dPDFs by means of constituent quark models within the so called Light-Front approach, we investigate the role of relativistic effects on dPDFs. We find, in particular, that the so called Melosh operators, which allow to properly convert the LF spin into the canonical one and incorporate a proper treatment of boosts, produce sizeable effects on dPDFs. We discuss specific partonic correlations induced by these operators in transverse plane which are relevant to the proton structure and study under which conditions these results are stable against variations in the choice of the proton wave function.
Radiative leptonic Bc decay in the relativistic independent quark model
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2008-12-01
The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.
New charged shear-free relativistic models with heat flux
Nyonyi, Y.; Maharaj, S. D.; Govinder, K. S.
2013-11-01
We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein-Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conformally flat metrics.
English, W.; Hardcastle, M. J.; Krause, M. G. H.
2016-09-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets, we at times find magnetic field amplification by up to a factor of 2 in energy, but mostly the magnetic energy in the lobes is consistent with the magnetic energy injected. We confirm our earlier result that for jets with a toroidally injected magnetic field, the field in the lobes is predominantly aligned with the jet axis once the lobes are well developed, and that this leads to radio flux anisotropies of up to a factor of about two for mature sources. We reproduce the relationship between 151 MHz luminosity and jet power determined analytically in the literature.
Dynamics of low dimensional model for weakly relativistic Zakharov equations for plasmas
Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Pal, Barnali; Poria, Swarup [Department of Applied Mathematics, University of Calcutta, Kolkata-700009 (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)
2013-05-15
In the present paper, the nonlinear interaction between Langmuir waves and ion acoustic waves described by the one-dimensional Zakharov equations (ZEs) for relativistic plasmas are investigated formulating a low dimensional model. Equilibrium points of the model are found and it is shown that the existence and stability conditions of the equilibrium point depend on the relativistic parameter. Computational investigations are carried out to examine the effects of relativistic parameter and other plasma parameters on the dynamics of the model. Power spectrum analysis using fast fourier transform and also construction of first return map confirm that periodic, quasi-periodic, and chaotic type solution exist for both relativistic as well as in non-relativistic case. Existence of supercritical Hopf bifurcation is noted in the system for two critical plasmon numbers.
A new methodology to test galaxy formation models using the dependence of clustering on stellar mass
Campbell, David J R; Mitchell, Peter D; Helly, John C; Gonzalez-Perez, Violeta; Lacey, Cedric G; Lagos, Claudia del P; Simha, Vimal; Farrow, Daniel J
2014-01-01
We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a new high resolution, large volume N-body simulation, set in the WMAP7 cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highligh...
Röck, B; Peletier, R F; Knapen, J H; Falcón-Barroso, J
2015-01-01
We present the first single-burst stellar population models in the infrared wavelength range between 2.5 and 5 {\\mu}m which are exclusively based on empirical stellar spectra. Our models take as input 180 spectra from the stellar IRTF (Infrared Telescope Facility) library. Our final single-burst stellar population models are calculated based on two different sets of isochrones and various types of initial mass functions of different slopes, ages larger than 1 Gyr and metallicities between [Fe/H] = -0.70 and 0.26. They are made available online to the scientific community on the MILES web page. We analyse the behaviour of the Spitzer [3.6]-[4.5] colour calculated from our single stellar population models and find only slight dependences on both metallicity and age. When comparing to the colours of observed early-type galaxies, we find a good agreement for older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours with respect to ...
Ultraviolet Radiation from Evolved Stellar Populations -- I. Models
Dorman, B; O'Connell, R
1993-01-01
This series of papers comprises a systematic exploration of the hypothesis that the far ultraviolet radiation from star clusters and elliptical galaxies originates from extremely hot horizontal-branch (HB) stars and their post-HB progeny. This first paper presents an extensive grid of calculations of stellar models from the Zero Age Horizontal Branch through to a point late in post-HB evolution or a point on the white dwarf cooling track. We use the term `Extreme Horizontal Branch' (EHB) to refer to HB sequences of constant mass that do not reach the thermally-pulsing stage on the AGB. These models evolve after core helium exhaustion
A Unified Computational Model for Solar and Stellar Flares
Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats
2015-01-01
We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into...
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Newtonian and General Relativistic Models of Spherical Shells
Vogt, D
2009-01-01
A family of spherical shells with varying thickness is derived by using a simple Newtonian potential-density pair. Then, a particular isotropic form of a metric in spherical coordinates is used to construct a General Relativistic version of the Newtonian family of shells. The matter of these relativistic shells presents equal azimuthal and polar pressures, while the radial pressure is a constant times the tangential pressure. We also make a first study of stability of both the Newtonian and relativistic families of shells.
Nuclear rho transparencies in a relativistic Glauber model
Cosyn, Wim
2013-01-01
[Background] The recent Jefferson Lab data for the nuclear transparency in $\\rho^ {0}$ electroproduction have the potential to settle the scale for the onset of color transparency (CT) in vector meson production. [Purpose] To compare the data to calculations in a relativistic and quantum-mechanical Glauber model and to investigate whether they are in accordance with results including color transparency given that the computation of $\\rho$-nucleus attenuations is subject to some uncertainties. [Method] We compute the nuclear transparencies in a multiple-scattering Glauber model and account for effects stemming from color transparency, from $\\rho$-meson decay, and from short-range correlations (SRC) in the final-state interactions (FSI). [Results] The robustness of the model is tested by comparing the mass dependence and the hard-scale dependence of the $A(e,e'p)$ nuclear transparencies with the data. The hard-scale dependence of the $(e,e' \\rho ^ {0})$ nuclear transparencies for $^ {12}$C and $^ {56}$Fe are on...
The metastable dynamo model of stellar rotational evolution
Brown, Timothy M., E-mail: tbrown@lcogt.net [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States)
2014-07-10
This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.
On the connections between solar and stellar dynamo models
Jouve, Laurène; Kumar, Rohit
2017-10-01
We here discuss the various dynamo models which have been designed to explain the generation and evolution of large-scale magnetic fields in stars. We focus on the models that have been applied to the Sun and can be tested for other solar-type stars now that modern observational techniques provide us with detailed stellar magnetic field observations. Mean-field flux-transport dynamo models have been developed for decades to explain the solar cycle and applications to more rapidly-rotating stars are discussed. Tremendous recent progress has been made on 3D global convective dynamo models. They do not however for now produce regular flux emergence that could be responsible for surface active regions and questions about the role of these active regions in the dynamo mechanism are still difficult to address with such models. We finally discuss 3D kinematic dynamo models which could constitute a promising combined approach, in which data assimilation could be applied.
Wien Fireball Model of Relativistic Outflows in Active Galactic Nuclei
岩本, 静男; イワモト, シズオ
2003-01-01
We study steady and spherically symmetric outflows of pure electron-positron pair plasma as a possible acceleration mechanism of relativistic jets up to the bulk Lorentz factor of greater than 10. These outflows are initiated by the ``Wien fireball'', which is optically thick to Compton scattering but thin to absorption and in a Wien equilibrium state between pairs and photons at a relativistic temperature.
A multipurpose 3-D grid of stellar models
Apellániz, J Maíz
2012-01-01
The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxi...
Non-Relativistic Anti-Snyder Model and Some Applications
Ching, Chee Leong; Ng, Wei Khim
2016-01-01
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its...
A relativistic model for neutrino pion production from nuclei in the resonance region
Praet, C; Jachowicz, N; Ryckebusch, J
2007-01-01
We present a relativistic model for electroweak pion production from nuclei, focusing on the $\\Delta$ and the second resonance region. Bound states are derived in the Hartree approximation to the $\\sigma-\\omega$ Walecka model. Final-state interactions of the outgoing pion and nucleon are described in a factorized way by means of a relativistic extension of the Glauber model. Our formalism allows a detailed study of neutrino pion production through $Q^2$, $W$, energy, angle and out-of-plane distributions.
Truncated $\\gamma$-exponential models for tidal stellar systems
Gomez-Leyton, Y J
2016-01-01
We introduce a parametric family of models to characterize the properties of astrophysical systems in a quasi-stationary evolution under the incidence evaporation. We start from an one-particle distribution $f_{\\gamma}\\left(\\mathbf{q},\\mathbf{p}|\\beta,\\varepsilon_{s}\\right)$ that considers an appropriate deformation of Maxwell-Boltzmann form with inverse temperature $\\beta$, in particular, a power-law truncation at the scape energy $\\varepsilon_{s}$ with exponent $\\gamma>0$. This deformation is implemented using a generalized $\\gamma$-exponential function obtained from the \\emph{fractional integration} of ordinary exponential. As shown in this work, this proposal generalizes models of tidal stellar systems that predict particles distributions with \\emph{isothermal cores and polytropic haloes}, e.g.: Michie-King models. We perform the analysis of thermodynamic features of these models and their associated distribution profiles. A nontrivial consequence of this study is that profiles with isothermal cores and p...
Magic, Zazralt
2014-01-01
In the surface layers of late-type stars, stellar convection is manifested with its typical granulation pattern due to the presence of convective motions. The resulting photospheric up- and downflows leave imprints in the observed spectral line profiles. We perform a careful statistical analysis of stellar granulation and its properties for different stellar parameters. We employ realistic 3D radiative hydrodynamic (RHD) simulations of surface convection from the Stagger-grid, a comprehensive grid of atmosphere models that covers a large parameter space in terms of Teff, logg, and [Fe/H]. Individual granules are detected from the (bolometric) intensity maps at disk center with an efficient granulation pattern recognition algorithm. From these we derive their respective properties: diameter, fractal dimension (area-perimeter relation), geometry, topology, variation of intensity, temperature, density and velocity with granule size. Also, the correlation of the physical properties at the optical surface are stud...
A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas
Lin-Liu Y.R.; Hu Y.J.; Hu Y.M.
2012-01-01
A fully relativistic model of electron cyclotron current drive (ECCD) efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed ...
Relativistic Effects in a QCD Inspired quark model and the necessity of a short distance scale
Pathak, Krishna Kingkar
2010-01-01
We study the masses and decay constants of heavy light flavoured mesons in a QCD Inspired Quark model. We modify the relativistic correction procedure by introducing a short distance scale r0 in analogy with relativistic Hydrogen atom and estimate the values of masses and decay constants of heavy-light mesons. Necessity of a short distance scale r0 \\leq 10-3 - 10-5 fm in the model is indicated. Keywords: heavy- light mesons, masses, decay constants
De Sanctis, M; Santopinto, E; Vassallo, A
2015-01-01
We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.
A reduced model for relativistic electron beam transport in solids and dense plasmas
Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.
2014-07-01
A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.
El-Badry, Kareem; Geha, Marla; Quataert, Eliot; Hopkins, Philip F; Kereš, Dusan; Chan, T K; Faucher-Giguère, Claude-André
2016-01-01
In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments (FIRE) project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies' starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy's dynamical mass dur...
A semi-relativistic model for tidal interactions in BH-NS coalescing binaries
Ferrari, V; Gualtieri, L; Pannarale, F [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
2009-06-21
We study the tidal effects of a Kerr black hole on a neutron star in black hole-neutron star (BH-NS) binary systems by using a semi-analytical approach which describes the neutron star as a deformable ellipsoid. Relativistic effects on the neutron star self-gravity are taken into account by employing a scalar potential resulting from relativistic stellar structure equations. We calculate quasi-equilibrium sequences of BH-NS binaries and the critical orbital separation at which the star is disrupted by the black hole tidal field: the latter quantity is of particular interest because when it is greater than the radius of the innermost stable circular orbit, a short gamma-ray burst scenario may develop.
Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows
Dwyer, J. R.
2015-12-01
Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.
Models of cuspy triaxial stellar systems. II. Regular orbits
Muzzio, J C; Zorzi, A F
2012-01-01
In the first paper of this series we used the N--body method to build a dozen cuspy (gamma ~ 1) triaxial models of stellar systems, and we showed that they were highly stable over time intervals of the order of a Hubble time, even though they had very large fractions of chaotic orbits (more than 85 per cent in some cases). The models were grouped in four sets, each one comprising models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. The three models within each set, although different, had the same global properties and were statistically equivalent. In the present paper we use frequency analysis to classify the regular orbits of those models. The bulk of those orbits are short axis tubes (SATs), with a significant fraction of long axis tubes (LATs) in the E2 models that decreases in the E3 and E4 models to become negligibly small in the E5 models. Most of the LATs in the E2 and E3 models are outer LATs, but the situation reverses in the E4 and E5 models where the few LATs are mainly inn...
Modelling turbulent stellar convection zones: sub-grid scales effects
Strugarek, A; Brun, A S; Charbonneau, P; Mathis, S; Smolarkiewicz, P K
2016-01-01
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We deriv...
A stellar model with diffusion in general relativity
Alho, Artur
2016-01-01
We consider a spherically symmetric stellar model in general relativity whose interior consists of a pressureless fluid undergoing microscopic velocity diffusion in a cosmological scalar field. We show that the diffusion dynamics compel the interior to be spatially homogeneous, by which one can infer immediately that within our model, and in contrast to the diffusion-free case, no naked singularities can form in the gravitational collapse. We then study the problem of matching an exterior Bondi type metric to the surface of the star and find that the exterior can be chosen to be a modified Vaidya metric with variable cosmological constant. Finally, we study in detail the causal structure of an explicit, self-similar solution.
Testing galaxy formation models with galaxy stellar mass functions
Lim, Seunghwan; Lan, Ting-Wen; Ménard, Brice
2016-01-01
We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF) of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. Among all the models considered, only the model of Lu et al. can match the observational data; all other models fail to reproduce the faint-end upturn seen in the observation. The CSMFs are used to update the halo-based empirical model of Lu et al., and the model parameters obtained are very similar to those inferred by Lu et al. from a completely different set of observational constraints. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift $z_c \\sim 2$. There is also tentative evidence that this characteristic redshift depends on environments, becoming $z_c \\sim 4$ in regions that eventually evolve into rich clusters of galaxies. The constrained model ...
Carbon Abundances In The Light Of 3D Model Stellar Atmospheres
Collet, Remo
) hydrodynamic modelling of stellar atmospheres and stellar spectra. In this contribution, I describe quantitatively the impact of realistic, time-dependent, 3D hydrodynamic model atmospheres on the spectroscopic determination of carbon abundances from CH molecular lines for stars with a wide range of stellar...... carbon abundance corrections on the oxygen abundance in carbon-enhanced metal-poor (CEMP) stars and show that such corrections are extremely sensitive to the atmospheric C/O ratio....
MILES extended : Stellar population synthesis models from the optical to the infrared
Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.
2016-01-01
We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical wi
The truncation of stellar discs A theoretical model
Battaner, E; Jiménez-Vicente, J
1998-01-01
The truncation of stellar discs is not abrupt but characterized by a continuous distancing from the exponential profile. There exists a truncation curve, $t(r)$, ending at a truncation radius, $r_t$. We present here a theoretical model in which it is assumed that the magnetic hypothesis explaining the flat rotation curve also explains the truncation. Once stars are born, the centripetal magnetic force previously acting on the progenitor gas cloud is suddenly interrupted, and stars must move to larger orbits or escape. The agreement between theoretical and observed truncation curves is very satisfactory. Parameters defining the disc gas rotation curve should therefore be related to those defining the truncation. It is predicted that rotation curves that quickly reach the asymptotic value $\\theta_0 = \\theta (r=\\infty)$ would have small truncation radii. On the contrary, $r_t$ and $\\theta_0$ itself, would be uncorrelated quantities.
Non relativistic limit of integrable QFT and Lieb-Liniger models
Bastianello, Alvise; De Luca, Andrea; Mussardo, Giuseppe
2016-12-01
In this paper we study a suitable limit of integrable QFT with the aim to identify continuous non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda field theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.
Non Relativistic Limit of Integrable QFT and Lieb-Liniger Models
Bastianello, Alvise; Mussardo, Giuseppe
2016-01-01
In this paper we study a suitable limit of integrable QFT with the aim to identify non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda Field Theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.
Stellar Winds on the Main-Sequence I: Wind Model
Johnstone, C P; Lüftinger, T; Toth, G; Brott, I
2015-01-01
Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...
Models of cuspy triaxial stellar systems. IV: Rotating systems
Carpintero, D D
2016-01-01
We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the center and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semiaxes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short axis tubes, while long axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are...
Relativistic Solutions of Anisotropic Compact Objects
Paul, Bikash Chandra
2016-01-01
We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.
Towards 21st Century Stellar Models: Star Clusters, Supercomputing, and Asteroseismology
Campbell, S W; D'Orazi, V; Meakin, C; Stello, D; Christensen-Dalsgaard, J; Kuehn, C; De Silva, G M; Arnett, W D; Lattanzio, J C; MacLean, B T
2015-01-01
Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutiny than ever. The model limitations are being exposed and the next generation of stellar models is needed as soon as possible. The current uncertainties in the models propagate to the later phases of stellar evolution, hindering our understanding of stellar populations and chemical evolution. Here we give a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling.
Towards 21st century stellar models: Star clusters, supercomputing and asteroseismology
Campbell, S. W.; Constantino, T. N.; D'Orazi, V.; Meakin, C.; Stello, D.; Christensen-Dalsgaard, J.; Kuehn, C.; De Silva, G. M.; Arnett, W. D.; Lattanzio, J. C.; MacLean, B. T.
2016-09-01
Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy - through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys - are placing stellar models under greater quantitative scrutiny than ever. The model limitations are being exposed and the next generation of stellar models is needed as soon as possible. The current uncertainties in the models propagate to the later phases of stellar evolution, hindering our understanding of stellar populations and chemical evolution. Here we give a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling. This study uses observational data from from HST, VLT, AAT, Kepler, and supercomputing resources in Australia provided by the National Computational Infrastructure (NCI) and Pawsey Supercomputing Centre.
Special-relativistic model flows of viscous fluid
Rogava, A D
1996-01-01
Two, the most simple cases of special-relativistic flows of a viscous, incompressible fluid are considered: plane Couette flow and plane Poiseuille flow. Considering only the regular motion of the fluid we found the distribution of velocity in the fluid (velocity profiles) and the friction force, acting on immovable wall. The results are expressed through simple analytical functions for the Couette flow, while for the Poiseiulle flow they are expressed by higher transcendental functions (Jacobi's elliptic functions).
A Nonlinear Model for Relativistic Electrons at Positive Temperature
Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert
2008-01-01
We study the relativistic electron-positron field at positive temperature in the Hartree-Fock-approximation. We consider both the case with and without exchange term, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, S\\'er\\'e, and Solovej where the case of zero temperature was considered.
Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma
Hossen, M. R.; Mamun, A. A. [Jahangirnagar University, Savar, Dhaka (Bangladesh)
2014-12-15
The modeling of a theoretical and numerical study on the nonlinear propagation of modified electron-acoustic (mEA) solitary waves has been carried out in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non-relativistic degenerate inertial cold electrons, both non-relativistic and ultra-relativistic degenerate hot electron and inertial positron fluids, and positively-charged static ions). A reductive perturbation technique is used to derive the planar and the nonplanar Korteweg-de Vries (K-dV) equations, which admit a localized wave solution for the solitary profile. The solitary wave's characteristics are found to have been influenced significantly for the non-relativistic and the ultra-relativistic limits. The mEA solitary waves are also found to have been significantly modified due to the effects of the degenerate pressure and the number densities of this dense plasma's constituents. The properties of the planar K-dV solitary wave are quite different from those of the nonplanar K-dV solitary wave. The relevance of our results to astrophysical objects (like white dwarfs and neutron stars), which are of scientific interest, is briefly mentioned.
Maxwell-Chern-Simons Models: Their Symmetries, Exact Solutions and Non-relativistic Limits
J. Niederle
2010-01-01
Full Text Available Two Maxwell-Chern-Simons (MCS models in the (1 + 3-dimensional space-space are discussed and families of their exact solutions are found. In contrast to the Carroll-Field-Jackiw (CFE model [2] these systems are relativistically invariant and include the CFJ model as a particular sector.Using the InNonNu-Wigner contraction a Galilei-invariant non-relativistic limit of the systems is found, which makes possible to find a Galilean formulation of the CFJ model.
The Evolutionary Population Synthesis Model for Helium-Enhanced Stellar Populations
Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook
2017-01-01
The discovery of multiple stellar populations in the Milky Way globular clusters has stimulated a great deal of researches on the helium enhanced stellar populations. Here, we present the evolutionary population synthesis models for integrated spectro-photometric evolution of simple stellar populations (SSPs) with varied initial helium abundances. The integrated properties of helium-enhanced SSPs depend on metallicity and age as are the normal-helium SSPs, but the properties vary greatly with the initial helium abundance. We will discuss how helium-enhanced stellar populations explain many interesting observations of globular clusters and their host galaxies.
Modeling non-thermal emission from stellar bow shocks
Pereira, V; Miceli, M; Bonito, R; de Castro, E
2016-01-01
Runaway O- and early B-type stars passing throughout the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high energy photons by non-thermal radiative processes, but their efficiency is still debated. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. We apply our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high energy emission, and to the transition phase of a supergiant star in the late stages of its life.From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high energy fl...
Stellar Models of Multiple Populations in Globular Clusters. I. The Main Sequence of NGC 6752
Dotter, Aaron; Conroy, Charlie; Milone, A P; Marino, A F; Yong, David
2014-01-01
We present stellar atmosphere and evolution models of main sequence stars in two stellar populations of the Galactic globular cluster NGC 6752. These populations represent the two extremes of light-element abundance variations in the cluster. NGC 6752 is a benchmark cluster in the study of multiple stellar populations because of the rich array of spectroscopic abundances and panchromatic Hubble Space Telescope photometry. The spectroscopic abundances are used to compute stellar atmosphere and evolution models. The synthetic spectra for the two populations show significant differences in the ultraviolet and, for the coolest temperatures, in the near-infrared. The stellar evolution models exhibit insignificant differences in the H-R diagram except on the lower main sequence. The appearance of multiple sequences in the colour-magnitude diagrams (CMDs) of NGC 6752 is almost exclusively due to spectral effects caused by the abundance variations. The models reproduce the observed splitting and/or broadening of sequ...
Conroy, Charlie; White, Martin
2008-01-01
The stellar masses, mean ages, metallicities, and star formation histories of galaxies are now commonly estimated via stellar population synthesis (SPS) techniques. SPS relies on stellar evolution calculations from the main sequence to stellar death, stellar spectral libraries, phenomenological dust models, and stellar initial mass functions (IMFs). The present work is the first in a series that explores the impact of uncertainties in key phases of stellar evolution and the IMF on the derived physical properties of galaxies and the expected luminosity evolution for a passively evolving set of stars. A Monte-Carlo Markov-Chain approach is taken to fit near-UV through near-IR photometry of a representative sample of low- and high-redshift galaxies with this new SPS model. Significant results include the following: 1) including uncertainties in stellar evolution, stellar masses at z~0 carry errors of ~0.3 dex at 95% CL with little dependence on luminosity or color, while at z~2, the masses of bright red galaxies...
Modeling turbulent stellar convection zones: Sub-grid scales effects
Strugarek, A.; Beaudoin, P.; Brun, A. S.; Charbonneau, P.; Mathis, S.; Smolarkiewicz, P. K.
2016-10-01
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modeled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in the magnetohydrodynamic regime for various dynamo solutions.
Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.
Dunkel, Jörn; Hänggi, Peter
2006-11-01
The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.
Baraffe, [No Value; Alibert, Y; Mera, D; Charbrier, G; Beaulieu, JP
1998-01-01
We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables (3
Modeling for Stellar Feedback in Galaxy Formation Simulations
Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena
2017-02-01
Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov–Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H ii regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3–130) × 104 solar masses.
Beyond the thermal model in relativistic heavy-ion collisions
Wolschin, Georg
2016-01-01
Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.
A finite Zitterbewegung model for relativistic quantum mechanics
Noyes, H.P.
1990-02-19
Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.
Relativistic constituent model in sector of light mesons
Krutov, A F; Troitsky, V E
2016-01-01
We present a brief survey of some results on electroweak properties of composite systems that are obtained in the frameworks of our version of the instant form of relativistic quantum mechanics (RQM). Our approach describes well the $\\pi$- and the $\\rho$- mesons in wide range of momentum transfers $Q^{2}$. At large $Q^{2}$ the obtained pion form factor asymptotics coincides with that of QCD predictions. The method permits to perform analytic continuation of pion form factor to complex plane of momentum transfers that is in accordance with predictions of quantum field theory.
A new methodology to test galaxy formation models using the dependence of clustering on stellar mass
Campbell, David J. R.; Baugh, Carlton M.; Mitchell, Peter D.; Helly, John C.; Gonzalez-Perez, Violeta; Lacey, Cedric G.; Lagos, Claudia del P.; Simha, Vimal; Farrow, Daniel J.
2015-09-01
We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a high resolution, large volume N-body simulation, set in the 7-year Wilkinson Microwave Anisotropy Probe cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model, and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highlight the importance of applying our methodology to compare theoretical models to observations. We introduce an alternative scheme for the calculation of the merger time-scales for satellite galaxies in GALFORM, which takes into account the dark matter subhalo information from the simulation. This reduces the amplitude of small-scale clustering. The new merger scheme offers improved or similar agreement with observational clustering measurements, over the redshift range 0 Public Extragalactic Redshift Survey, depending on the GALFORM model used.
Stellar energy loss rates in the pair-annihilation process beyond the standard model
Hernández-Ruíz, M. A.; Gutiérrez-Rodríguez, A.; González-Sánchez, A.
2017-01-01
We calculate the stellar energy loss due to neutrino-pair production in e+e- annihilation in the context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be used in supernova calculations. We also present some simple estimates which show that such process can act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy loss is almost independent of the parameters of the models in the allowed range for these parameters. This work complements other studies on the stellar energy loss rate in e+e- annihilation.
DONG Yu-Bing; FENG Qing-Guo
2002-01-01
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
A Legacy Magellanic Clouds Star Clusters Sample for the Calibration of Stellar Evolution Models
Fouesneau, Morgan
2014-10-01
Stellar evolution models are fundamental to all studies in astrophysics. These models are the foundations of the interpretation of colors and luminosities of stars necessary to address problems ranging from galaxy formation to determining the habitable zone of planets and interstellar medium properties. For decades the standard calibration of these models relied on a handful of star clusters. However, large uncertainties remain in the fundamental parameters underlying stellar evolution models. The project we propose is two-fold. First we propose to generate a new high quality reference dataset of the resolved stars in 121 Magellanic Cloud clusters, selected from 18 past programs to efficiently sample a large grid of stellar evolution models. Our team will measure the photometry of individual stars in those clusters and characterize individual completeness and photometric uncertainties. Second, we will migrate the calibration of the stellar evolution into a fully probabilistic framework, that will not only reflect the state-of-the-art, but will also be published with fully characterized uncertainties, based on the entire reference data set, rather than a few select clusters.We have entered an era dominated by large surveys {e.g. SDSS, PanSTARRS, Gaia, LSST} where the variations between families of stellar models are greater than the nominal precision of the instruments. Our proposed program will provide a library needed for a convergence in the stellar models and our understanding of stellar evolution.
On the Theory of Resonances in Non-Relativistic QED and Related Models
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
Relativistic model for the nonmesonic weak decay of single-lambda hypernuclei
Fontoura, C E; Galeão, A P; De Conti, C; Krein, G
2015-01-01
Having in mind its future extension for theoretical investigations related to charmed nuclei, we develop a relativistic formalism for the nonmesonic weak decay of single-$\\Lambda$ hypernuclei in the framework of the independent-particle shell model and with the dynamics represented by the $(\\pi,K)$ one-meson-exchange model. Numerical results for the one-nucleon-induced transition rates of ${}^{12}_{\\Lambda}\\textrm{C}$ are presented and compared with those obtained in the analogous nonrelativistic calculation. There is satisfactory agreement between the two approaches, and the most noteworthy difference is that the ratio $\\Gamma_{n}/\\Gamma_{p}$ is appreciably higher and closer to the experimental value in the relativistic calculation. Large discrepancies between ours and previous relativistic calculations are found, for which we do not encounter any fully satisfactory explanation. The most recent experimental data is well reproduced by our results. In summary, we have achieved our purpose to develop a reliable...
Becker, Matthew R
2015-01-01
In this work, I explore an empirically motivated model for investigating the relationship between galaxy stellar masses, star formation rates and their halo masses and mass accretion histories. The core statistical quantity in this model is the stellar mass assembly distribution, $P(dM_{*}/dt|\\mathbf{X},a)$, which specifies the probability density distribution of stellar mass assembly rates given a set of halo properties $\\mathbf{X}$ and epoch $a$. Predictions from this model are obtained by integrating the stellar mass assembly distribution (SMAD) over halo merger trees, easily obtained from modern, high-resolution $N$-body simulations. Further properties of the galaxies hosted by the halos can be obtained by post-processing the stellar mass assembly histories with stellar population synthesis models. In my particular example implementation of this model, I use the \\citet{behroozi13a} constraint on the median stellar mass assembly rates of halos as a function of their mass and redshift to construct an exampl...
Modelling the stellar soft-photon energy density profile of globular clusters
Prinsloo, P L; Buesching, I; Kopp, A
2013-01-01
Recent observations by e.g. Fermi Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) have revealed globular clusters (GC) to be sources of high-energy (HE) and very-high-energy (VHE) gamma rays. It has been suggested that the presence of large numbers of millisecond pulsars (MSPs) within these clusters may be either directly responsible for these gamma-ray fluxes through emission of pulsed curvature radiation, or indirectly through the injection of relativistic leptons into the cluster. These relativistic particles are plausibly re-accelerated in shocks, created by the collision of stellar winds, before interacting with the soft-photon radiation field set up by the stellar population of the host cluster. Inverse Compton (IC) scattering then produces gamma radiation in the TeV band. In order to calculate the IC spectrum, an accurate profile for the energy density of the soft-photon field is required. We construct such a profile by deriving a radially-dependent expression for the stel...
Benson, A J
2014-01-01
We constrain a highly simplified semi-analytic model of galaxy formation using the $z\\approx 0$ stellar mass function of galaxies. Particular attention is paid to assessing the role of random and systematic errors in the determination of stellar masses, to systematic uncertainties in the model, and to correlations between bins in the measured and modeled stellar mass functions, in order to construct a realistic likelihood function. We derive constraints on model parameters and explore which aspects of the observational data constrain particular parameter combinations. We find that our model, once constrained, provides a remarkable match to the measured evolution of the stellar mass function to $z=1$, although fails dramatically to match the local galaxy HI mass function. Several "nuisance parameters" contribute significantly to uncertainties in model predictions. In particular, systematic errors in stellar mass estimate are the dominant source of uncertainty in model predictions at $z\\approx 1$, with addition...
Towards 21st Century Stellar Models: Star Clusters, Supercomputing, and Asteroseismology
Campbell, S. W.; Constantino, T. N.; D'Orazi, V.;
2016-01-01
Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutin...... a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling....
Modelling general relativistic perfect fluids in field theoretic language
Mitskievich, N V
1999-01-01
Skew-symmetric massless fields, their potentials being $r$-forms, are close analogues of Maxwell's field (though the non-linear cases also should be considered). We observe that only two of them ($r=$2 and 3) automatically yield stress-energy tensors characteristic to normal perfect fluids. It is shown that they naturally describe both non-rotating ($r=2$) and rotating (then a combination of $r=2$ and $r=3$ fields is indispensable) general relativistic perfect fluids possessing every type of equations of state. Meanwile, a free $r=3$ field is completely equivalent to appearance of the cosmological term in Einstein's equations. Sound waves represent perturbations propagating on the background of the $r=2$ field. Some exotic properties of these two fields are outlined.
Differential Regularization of a Non-relativistic Anyon Model
Freedman, Daniel Z; Rius, N
1994-01-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field $\\phi$ with $\\lambda (\\phi {}^{*} \\phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\\phi {}^{*} \\phi {}^{*} \\phi \\phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to $\\beta(\\lambda,e)$ vanish, and $\\beta(\\lambda,e)$ itself vanishes when the ``self-dual'' condition relating $\\lambda$ to the gauge coupling $e$ is imposed.
Avancini, S.S.; Marinelli, J.R. [Universidade Federal de Santa Catarina Florianopolis, Depto de Fisica - CFM, Florianopolis (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (Brazil)
2013-06-15
Relativistic models for finite nuclei contain spurious center-of-mass motion in most applications for the nuclear many-body problem, where the nuclear wave function is taken as a single Slater determinant within a space-fixed frame description. We use the Peierls-Yoccoz projection method, previously developed for relativistic approaches together with a reparametrization of the coupling constants that fits binding energies and charge radius and apply our results to calculate elastic electron scattering monopole charge form factors for light nuclei. (orig.)
Kuncarayakti, H; Anderson, J P; Krühler, T; Hamuy, M
2016-01-01
CONTEXT. Stellar populations are the building blocks of galaxies including the Milky Way. The majority, if not all extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, their study is mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. AIMS. This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, i.e. age and metallicity. METHODS. Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, is used to study the properties of the cluster both as a resolved and unresolved stellar population. The unresolved stellar population is analysed using the H$\\alpha$ equivalent width as ...
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)
2006-04-24
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.
Semileptonic decays of $\\Lambda_c$ baryons in the relativistic quark model
Faustov, R N
2016-01-01
Motivated by recent experimental progress in studying weak decays of the $\\Lambda_c$ baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach and QCD. The form factors of the $\\Lambda_c\\to \\Lambda l\
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
Larchenkova, T. I.; Lutovinov, A. A.; Lyskova, N. S.
2011-01-01
The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Dif...
Buchert, Thomas; Wiegand, Alexander
2013-01-01
Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model `irrotational dust'. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the `Relativistic Zel'dovich Approximation'. In this model we investigate the effect of `kinematical backreaction' on the evolution of cosmological parameters as they are defined in an averaged inhomogenous cosmology, and we show that the backreaction model interpolates between orthogonal symmetry properties by covering subcases of the plane-symmetric solution, the Lemaitre-Tolman-Bondi solution and the Szekeres solution. We so obtain a powerful model that lays the foundations for quantitatively addressing curvature inhomogeneities as they would be interpreted as `Dark Energy' or `Dark Matter' in a quasi-Newtonian cosmology. The present model, havi...
Thuan, T. X.; Hart, M. H.; Ostriker, J. P.
1975-01-01
The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.
The simplest model of galaxy formation I: A formation history model of galaxy stellar mass growth
Mutch, Simon J; Poole, Gregory B
2013-01-01
We introduce a simple model to self-consistently connect the growth of galaxies to the formation history of their host dark matter halos. Our model is defined by two simple functions: the "baryonic growth function" which controls the rate at which new baryonic material is made available for star formation, and the "physics function" which controls the efficiency with which this material is converted into stars. Using simple, phenomenologically motivated forms for both functions that depend only on a single halo property, we demonstrate the model's ability to reproduce the z=0 red and blue stellar mass functions. Furthermore, by adding redshift as a second input variable to the physics function we show that the reproduction of the global stellar mass function out to z=3 is improved. We conclude by discussing the general utility of our new model, highlighting its usefulness for creating mock galaxy samples which have a number of key advantages over those generated by other techniques.
Cohen, O.
2017-02-01
The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.
A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion
Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)
2016-06-15
We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.
2016-03-01
We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.
Stellar models for very low mass main sequence stars the role of model atmospheres
Brocato, E; Castellani, V
1997-01-01
We present Very Low Mass stellar models as computed including non-grey model atmospheres for selected assumptions about the star metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation and with similar models appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass-luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighborhood reveals a satisfactory agreement together with the existence of some residual mismatches.
Spherical relativistic vacuum core models in a Λ-dominated era
Yousaf, Z.
2017-02-01
This paper is devoted to analyzing the effects of the cosmological constant in the evolution of exact analytical collapsing vacuum core celestial models. For this purpose, relativistic spherical geometry coupled with null expansion locally anisotropic matter distributions is considered. We have first developed a relation between tidal forces and structural variables. We then explored some viable spherical cosmological models by taking the expansion-free condition. Our first class of spherical models is obtained after constraining system matter content, while the second class is obtained by considering barotropic equation of state. We propose that our calculated solutions could be regarded as a relativistic toy model for those astronomical compact populations where vacuum core is expected to appear, like cosmological voids.
On line contribution functions and examining spectral line formation in 3D model stellar atmospheres
Amarsi, Anish Mayur
2015-01-01
Line contribution functions are useful diagnostics for studying spectral line formation in stellar atmospheres. I derive an expression for the contribution function to the abso- lute flux depression that emerges from three-dimensional box-in-a-star model stellar atmospheres. I illustrate the result by comparing the local thermodynamic equilibrium (LTE) spectral line formation of the high-excitation permitted OI777nm lines with the non-LTE case.
Bernardi, M.; Meert, A.; Sheth, R. K.; Fischer, J.-L.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.
2017-01-01
We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ˜ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order ≤0.5 dex, systematics in photometry are now about 0.1 dex, in contrast to some recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of ρ★( ≥ M★) by factors of 3 - 10 in the mass range 1011 - 1011.6M⊙, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order ≤0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.
Finite Size Corrected Relativistic Mean-Field Model and QCD Critical End Point
Uddin, Saeed; Ahmad, Jan Shabir
2012-01-01
The effect of finite size of hadrons on the QCD phase diagram is analyzed using relativistic mean field model for the hadronic phase and the Bag model for the QGP phase. The corrections to the EOS for hadronic phase are incorporated in a thermodynamic consistent manner for Van der Waals like interaction. It is found that the effect of finite size of baryons is to shift CEP to higher chemical potential values.
PACIAE 2.0: An Updated Parton and Hadron Cascade Model (Program) for Relativistic Nuclear Collisions
SA; Ben-hao; ZHOU; Dai-mei; YAN; Yu-liang; LI; Xiao-mei; FENG; Sheng-qing; DONG; Bao-guo; CAI; Xu
2012-01-01
<正>We have updated the parton and hadron cascade model PACIAE for the relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7, and referred to as PACIAE 2.0. The main physics concerning the stages of the parton initiation, parton rescattering, hadronization, and hadron rescattering were discussed. The structures of the programs were briefly explained. In addition, some calculated examples were compared with the experimental data. It turns out that this model (program) works well.
N.N. Bogolubov (Jr.
2009-01-01
Full Text Available The work is devoted to the study of the Lagrangian and Hamiltonian properties of some relativistic electrodynamics models and is a continuation of our previous investigations. Based on the vacuum field theory approach, the Lagrangian and Hamiltonian reformulation of some classical electrodynamics models is devised. The Dirac type quantization procedure, based on the canonical Hamiltonian formulation, is developed. Within the approach proposed in the work a possibility of the combined description both of electrodynamics and gravity is analyzed.
Magnetic moments of heavy baryons in the relativistic three-quark model
Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Grids of stellar models including second harmonic and colours: Solar composition
Yildiz, Mutlu
2015-01-01
Grids of stellar evolution are required in many fields of astronomy/astrophysics, such as planet hosting stars, binaries, clusters, chemically peculiar stars, etc. In this study, a grid of stellar evolution models with updated ingredients and {recently determined solar abundaces} is presented. The solar values for the initial abundances of hydrogen, heavy elements and mixing-length parameter are 0.0172, 0.7024 and 1.98, respectively. The mass step is small enough (0.01 M$_\\odot$) that interpolation for a given star mass is not required. The range of stellar mass is 0.74 to 10.00 M$_\\odot$. We present results in different forms of tables for easy and general application. The second stellar harmonic, required for analysis of apsidal motion of eclipsing binaries, is also listed. We also construct rotating models to determine effect of rotation on stellar structure and derive fitting formula for luminosity, radius and the second stellar harmonic as a function of rotational parameter. We also compute and list colo...
AME - Asteroseismology Made Easy. Estimating stellar properties by use of scaled models
Lundkvist, M; Aguirre, V Silva
2014-01-01
We present a new method to obtain stellar properties for stars exhibiting solar-like oscillations in an easy, fast, and transparent way. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean-densities, radii, and surface gravities, as well as estimate ages. In this writing we present AME as a visual and powerful tool which could be useful; in particular in the light of the large number of exoplanets being found. AME consists of a set of figures from which the stellar parameters are deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 Msun to 1.6 Msun in steps of 0.1 Msun and metallicities in the interval -0.3 dex <= [Fe/H] <= +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. We have compared the results from AME with results for three groups of stars; stars with radii determined from inter...
Exponential Disks from Stellar Scattering: III. Stochastic Models
Elmegreen, Bruce G
2016-01-01
Stellar scattering off irregularities in a galaxy disk has been shown to make an exponential radial profile, but no fundamental reason for this has been suggested. Here we show that exponentials are mathematically expected from random scattering in a disk when there is a slight inward bias in the scattering probability. Such a bias was present in our previous scattering experiments that formed exponential profiles. Double exponentials can arise when the bias varies with radius. This is a fundamental property of scattering and may explain why piece-wise exponential profiles are ubiquitous in galaxies, even after minor mergers and other disruptive events.
Single stellar populations in the near-infrared II. Synthesis models
Meneses-Goytia, S; Trager, S C; Vazdekis, A
2015-01-01
We present unresolved single stellar population synthesis models in the near-infrared (NIR) range. The extension to the NIR is important for the study of early-type galaxies, since these galaxies are predominantly old and therefore emit most of their light in this wavelength range. The models are based on a library of empirical stellar spectra, the NASA infrared telescope facility (IRTF) spectral library. Integrating these spectra along theoretical isochrones, while assuming an initial mass function (IMF), we have produced model spectra of single age-metallicity stellar populations at a resolution R~2000. These models can be used to fit observed spectral of globular clusters and galaxies, to derive their age distribution, chemical abundances and IMF. The models have been tested by comparing them to observed colours of elliptical galaxies and clusters in the Magellanic Clouds. Predicted absorption line indices have been compared to published indices of other elliptical galaxies. The comparisons show that our m...
Model of Quantum Computing in the Cloud: The Relativistic Vision Applied in Corporate Networks
Chau Sen Shia
2016-08-01
Full Text Available Cloud computing has is one of the subjects of interest to information technology professionals and to organizations when the subject covers financial economics and return on investment for companies. This work aims to present as a contribution proposing a model of quantum computing in the cloud using the relativistic physics concepts and foundations of quantum mechanics to propose a new vision in the use of virtualization environment in corporate networks. The model was based on simulation and testing of connection with providers in virtualization environments with Datacenters and implementing the basics of relativity and quantum mechanics in communication with networks of companies, to establish alliances and resource sharing between the organizations. The data were collected and then were performed calculations that demonstrate and identify connections and integrations that establish relations of cloud computing with the relativistic vision, in such a way that complement the approaches of physics and computing with the theories of the magnetic field and the propagation of light. The research is characterized as exploratory, because searches check physical connections with cloud computing, the network of companies and the adhesion of the proposed model. Were presented the relationship between the proposal and the practical application that makes it possible to describe the results of the main features, demonstrating the relativistic model integration with new technologies of virtualization of Datacenters, and optimize the resource with the propagation of light, electromagnetic waves, simultaneity, length contraction and time dilation.
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R. J.; Serot, Brian D.
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
Semileptonic decays of Λ{sub c} baryons in the relativistic quark model
Faustov, R.N.; Galkin, V.O. [Institute of Informatics in Education, FRC CSC RAS, Moscow (Russian Federation)
2016-11-15
Motivated by recent experimental progress in studying weak decays of the Λ{sub c} baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ{sub c} → Λlν{sub l} and Λ{sub c} → nlν{sub l} decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data. (orig.)
Relativistic three-body quark model of light baryons based on hypercentral approach
Aslanzadeh, M.; Rajabi, A. A.
2015-05-01
In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein-Gordon equation. We presented the analytical solution of three-body Klein-Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.
Picogna, G.; Marzari, F.
2014-04-01
Context. Stellar flybys in star clusters are suspected of affecting the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. Aims: We explore whether the impulsive changes in the orbital elements of planets, caused by a hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is comparable to the circumstellar disk's lifetime. Since we perform 3D simulations, we can also test the inclination, excitation, and damping. Methods: We have modeled in 3D with the SPH code VINE, a system made of a solar-type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star of similar mass and with its own disk. Different inclinations between the disks, planet orbit, and star trajectory have been considered to explore various encounter geometries. We focus on an extreme configuration where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows us to test in full the ability of the disk to erase the effects of the stellar encounter. Results: We find that the amount of mass lost by the disk during the stellar flyby is less than in 2D models where a single disk was considered. This is mostly related to the mass exchange between the two disks at the encounter. The damping in eccentricity is slightly faster than in 2D models and it occurs on timescales on the order of a few kyr. During the flyby both the disks are warped owing to the mutual interaction and to the stellar gravitational perturbations, but they quickly relax to a new orbital plane. The planet is quickly dragged back within the disk by the tidal interaction with the gas. The only trace of the flyby left in the planet system, after about 104 yr, is a small misalignment, lower than 9°, between the star equatorial plane and the
Picogna, Giovanni
2014-01-01
Stellar flybys in star clusters are suspected to affect the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. We explore whether the impulsive changes in the orbital elements of planets, caused by an hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is in fact comparable to circumstellar disk's lifetime. We have modelled in 3D a system made of a solar type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star, of similar mass and with its own disk. We focus on extreme configurations where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows to test in full the ability of the disk to erase the effects of the stellar encounter. We find that the amount of mass lost by the disk during the stellar fly...
Stellar energy loss rates in the pair-annihilation process beyond the standard model
Hernandez-Ruiz, M.A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ciencias Quimicas, Apartado Postal C-585, Zacatecas (Mexico); Gutierrez-Rodriguez, A. [Universidad Autonoma de Zacatecas, Facultad de Fisica, Apartado Postal C-580, Zacatecas (Mexico); Gonzalez-Sanchez, A. [Universidad Autonoma de Zacatecas, Facultad de Fisica, Apartado Postal C-580, Zacatecas (Mexico); PSL Research University, Observatoire de Paris, LERMA, CNRS UMR 8112, Paris (France)
2017-01-15
We calculate the stellar energy loss due to neutrino-pair production in e{sup +}e{sup -} annihilation in the context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be used in supernova calculations. We also present some simple estimates which show that such process can act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy loss is almost independent of the parameters of the models in the allowed range for these parameters. This work complements other studies on the stellar energy loss rate in e{sup +}e{sup -} annihilation. (orig.)
On spherically symmetric singularity-free models in relativistic cosmology
Ramesh Tikekar
2000-10-01
The introduction of time dependence through a scale factor in a non-conformally ﬂat static cosmological model whose spacetime can be embedded in a ﬁve demensional ﬂat spacetime is shown to give rise to two spherical models of universe ﬁlled with perfect ﬂuid acompannied with radial heat ﬂux without any Big Bang type singularity. The ﬁrst model describes an ever existing universe which witnesses a transition from state of contraction to that of ever expansion. The second model represents a universe oscillating between two regular states.
Stellar dynamo models with prominent surface toroidal fields
Bonanno, Alfio
2016-01-01
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular it is argued that the observed increase in the toroidal energy in low mass fast rotating stars can be naturally explained with an underlying $\\alpha\\Omega$ mechanism.
Stellar Dynamo Models with Prominent Surface Toroidal Fields
Bonanno, Alfio
2016-12-01
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.
Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.
Behery, E E; Haas, F; Kourakis, I
2016-02-01
The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.
Ellison, Donald C; Bykov, Andrei M
2015-01-01
We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...
Propagating Linear Waves in Convectively Unstable Stellar Models: a Perturbative Approach
Papini, Emanuele; Birch, Aaron C
2013-01-01
Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization, however, affects the result. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field, while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within $1~\\mu$Hz for low-degree modes with frequencies near $3~\\mu$Hz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.
A simple model to describe intrinsic stellar noise for exoplanet detection around red giants
North, Thomas S H; Gilliland, Ronald L; Huber, Daniel; Campante, Tiago L; Handberg, Rasmus; Lund, Mikkel N; Veras, Dimitri; Kuszlewicz, James S; Farr, Will M
2016-01-01
In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation, and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESS missions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune sized planets should be detectable around low luminosity red giant branch stars.
A simple model to describe intrinsic stellar noise for exoplanet detection around red giants
North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.; Huber, Daniel; Campante, Tiago L.; Handberg, Rasmus; Lund, Mikkel N.; Veras, Dimitri; Kuszlewicz, James S.; Farr, Will M.
2017-02-01
In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESSmissions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune-sized planets should be detectable around low-luminosity red giant branch stars.
Deeply virtual Compton scattering in a relativistic quark model
Spitzenberg, T.
2007-09-15
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)
MILES extended: Stellar population synthesis models from the optical to the infrared
Röck, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcón-Barroso, J.
2016-05-01
We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 Å and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [ Fe / H ] = - 0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis of two different sets of isochrones. They are available to the scientific community on the MILES web page. We checked the internal consistency of our models and compared their colour predictions to those of other models that are available in the literature. Optical and near infrared colours that are measured from our models are found to reproduce the colours well that were observed for various samples of early-type galaxies. Our models will enable a detailed analysis of the stellar populations of observed galaxies.
Relativistic jet models for two low-luminosity radio galaxies: evidence for backflow?
Laing, R A
2012-01-01
We show that asymmetries in total intensity and linear polarization between the radio jets and counter-jets in two lobed Fanaroff-Riley Class I (FR I) radio galaxies, B2 0206+35 (UGC 1651) and B2 0755+37 (NGC 2484), can be accounted for if these jets are intrinsically symmetrical, with decelerating relativistic outflows surrounded by mildly relativistic backflows. Our interpretation is motivated by sensitive, well-resolved Very Large Array imaging which shows that both jets in both sources have a two-component structure transverse to their axes. Close to the jet axis, a centrally-darkened counter-jet lies opposite a centrally-brightened jet, but both are surrounded by broader collimated emission that is brighter on the counter-jet side. We have adapted our previous models of FR I jets as relativistic outflows to include an added component of symmetric backflow. We find that the observed radio emission, after subtracting contributions from the extended lobes, is well described by models in which decelerating o...
Systematic problems with using dark matter simulations to model stellar halos
Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States); Bell, Eric F.; Valluri, Monica [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Stinson, Greg S. [Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, D-69117 Heidelberg (Germany); Debattista, Victor P. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Couchman, H. M. P.; Wadsley, James, E-mail: jbailin@ua.edu [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)
2014-03-10
The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be 'painted' onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the 'painting' simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude.
Forecasting relativistic electron flux using dynamic multiple regression models
H.-L. Wei
2011-02-01
Full Text Available The forecast of high energy electron fluxes in the radiation belts is important because the exposure of modern spacecraft to high energy particles can result in significant damage to onboard systems. A comprehensive physical model of processes related to electron energisation that can be used for such a forecast has not yet been developed. In the present paper a systems identification approach is exploited to deduce a dynamic multiple regression model that can be used to predict the daily maximum of high energy electron fluxes at geosynchronous orbit from data. It is shown that the model developed provides reliable predictions.
Relativistic electromagnetic mass models in spherically symmetric spacetime
Maurya, S K; Ray, Saibal; Chatterjee, Vikram
2015-01-01
Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Tiwari 1984, Gautreau 1985, Gron 1985). This work is in continuation of our earlier investigation (Maurya 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass models. In the present letter we consider different metric potentials $\
Cappellari, Michele
2015-01-01
Cappellari (2008) presented a flexible and efficient method to model the stellar kinematics of anisotropic axisymmetric and spherical stellar systems. The spherical formalism could be used to model the line-of-sight velocity second moments allowing for essentially arbitrary radial variation in the anisotropy and general luminous and total density profiles. Here we generalize the spherical formalism by providing the expressions for all three components of the projected second moments, including the two proper motion components. A reference implementation is now included in the public JAM package available at http://purl.org/cappellari/software
Relativistic modeling of compact stars for anisotropic matter distribution
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)
2017-05-15
In this paper we have solved Einstein's field equations of spherically symmetric spacetime for anisotropic matter distribution by assuming physically valid expressions of the metric function e{sup λ} and radial pressure (p{sub r}). Next we have discussed the physical properties of the model in details by taking the radial pressure p{sub r} equal to zero at the boundary of the star. The physical analysis of the star indicates that its model parameters such as density, redshift, radial pressure, transverse pressure and anisotropy are well behaved. Also we have obtained the mass and radius of our compact star which are 2.29M {sub CircleDot} and 11.02 km, respectively. It is observed that the model obtained here for compact stars is compatible with the mass and radius of the strange star PSR 1937 +21. (orig.)
Relativistic electromagnetic mass models in spherically symmetric spacetime
Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Chatterjee, Vikram
2016-10-01
Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of constructing electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Lorentz in Proc. Acad. Sci. Amst. 6, 1904). This work is in continuation of our earlier investigation of Maurya et al. (Eur. Phys. J. C 75:389, 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass model. In the present work we consider different metric potentials ν and λ and have analyzed them in a systematic way. It is observed that some of the previous solutions related to electromagnetic mass model are nothing but special cases of the presently obtained generalized solution set. We further verify the solution set and especially show that these are extremely applicable in the case of compact stars.
Relativistic quark model for the Omega- electromagnetic form factors
G. Ramalho, K. Tsushima, Franz Gross
2009-08-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
A relativistic quark model for the Omega- electromagnetic form factors
Ramalho, G; Gross, Franz
2009-01-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters
Münch, A; Lada, C J; Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.
1999-01-01
We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young stellar populations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5 Msun to 0.02 Msun), has a peak near the hydrogen burning limit, and has an IMF for Brown Dwarfs which steadily decreases with decreasing mass.
Modelling stellar jets with magnetospheres using as initial states analytical MHD solutions
Todorov, P; Cayatte, V; Sauty, C; Lima, J J G; Tsinganos, K
2016-01-01
In this paper we focus on the construction of stellar outflow models emerging from a polar coronal hole-type region surrounded by a magnetosphere in the equatorial regions during phases of quiescent accretion. The models are based on initial analytical solutions. We adopt a meridionally self-similar solution of the time-independent and axisymmetric MHD equations which describes effectively a jet originating from the corona of a star. We modify appropriately this solution in order to incorporate a physically consistent stellar magnetosphere. We find that the closed fieldline region may exhibit different behaviour depending on the associated boundary conditions and the distribution of the heat flux. However, the stellar jet in all final equilibrium states is very similar to the analytical one prescribed in the initial conditions. When the initial net heat flux is maintained, the magnetosphere takes the form of a dynamical helmet streamer with a quasi steady state slow magnetospheric wind. With no heat flux, a s...
Nakamura, Masanori
2014-01-01
We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...
Gonthier, P L; Baring, M G; Costello, R M; Mercer, C L; Gonthier, Peter L.; Harding, Alice K.; Baring, Matthew G.; Costello, Rachel M.; Mercer, Cassandra L.
2000-01-01
This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields ($ > 4 \\times 10^{12}$ G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that stron...
Modeling the Emission from Turbulent Relativistic Jets in Active Galactic Nuclei
Victoria Calafut; Paul J. Wiita
2015-06-01
We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and our viewing angle to the jet. The total observed flux is found by integrating the radiation from the eddies over the turbulent spectrum. We consider jets that contain turbulent eddies that have either standard Kolmogorov or recently derived relativistic turbulence spectra. We also account for the time delays in receiving the emission of the eddies due to their different simulated positions in the jet, as well as due to the varying beaming directions as they turn over. We examine these theoretical light curves and compute power spectral densities (PSDs) for a range of viewing angles, bulk velocities of the jet, and turbulent velocities. These PSD slopes depend significantly on the turbulent velocity, and are essentially independent of viewing angle and bulk velocity. The flux variations produced in the simulations for realistic values of the parameters tested are consistent with the types of variations observed in radio-loud AGN as, for example, recently measured with the Kepler satellite, as long as the turbulent velocities are not too high.
Octet baryon electromagnetic form factors in a relativistic quark model
Ramalho, G
2011-01-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
A Euclidean bridge to the relativistic constituent quark model
Hobbs, T J; Miller, Gerald A
2016-01-01
${\\bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${\\bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${\\bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of ...
Euclidean bridge to the relativistic constituent quark model
Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.
2017-03-01
Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.
Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.
2016-09-01
Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation
General Relativistic Equilibrium Models of Magnetized Neutron Stars
Pili, A G; Del Zanna, L
2013-01-01
Magnetic fields play a crucial role in many astrophysical scenarios and, in particular, are of paramount importance in the emission mechanism and evolution of Neutron Stars (NSs). To understand the role of the magnetic field in compact objects it is important to obtain, as a first step, accurate equilibrium models for magnetized NSs. Using the conformally flat approximation we solve the Einstein's equations together with the GRMHD equations in the case of a static axisymmetryc NS taking into account different types of magnetic configuration. This allows us to investigate the effect of the magnetic field on global properties of NSs such as their deformation.
Critical rotation of general-relativistic polytropic models revisited
Geroyannis, V.; Karageorgopoulos, V.
2013-09-01
We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.
Octet to decuplet electromagnetic transition in a relativistic quark model
Ramalho, G
2013-01-01
We study the octet to decuplet baryon electromagnetic transitions using the covariant spectator quark model, and predict the transition magnetic dipole form factors for those involving the strange baryons. Utilizing SU(3) symmetry, the valence quark contributions are supplemented by the pion cloud dressing based on the one estimated in the $\\gamma^\\ast N \\to \\Delta$ reaction. Although the valence quark contributions are dominant in general, the pion cloud effects turn out to be very important to describe the experimental data. We also show that, other mesons besides the pion in particular the kaon, may be relevant for some reactions such as $\\gamma^\\ast \\Sigma^+ \\to \\Sigma^{*+}$, based on our analysis for the radiative decay widths of the strange decuplet baryons.
Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering
Simo, I Ruiz; Barbaro, M B; De Pace, A; Caballero, J A; Donnelly, T W
2016-01-01
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $\\Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $\\sigma$-model together with weak excitation of the $\\Delta(1232)$ resonance and its subsequent decay into $N\\pi$. With these currents we compute the five 2p-2h response functions contributing to $(\
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Nicmorus Marinescu, Diana
2007-06-14
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit
Semileptonic decays of $\\Lambda_b$ baryons in the relativistic quark model
Faustov, R N
2016-01-01
Semileptonic $\\Lambda_b$ decays are investigated in the framework of the relativistic quark model based on the quasipotential approach and the quark-diquark picture of baryons. The decay form factors are expressed through the overlap integrals of the initial and final baryon wave functions. All calculations are done without employing nonrelativistic and heavy quark expansions. The momentum transfer dependence of the decay form factors is explicitly determined in the whole accessible kinematical range without any extrapolations or model assumptions. Both the heavy-to-heavy $\\Lambda_b\\to\\Lambda_c\\ell\
A model of global magnetic reconnection rate in relativistic collisionless plasmas
Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui
2016-01-01
A model of global magnetic reconnection rate in relativistic collisionless plasmas is developed and validated by the fully kinetic simulation. Through considering the force balance at the upstream and downstream of the diffusion region, we show that the global rate is bounded by a value $\\sim 0.3$ even when the local rate goes up to $\\sim O(1)$ and the local inflow speed approaches the speed of light in strongly magnetized plasmas. The derived model is general and can be applied to magnetic reconnection under widely different circumstances.
Tojeiro, Rita; Heavens, Alan F; Jimenez, Raul
2010-01-01
We present a series of colour evolution models for Luminous Red Galaxies (LRGs) in the 7th spectroscopic data release of the Sloan Digital Sky Survey (SDSS), computed using the full-spectrum fitting code VESPA on high signal-to-noise stacked spectra. The colour-evolution models are computed as a function of colour, luminosity and redshift, and we do not a-priori assume that LRGs constitute a uniform population of galaxies in terms of stellar evolution. By computing star-formation histories from the fossil record, the measured stellar evolution of the galaxies is decoupled from the survey's selection function, which also evolves with redshift. We present these evolutionary models computed using three different sets of Stellar Population Synthesis (SPS) codes. We show that the traditional fiducial model of purely passive stellar evolution of LRGs is broadly correct, but it is not sufficient to explain the full spectral signature. We also find that higher-order corrections to this model are dependent on the SPS ...
A Euclidean bridge to the relativistic constituent quark model
Hobbs, Timothy; Alberg, Mary; Miller, Gerald
2017-01-01
We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.
Roediger, Joel C; Graves, Genevieve; Schiavon, Ricardo
2013-01-01
We present an extenstive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. (2005). Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavours, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the alpha-elements. When paired with the ages...
Percival, Susan M
2010-01-01
The presence of an extended blue horizontal branch (HB) in a stellar population is known to affect the age inferred from spectral fitting to stellar population synthesis models. However, most population synthesis models still rely on theoretical isochrones which do not include realistic modelling of extended HBs. In this work, we create detailed models for a range of old simple stellar populations (SSPs), to create a variety of realistic HB morphologies, from extended red clumps, to extreme blue HBs. We achieve this by utilising stellar tracks from the BaSTI database and implementing a different mass loss prescription for each SSP created, resulting in different HB morphologies. We find that, for each metallicity, there is some HB morphology which maximises Hbeta, making an underlying 14Gyr population look ~5-6Gyr old for the low and intermediate metallicity cases, and as young as 2Gyr for a solar metallicity SSP. We explore whether there are any spectral indices capable of breaking the degeneracy between an ...
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.
2017-02-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.
Building relativistic mean field models for finite nuclei and neutron stars
Chen, Wei-Chia; Piekarewicz, J.
2014-10-01
Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed χ2 objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, "FSUGold2," is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron-star mass observed up to date. In particular, the model predicts both a stiff symmetry energy and a soft equation of state for symmetric nuclear matter, suggesting a fairly large neutron-skin thickness in Pb208 and a moderate value of the nuclear incompressibility. Conclusions: We conclude that without any meaningful constraint on the isovector sector, relativistic EDFs will continue to predict significantly large neutron skins. However, the calibration scheme adopted here is flexible enough to create models with different assumptions on various observables. Such a scheme—properly supplemented by a covariance analysis—provides a powerful tool to identify the critical measurements required to place meaningful constraints on theoretical models.
Constraints on galaxy formation models from the galaxy stellar mass function and its evolution
Rodrigues, Luiz Felippe S; Bower, Richard
2016-01-01
We explore the parameter space of the semi-analytic galaxy formation model GALFORM, studying the constraints imposed by measurements of the galaxy stellar mass function (GSMF) and its evolution. We use the Bayesian Emulator method to quickly eliminate vast implausible volumes of the parameter space and zoom in on the most interesting regions, allowing us to identify a set of models that match the observational data within the model uncertainties. We find that the GSMF strongly constrains parameters related to the quiescent star formation in discs, stellar and AGN feedback and the threshold for disc instabilities, but more weakly restricts other parameters. Constraining the model using the local data alone does not usually select models that match the evolution of the mass function well. Nevertheless, we show that a small subset of models provides an acceptable match to GSMF data out to redshift 1.5, without introducing an explicit redshift dependence of feedback parameters. We explore the physical significanc...
A Mega-Grid of CMFGEN Model Atmospheres for Rapid Analysis of Stellar Spectra
Zsargo, J.; Arrieta, A.; Fierro, C.; Klapp, J.; Hillier, D. J.; Arias, L.; Mendoza, J.; Georgiev, L. N.
2017-02-01
CMFGEN (Hillier & Miller 1998) is a sophisticated and widely-used non-LTE stellar atmosphere code. It models the full spectrum, and has been used to model OB stars, W-R stars, luminous blue variables, and supernovae. However, it requires the user to have substantial knowledge and experience to run it, and even then a complete analysis of a star can be very difficult and time consuming. Computations and modeling with CMFGEN are greatly eased when suitable initial models are available. To expedite modeling, or to run a quick rudimentary analysis of the stellar spectra, we are undertaking a project to create a mega-grid of pre-calculated CMFGEN models which will be available to the general astronomical community via internet. Tools are also being developed to use this database for analysis.
Percival, Susan M.; Salaris, Maurizio
2011-04-01
The presence of an extended blue horizontal branch (HB) in a stellar population is known to affect the age inferred from spectral fitting to stellar population synthesis models. This is due to the hot blue component which increases the strength of the Balmer lines and can make an old population look spuriously young. However, most population synthesis models still rely on theoretical isochrones, which do not include realistic modelling of extended HBs. In this work, we create detailed models for a range of old simple stellar populations (SSPs), with metallicities ranging from [Fe/H]=-1.3 to solar, to create a variety of realistic HB morphologies, from extended red clumps, to extreme blue HBs. We achieve this by utilizing stellar tracks from the BaSTI data base and implementing a different mass-loss prescription for each SSP created. This includes setting an average mass and a Gaussian spread in masses of individual stars coming on to the zero-age HB for each model, and hence resulting in different HB morphologies. We find that, for each metallicity, there is some HB morphology which maximizes Hβ, making an underlying 14-Gyr population look ˜5-6 Gyr old for the low- and intermediate-metallicity cases, and as young as 2 Gyr in the case of the solar metallicity SSP. We explore whether there are any spectral indices capable of breaking the degeneracy between an old SSP with extended blue HB and a truly young or intermediate-age SSP, and find that the Ca II index of Rose and the strength of the Mg II doublet at 2800 Å are promising candidates, in combination with Hβ and other metallicity indicators, such as Mgb and Fe5406. We also run Monte Carlo simulations to investigate the level of statistical fluctuations in the spectra of typical stellar clusters. We find that fluctuations in spectral indices are significant even for average to large globular clusters and that various spectral indices are affected in different ways, which has implications for full
Fundamental stellar parameters
Wittkowski, M
2004-01-01
I present a discussion of fundamental stellar parameters and their observational determination in the context of interferometric measurements with current and future optical/infrared interferometric facilities. Stellar parameters and the importance of their determination for stellar physics are discussed. One of the primary uses of interferometry in the field of stellar physics is the measurement of the intensity profile across the stellar disk, both as a function of position angle and of wavelength. High-precision fundamental stellar parameters are also derived by characterizations of binary and multiple system using interferometric observations. This topic is discussed in detail elsewhere in these proceedings. Comparison of observed spectrally dispersed center-to-limb intensity variations with models of stellar atmospheres and stellar evolution may result in an improved understanding of key phenomena in stellar astrophysics such as the precise evolutionary effects on the main sequence, the evolution of meta...
Larchenkova, T I; Lyskova, N S
2011-01-01
The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Different sets of parameters are shown to exist for the gravitationally lensed system B0218+357 in multicomponent models. These sets allow the observed geometry of the system and the intensity ratio of the compact core images to be obtained, but they lead to a significant variety in the Hubble constant determined from the modeling results.
Decay Constants and Distribution Amplitudes of B Meson in the Relativistic Potential Model
Sun, Hao-Kai
2016-01-01
In this work we study the decay constants of $B$ and $B_s$ mesons based on the wave function obtained in the relativistic potential model. Our results are in good agreement with experiment data which enables us to apply this method to the investigation of $B$-meson distribution amplitudes. A very compact form of the distribution amplitudes is obtained. We also investigate the one-loop QCD corrections to the purely leptonic decays of $B$ mesons. We find that, after subtracting the infrared divergence in the one-loop corrections using the factorization method, the QCD one-loop corrections to the leptonic decay amplitude will be zero.
Delta isobars in relativistic mean-field models with $\\sigma$-scaled hadron masses and couplings
Kolomeitsev, E E; Voskresensky, D N
2016-01-01
We extend the relativistic mean-field models with hadron masses and meson-baryon coupling constants dependent on the scalar $\\sigma$ field, studied previously to incorporate $\\Delta(1232)$ baryons. Available empirical information is analyzed to put constraints on the couplings of $\\Delta$s with meson fields. Conditions for the appearance of $\\Delta$s are studied. We demonstrate that with inclusion of the $\\Delta$s our equations of state continue to fulfill majority of known empirical constraints including the pressure-density constraint from heavy-ion collisions, the constraint on the maximum mass of the neutron stars, the direct Urca and the gravitational-baryon mass ratio constraints.
Pasta phases in neutron star studied with extended relativistic mean field models
Gupta, Neha
2013-01-01
To explain several properties of finite nuclei, infinite matter, and neutron stars in a unified way within the relativistic mean field models, it is important to extend them either with higher order couplings or with density-dependent couplings. These extensions are known to have strong impact in the high-density regime. Here we explore their role on the equation of state at densities lower than the saturation density of finite nuclei which govern the phase transitions associated with pasta structures in the crust of neutron stars.
Ground state heavy baryon production in a relativistic quark-diquark model
Nobary, M A Gomshi
2007-01-01
We use current-current interaction to calculate the fragmentation functions to describe the production of spin-1/2, spin-1/2$'$ and spin-3/2 baryons with massive constituents in a relativistic quark-diquark model. Our results are in their analytic forms and are applicable for singly, doubly and triply heavy baryons. We discuss the production of $\\Omega_{bbc}$, $\\Omega_{bcc}$ and $\\Omega_{ccc}$ baryons in some detail. The results are satisfactorily compared with those obtained for triply heavy baryons calculated in a perturbative regime within reasonable values of the parameters involved.
Shell-model-like Approach (SLAP) for the Nuclear Properties in Relativistic Mean field Theory
MENG Jie; GUO Jian-you; LIU Lang; ZHANG Shuang-quan
2006-01-01
A Shell-model-like approach suggested to treat the pairing correlations in relativistic mean field theory is introduced,in which the occupancies thus obtained have been iterated back into the densities.The formalism and numerical techniques are given in detail.As examples,the ground state properties and low-lying excited states for Ne isotopes are studied.The results thus obtained are compared with the data available.The binding energies,the odd-even staggering,as well as the tendency for the change of the shapes in Ne isotopes are correctly reproduced.
Dauser, T.; García, J.; Walton, , D. J.; Eikmann, W.; Kallman, T.; McClintock, J.; Wilms, J.
2016-05-01
Aims: The only relativistic reflection model that implements a parameter relating the intensity incident on an accretion disk to the observed intensity is relxill. The parameter used in earlier versions of this model, referred to as the reflection strength, is unsatisfactory; it has been superseded by a parameter that provides insight into the accretion geometry, namely the reflection fraction. The reflection fraction is defined as the ratio of the coronal intensity illuminating the disk to the coronal intensity that reaches the observer. Methods: The relxill model combines a general relativistic ray-tracing code and a photoionization code to compute the component of radiation reflected from an accretion that is illuminated by an external source. The reflection fraction is a particularly important parameter for relativistic models with well-defined geometry, such as the lamp post model, which is a focus of this paper. Results: Relativistic spectra are compared for three inclinations and for four values of the key parameter of the lamp post model, namely the height above the black hole of the illuminating, on-axis point source. In all cases, the strongest reflection is produced for low source heights and high spin. A low-spin black hole is shown to be incapable of producing enhanced relativistic reflection. Results for the relxill model are compared to those obtained with other models and a Monte Carlo simulation. Conclusions: Fitting data by using the relxill model and the recently implemented reflection fraction, the geometry of a system can be constrained. The reflection fraction is independent of system parameters such as inclination and black hole spin. The reflection-fraction parameter was implemented with the name refl_frac in all flavours of the relxill model, and the non-relativistic reflection model xillver, in v0.4a (18 January 2016).
Testing spectral models for stellar populations with star clusters: I. Methodology
Fernandes, Roberto Cid
2009-01-01
High resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly important to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well studied star clusters from the work of Leonardi & Rose (2003) spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic clouds. This paper concentrates on methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the MILES library. Best-fit and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal un...
Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.
Namgung, Wuk
Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton
Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models
Fields, C E; Petermann, I; Iliadis, C; Timmes, F X
2016-01-01
We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 M$_{\\odot}$ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95\\% confidence interval to be $\\Delta M_{{\\rm 1TP}}$ $\\approx$ 0.019 M$_{\\odot}$ for the core mass at the first thermal pulse, $\\Delta$$t_{\\rm{1TP}}$ $\\approx$ 12.50 Myr for the age, $\\Delta \\log(T_{{\\rm c}}/{\\rm K}) \\approx$ 0.013 for the central temperat...
MILES extended: Stellar population synthesis models from the optical to the infrared
Röck, B; Ricciardelli, E; Peletier, R F; Knapen, J H; Falcon-Barroso, J
2016-01-01
We present the first single-burst stellar population models which covers the optical and the infrared wavelength range between 3500 and 50000 Angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [Fe/H] = -0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis of two different sets of isochrones. They are available to the scientific community on the MILES web page. We checked the internal consistency of our models and compared their colour predictions to those of other models that are available in the literature. Optical and near infrared colours that are measured from our models...
Zwitter, T; Breddels, M A; Smith, M C; Helmi, A; Munari, U; Bienaym\\'{e), O; Bland-Hawthorn, J; Boeche, C; Brown, A G A; Campbell, R; Freeman, K C; Fulbright, J; Gibson, B; Gilmore, G; Grebel, E K; Navarro, J F; Parker, Q A; Seabroke, G M; Siebert, A; Siviero, A; Steinmetz, M; Watson, F G; Williams, M; Wyse, R F G
2010-01-01
The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of the Milky Way. We use the subsample of spectra with spectroscopically determined values of stellar parameters to determine the distances to these stars. The list currently contains 235,064 high quality spectra which show no peculiarities and belong to 210,872 different stars. The numbers will grow as the RAVE survey progresses. The public version of the catalog will be made available through the CDS services along with the ongoing RAVE public data releases. The distances are determined with a method based on the work by Breddels et al.~(2010). Here we assume that the star undergoes a standard stellar evolution and that its spectrum shows no peculiarities. The refinements include: the use of either of the three isochrone sets, a better account of the stellar ages and masses, use of more realistic errors of stellar parameter values, and application to a larger dataset. The derived distances of both dwarfs and giants match within ~21% to the astr...
Red Giant Oscillations: Stellar Models and Mode Frequency Calculations
Jendreieck, A.; Weiss, A.; Aguirre, Victor Silva
2012-01-01
We present preliminary results on modelling KIC 7693833, the so far most metal-poor red-giant star observed by {\\it Kepler}. From time series spanning several months, global oscillation parameters and individual frequencies were obtained and compared to theoretical calculations. Evolution models ......_\\odot$ in radius and of about 2.5 Gyr in age....
Stellar and HI Mass Functions Predicted by a Simple Preheating Galaxy Formation Model
无
2007-01-01
According to the new preheating mechanism of galaxy formation suggested by Mo et al., we construct a simple model of formation of disk galaxies within the current paradigm of galaxy formation. It incorporates preheating, gas cooling, bulge formation and star formation. The predicted stellar and HI mass functions of galaxies are discussed and compared with the observations. It is found that our model can roughly match both the observed galaxy luminosity function and the observed HI-mass function.
Space-Time Quantization and Nonlocal Field Theory -Relativistic Second Quantization of Matrix Model
Tanaka, S
2000-01-01
We propose relativistic second quantization of matrix model of D particles in a general framework of nonlocal field theory based on Snyder-Yang's quantized space-time. Second-quantized nonlocal field is in general noncommutative with quantized space-time, but conjectured to become commutative with light cone time $X^+$. This conjecture enables us to find second-quantized Hamiltonian of D particle system and Heisenberg's equation of motion of second-quantized {\\bf D} field in close contact with Hamiltonian given in matrix model. We propose Hamilton's principle of Lorentz-invariant action of {\\bf D} field and investigate what conditions or approximations are needed to reproduce the above Heisenberg's equation given in light cone time. Both noncommutativities appearing in position coordinates of D particles in matrix model and in quantized space-time will be eventually unified through second quantization of matrix model.
Model operator approach to the Lamb shift calculations in relativistic many-electron atoms
Shabaev, V M; Yerokhin, V A
2013-01-01
A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined using the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.
A viscous blast-wave model for relativistic heavy-ion collisions
Jaiswal, Amaresh
2015-01-01
Using a viscosity-based survival scale for geometrical perturbations formed in the early stages of relativistic heavy-ion collisions, we model the radial flow velocity during freeze-out. Subsequently, we employ the Cooper-Frye freeze-out prescription, with first-order viscous corrections to the distribution function, to obtain the transverse momentum distribution of particle yields and flow harmonics. For initial eccentricities, we use the results of Monte Carlo Glauber model. We fix the blast-wave model parameters by fitting the transverse momentum spectra of identified particles at the Large Hadron Collider (LHC) and demonstrate that this leads to a fairly good agreement with transverse momentum distribution of elliptic and triangular flow for various centralities. Within this viscous blast-wave model, we estimate the shear viscosity to entropy density ratio $\\eta/s\\simeq 0.24$ at the LHC.
The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession
Perera, Benetge; Kramer, Michael; Stairs, Ingrid; Ferdman, Robert; Freire, Paulo; Possenti, Andrea; Breton, Rene; Manchester, Richard N; Burgay, Marta; Lyne, Andrew; Camilo, Fernando
2010-01-01
We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed dec...
Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4
Skeltved, Alexander Broberg; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien
2016-01-01
This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modelling results related to the production of Terrestrial Gamma-ray Flashes (TGFs) and high-energy particle emission from thunderstorms. We will study the Relativistic Runaway Electron Avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from Runaway Electrons (REs). The Monte Carlo (MC) simulations take into account the effects of electron ionisation, electron by electron (M{\\o}ller) and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair-production, in the $250$ eV$-100$ GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback, are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio o...
SMART - a computer program for modelling stellar atmospheres
Aret, Anna; Poolamäe, Raivo; Sapar, Lili
2013-01-01
Program SMART (Spectra and Model Atmospheres by Radiative Transfer) has been composed for modelling atmospheres and spectra of hot stars (O, B and A spectral classes) and studying different physical processes in them (Sapar & Poolam\\"ae 2003, Sapar et al. 2007). Line-blanketed models are computed assuming plane-parallel, static and horizontally homogeneous atmosphere in radiative, hydrostatic and local thermodynamic equilibrium. Main advantages of SMART are its shortness, simplicity, user friendliness and flexibility for study of different physical processes. SMART successfully runs on PC both under Windows and Linux.
MacDougall, Mason; Newman, Andrew; Belli, Sirio; Ellis, Richard S.
2017-01-01
Galactic evolution at high redshifts is largely understood through stellar population synthesis (SPS) modeling of spectra and photometry integrated over all starlight of a galaxy. However, complex and poorly understood stellar phases like the unstable thermally-pulsating asymptotic giant branch (TP-AGB) phase make SPS modeling a difficult task. Recent models fail to agree on the TP-AGB contribution to the infrared luminosity, leading to significant discrepancy among the properties derived from modern SPS models when applied to early galaxies. Here we provide a thorough assessment of each of the most widely used SPS models by comparing their results and assessing their accuracy in modeling our unique dataset. We combine high-resolution spectroscopic observations from Keck/MOSFIRE with photometric data for 21 early quiescent galaxies with redshifts of z ~ 2. These galaxies are around the age of peak TP-AGB activity, between ~0.3 and 2 Gyr, and therefore provide an ideal test of the models. We find that models with a “light” TP-AGB contribution provide much better descriptions of our galaxies at ages of ~1 Gyr or less. This is true at high statistical significance and holds for models with or without dust reddening. However, contrary to previous studies, the model-dependent photometrically estimated ages are similar among the models, but they show only moderate agreement with the more model-independent spectroscopic ages derived from stellar absorption lines. The largest discrepancies are found for the Charlot & Bruzual (2007) models which show an artificial clustering of ages around 1 Gyr. The TP-AGB “light” models require more reddening, which can be independently tested by examining dust emission in the mid-infrared. The modeled fluxes are also mostly consistent with mid-infrared observations, with the exception of one model. Resolving these differences among the models will substantially strengthen our estimates of the properties of early quiescent
Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries
Stassun, Keivan G; Torres, Guillermo
2014-01-01
We examine the performance of standard PMS stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 EB systems. We provide a definitive compilation of all fundamental properties for the EBs. We also provide a definitive compilation of the various PMS model sets. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% above 1 Msun, but below 1 Msun they are discrepant by 50-100%. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ~10% in the H-R diagram, down to 0.5 Msun, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies...
Orphan γ-ray flares from relativistic blobs encountering luminous stars
Banasiński, P.; Bednarek, W.; Sitarek, J.
2016-11-01
We propose that {\\gamma} -rays in blazars can be produced during encounters of relativistic blobs of plasma with radiation field produced by luminous stars within (or close to) the jet. The blob is expected to contain relativistic electrons which comptonize stellar radiation to the GeV-TeV energies. Produced {\\gamma} -rays can initiate the Inverse Compton e+/- pair cascade in the stellar radiation. We propose that such a scenario can be responsible for the appearance of the so-called orphan {\\gamma} -ray flares. We show that the relativistic blob/luminous star collision model can explain the appearance of the extreme orphan {\\gamma} -ray flare observed in the GeV and sub-TeV energy range from the flat spectrum radio quasar PKS 1222+21.
The construction of non-spherical models of quasi-relaxed stellar systems
Bertin, G
2008-01-01
Spherical models of collisionless but quasi-relaxed stellar systems have long been studied as a natural framework for the description of globular clusters. Here we consider the construction of self-consistent models under the same physical conditions, but including explicitly the ingredients that lead to departures from spherical symmetry. In particular, we focus on the effects of the tidal field associated with the hosting galaxy. We then take a stellar system on a circular orbit inside a galaxy represented as a "frozen" external field. The equilibrium distribution function is obtained from the one describing the spherical case by replacing the energy integral with the relevant Jacobi integral in the presence of the external tidal field. Then the construction of the model requires the investigation of a singular perturbation problem for an elliptic partial differential equation with a free boundary, for which we provide a method of solution to any desired order, with explicit solutions to two orders. We outl...
An Iterative Method for the Construction of Equilibrium N-Body Models for Stellar Disks
Rodionov, S A
2006-01-01
One widely used technique for the construction of equilibrium models of stellar disks is based on the Jeans equations and the moments of velocity distribution functions derived using these equations. Stellar disks constructed using this technique are shown to be "not entirely" in equilibrium. Our attempt to abandon the epicyclic approximation and the approximation of infinite isothermal layers, which are commonly adopted in this technique, failed to improve the situation substantially. We conclude that the main drawback of techniques based on the Jeans equations is that the system of equations employed is not closed, and therefore requires adopting an essentially ad hoc additional closure condition. A new iterative approach to constructing equilibrium N-body models with a given density distribution is proposed. The main idea behind this approach is that a model is first constructed using some approximation method, and is then allowed to adjust to an equilibrium state with the specified density and the require...
Detecting the growth of structures in Pure Stellar Disk Models
Valencia-Enríquez, D.; Puerari, I.; Chaves-Velasquez, L.
2017-10-01
We performed a series of 3D N-body simulations where the initial conditions were chosen to get two sets of models; unbarred and barred ones. In this work, we analyze the growth of spirals and bar structures using 1D, and 2D Fourier transform (FT) methods. Spectrograms and diagrams of the amplitude of the Fourier coefficients as a function of time, radius and pitch angle show that the general morphology of our modeled galaxies is due to the superposition of structures which have different values of pitch angle and number of arms. Also, in barred models a geometric classification of orbits from the bar reference frame was done, showing that the barred potential and the Lagrangian points L4 and L5 catch approximately one-third of the total disk mass.
Modeling the Near-Infrared Luminosity Function of Young Stellar Clusters
Muench, A. A.; Lada, E. A.; Lada, C. J.
1999-12-01
We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young (0-10 Myr) stellar populations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations: the underlying IMF, cluster star forming history, and theoretical pre-main sequence mass-to-luminosity relations. Our modeling techniques also allow us to explore the effects of unresolved binaries, infrared excess emission from circumstellar disks, and interstellar extinction on the cluster luminosity function. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5>Msun>0.02) and has a peak near the hydrogen burning limit. Below the hydrogen burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. We also test the hypothesis of a space varying IMF by performing model fits to the K band luminosity functions of several other young clusters.
Cluster decay in very heavy nuclei in a relativistic mean field model
Bhattacharya, Madhubrata; Gangopadhyay, G.
2008-02-01
Exotic cluster decay of very heavy nuclei was studied in the microscopic Super-Asymmetric Fission Model. The Relativistic Mean Field model with the force FSU Gold was employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction were used in the double folding model to obtain the potential between the cluster and the daughter. Half-life values were calculated in the WKB approximation and the spectroscopic factors were extracted. The latter values are seen to have a simple dependence of the mass of the cluster as has been observed earlier. Predictions were made for some possible decays.
Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R; Menezes, Débora P
2015-01-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthetizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low density matter composed of neutrons, protons and $\\Lambda$ hyperons using a Relativistic Mean Field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab-initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition ...
3D-modelling of the stellar auroral radio emission
Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L
2016-01-01
The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such...
3D modelling of stellar auroral radio emission
Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.
2016-06-01
The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.
Geroyannis, Vassilis S
2014-01-01
We develop a "hybrid approximative scheme" in the framework of the post-Newtonian approximation for computing general-relativistic polytropic models simulating neutron stars in critical rigid rotation. We treat the differential equations governing such a model as a "complex initial value problem", and we solve it by using the so-called "complex-plane strategy". We incorporate into the computations the complete solution for the relativistic effects, this issue representing a significant improvement with regard to the classical post-Newtonian approximation, as verified by extended comparisons of the numerical results.
Lin, M. C.; Verboncoeur, J.
2016-10-01
A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.
Relativistic effects on the neutron charge form factor in the constituent quark model
Cardarelli, F
1999-01-01
The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).
Meson-Meson Scattering in the Relativistic Quark Model from Constraint Dynamics
Crater, Horace; Wong, Cheuk-Yin
2004-11-01
Previously, Crater and Van Alstine footnote H.W. Crater and P. Van Alstine, Ann. Phys. (N.Y.) Vol. 148, 57 (1983) employed Dirac's relativistic constraint dynamics to derive Two-Body Dirac equations which were subsequently applied successfully to obtain a covariant nonperturbative description of QED and QCD bound states footnote H.W. Crater, R.L. Becker, C.Y. Wong, and P. Van Alstine, Phys. Rev. D, Vol.46, 5117 (1992), H. Crater and P. Van Alstine to appear in Phys. Rev. D Vol 70 (hep-ph/0208186). We use this formalism to generalize the microscopic theory of meson-meson scattering developed by Barnes and Swanson footnote T. barnes and E.S. Swanson, Phys. Rev. D Vol. 46, 131 (1992) footnote C.Y. Wong, T. Barnes and E.S. Swanson, Phys. Rev. C Vol 62, 045201 (2001)from the nonrelativistic to the relativistic domain. The application of the present formalism will be demonstrated with a simple quark model for the scattering of mesons.
Modeling X-ray emission from stellar coronae
Gregory, S G; Argiroffi, C; Donati, J -F
2008-01-01
By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.
The dependence of AGN activity on stellar and halo mass in Semi-Analytic Models
Fontanot, Fabio; De Lucia, Gabriella; Bosch, Frank C van den; Somerville, Rachel S; Kang, Xi
2010-01-01
AGN feedback is believed to play an important role in shaping a variety of observed galaxy properties, as well as the evolution of their stellar masses and star formation rates. In particular, in the current theoretical paradigm of galaxy formation, AGN feedback is believed to play a crucial role in regulating the levels of activity in galaxies, in relatively massive halos at low redshift. Only in recent years, however, detailed statistical information on the dependence of galaxy activity on stellar mass, parent halo mass and hierarchy has become available. In this paper, we compare the fractions of galaxies belonging to different activity classes (star-forming, AGN and radio active) with predictions from four different and independently developed semi-analytical models. We adopt empirical relations to convert physical properties into observables (H_alpha emission lines, OIII line strength and radio power). We demonstrate that all models used in this study reproduce the overall distributions of galaxies belon...
Relativistic scalar-vector models of the N-N and N-nuclear interactions
Green, A.E.S.
1985-01-01
This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs.
Ray tracing and ECRH absorption modeling in the HSX stellarator
Weir, G. M.; Likin, K. M.; Marushchenko, N. B.; Turkin, Y.
2015-09-01
To increase flexibility in ECRH experiments on the helically symmetric experiment (HSX), a second gyrotron and transmission line have been installed. The second antenna includes a steerable mirror for off-axis heating, and the launched power may be modulated for use in heat pulse propagation experiments. The extraordinary wave at the second harmonic of the electron gyrofrequency or the ordinary wave at the fundamental resonance are used for plasma start-up and heating on HSX. The tracing visualized ray tracing code (Marushchenko et al 2007 Plasma Fusion Res. 2 S1129) is used to estimate single-pass absorption and to model multi-pass wave damping in the three-dimensional HSX geometry. The single-pass absorption of the ordinary wave at the fundamental resonance is calculated to be as high as 30%, while measurements of the total absorption indicate that 45% of the launched power is absorbed. A multi-pass ray tracing model correctly predicts the experimental absorption and indicates that the launched power is absorbed within the plasma core (r/a≤slant 0.2 ).
Galaxy assembly, stellar feedback and metal enrichment: the view from the GAEA model
Hirschmann, Michaela; De Lucia, Gabriella; Fontanot, Fabio
2015-01-01
One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently `anti-hierarchical' evolution of galaxy assembly: massive galaxies appear to be in place since $z\\sim 3$, while a significant increase of the number densities of low mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of GAEA, a new semi-ana...
Relativistic Stark resonances in a simple exactly soluble model for a diatomic molecule
Fillion-Gourdeau, Francois; Bandrauk, Andre D
2012-01-01
A simple 1-D relativistic model for a diatomic molecule with a double point interaction potential is solved exactly in a constant electric field. The Weyl-Titchmarsh-Kodaira method is used to evaluate the spectral density function, allowing the correct normalization of continuum states. The boundary conditions at the potential wells are evaluated using Colombeau's generalized function theory along with charge conjugation invariance and general properties of self-adjoint extensions for point-like interactions. The resulting spectral density function exhibits resonances for quasibound states which move in the complex energy plane as the model parameters are varied. It is observed that for a monotonically increasing interatomic distance, the ground state resonance can either go deeper into the negative continuum or can give rise to a sequence of avoided crossings, depending on the strength of the potential wells. For sufficiently low electric field strength or small interatomic distance, the behavior of resonanc...
Viscous boundary layers of radiation-dominated, relativistic jets. I. The two-stream model
Coughlin, Eric R
2015-01-01
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.
Model investigation on the mechanism of QGP formation in relativistic heavy ion collisions
邓胜华; 李家荣
1995-01-01
On the basis of the nontopological soliton bag model, it is proposed that the quark decon-finement may be indicated by the unstability and disappearance of solition solutions at finite-temperature and finite-density. The thermal effects on the vacuum structure of strongly interacting matter are investigated, and the soliton field equation of the model is solved directly in the whole range of temperature via a numerical method. The phase structure of the system and the features of deconfining phase transition are analysed in detail. In addition, the collective excitations in the vacuum caused by thermal effects are investigated by making use of an order parameter which is given to describe the vacuum condensation at finite temperature. A physical mechanism and an intuitive picture are presented for the formation of QGP from both deconfined hardon matter and the vacuum excitation in relativistic heavy ion collisions.
Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra
Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.
2004-01-01
We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...
Building relativistic mean field models for finite nuclei and neutron stars
Chen, Wei-Chia
2014-01-01
Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed chi-square objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, FSUGold2, is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron star mass observed up to date. In particul...
Local models of stellar convection III: The Strouhal number
Käpylä, P J; Ossendrijver, M; Tuominen, I
2004-01-01
(Abbreviated) We determine the Strouhal number (St), a nondimensional measure of the correlation time, from numerical models of convection. The Strouhal number arises in the mean-field theories of angular momentum transport and dynamos, where its value determines the validity of certain widely used approximations, such as the first order smoothing (FOSA). More specifically, the relevant transport coefficients can be calculated by means of a cumulative series expansion if St < 1 (e.g. Knobloch 1978). We use two independent methods to estimate St. Firstly, we apply the minimal tau-approximation (MTA) in the equation of the time derivative of the Reynolds stress. In this approach the time derivative is essentially replaced by a term containing a relaxation time which can be interpreted as the correlation time of the turbulence. In this approach, the turnover time is estimated simply from the energy carrying scale of the convection and a typical velocity. In the second approach, we determine the correlation an...
Repetto, P.; Martínez-García, Eric E.; Rosado, M.; Gabbasov, R.
2017-06-01
In this work, we study the mass distribution of two irregular galaxies, UGC 6446 and UGC 7524, by means of H i rotation curves derived from high-resolution H i velocity fields obtained through the Westerbork Synthesis Radio Telescope data archive. We constrain the stellar and gas content of both galaxies with stellar population synthesis models and by deriving the H i+He+metals rotation curves from the total H i surface density maps, respectively. The discrepancy between the circular velocity maxima of the stellar plus the H i+He+metals rotation curves and the observed H i rotation curves of both galaxies requires the inclusion of a substantial amount of dark matter. We explore the Navarro Frenk and White, Burkert, Di Cintio, Einasto and Stadel dark matter halo models. We obtain acceptable fits to the observed H i rotation curves of UGC 6446 and UGC 7524 with the cored Burkert, Einasto and Stadel dark matter haloes. In particular, Einasto and Stadel models prove to be an appropriate alternative to the Burkert dark matter halo. This result should increase the empirical basis that justifies the usage of dark matter exponential models to adjust the observed rotation curves of real galaxies.
Constraints on galaxy formation models from the galaxy stellar mass function and its evolution
Rodrigues, Luiz Felippe S.; Vernon, Ian; Bower, Richard G.
2017-04-01
We explore the parameter space of the semi-analytic galaxy formation model GALFORM, studying the constraints imposed by measurements of the galaxy stellar mass function (GSMF) and its evolution. We use the Bayesian emulator method to quickly eliminate vast implausible volumes of the parameter space and zoom in on the most interesting regions, allowing us to identify a set of models that match the observational data within model uncertainties. We find that the GSMF strongly constrains parameters related to quiescent star formation in discs, stellar and active galactic nucleus feedback and threshold for disc instabilities, but weakly restricts other parameters. Constraining the model using local data alone does not usually select models that match the evolution of the GSMF well. Nevertheless, we show that a small subset of models provides acceptable match to GSMF data out to redshift 1.5. We explore the physical significance of the parameters of these models, in particular exploring whether the model provides a better description if the mass loading of the galactic winds generated by starbursts (β0,burst) and quiescent discs (β0,disc) is different. Performing a principal component analysis of the plausible volume of the parameter space, we write a set of relations between parameters obeyed by plausible models with respect to GSMF evolution. We find that while β0,disc is strongly constrained by GSMF evolution data, constraints on β0,burst are weak. Although it is possible to find plausible models for which β0,burst = β0,disc, most plausible models have β0,burst > β0,disc, implying - for these - larger stellar feedback efficiency at higher redshifts.
A Model for (Quasi-)Periodic Multi-wavelength Photometric Variability in Young Stellar Objects
Kesseli, Aurora Y; Wood, Kenneth; Whitney, Barbara A; Hillenbrand, L A; Gregory, Scott G; Stauffer, J R; Morales-Calderon, M; Rebull, L; Alencar, S H P
2016-01-01
We present radiation transfer models of rotating young stellar objects (YSOs) with hotspots in their atmospheres, inner disk warps and other 3-D effects in the nearby circumstellar environment. Our models are based on the geometry expected from the magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hotspots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project (Morales-Calderon et al. 2014, Cody et al. 2014) to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting "dipper" behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hotspot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR...
The Effects of Stellar Rotation. II. A Comprehensive Set of Starburst99 Models
Leitherer, Claus; Meynet, Georges; Schaerer, Daniel; Agienko, Katerina B; Levesque, Emily M
2014-01-01
We present a new set of synthesis models for stellar populations obtained with Starburst99, which are based on new stellar evolutionary tracks with rotation. We discuss models with zero rotation velocity and with velocities of 40% of the break-up velocity on the zero-age main-sequence. These values are expected to bracket realistic rotation velocity distributions in stellar populations. The new rotating models for massive stars are more luminous and hotter due to a larger convective core and enhanced surface abundances. This results in pronounced changes in the integrated spectral energy distribution of a population containing massive stars. The changes are most significant at the shortest wavelengths where an increase of the ionizing luminosity by up to a factor of 5 is predicted. We also show that high equivalent widths of recombination lines may not necessarily indicate a very young age but can be achieved at ages as late as 10 Myr. Comparison of these two boundary cases (0 and 40% of the break-up velocity...
Testing stellar evolution models with the retired A star HD 185351
Hjørringgaard, J. G.; Silva Aguirre, V.; White, T. R.; Huber, D.; Pope, B. J. S.; Casagrande, L.; Justesen, A. B.; Christensen-Dalsgaard, J.
2017-01-01
The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. using interferometry, spectroscopy, and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of 1.5 M⊙. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from ˜1.6 to 1.9 M⊙ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here, we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as the additional constraint of the observed g-mode period spacing is considered. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the overshooting efficiency using low-luminosity red giant stars. A theoretical model with metallicity [Fe/H] = 0.16 dex, mixing-length parameter αMLT = 2.00, and convective overshooting efficiency parameter f = 0.030 is found to be in complete agreement with all observational constraints for a stellar mass of M ≃ 1.60 M⊙.
Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*
Christie, I M; Mimica, P; Giannios, D
2016-01-01
Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in $\\sim10^{8}$ cm s$^{-1}$ range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericenter passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly ...
Testing stellar evolution models with the retired A star HD 185351
Hjørringgaard, J. G.; Silva Aguirre, V.; White, T. R.; Huber, D.; Pope, B. J. S.; Casagrande, L.; Justesen, A. B.; Christensen-Dalsgaard, J.
2016-10-01
The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. (2014) using interferometry, spectroscopy and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of 1.5M⊙. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from ˜1.6 - 1.9M⊙ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as considering the additional constraint of the observed g-mode period spacing. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the overshooting efficiency using low-luminosity red giant stars. A theoretical model with metallicity [Fe/H] = 0.16dex, mixing-length parameter αMLT = 2.00, and convective overshooting efficiency parameter f = 0.030 is found to be in complete agreement with all observational constraints for a stellar mass of M ≃ 1.60M⊙.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
Andrews, Brett H; Schönrich, Ralph; Johnson, Jennifer A
2016-01-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the IMF, the SNIa delay time distribution, stellar yields, and mixing of stellar populations. Using flexCE, a new, flexible one-zone chemical evolution code, we investigate the effects of individual parameters and the trade-offs between them. Two of the most important parameters are the SFE and outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] that do not match the observed bimodality in this plane. A mix of one-zone models with variations in their inflow timescales and outflow mass-loading parameters, as motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the high- and low-alpha sequences b...
Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models
Fields, C. E.; Farmer, R.; Petermann, I.; Iliadis, C.; Timmes, F. X.
2016-05-01
We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 {M}⊙ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95% confidence interval to be {{Δ }}{M}{{1TP}} ≈ 0.019 {M}⊙ for the core mass at the first thermal pulse, Δ{t}{{1TP}} ≈ 12.50 Myr for the age, {{Δ }}{log}({T}{{c}}/{{K}}) ≈ 0.013 for the central temperature, {{Δ }}{log}({ρ }{{c}}/{{g}} {{cm}}-3) ≈ 0.060 for the central density, {{Δ }}{Y}{{e,c}} ≈ 2.6 × 10-5 for the central electron fraction, {{Δ }}{X}{{c}}{(}22{{Ne}}) ≈ 5.8 × 10-4, {{Δ }}{X}{{c}}{(}12{{C}}) ≈ 0.392, and {{Δ }}{X}{{c}}{(}16{{O}}) ≈ 0.392. Uncertainties in the experimental 12C(α ,γ {)}16{{O}}, triple-α, and 14N({\\text{}}p,γ {)}15{{O}} reaction rates dominate these variations. We also consider a grid of 1-6 {M}⊙ models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.
Modelling accretion disc and stellar wind interactions: the case of Sgr A*
Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.
2016-07-01
Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ˜108 cm s-1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 1033 erg s-1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of dot{M}_w= 10^{-7} M_{⊙} yr^{-1}, nd = 105 cm-3, and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ˜3000 gravitational radii from the supermassive black hole.
Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters
Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.
2000-04-01
We present the results of numerical experiments designed to evaluate the usefulness of near-infrared (NIR) luminosity functions for constraining the initial mass function (IMF) of young stellar populations. We test the sensitivity of the NIR K-band luminosity function (KLF) of a young stellar cluster to variations in the underlying IMF, star-forming history, and pre-main-sequence mass-to-luminosity relations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star-forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. Variations in a cluster's star-forming history are also found to produce significant changes in the KLF. In particular, we find that the KLFs of young clusters evolve in a systematic manner with increasing mean age. Our experiments indicate that variations in the PMS mass-to-luminosity relation, resulting from differences in adopted PMS tracks, produce only small effects on the form of the model luminosity functions and that these effects are mostly likely not detectable observationally. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed KLF of the nearby Trapezium cluster. With knowledge of the star-forming history of this cluster obtained from optical spectroscopic studies, we derive the simplest underlying IMF whose model luminosity function matches the observations. Our derived mass function for the Trapezium spans 2 orders of magnitude in stellar mass (5>Msolar>0.02) and has a peak near the hydrogen-burning limit. Below the hydrogen-burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. Comparison
Strauss, Y
1999-01-01
We apply the quantum Lax-Phillips scattering theory to a relativistically covariant quantum field theoretical form of the (soluble) Lee model. We construct the translation representations with the help of the wave operators, and show that the resulting Lax-Phillips $S$-matrix is an inner function (the Lax-Phillips theory is essentially a theory of translation invariant subspaces). We then discuss the non-relativistic limit of this theory, and show that the resulting kinematic relations coincide with the conditions required for the Galilean description of a decaying system.
Revisiting the fundamental properties of Cepheid Polaris using detailed stellar evolution models
Neilson, Hilding R
2014-01-01
Polaris the Cepheid has been observed for centuries, presenting surprises and changing our view of Cepheids and stellar astrophysics, in general. Specifically, understanding Polaris helps anchor the Cepheid Leavitt law, but the distance must be measured precisely. The recent debate regarding the distance to Polaris has raised questions about its role in calibrating the Leavitt law and even its evolutionary status. In this work, I present new stellar evolution models of Cepheids to compare with previously measured CNO abundances, period change and angular diameter. Based on the comparison, I show that Polaris cannot be evolving along the first crossing of the Cepheid instability strip and cannot have evolved from a rapidly-rotating main sequence star. As such, Polaris must also be at least 118 pc away and pulsates in the first overtone, disagreeing with the recent results of Turner et al. (2013).
Pietrinferni, A; Salaris, M; Castelli, F
2004-01-01
We present a large and updated stellar evolution database for low-, intermediate- and high-mass stars in a wide metallicity range, suitable for studying Galactic and extragalactic simple and composite stellar populations using population synthesis techniques. The stellar mass range is between \\sim0.5Mo and 10Mo with a fine mass spacing. The metallicity [Fe/H] comprises 10 values ranging from -2.27 to 0.40, with a scaled solar metal distribution. The initial He mass fraction ranges from Y=0.245, for the more metal-poor composition, up to 0.303 for the more metal-rich one, with Delta Y/Delta Z\\sim 1.4. For each adopted chemical composition, the evolutionary models have been computed without and with overshooting from the Schwarzschild boundary of the convective cores during the central H-burning phase. The whole set of evolutionary models can be used to compute isochrones in a wide age range, from \\sim30 Myr to \\sim15Gyr. Both evolutionary tracks and isochrones are available in several observational planes, emp...
Modelling stellar proton event-induced particle radiation dose on close-in exoplanets
Atri, Dimitra
2017-02-01
Kepler observations have uncovered the existence of a large number of close-in exoplanets and serendipitously of stellar superflares with emissions several orders of magnitude higher than those observed on the Sun. The interaction between the two and their implications on planetary habitability are of great interest to the community. Stellar proton events (SPEs) interact with planetary atmospheres, generate secondary particles and increase the radiation dose on the surface. This effect is amplified for close-in exoplanets and can be a serious threat to potential planetary life. Monte Carlo simulations are used to model the SPE-induced particle radiation dose on the surface of such exoplanets. The results show a wide range of surface radiation doses on planets in close-in configurations with varying atmospheric column depths, magnetic moments and orbital radii. It can be concluded that for close-in exoplanets with sizable atmospheres and magnetospheres, the radiation dose contributed by stellar superflares may not be high enough to sterilize a planet (for life as we know it) but can result in frequent extinction level events. In light of recent reports, the interaction of hard-spectrum SPEs with the atmosphere of Proxima Centauri b is modelled and their implications on its habitability are discussed.
Portail, Matthieu; Wegg, Christopher; Ness, Melissa
2016-01-01
We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of $39.0 \\pm 3.5 \\,\\rm{km\\,s^{-1}\\,kpc^{-1}}$, placing the bar corotation radius at $6.1 \\pm 0.5 \\, \\rm{kpc}$ and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be $M_{\\rm{bar/bulge}} = 1.88 \\pm 0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$, larger than the mass of disk in the bar region, $M_{\\rm{inner\\ disk}} = 1.29\\pm0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$. The total dynamical...
New parameterization of the effective field theory motivated relativistic mean field model
Kumar, Bharat; Singh, S. K.; Agrawal, B. K.; Patra, S. K.
2017-10-01
A new parameter set is generated for finite and infinite nuclear system within the effective field theory motivated relativistic mean field (ERMF) formalism. The isovector part of the ERMF model employed in the present study includes the coupling of nucleons to the δ and ρ mesons and the cross-coupling of ρ mesons to the σ and ω mesons. The results for the finite and infinite nuclear systems obtained using our parameter set are in harmony with the available experimental data. We find the maximum mass of the neutron star to be 2.03M⊙ and yet a relatively smaller radius at the canonical mass, 12.69 km, as required by the available data.
Higher dimensional charged shear-free relativistic models with heat flux
Nyonyi, Y; Govinder, K S
2014-01-01
We analyse shear-free spherically symmetric relativistic models of gravitating fluids with heat flow and electric charge defined on higher dimensional manifolds. The solution to the Einstein-Maxwell system is governed by the pressure isotropy condition which depends on the spacetime dimension. We study this highly nonlinear partial differential equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are determined. We provide exact solutions to the gravitational potentials using the first symmetry admitted by the equation. Our new exact solutions contain the earlier results for the four-dimensional case. Using the other Lie generators, we are able to provide solutions to the gravitational potentials or reduce the order of the master equation to a first order nonlinear differential equation. We derive the temperature transport equation in higher dimensions and find expressions for the causal and Eckart temperatures showing their explicit dependance on the di...
Hyperons in neutron star matter within relativistic mean-field models
Oertel, M; Gulminelli, F; Raduta, A R
2014-01-01
Since the discovery of neutron stars with masses around 2 solar masses the composition of matter in the central part of these massive stars has been intensively discussed. Within this paper we will (re)investigate the question of the appearance of hyperons. To that end we will perform an extensive parameter study within relativistic mean field models. We will show that it is possible to obtain high mass neutron stars (i) with a substantial amount of hyperons, (ii) radii of 12-13 km for the canonical mass of 1.4 solar masses, and (iii) a spinodal instability at the onset of hyperons. The results depend strongly on the interaction in the hyperon-hyperon channels, on which only very little information is available from terrestrial experiments up to now.
Calculation of Energy Spectrum of 12C Isotope by Relativistic Cluster model
Roshanbakht, Nafiseh
2016-01-01
In this paper, we have calculated the energy spectrum of 12C isotope by cluster model. The experimental results show that the "Hoyle" state at 7.65 MeV in 12C isotope has a well-developed three-alpha structure. Hence, we select a three-body system and for interaction between the clusters we use modified Yukawa potential plus coulomb potential. Then, we solve the relativistic Klein-Gordon equation using Nikiforov-Uvarov method to calculate the energy spectrum. Finally, the calculated results are compared with the experimental data. The results show that the isotope 12C should be considered as consisting of three-alpha cluster and the modified Yukawa potential is adaptable for cluster interactions.
Numerical modeling of a Global Navigation Satellite System in a general relativistic framework
Delva, P; Cadez, A
2010-01-01
In this article we model a Global Navigation Satellite System (GNSS) in a Schwarzschild space-time, as a first approximation of the relativistic geometry around the Earth. The closed time-like and scattering light-like geodesics are obtained analytically, describing respectively trajectories of satellites and electromagnetic signals. We implement an algorithm to calculate Schwarzschild coordinates of a GNSS user who receives proper times sent by four satellites, knowing their orbital parameters; the inverse procedure is implemented to check for consistency. The constellation of satellites therefore realizes a geocentric inertial reference system with no \\emph{a priori} realization of a terrestrial reference frame. We show that the calculation is very fast and could be implemented in a real GNSS, as an alternative to usual post-Newtonian corrections. Effects of non-gravitational perturbations on positioning errors are assessed, and methods to reduce them are sketched. In particular, inter-links between satelli...
Modeling the QCD Equation of State in Relativistic Heavy Ion Collisions on BlueGene/L
Soltz, R; Grady, J; Hartouni, E P; Gupta, R; Vitev, I; Mottola, E; Petreczky, P; Karsch, F; Christ, N; Mawhinney, R; Bass, S; Mueller, B; Vranas, P; Levkova, L; Molnar, D; Teaney, D; De Tar, C; Toussaint, D; Sugar, R
2006-04-10
On 9,10 Feb 2006 a workshop was held at LLNL to discuss how a 10% allocation of the ASC BG/L supercomputer performing a finite temperature Lattice QCD (LQCD) calculation of the equation of state and non-equilibrium properties of the quark-gluon state of matter could lead to a breakthrough in our understanding of recent data from the Relativistic Heavy Ion Collider at Brookhaven National Lab. From this meeting and subsequent discussions we present a detailed plan for this calculation, including mechanisms for working in a secure computing environment and inserting the resulting equation of state into hydrodynamic transport models that will be compared directly to the RHIC data. We discuss expected benefits for DOE Office of Science research programs within the context of the NNSA mission.
Dilepton bremsstrahlung from pion-pion scattering in a relativistic OBE model
Eggers, H C; Gale, C; Haglin, K L
1996-01-01
We have made a detailed and quantitative study of dilepton production via bremsstrahlung of a virtual photon during pion-pion collisions. Most calculations of electromagnetic radiation from strong interaction processes rely on the soft photon approximation (SPA). The conditions underlying this approximation are generally violated when dilepton spectra are calculated in terms of their invariant mass, so that an approach going beyond the SPA becomes necessary. Superseding previous derivations, we derive an exact formula for the bremsstrahlung cross section. The resulting formulation is compared to various forms based on the SPA, the two-particle phase space approximation and R\\"uckl's formula using a relativistic One Boson Exchange (OBE) model. Within the OBE approach, we show that approximations to the bremsstrahlung dilepton cross sections often differ greatly from the exact result; discrepancies become greater both with rising temperature and with invariant mass. Integrated dilepton production rates are over...
Wen, D; Wang, X; Ai, B; Liu, G; Dong, D; Liu, L; Wen, De-hua; Chen, Wei; Wang, Xian-ju; Ai, Bao-quan; Liu, Guo-tao; Dong, Dong-qiao; Liu, Liang-gang
2003-01-01
The influence of the rotation on the total masses and radii of the neutron stars are calculated by the Hartle's slow rotation formalism, while the equation of state is considered in a relativistic $\\sigma-\\omega$ model. Comparing with the observation, the calculating result shows that the double neutron star binaries are more like hyperon stars and the neutron stars of X-ray binaries are more like traditional neutron stars. As the changes of the mass and radius to a real neutron star caused by the rotation are very small comparing with the total mass and radius, one can see that Hartle's approximate method is rational to deal with the rotating neutron stars. If three property values: mass, radius and period are observed to the same neutron star, then the EOS of this neutron star could be decided entirely.
Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement
Wettervik, Benjamin Svedung; Siminos, Evangelos; Fülöp, Tünde
2016-01-01
The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equations. An Eulerian approach is needed to accurately describe processes that are governed by high energy tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here, we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of five, because of the use of an adaptive mesh, in a typical scenario involving laser-plasma interaction in the self-induced transparency regime.
Investigation of A＋c- and Ab-Hypernuclei in Relativistic Mean-Field Model
TANYu-Hong; CAIChong-Hai; LILei; NINGPing-Zhi
2003-01-01
We investigate the properties of A+c- and Ab-hypernuclei within the framework of the relativistic mean-field model (RMF). It is found that no A+c bound states can exist if the A+c potential well depth |UA+c| in nuclear matter is less than 10 MeV. If |UA+c|is less than 20 MeV, A+c cannot bind to the heavier nuclei with atomic number larger than 100. We suggest it is preferable to search the A+c-hypernuclei from medium-heavy nuclear systems in experiment. Very small spin-orbit splitting for the A+c in hypernuclei is a/so observed, and for the Ab it is nearly zero.
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ-ω Model
CHEN Wei; AI Bao-Quan; LIU Liang-Gang
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model. Different from the results of the previous paper, we find that the effect of the constant a in the self-interaction, U(σ) = aσ+ bσ + cσ + dσ , of the σ meson cannot be neglected.It determines the critical density where tachyon appears. The smaller the a, the larger the critical density. The binding energy, pressure, incompressibility coefficient, nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
De Soto, F
2006-01-01
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding -- infinite space -- low energy parameters and bound state binding energies from eigensates computed at finite lattice size is discussed.
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2016-08-01
We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.
Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4
Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien
2014-01-01
This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437
The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses
Casey, Andrew R; Ness, Melissa; Rix, Hans-Walter; Ho, Anna Q Y; Gilmore, Gerry
2016-01-01
We have shown that data-driven models are effective for inferring physical attributes of stars (labels; Teff, logg, [M/H]) from spectra, even when the signal-to-noise ratio is low. Here we explore whether this is possible when the dimensionality of the label space is large (Teff, logg, and 15 abundances: C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) and the model is non-linear in its response to abundance and parameter changes. We adopt ideas from compressed sensing to limit overall model complexity while retaining model freedom. The model is trained with a set of 12,681 red-giant stars with high signal-to-noise spectroscopic observations and stellar parameters and abundances taken from the APOGEE Survey. We find that we can successfully train and use a model with 17 stellar labels. Validation shows that the model does a good job of inferring all 17 labels (typical abundance precision is 0.04 dex), even when we degrade the signal-to-noise by discarding ~50% of the observing time. The model dependencie...
Evolutionary stellar population synthesis with MILES - II. Scaled-solar and \\alpha-enhanced models
Vazdekis, A; Cassisi, S; Ricciardelli, E; Falcón-Barroso, J; Sánchez-Blázquez, P; La Barbera, F; Beasley, M A; Pietrinferni, A
2015-01-01
We present models that predict spectra of old- and intermediate-aged stellar populations at 2.51\\AA\\ (FWHM) with varying [\\alpha/Fe] abundance. The models are based on the MILES library and on corrections from theoretical stellar spectra. The models employ recent [Mg/Fe] determinations for the MILES stars and BaSTI scaled-solar and \\alpha-enhanced isochrones. We compute models for a suite of IMF shapes and slopes, covering a wide age/metallicity range. Using BaSTI, we also compute "base models" matching The Galactic abundance pattern. We confirm that the \\alpha-enhanced models show a flux excess with respect to the scaled-solar models blue-ward $\\sim$4500\\AA, which increases with age and metallicity. We also confirm that both [MgFe] and [MgFe]' indices are [\\alpha/Fe]-insensitive. We show that the sensitivity of the higher order Balmer lines to [\\alpha/Fe] resides in their pseudo-continua, with narrower index definitions yielding lower sensitivity. We confirm that the \\alpha-enhanced models yield bluer (redde...
Relativistic hydro and magnetohydrodynamic models for AGN jet propagation and deceleration
Keppens, R.; Meliani, Z.
2009-01-01
We present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the appe
UV-extended E-MILES stellar population models: young components in massive early-type galaxies
Vazdekis, A.; Koleva, M.; Ricciardelli, E.; Röck, B.; Falcón-Barroso, J.
2016-12-01
We present UV-extended E-MILES stellar population synthesis models covering the spectral range λλ 1680-50 000 Å at moderately high resolution. We employ the NGSL space-based stellar library to compute spectra of single-age, single-metallicity stellar populations in the wavelength range from 1680 to 3540 Å. These models represent a significant improvement in resolution and age/metallicity coverage over previous studies based on earlier space-based libraries. These model spectra were joined with those we computed in the visible using MILES, and other empirical libraries for redder wavelengths. The models span the metallicity range -1.79≤ [M/H]≤ +0.26 and ages above 30 Myr, for a suite of initial mass function types with varying slopes. We focus on the behaviour of colours, spectra and line-strength indices in the UV range as a function of relevant stellar population parameters. Whereas some indices strengthen with increasing age and metallicity, as most metallicity indicators in the visible, other indices peak around 3 Gyr for metal-rich stellar populations, such as Mg at 2800 Å. Our models provide reasonably good fits to the integrated colours and most line strengths of the stellar clusters of the Milky Way and Large Magellanic Cloud. Our full spectrum fits in the UV range for a representative set of early-type galaxies (ETGs) of varying mass yield age and metallicity estimates in very good agreement with those obtained in the optical range. The comparison of UV colours and line strengths of massive ETGs with our models reveals the presence of young stellar components, with ages in the range 0.1-0.5 Gyr and mass fractions 0.1-0.5 per cent, on the top of an old stellar population.
The Surface of Stellar Models - Now with more 3D simulations!
Trampedach Regner
2015-01-01
Full Text Available We have constructed a grid of 3D hydrodynamic simulations of deep convective and line-blanketed atmospheres. We have developed a new consistent method for computing and employing T(τ relations from these simulations, as surface boundary conditions for 1D stellar structure models. These 1D models have, in turn, had their mixing-length, α, calibrated against the averaged structure of each of the simulations. Both α and T(τ vary significantly with Teff and log g.
Excitation of Solar-like Oscillations: From PMS to MS Stellar Models
R. Samadi; M.-J. Goupil; E. Alecian; F. Baudin; D. Georgobiani; R. Trampedach; R. Stein; Å. Nordlund
2005-06-01
The amplitude of solar-like oscillations results from a balance between excitation and damping. As in the sun, the excitation is attributed to turbulent motions that stochastically excite the modes in the uppermost part of the convective zone. We present here a model for the excitation mechanism. Comparisons between modeled amplitudes and helio and stellar seismic constraints are presented and the discrepancies discussed. Finally the possibility and the interest of detecting such stochastically excited modes in pre-main sequence stars are also discussed.
Newtonian self-gravitating system in a relativistic huge void universe model
Nishikawa, Ryusuke; Nakao, Ken-ichi; Yoo, Chul-Moon
2016-12-01
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
Energetics of nearby stellar bow shocks
Benaglia, Paula
2012-01-01
The latest survey of stellar bow shocks (Peri et al. 2012) lists 28 candidates detected at IR wavelengths, associated with massive, early-type stars up to 3 kpc, along with the geometrical parameters of the structures found. I present here some considerations on the energetics involved, after the estimation of stellar wind power, infrared flux, stellar bolometric luminosity and radio flux limits for each source. The best candidates for relativistic particle acceleration are highlighted.
Relativistic GLONASS and geodesy
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
General Relativistic Simulations of the Collapsar Scenario
DeBrye, N; Aloy, M A; Font, J A
2013-01-01
We are exploring the viability of the collapsar model for long-soft gamma-ray bursts. For this we perform state-of-the-art general relativistic hydrodynamic simulations in a dynamically evolving space-time with the CoCoNuT code. We start from massive low metallicity stellar models evolved up to core gravitational instability, and then follow the subsequent evolution until the system collapses forming a compact remnant. A preliminary study of the collapse outcome is performed by varying the typical parameters of the scenario, such as the initial stellar mass, metallicity, and rotational profile of the stellar progenitor. 1D models (without rotation) have been used to test our newly developed neutrino leakage scheme. This is a fundamental piece of our approach as it allows the central remnant (in all cases considered, a metastable high-mass neutron star) to cool down, eventually collapsing to a black hole. In two dimensions, we show that sufficiently fast rotating cores lead to the formation of Kerr black holes...
Accelerated complete-linearization method for calculating NLTE model stellar atmospheres
Hubeny, I.; Lanz, T.
1992-01-01
Two approaches to accelerating the method of complete linearization for calculating NLTE model stellar atmospheres are suggested. The first one, the so-called Kantorovich variant of the Newton-Raphson method, consists of keeping the Jacobi matrix of the system fixed, which allows us to calculate the costly matrix inversions only a few times and then keep them fixed during the subsequent computations. The second method is an application of the Ng acceleration. Both methods are extremely easy to implement with any model atmosphere code based on complete linearization. It is demonstrated that both methods, and especially their combination, yield a rapidly and globally convergent algorithm, which takes 2 to 5 times less computer time, depending on the model at hand and the required accuracy, than the ordinary complete linearization. Generally, the time gain is more significant for more complicated models. The methods were tested for a broad range of atmospheric parameters, and in all cases they exhibited similar behavior. Ng acceleration applied on the Kantorovich variant thus offers a significant improvement of the standard complete-linearization method, and may now be used for calculating relatively involved NLTE model stellar atmospheres.
Troxel, M A; Ishak, Mustapha
2013-01-01
We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaitre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall -- the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found...
General relativistic considerations of the field shedding model of fast radio bursts
Punsly, Brian; Bini, Donato
2016-06-01
Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field (B) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic `hair' that must be shed before final collapse. But neutron stars have angular momentum and charge and a fully relativistic Kerr-Newman solution exists in which B has its source inside of the event horizon. In this Letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr-Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with B = 1011-1013 G and a long rotation period, >1s this is not a concern. We also discuss the observational evidence supporting the plausibility of magnetic flux shedding models of FRBs that are spawned from rapidly rotating progenitors.
Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R.; Gulminelli, F.; Menezes, Débora P.
2016-02-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.
Monreal-Ibero, A.; Lallement, R.
2017-03-01
Context. Diffuse stellar bands (DIBs) are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot (early-type) stars because of their smooth continuum. In an era in which there are several ongoing or planned massive Galactic surveys using multi-object spectrographs, cool (late-type) stars constitute an appealing set of targets. However, from the technical point of view, the extraction of DIBs in their spectra is more challenging because of the complexity of the continuum. Aims: In this contribution we provide the community with an improved set of stellar lines in the spectral regions associated with the strong DIBs at λ6196.0, λ6269.8, λ6283.8, and λ6379.3. These lines allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB (e.g., equivalent width, radial velocity). Methods: The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the Vienna Atomic Line Database (VALD) stellar line list. The oscillator strength log (gf) and wavelength of specific lines were modified to create synthetic spectra in which the residuals in both the Sun and Arcturus were minimized. Results: The TURBOSPECTRUM synthetic spectra, based on improved line lists, reproduce the observed spectra for the Sun and Arcturus in the mentioned spectral ranges with greater accuracy. Residuals between the synthetic and observed spectra are always ≲10%, which is much better than residuals with previously existing options. We tested the new line lists with some characteristic spectra from a variety of stars, including both giant and dwarf stars, and under different degrees of extinction. As occurred with the Sun and Arcturus, residuals in the fits used to extract the DIB information are smaller when using synthetic spectra
Pramanik, Souvik; Ghosh, Subir
2013-10-01
We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.
VizieR Online Data Catalog: Stellar models until He burning - III. (Claret+, 1997)
Claret, A.
1997-04-01
In this Paper I present grids for the stellar models with a slightly higher metallic content than in the previous works (Claret, 1995A&AS..109..441C; Claret & Gimenez, 1995A&AS..114..549C), say, Z=0.03. The initial helium abundances in mass are Yi=0.42, 0.32 and 0.22; this last value was used only to facilitate interpolations since it is a little bit smaller than the primordial helium abundance. The present computations are based on the radiative opacities with spin-orbi t coupling provided by the Lawrence Livermore group (Iglesias et al., 1992ApJ...397..771I). For the lower temperatures I have used the results by Alexander (1992, priv. comm.). Core overshooting was taken into account as well as mass loss. The models presented here cover the mass range between 1 and 40M⊙. I also compute for all models the internal structure constants kj and the radius of gyration β. For the first time the calculation of the tidal constants E2 and λ2, which are used to evaluate circularization and synchronization times in binary stars, are presented for stellar models as a function of the initial mass and time. The former is related with the dynamical tidal contribution to the total perturbed potential in a binary star while the latter is connected with the external structure of the outer layers. (1 data file).
Modelling of intermediate-age stellar populations III Effects of dust-shells around AGB stars
Mouhcine, M
2002-01-01
In this paper,we present single stellar population models of intermediate age stellar populations where dust-enshrouded AGB stars are introduced. The formation of carbon stars is also accounted for, and is taken to be a function of both initial mass and metallicity. The effect of the dusty envelopes around AGB stars on the optical/near-infrared spectral energy distribution were introduced using semi-emipirical models where the mass-loss and the photospheric chemistry determine the spectral properties of a star along the AGB sequence. The spectral dichotomy between O-rich stars and C-rich stars is taken into account in the modelling. We have investigated the AGB sequence morphology in he near-infrared CMD as a function of time and metallicity. We show that this diaggram is characterized by three morphological features, occupied by optically bright O-rich stars, optically bright C-rich stars, and dust-enshrouded O-rich and C-rich stars respectively. Our models are able to reproduce the distribution of the three...
Lienert, Matthias, E-mail: lienert@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany)
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to a relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.
Stellar abundance analyses in the light of 3D hydrodynamical model atmospheres
Asplund, M
2003-01-01
I describe recent progress in terms of 3D hydrodynamical model atmospheres and 3D line formation and their applications to stellar abundance analyses of late-type stars. Such 3D studies remove the free parameters inherent in classical 1D investigations (mixing length parameters, macro- and microturbulence) yet are highly successful in reproducing a large arsenal of observational constraints such as detailed line shapes and asymmetries. Their potential for abundance analyses is illustrated by discussing the derived oxygen abundances in the Sun and in metal-poor stars, where they seem to resolve long-standing problems as well as significantly alter the inferred conclusions.
Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones
Donatella Donatelli
2016-09-01
Full Text Available We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.
A relativistic mixing-layer model for jets in low-luminosity radio galaxies
Wang, Y; Laing, R; Alexander, P; Pavlovski, G; Knigge, C
2009-01-01
We present an analytical model for jets in Fanaroff & Riley Class I (FRI) radio galaxies, in which an initially laminar, relativistic flow is surrounded by a shear layer. We apply the appropriate conservation laws to constrain the jet parameters, starting the model where the radio emission is observed to brighten abruptly. We assume that the laminar flow fills the jet there and that pressure balance with the surroundings is maintained from that point outwards. Entrainment continuously injects new material into the jet and forms a shear layer, which contains material from both the environment and the laminar core. The shear layer expands rapidly with distance until finally the core disappears, and all of the material is mixed into the shear layer. Beyond this point, the shear layer expands in a cone and decelerates smoothly. We apply our model to the well-observed FRI source 3C31 and show that there is a self-consistent solution. We derive the jet power, together with the variations of mass flux and and en...
General Relativistic Considerations of the Field Shedding Model of Fast Radio Bursts
Punsly, Brian
2016-01-01
Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field ($B$) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic "hair" that must be shed before final collapse. But, neutron stars have angular momentum and charge and a fully relativistic Kerr Newman solution exists in which $B$ has its source inside of the event horizon. In this letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with $B = 10^{11} - 10^{13}$ G and a long rotation period, $>1$ s this is not a ...
Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui
2013-01-01
In this contribution we present some results of potential energy surfaces of actinide and transfermium nuclei from multi-dimensional constrained relativistic mean field (MDC-RMF) models. Recently we developed multi-dimensional constrained covariant density functional theories (MDC-CDFT) in which all shape degrees of freedom $\\beta_{\\lambda\\mu}$ with even $\\mu$ are allowed and the functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. In MDC-RMF models, the pairing correlations are treated with the BCS method. With MDC-RMF models, the potential energy surfaces of even-even actinide nuclei were investigated and the effect of triaxiality on the fission barriers in these nuclei was discussed. The non-axial reflection-asymmetric $\\beta_{32}$ shape in some transfermium nuclei with $N=150$, namely $^{246}$Cm, $^{248}$Cf, $^{250}$Fm, and $^{252}$No were also studied.
Self-consistent models of quasi-relaxed rotating stellar systems
Varri, A L
2012-01-01
Two new families of self-consistent axisymmetric truncated equilibrium models for the description of quasi-relaxed rotating stellar systems are presented. The first extends the spherical King models to the case of solid-body rotation. The second is characterized by differential rotation, designed to be rigid in the central regions and to vanish in the outer parts, where the energy truncation becomes effective. The models are constructed by solving the nonlinear Poisson equation for the self-consistent mean-field potential. For rigidly rotating configurations, the solutions are obtained by an asymptotic expansion on the rotation strength parameter. The differentially rotating models are constructed by means of an iterative approach based on a Legendre series expansion of the density and the potential. The two classes of models exhibit complementary properties. The rigidly rotating configurations are flattened toward the equatorial plane, with deviations from spherical symmetry that increase with the distance f...
Ludwig, Hans-G
2016-01-01
Hydrodynamical, i.e. multi-dimensional and time-dependent, model atmospheres of late-type stars have reached a high level of realism. They are commonly applied in high-fidelity work on stellar abundances but also allow the study of processes that are not modelled in standard, one-dimensional hydrostatic model atmospheres. Here, we discuss two observational aspects that emerge from such processes, the photometric granulation background and the spectroscopic microturbulence. We use CO5BOLD hydrodynamical model atmospheres to characterize the total granular brightness fluctuations and characteristic time scale for FGK stars. Emphasis is put on the diagnostic potential of the granulation background for constraining the fundamental atmospheric parameters. We find a clear metallicity dependence of the granulation background. The comparison between the model predictions and available observational constraints at solar metallicity shows significant differences, that need further clarification. Concerning microturbule...
Testing spectral models for stellar populations with star clusters: II. Results
Delgado, Rosa M Gonzalez
2009-01-01
High spectral resolution evolutionary synthesis models have become a routinely used ingredient in extragalactic work, and as such deserve thorough testing. Star clusters are ideal laboratories for such tests. This paper applies the spectral fitting methodology outlined in Paper I to a sample of clusters, mainly from the Magellanic Clouds and spanning a wide range in age and metallicity, fitting their integrated light spectra with a suite of modern evolutionary synthesis models for single stellar population. The combinations of model plus spectral library employed in this investigation are Galaxev/STELIB, Vazdekis/MILES, SED@/GRANADA, and Galaxev/MILES+GRANADA, which provide a representative sample of models currently available for spectral fitting work. A series of empirical tests are performed with these models, comparing the quality of the spectral fits and the values of age, metallicity and extinction obtained with each of them. A comparison is also made between the properties derived from these spectral f...
Ebran, J-P [CEA/DAM/DIF, F-91297 Arpajon (France); Khan, E; Arteaga, D Pena [Institut de Physique Nucleaire, University Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Vretenar, D, E-mail: jean-paul.ebran@cea.fr [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)
2011-09-16
The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is presented. The model involves a phenomenological Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel and the central part of the Gogny force in the particle-particle channel. The RHFBz equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Neon isotopes.
The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe
LI YanSong; LONG GuiLu
2009-01-01
The relativistic consistent angular-momentum projected shell model (RECAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.
Aznauryan, I G
2012-01-01
We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the electroexcitation amplitudes for the Delta(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11 up to Q2= 12GeV2. The parameters of the model have been specified via description of the nucleon electromagnetic form factors in the approach that combines 3q and pion-cloud contributions in the LF dynamics.
Le Yaouanc, A; Morénas, V; Oliver, L; Pène, O; Raynal, J C
2000-01-01
The detailed way in which duality between sum of exclusive states and the free quark model description operates in semileptonic total decay widths, is analysed. It is made very explicit by the use of the non relativistic harmonic oscillator quark model in the SV limit, and a simple interaction current with the lepton pair. In particular, the Voloshin sum rule is found to eliminate the mismatches of order $\\delta m/m_b^2$.
The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe
无
2009-01-01
The relativistic consistent angular-momentum projected shell model(ReCAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.
Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena
2016-01-01
Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes
A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds
Montes, G.; González, R. F.; Cantó, J.; Pérez-Torres, M. A.; Alberdi, A.
2011-07-01
Context. In massive-star binary systems, the interaction of the strong stellar winds results in a wind collision region (WCR) between the stars, which is limited by two shock fronts. Besides the nonthermal emission resulting from the shock acceleration, these shocks emit thermal (free-free) radiation detectable at radio frequencies that increase the expected emission from the stellar winds. Observations and theoretical studies of these sources show that the shocked gas is an important, but not dominant, contributor to the total emission in wide binary systems, while it plays a very substantial role in close binaries. Aims: The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the WCR. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods: We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results: Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the WCR mainly arises from the optically thick region of the compressed layer and scales as ~D4/5, where D is the binary separation. The predicted flux density Sν from the WCR becomes more important as the frequency ν increases, showing higher spectral indices than the expected 0.6 value (Sν ∝ να, where α = 0.6) from the unshocked winds. We also investigate the emission from short-period WR+O systems calculated with our analytic formulation. In particular, we apply the model to the binary systems WR 98 and WR 113 and compare our results
Baraffe, I; Méra, D; Chabrier, G; Beaulieu, J P
1998-01-01
We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables ($3
A Stellar Population Synthesis Model for the Study of Ultraviolet Star Counts of the Galaxy
Pradhan, Ananta C; Robin, A C; Ghosh, S K; Vickers, John J
2014-01-01
GALEX, the first all sky imaging UV satellite, has imaged a large part of the sky providing an excellent opportunity for studying UV star counts. The aim of our study is to investigate in detail the observed UV star counts obtained by GALEX vis-a-vis the model simulated catalogs produced by the Besancon model of stellar population synthesis in various Galactic directions, and to explore the potential for studying the structure of our Galaxy from images in multiple NUV and FUV filters of the forthcoming Ultraviolet Imaging Telescope (UVIT) to be flown onboard ASTROSAT. We have upgraded the Besancon model of stellar population synthesis to include the UV bands of GALEX and UVIT. Depending on the availability of contiguous GALEX, SDSS, WISE and 2MASS overlapping regions, we have chosen a set of 19 GALEX fields which spread over a range of Galactic directions. We cross-matched GALEX sources with the WISE+2MASS and SDSS catalogs and UV stars in the GALEX catalog are identified by choosing a suitable IR colour, J -...
Kawazura, Yohei; Morrison, Philip J
2016-01-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to [Comisso \\textit{et al.}, Phys. Rev. Lett. {\\bf 113}, 045001 (2014)] for the electron--positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked con...
Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass
Lugones, Germán; Arbañil, José D. V.
2017-03-01
We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and
Testing spectral models for stellar populations with star clusters - I. Methodology
Cid Fernandes, Roberto; González Delgado, Rosa M.
2010-04-01
High-resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly important to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well-studied star clusters from the work of Leonardi and Rose spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic Clouds. This paper concentrates on the methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the Medium-resolution INT Library of Empirical Spectra. Best-fitting and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal uncertainties in t,Z and AV. In some cases, the spectral fits indicate that the models lack a blue old population, probably associated with the horizontal branch. This methodology, which is mostly based on the publicly available code STARLIGHT, is extended to other sets of models in Paper II, where a comparison with properties derived from spatially resolved data (colour-magnitude diagrams) is presented. The global aim of these two papers is to provide guidance to users of evolutionary synthesis models and empirical feedback to model makers.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems
Schönberner, D; Sandin, C; Steffen, M
2010-01-01
By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M_sun surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences w...
Analytic modeling of tidal effects in the relativistic inspiral of binary neutron stars.
Baiotti, Luca; Damour, Thibault; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-12-31
To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the ≃22 GW cycles are Δϕ≃±0.24 rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians.
General relativistic modelling of the negative reverberation X-ray time delays in AGN
Emmanoulopoulos, D; Dovciak, M; McHardy, I M
2014-01-01
We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above $10^{-4}$ Hz) i.e. soft band variations lag the hard band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral iron line (Fe k$\\alpha$) at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly-used, but erroneous, top-hat models. Additionally we parametrize the positive ...
Equilibrium Reconstructions with V3FIT and Current Evolution Modeling for 3-D Stellarator Plasmas
Schmitt, J. C.; Cianciosa, M.; Geiger, J.; Lazerson, S.
2016-10-01
V3FIT is a powerful equilibrium reconstruction tool for magnetic confinement fusion experiments which are inherently 3-D in nature (i.e. stellarators) or have 3-D components (tokamaks with 3-D shaping, reversed field pinches with helical states, etc). Here, we present details of the diagnostic modeling, constraints and the user interface for reconstructions of W7-X plasmas. For typical discharges during the OP1.1 run campaign of W7-X, the net toroidal current and current density profile do not reach steady-state. When modeling the current evolution in 3-D plasmas, both poloidal and toroidal currents are linked with both poloidal and toroidal fluxes. In contrast, in toroidally axisymmetric plasmas, the poloidal flux is linked only with the toroidal current and the toroidal current is linked only with the poloidal flux. Compared to an equivalently-sized axisymmetric configuration, the current diffusion in 3-D plasmas is enhanced, leading to a faster relaxation of the current profile to its steady-state. Implications for the time-evolution of the current and rotational transform profiles in stellarator plasmas are discussed. This work is supported by DoE Grant DE-SC00014529.
Simple Stellar Population Modeling of Low S/N Galaxy Spectra and Quasar Host Galaxy Applications
Mosby, Gregory; Hooper, Eric; Wolf, Marsha; Sheinis, Andrew; Richards, Joseph
2014-01-01
To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host are comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag per arcsec$^{2}$) and the resulting spectrum might have such low S/N that it hinders analysis with standard stellar population modeling techniques. To address this problem we have developed a method that can recover galaxy star formation histories (SFHs) from rest frame optical spectra with S/N $\\sim$ 5~\\AA$^{-1}$. This method uses the statistical technique diffusion k-means to tailor the stellar population modeling basis set. Our diffusion k-means minimal basis set, composed of 4 broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an...
A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds
Montes, G; Canto, J; Perez-Torres, M A; Alberdi, A
2011-01-01
Aims. The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the wind collision region. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods. We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results. Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the wind collision region mainly arises from the optically thick region of the compressed layer and scales as ~ D^{4/5}, where D is the binary separation. The predicted flux density fro...
Testing stellar evolution models with the retired A star HD 185351
Hjørringgaard, Jakob G; White, Tim R; Huber, Daniel; Pope, Benjamin J S; Casagrande, Luca; Justesen, Anders B; Christensen-Dalsgaard, Jørgen
2016-01-01
The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. (2014) using interferometry, spectroscopy and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of $1.5\\mathrm{M}_{\\odot}$. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from $\\sim 1.6-1.9\\mathrm{M}_{\\odot}$ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as considering the additional constraint of the observed g-mode period spacing. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the...
Maslov, K A; Voskresensky, D N
2016-01-01
Knowledge of the equation of state of the baryon matter plays a decisive role in the description of neutron stars. With an increase of the baryon density the filling of Fermi seas of hyperons and $\\Delta$ isobars becomes possible. Their inclusion into standard relativistic mean-field models results in a strong softening of the equation of state and a lowering of the maximum neutron star mass below the measured values. We extend a relativistic mean-field model with scaled hadron masses and coupling constants developed in our previous works and take into account now not only hyperons but also the $\\Delta$ isobars. We analyze available empirical information to put constraints on coupling constants of $\\Delta$s to mesonic mean fields. We show that the resulting equation of state satisfies majority of presently known experimental constraints.
Relativistic stars in scalar-tensor theories with disformal coupling
Minamitsuji, Masato
2016-01-01
We present a general formulation to analyze the structure of slowly rotating relativistic stars in a broad class of scalar-tensor theories with disformal coupling to matter. Our approach includes theories with generalized kinetic terms, generic scalar field potentials and contains theories with conformal coupling as particular limits. In order to investigate how the disformal coupling affects the structure of relativistic stars, we propose a minimal model of a massless scalar-tensor theory and investigate in detail how the disformal coupling affects the spontaneous scalarization of slowly rotating neutron stars. We show that for negative values of the disformal coupling parameter between scalar field and matter, scalarization can be suppressed, while for large positive values of the disformal coupling parameter stellar models cannot be obtained. This allows us to put a mild upper bound on this parameter. We also show that these properties can be qualitatively understood by linearizing the scalar field equatio...
Absolute masses and radii determination in multiplanetary systems without stellar models
Almenara, J M; Mardling, R; Barros, S C C; Damiani, C; Bruno, G; Bonfils, X; Deleuil, M
2015-01-01
The masses and radii of extrasolar planets are key observables for understanding their interior, formation and evolution. While transit photometry and Doppler spectroscopy are used to measure the radii and masses respectively of planets relative to those of their host star, estimates for the true values of these quantities rely on theoretical models of the host star which are known to suffer from systematic differences with observations. When a system is composed of more than two bodies, extra information is contained in the transit photometry and radial velocity data. Velocity information (finite speed-of-light, Doppler) is needed to break the Newtonian $MR^{-3}$ degeneracy. We performed a photodynamical modelling of the two-planet transiting system Kepler-117 using all photometric and spectroscopic data available. We demonstrate how absolute masses and radii of single-star planetary systems can be obtained without resorting to stellar models. Limited by the precision of available radial velocities (38 $ms^{...
Stellar Structure Modeling using a Parallel Genetic Algorithm for Objective Global Optimization
Metcalfe, T S
2002-01-01
Genetic algorithms are a class of heuristic search techniques that apply basic evolutionary operators in a computational setting. We have designed a fully parallel and distributed hardware/software implementation of the generalized optimization subroutine PIKAIA, which utilizes a genetic algorithm to provide an objective determination of the globally optimal parameters for a given model against an observational data set. We have used this modeling tool in the context of white dwarf asteroseismology, i.e., the art and science of extracting physical and structural information about these stars from observations of their oscillation frequencies. The efficient, parallel exploration of parameter-space made possible by genetic-algorithm-based numerical optimization led us to a number of interesting physical results: (1) resolution of a hitherto puzzling discrepancy between stellar evolution models and prior asteroseismic inferences of the surface helium layer mass for a DBV white dwarf; (2) precise determination of...
Buzzoni, Alberto
2005-08-01
We present here a new set of evolutionary population synthesis models for template galaxies along the Hubble morphological sequence. The models, which account for the individual evolution of the bulge, disc, and halo components, provide basic morphological features, along with bolometric luminosity and colour evolution (including Johnson/Cousins, Gunn g, r, i, and Washington C, M, T1, T2 photometric systems) between 1 and 15 Gyr. The luminosity contribution from residual gas is also evaluated, both in terms of nebular continuum and Balmer-line enhancement. Our theoretical framework relies on the observed colours of present-day galaxies, coupled with a minimal set of physical assumptions related to simple stellar population (SSP) evolution theory, to constrain the overall distinctive properties of galaxies at earlier epochs. A comparison with more elaborate photometric models, and with empirical sets of reference spectral energy distributions (SEDs) for early- and late-type galaxies is accomplished, in order to test output reliability and investigate the internal uncertainty of the models. The match with observed colours of present-day galaxies tightly constrain the stellar birth rate, b, which smoothly increases from E to Im types. The comparison with the observed supernova (SN) rate in low-redshift galaxies shows, as well, a pretty good agreement, and allows us to tune up the inferred star formation activity and the SN and hypernova rates among the different galaxy morphological types. Among others, these results could find useful application also in cosmological studies, given for instance the claimed relationship between hypernova events and gamma-ray bursts. One outstanding feature of the back-in-time evolution model is the prevailing luminosity contribution of the bulge at early epochs. As a consequence, the current morphological look of galaxies might drastically change when moving to larger distances, and we discuss here how sensibly this bias could affect
Kopeikin, S M; Kopeikin, Sergei; Fomalont, Ed
2002-01-01
A relativistic sub-picosecond model of gravitational time delay in radio astronomical observations is worked out and a new experimental test of general relativity is discussed in which the effect of retardation of gravity associated with its finite speed can be observed. As a consequence, the speed of gravity can be measured by differential VLBI observations. Retardation in propagation of gravity is a central part of the Einstein theory of general relativity which has not been tested directly so far. The idea of the proposed gravitational experiment is based on the fact that gravity in general relativity propagates with finite speed so that the deflection of light caused by the body must be sensitive to the ratio of the body's velocity to the speed of gravity. The interferometric experiment can be performed, for example, during the very close angular passage of a quasar by Jupiter. Due to the finite speed of gravity and orbital motion of Jupiter, the variation in its gravitational field reaches observer on Ea...
Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models
Kremer, G M
2002-01-01
A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with th...
Looking into the inner black hole accretion disc with relativistic models of iron line
Svoboda, Jiri
2010-01-01
We discuss black hole spin measurements employing the relativistic iron line profiles in the X-ray domain. We investigate the iron line band for two representative sources -- MCG -6-30-15 (active galaxy) and GX 339-4 (X-ray binary). We compare two models of the broad iron line, LAOR and KYRLINE. We realise that the spin is currently determined entirely from the position of the marginally stable orbit while the effect of the spin on the overall line shape would be resolvable with higher resolution X-ray missions. We show that the precision of the spin measurements depends on an unknown angular distribution of the disc emission. We study how sensitive the spin determination is to the assumptions about the intrinsic angular distribution of the emitted photons. We find that the uncertainty of the directional emission distribution translates to 20% uncertainty in the determination of the radius of marginally stable orbit. We perform radiation transfer computations of an X-ray irradiated disc atmosphere (NOAR code)...
Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars
Baiotti, Luca; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-01-01
To detect the gravitational-wave signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the $\\simeq 22$ gravitational-wave cycles are $\\Delta \\phi\\simeq \\pm 0.24$ rad, thus with relative phase errors $\\Delta \\phi/\\phi \\simeq 0.2%$. We also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all of the numerically-computed phase evolutions, in contrast with what found when adopting a tidally corrected post-Newtonian Taylor-T4 expansion.
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
Nuclear matter fourth-order symmetry energy in relativistic mean field models
Cai, Bao-Jun
2011-01-01
Within the nonlinear relativistic mean field model, we derive the analytical expression of the nuclear matter fourth-order symmetry energy $E_{4}(\\rho)$. Our results show that the value of $E_{4}(\\rho)$ at normal nuclear matter density $\\rho_{0}$ is generally less than 1 MeV, confirming the empirical parabolic approximation to the equation of state for asymmetric nuclear matter at $\\rho_{0}$. On the other hand, we find that the $E_{4}(\\rho)$ may become nonnegligible at high densities. Furthermore, the analytical form of the $E_{4}(\\rho)$ provides the possibility to study the higher-order effects on the isobaric incompressibility of asymmetric nuclear matter, i.e., $K_{\\mathrm{sat}}(\\delta)=K_{0}+K_{\\mathrm{{sat},2}}\\delta ^{2}+K_{\\mathrm{{sat},4}}\\delta ^{4}+\\mathcal{O}(\\delta ^{6})$ where $\\delta =(\\rho_{n}-\\rho_{p})/\\rho $ is the isospin asymmetry, and we find that the value of $K_{\\mathrm{{sat},4}}$ is generally comparable with that of the $K_{\\mathrm{{sat},2}}$. In addition, we study the effects of the $E...
Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms
Gravejat, Philippe; Sere, Eric
2007-01-01
We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant $\\alpha$. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an $L^1$ function and compute the effective charge of the system, re...
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES
Parfrey, Kyle [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Beloborodov, Andrei M.; Hui, Lam, E-mail: parfrey@astro.princeton.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)
2013-09-10
Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.
English, William; Krause, Martin G H
2016-01-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets we at times find magnetic field amplification by up to a factor of two in energy, but mostly the magnetic energy in the lobes is co...
Gids of rotating stellar models with masses between 1.0 and 3.0 M⊙
Wu-Ming Yang; Shao-Lan Bi; Xiang-Cun Meng
2013-01-01
We calculated a grid of evolutionary tracks of rotating models with masses between 1.0 and 3.0 M⊙ and resolution δM ≤ 0.02 M⊙,which can be used to study the effects of rotation on stellar evolution and on the characteristics of star clusters.The value of ～ 2.05 M⊙ is a critical mass for the effects of rotation on stellar structure and evolution.For stars with M ＞ 2.05 M⊙,rotation leads to an increase in the convective core and prolongs their lifetime on the main sequence (MS); rotating models evolve more slowly than non-rotating ones; the effects of rotation on the evolution of these stars are similar to those of convective core overshooting.However for stars with 1.1 ＜ M/M⊙ ＜ 2.05,rotation results in a decrease in the convective core and shortens the duration of the MS stage; rotating models evolve faster than non-rotating ones.When the mass has values in the range ～ 1.7-2.0 M⊙,the mixing caused by rotationally induced instabilities is not efficient; the hydrostatic effects dominate processes associated with the evolution of these stars.For models with masses between about 1.6 and 2.0 M⊙,rotating models always exhibit lower effective temperatures than non-rotating ones at the same age during the MS stage.For a given age,the lower the mass,the smaller the change in the effective temperature.Thus rotations could lead to a color spread near the MS turnoff in the color-magnitude diagram for intermediate-age star clusters.
Pythagoras Theorem and Relativistic Kinematics
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
A Grid of MHD Models for Stellar Mass Loss and Spin-down Rates of Solar Analogs
Cohen, Ofer
2013-01-01
Stellar winds are believed to be the dominant factor in spin down of stars over time. However, stellar winds of solar analogs are poorly constrained due to the challenges in observing them. A great improvement has been made in the last decade in our understanding of the mechanisms responsible for the acceleration of the solar wind and in the development of numerical models for solar and stellar winds. In this paper, we present a grid of Magnetohydrodynamic (MHD) models to study and quantify the values of stellar mass-loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass-loss rate of stars with thermally-driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the "solar dipole" case and a real case based on solar observations that overestimates the actua...
Dittkrist, K -M; Klahr, H; Alibert, Y; Henning, T
2014-01-01
Context: Several recent studies have found that planet migration in adiabatic discs differs significantly from migration in isothermal discs. Depending on the thermodynamic conditions, i.e., the effectiveness of radiative cooling, and the radial surface density profile, planets migrate inward or outward. Clearly, this will influence the semimajor axis - mass distribution of planets as predicted by population synthesis simulations. Aims: Our goal is to study the global effects of radiative cooling, viscous torque desaturation and gap opening as well as stellar irradiation on the tidal migration of a synthetic planet population. Methods: We combine results from several analytical studies and 3D hydrodynamic simulations in a new semi-analytical migration model for the application in our planet population synthesis calculations. Results: We find a good agreement of our model with torques obtained in a 3D radiative hydrodynamic simulations. We find three convergence zones in a typical disc, towards which planets m...
Ultraviolet Properties of Primeval Galaxies Theoretical Models from Stellar Population Synthesis
Buzzoni, A
2002-01-01
The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below 3000 Angstroms directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000 and 2800 Angstroms, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Angstroms Im irregulars are found in fact nearly four orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing model output and ob...
Simple stellar population modelling of low S/N galaxy spectra and quasar host galaxy applications
Mosby, G.; Tremonti, C. A.; Hooper, E. J.; Wolf, M. J.; Sheinis, A. I.; Richards, J. W.
2015-02-01
To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host is comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag arcsec-2) and the resulting spectrum might have such low signal-to-noise ratio (S/N) that it hinders analysis with standard stellar population modelling techniques. To address this problem, we have developed a method that can recover galaxy star formation histories (SFHs) from rest-frame optical spectra with S/N ˜ 5 Å-1. This method uses the statistical technique diffusion k-means to tailor the stellar population modelling basis set. Our diffusion k-means minimal basis set, composed of four broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an analytic prescription for seeing conditions, we are able to simultaneously model scattered quasar light and the SFH of quasar host galaxies (QHGs). We use synthetic data to compare results of our novel method with previous techniques. We also present the modelling results on a previously published QHG and show that galaxy properties recovered from a diffusion k-means basis set are less sensitive to noise added to this QHG spectrum. Our new method has a clear advantage in recovering information from QHGs and could also be applied to the analysis of other low S/N galaxy spectra such as those typically obtained for high redshift objects or integral field spectroscopic surveys.
Longmore, Steven N
2015-01-01
To explain the observed anomalies in stellar populations within globular clusters, many globular cluster formation theories require two independent episodes of star formation. A fundamental prediction of these models is that the clusters must accumulate large gas reservoirs as the raw material to form the second stellar generation. We show that young clusters containing the required gas reservoir should exhibit the following observational signatures: (i) a dip in the measured luminosity profile or an increase in measured reddening towards the cluster centre, with Av >10mag within a radius of a few pc; (ii) bright (sub)mm emission from dust grains; (iii) bright molecular line emission once the gas is dense enough to begin forming stars. Unless the IMF is anomalously skewed towards low-mass stars, the clusters should also show obvious signs of star formation via optical emission lines (e.g. H_alpha) after the stars have formed. These observational signatures should be readily observable towards any compact clus...
Shprits, Yuri Y.; Elkington, Scot R.; Meredith, Nigel P.; Subbotin, Dmitriy A.
2008-11-01
In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at geosynchronous orbit. Local acceleration and losses and 3D simulations of the dynamics of the radiation belt fluxes are discussed in the companion paper [Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., Elkington, S.R., 2008. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, this issue. doi:10.1016/j.jastp.2008.06.014].
An introduction to relativistic processes and the standard model of electroweak interactions
Becchi, Carlo Maria
2014-01-01
These lectures are meant to be a reference and handbook for an introductory course in Theoretical Particle Physics, suitable for advanced undergraduates or beginning graduate students. Their purpose is to reconcile theoretical rigour and completeness with a careful analysis of more phenomenological aspects of the physics. They aim at filling the gap between quantum field theory textbooks and purely phenomenological treatments of fundamental interactions. The first part provides an introduction to scattering in relativistic quantum field theory. Thanks to an original approach to relativistic processes, the relevant computational techniques are derived cleanly and simply in the semi-classical approximation. The second part contains a detailed presentation of the gauge theory of electroweak interactions with particular focus to the processes of greatest phenomenological interest. The main novelties of the present second edition are a more complete discussion of relativistic scattering theory and an expansion of ...
General relativistic modelling of the negative reverberation X-ray time delays in AGN
Emmanoulopoulos, D.; Papadakis, I. E.; Dovčiak, M.; McHardy, I. M.
2014-04-01
We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above 10-4 Hz), i.e. soft-band variations lag the hard-band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral Fe Kα line at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly used, but erroneous, top-hat models. Additionally, we parametrize the positive part of the time-lag spectra (typically seen below 10-4 Hz) by a power law. We find that the best-fitting black hole (BH) masses, M, agree quite well with those derived by other methods, thus providing us with a new tool for BH mass determination. We find no evidence for any correlation between M and the BH spin parameter, α, the viewing angle, θ, or the height of the X-ray source above the disc, h. Also on average, the X-ray source lies only around 3.7 gravitational radii above the accretion disc and θ is distributed uniformly between 20° and 60°. Finally, there is a tentative indication that the distribution of α may be bimodal above and below 0.62.
Hydrodynamical interaction of mildly relativistic ejecta with an ambient medium
Suzuki, Akihiro; Shigeyama, Toshikazu
2016-01-01
Hydrodynamical interaction of spherical ejecta freely expanding at mildly relativistic speeds into an ambient cold medium is studied in semi-analytical and numerical ways to investigate how ejecta produced in energetic stellar explosions dissipate their kinetic energy through the interaction with the surrounding medium. We especially focus on the case in which the circumstellar medium is well represented by a steady wind at a constant mass-loss rate having been ejected from the stellar surface prior to the explosion. As a result of the hydrodynamical interaction, the ejecta and circumstellar medium are swept by the reverse and forward shocks, leading to the formation of a geometrically thin shell. We present a semi-analytical model describing the dynamical evolution of the shell and compare the results with numerical simulations. The shell can give rise to bright emission as it gradually becomes transparent to photons. while it is optically thick. We develop an emission model for the expected emission from th...
Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres
Hayek, W; Pont, F; Asplund, M
2012-01-01
We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of the two transiting exoplanet systems HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated using 3D LTE spectrum formation and opacity sampling. We test our predictions using least-squares fits of model light curves to primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 between 2900 A and 5700 A produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of surface granulation. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 A and 5700 A, partly due ...
An Analytic Model for the Evolution of the Stellar, Gas, and Metal Content of Galaxies
Davé, Romeel; Oppenheimer, Benjamin D
2011-01-01
We present an analytic formalism that describes the evolution of the stellar, gas, and metal content of galaxies. It is based on the idea, inspired by hydrodynamic simulations, that galaxies live in a slowly-evolving equilibrium between inflow, outflow, and star formation. We argue that this formalism broadly captures the behavior of galaxy properties evolving in simulations. The resulting equilibrium equations for the star formation rate, gas fraction, and metallicity depend on three key free parameters that represent ejective feedback, preventive feedback, and re-accretion of ejected material. We schematically describe how these parameters are constrained by models and observations. Galaxies perturbed off the equilibrium relations owing to inflow stochasticity tend to be driven back towards equilibrium, such that deviations in star formation rate at a given mass are correlated with gas fraction and anti-correlated with metallicity. After an early gas accumulation epoch, quiescently star-forming galaxies are...
Model-Independent Stellar and Planetary Masses from Multi-Transiting Exoplanetary Systems
Montet, Benjamin T
2012-01-01
Precise exoplanet characterization requires precise classification of exoplanet host stars. The masses of host stars are commonly estimated by comparing their spectra to those predicted by stellar evolution models. However, spectroscopically determined properties are difficult to measure accurately for stars that are substantially different from the Sun, such as M-dwarfs and evolved stars. Here, we propose a new method to dynamically measure the masses of transiting planets near mean-motion resonances and their host stars by combining observations of transit timing variations with radial velocity measurements. We derive expressions to analytically determine the mass of each member of the system and demonstrate the technique on the Kepler-18 system. We compare these analytic results to numerical simulations and find the two are consistent. We identify eight systems for which our technique could be applied if follow-up radial velocity measurements are collected. We conclude this analysis would be optimal for sy...
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
Self-consistent modeling of radio-frequency plasma generation in stellarators
Moiseenko, V. E.; Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.
2013-11-01
A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell's equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell's equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell's equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell's equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.
Rogers, F J; Iglesias, C A
1999-11-07
The monochromatic opacity, {kappa}{sub v}, quantifies the property of a material to remove energy of frequency v from a radiation field. A harmonic average of {kappa}{sub v}, known as the Rosseland mean, {kappa}{sub R}, is frequently used to simplify the calculation of energy transport in stars. The term ''opacity'' is commonly understood to refer to {kappa}{sub R}. Opacity plays an important role in stellar modeling because for most stars radiation is the primary mechanism for transporting energy from the nuclear burning region in the core to the surface. Depending on the mass, convection and electron thermal conduction can also be important modes of stellar energy transport. The efficiency of energy transport is related to the temperature gradient, which is directly proportional to the mean radiative opacity in radiation dominated regions. When the radiative opacity is large, convection can become the more efficient energy transport mechanism. Electron conductive opacity, the resistance of matter to thermal conduction, is inversely proportional to electron thermal conductivity. Thermal conduction becomes the dominant mode of energy transport at high density and low temperature.
Modelling and measurement of jet quenching in relativistic heavy-ion collisions at the LHC
Verweij, M.
2013-01-01
In relativistic collisions between nuclei, the creation of a strongly interacting medium, called the Quark Gluon Plasma (QGP), is expected. It is expected that such a medium also existed in the early universe just after the Big Bang. The phase transition of interest is where the dense medium of free
Kawazura, Yohei; Miloshevich, George; Morrison, Philip J.
2017-02-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to Comisso et al., Phys. Rev. Lett. 113, 045001 (2014) for the electron-positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked contrast to nonrelativistic Hall MHD that does satisfy the frozen-in condition. We also find the violation of the frozen-in condition is accompanied by freezing-in of an alternative flux determined by a generalized vector potential. Finally, we derive a more general 3 + 1 Poisson bracket for nonrelativistic extended MHD, one that does not assume smallness of the electron ion mass ratio.
Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane; Zibetti, Stefano
2017-02-01
In this paper, we investigate the implications of the integrated galaxy-wide stellar initial mass function (IGIMF) approach in the framework of the semi-analytical model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [α/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of α-enhancement with stellar mass, in agreement with previous studies. This is mainly due to the fact that massive galaxies are characterized by larger star formation rates at high redshift, leading to stronger α-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation time-scales for more massive galaxies. We argue that in the IGIMF scenario the [α/Fe] ratios are good tracers of the highest star formation events. The final stellar masses and mass-to-light ratio of our model massive galaxies are larger than those estimated from the synthetic photometry assuming a universal IMF, providing a self-consistent interpretation of similar recent results, based on dynamical analysis of local early-type galaxies.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Mg line formation in late-type stellar atmospheres: I. The model atom
Osorio, Y; Lind, K; Belyaev, A K; Spielfiedel, A; Guitou, M; Feautrier, N
2015-01-01
Mg is often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from LTE. The astrophysical importance of Mg as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. The modelled spectra agree well with observed spectra. The line-to-line scatter in the derived abundances shows improve...
Numerical Simulation of Interacting Stellar Winds Model Using Smoothed Particle Hydrodynamics (SPH)
Thronson, H. A., Jr.; Li, P. S.; Kwok, S.
1997-12-01
In the past decade, the Interacting Stellar Winds (ISW) model has been shown to be successful in explaining the formation of planetary nebulae, Wolf-Rayet nebulae, slow novae, and supernovae. Since analytical methods applied to the ISW model have been limited to the spherical symmetric (1D) geometry, numerical methods are necessary for axisymmetric (2D) or arbitrary (3D) geometries, such as the study of formation and evolution of planetary nebulae, and for symbiotic nova outbursts. The Smoothed Particle Hydrodynamics (SPH) algorithm has been developed to study hydrodynamics using the particle method. This algorithm has been applied in many different fields successfully. In this paper, we apply the SPH algorithm using the TREE code to the problem of interacting winds dynamics. We present three simulations: (1) the interaction of two winds in spherical symmetry to demonstrate the validity of the algorithm in dealing with ISW modeling, (2) the formation and evolution of an axisymmetric nebula in the first 500 years, and (3) the interacting-colliding winds caused by a slow nova outburst in a symbiotic system. It is the first time that the SPH algorithm has been applied to an ISW simulation. The SPH algorithm is proved to be an accurate and powerful tool in studying ISW model. This work is supported by NASA's US ISO program and the University of Calgary.
Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators
Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.
2015-11-01
The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.
The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties
Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.
2013-09-01
Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad
Williams, A A
2015-01-01
We develop a flexible set of action-based distribution functions (DFs) for stellar halos. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening and anisotropy respectively. The DFs generate flattened stellar halos with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based distribution function to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best fit model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from $\\beta \\approx 0.4$ at Galactocentric radius of 15 kpc to $\\ap...
Beasley, M A; Strader, J; Forbes, D A; Proctor, R N; Barmby, P; Huchra, J P; Beasley, Michael A.; Brodie, Jean P.; Strader, Jay; Forbes, Duncan A.; Proctor, Robert N.; Barmby, Pauline; Huchra, John P.
2004-01-01
We derive ages, metallicities and [alpha/Fe] ratios from the integrated spectra of 23 globular clusters in M31, by employing multivariate fits to two stellar population models. In parallel we analyze spectra of 21 Galactic globular clusters in order to facilitate a differential analysis. We find that the M31 globular clusters separate into three distinct components in age and metallicity. We identify an old, metal-poor group (7 clusters), an old, metal-rich group (10 clusters) and an intermediate age (3-6 Gyr), intermediate-metallicity ([Z/H]~-1) group (6 clusters). This third group is not identified in the Galactic globular cluster sample. The majority of globular clusters in both samples appear to be enhanced in alpha-elements, the degree of enhancement being model-dependent. The intermediate age GCs appear to be the most enhanced, with [alpha/Fe]~0.4. These clusters are clearly depressed in CN with respect to the models and the bulk of the M31 and Milky Way sample. Compared to the bulge of M31, M32 and NGC...
A Closure Model with Plumes II. Application to the stochastic excitation of stellar p modes
Belkacem, K; Goupil, M J; Kupka, F; Baudin, F
2006-01-01
Amplitudes of stellar p modes result from a balance between excitation and damping processes taking place in the upper-most part of convective zones in solar-type stars and can therefore be used as a seismic diagnostic for the physical properties of these external layers. Our goal is to improve the theoretical modelling of stochastic excitation of p modes by turbulent convection. With the help of the Closure Model with Plume (CMP) developed in a companion paper, we refine the theoretical description of the excitation by the turbulent Reynolds stress term. The CMP is generalized for two-point correlation products so as to apply it to the formalism developed by Samadi & Goupil (2001). The present model gives rise to a frequency dependence of the power supplied into solar p modes which is in agreement with GOLF observations for intermediate and high frequencies. Despite an increase of the Reynolds stress term contribution due to our improved description, an additional source of excitation, identified as the ...
Galaxy assembly, stellar feeback and metal enrichment: the view from the GAEA model
Hirschmann, Michaela; Fontanot, Fabio
2015-01-01
One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently "anti-hierarchical" evolution of galaxy assembly: massive galaxies appear to be in place since $z\\sim 3$, while a significant evolution is measured for lower mass galaxies, whose number densities increase significantly with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes. Our analysis is carried out in the framework of GAEA, a new semi-analytic model that includes a self-consistent treatment for the timings of gas, metal and energy recycling, as well for the chemical yields. We show this to be crucial in order to use observational measurements of the metal content as independent and powerful constraints for the adopted feedback schemes. We find that the observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decreas...
Recent Developments in relativistic models for exclusive (e,e'p) reactions
Udias, J M; De Guerra, E M; Escuderos, A; Caballero, J A; Vignote, Javier R.
2001-01-01
A comparison of impulse approximation calculations for the (e,e'p) reaction, based on the Dirac equation and the Schrodinger one is presented. Trivial (kinematics) differences are indicated, as well as how to remove them from the standard nonrelativistic formalism. Signatures of the relativistic approach are found where the enhancement of the lower components (spinor distortion or negative energy contributions) modifies TL observables with respect to the nonrelativistic predictions, what seems to be confirmed by the experiment. Finally, the relativistic approach is used to analyze several experiments for the reaction 16O(e,e'p)15N taken at values of Q^2 from 0.2 to 0.8 (GeV/c)^2, not finding a significant Q^2 dependence of the scale factors over this range.
Relativistic models of magnetars: the twisted-torus magnetic field configuration
Ciolfi, R; Gualtieri, L; Pons, J A
2009-01-01
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.
Pentaquarks in a relativistic quark model and nature of Theta-states
Gerasyuta, S M
2003-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of the leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks including the u, d, s- quarks are calculated. The poles of these amplitudes determine the masses of Theta-pentaquarks. The mass spectra of the isotensor Theta-pentaquarks are calculated.
Vazdekis, A; Falcón-Barroso, J; Cenarro, A J; Beasley, M A; Cardiel, N; Gorgas, J; Peletier, R F; 10.1111/j.1365-2966.2010.16407.x
2010-01-01
[Abridged]. We present SEDs for single-age, single-metallicity stellar populations (SSPs) covering the optical range at resolution 2.3A (FWHM). These SEDs constitute our base models, as they combine scaled-solar isochrones with MILES empirical stellar library, which follows the chemical evolution pattern of the solar neighbourhood. The models rely as much as possible on empirical ingredients, not just on the stellar spectra, but also on extensive photometric libraries. The unprecedented stellar parameter coverage of MILES allowed us to safely extend our optical SSP SED predictions from intermediate- to very-old age regimes, and the metallicity coverage of the SSPs from super-solar to [M/H]=-2.3. SSPs with such low metallicities are particularly useful for globular cluster studies. Observed spectra can be studied by means of full spectrum fitting or line-strengths. For the latter we propose a new Line Index System (LIS) to avoid the intrinsic uncertainties associated with the popular Lick/IDS system and provid...
Galaxy assembly, stellar feedback and metal enrichment: the view from the GAEA model
Hirschmann, Michaela; De Lucia, Gabriella; Fontanot, Fabio
2016-09-01
One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently `anti-hierarchical' evolution of galaxy assembly: massive galaxies appear to be in place since z ˜ 3, while a significant increase of the number densities of low-mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of GAEA, a new semi-analytic model of galaxy formation. It includes a self-consistent treatment for the timings of gas, metal and energy recycling, and for the chemical yields. We show this to be crucial to use observational measurements of the metallicity as independent and powerful constraints for the adopted feedback schemes. The observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decrease significantly with cosmic time (as suggested by parametrizations of the cosmological `FIRE' simulations). Irrespective of the feedback scheme used, our successful models always imply that up to 60-70 per cent of the baryons reside in an `ejected' reservoir and are unavailable for cooling at high redshift. The same schemes predict physical properties of model galaxies (e.g. gas content, colour, age, and metallicity) that are in much better agreement with observational data than our fiducial model. The overall fraction of passive galaxies is found to be primarily determined by internal physical processes, with environment playing a secondary role.
Espinoza, Néstor
2015-01-01
Limb-darkening is fundamental in determining transit lightcurve shapes, and is typically modeled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit lightcurve, some authors fix the parameters of these laws, the so-called limb-darkening coefficients (LDCs), while others prefer to let them float in the lightcurve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first re-calculating these LDCs, comparing them to measured values from Kepler transit lightcurves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb-darkening still needs to improve. Then, we show through simulations that ...
Short, C Ian
2014-01-01
GrayStar is a stellar atmospheric and spectral line modelling, post-processing, and visualisation code, suitable for classroom demonstrations and laboratory-style assignments, that has been developed in Java and deployed in JavaScript and HTML. The only software needed to compute models and post-processed observables, and to visualise the resulting atmospheric structure and observables, is a common Web browser. Therefore, the code will run on any common PC or related X86 (-64) computer of the type that typically serves classroom data projectors, is found in undergraduate computer laboratories, or that students themselves own, including those with highly portable form-factors such as net-books and tablets. The user requires no experience with compiling source code, reading data files, or using plotting packages. More advanced students can view the JavaScript source code using the developer tools provided by common Web browsers. The code is based on the approximate gray atmospheric solution and runs quickly eno...
Testing intermediate-age stellar evolution models with VLT photometry of LMC clusters. I. The data
Gallart, C; Bertelli, G; Chiosi, C; Demarque, P; Girardi, L; Nasi, E; Woo, J H; Yi, S
2003-01-01
This is the first of a series of three papers devoted to the calibration of a few parameters of crucial importance in the modeling of the evolution of intermediate-mass stars, with special attention to the amount of convective core overshoot. To this end we acquired deep V and R photometry for three globular clusters of the Large Magellanic Cloud (LMC), namely NGC 2173, SL 556 and NGC 2155, in the age interval 1-3 Gyr. In this first paper, we describe the aim of the project, the VLT observations and data reduction, and we make preliminary comparisons of the color-magnitude diagrams with both Padova and Yonsei-Yale isochrones. Two following papers in this series present the results of a detailed analysis of these data, independently carried out by members of the Yale and Padova stellar evolution groups. This allows us to compare both sets of models and discuss their main differences, as well as the systematic effects that they would have to the determination of the ages and metallicities of intermediate-age si...
Bertelli, G; Girardi, L; Chiosi, C; Zoccali, M; Gallart, C
2002-01-01
The color-magnitude diagrams (CMDs) of three intermediate-age LMC clusters, NGC 2173, SL556 and NGC2155 are analyzed to determine their age and metallicity basing on Padova stellar models. Synthetic CMDs are compared with cluster data. The best match is obtained using two fitting functions based on star counts in the different bins of the cluster CMD. Two different criteria are used. One of them takes into account the uncertainties in the color of the red clump stars. Given the uncertainties on the experimental values of the clusters metallicity, we provide a set of acceptable solutions. They define the correspondent values of metallicity, age, reddening and distance modulus (for the assumed IMF). The comparison with Padova models suggests for NGC 2173 a prolonged star formation (spanning a period of about 0.3 Gyr), beginning 1.7 Gyr and ending 1.4 Gyr ago. The metallicity Z is in the range 0.0016 $-$ 0.003. Contrary to what suggested for NGC 2173 a period of extended star formation was not required to fit th...
Ultraviolet Properties of Primeval Galaxies: Theoretical Models from Stellar Population Synthesis
Buzzoni, Alberto
2002-03-01
The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below λ<3000 Å directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000, and 2800 Å, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Å, Im irregulars are found in fact nearly 4 orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing the model output and observed spectral energy distribution of local galaxy samples. Similar to what we observe in our own galaxy, a quick evolution in the dust environment might be envisaged in primeval galaxies, with an increasing fraction of luminous matter that would escape the regions of harder and ``clumpy'' dust absorption on a timescale of some 107 yr, comparable to the lifetime of stars of 5-10 Msolar.
Radial electric field computations with DKES and neoclassical models in TJ-II stellarator
Martinell, Julio; Gutierrez-Tapia, Cesar; Lopez-Bruna, Daniel
2015-11-01
Radial electric fields arise due to the non-ambipolar transport in stellarator plasmas and play an important role in determining some improved confinement regimes. In order to calculate this electric field it is necessary to take all particle fluxes that are not ambipolar. The most important contribution to these fluxes comes from neoclassical transport. Here we use particle fluxes obtained from kinetic equation computations using the code DKES to evaluate the radial electric field profiles for certain discharges of the heliac TJ-II. Experimental profiles for the density and temperatures are used together with the diffusion coefficients obtained with DKES. A similar computation of the electric field is performed with three analytical neoclassical models that use an approximation for the magnetic geometry. The ambipolar electric field from the models is compared with the one given by DKES and we find that they are all qualitatively similar. They are also compared with experimental measurements of the electric field obtained with HIBP. It is shown that, although the electric field is reasonably well reproduced by the neoclassical computations, especially in high temperature regimes, the particle fluxes are not. Thus, neoclassical theory provides good Er estimates in TJ-II. Support from CONACyT 152905 and DGAPA IN109115 projects is acknowledged.
A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres
Munafò, Alessandro; Mansour, Nagi N.; Panesi, Marco
2017-04-01
The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α, β, and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.
Drescher, H.J
1999-06-11
In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Hernandez-Zapata, Sergio; 10.1007/s10701-010-9413-7
2010-01-01
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\\sigma} as the dynamical temporal...
Soto, F. de [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)]|[Dpto. Sistemas Fisicos, Quimicos y Naturales, U. Pablo de Olavide, 41013 Sevilla (Spain); Carbonell, J. [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)
2007-04-15
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding - infinite space - low energy parameters and bound state binding energies from eigenstates computed at finite lattice size is discussed. The results have been obtained with a non relativistic model, which is justified by the small energies involved in the calculations. Despite its simplicity, the model considered contains an essential ingredient of the hadron-hadron interaction - its finite range - which plays a relevant role in view of extracting the low energy parameters from the finite volume spectra. It offers a wieldy and physically sound tool to test the validity of the different approaches discussed in the literature to study the low energy scattering of baryon-baryon or meson-baryon systems from a lattice simulations in QCD. The results presented in this work have been essentially limited to the ground state of central attractive interactions, depending only on one parameter. The method can be easily applied to more involved interactions, like hard core repulsive terms or non central potentials leading to coupled channel equations. (authors)
Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)
2001-02-01
An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)
Stellar ages from asteroseismology
Lebreton, Yveline
2008-01-01
Asteroseismology provides powerful means to probe stellar interiors. The oscillations frequencies are closely related to stellar interior properties via the density and sound speed profiles. Since these are tightly linked with the mass and evolutionary state, we can expect to determine the age and mass of a star from the comparison of its oscillation spectrum with predictions of stellar models. Such a comparison suffers both from the problems we face when modeling a particular star (as the uncertainties on global parameters and chemical composition) and from our misunderstanding of processes at work in stellar interiors (as the transport processes that may lead to core mixing and affect the model ages). For stars where observations have provided precise and numerous oscillation frequencies together with accurate global parameters and additional information (as the radius or the mass if the star is in a binary system, the interferometric radius or the mean density if the star is an exoplanet host), we can also...
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Novak, Jerome; Dimmelmeier, Harrald; Font-Roda, Jose A.
2004-12-01
We present a new three-dimensional general relativistic hydrodynamics code which can be applied to study stellar core collapses and the resulting gravitational radiation. This code uses two different numerical techniques to solve partial differential equations arising in the model: high-resolution shock capturing (HRSC) schemes for the evolution of hydrodynamic quantities and spectral methods for the solution of Einstein equations. The equations are written and solved using spherical polar coordinates, best suited to stellar topology. Einstein equations are formulated within the 3+1 formalism and conformal flat condition (CFC) for the 3-metric and gravitational radiation is extracted using Newtonian quadrupole formulation.
Stellar masses of SDSS-III BOSS galaxies at z~0.5 and constraints to galaxy formation models
Maraston, Claudia; Henriques, Bruno M; Thomas, Daniel; Wake, David; Brownstein, Joel R; Capozzi, Diego; Bundy, Kevin; Skibba, Ramin A; Beifiori, Alessandra; Nichol, Robert C; Edmondson, Edd; Schneider, Don P; Chen, Yanmei; Masters, Karen L; Steele, Oliver; Bolton, Adam S; York, Donald G; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Snedden, Stephanie; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey
2012-01-01
We calculate stellar masses for ~400,000 massive luminous galaxies at redshift ~0.2-0.7 using the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS). Stellar masses are obtained by fitting model spectral energy distributions to u,g,r,i,z magnitudes. Accurate BOSS spectroscopic redshifts are used to constrain the fits. We find that the distribution of stellar masses in BOSS is narrow (Delta log M ~0.5 dex) and peaks at about log M/M_sun ~ 11.3 (for a Kroupa initial stellar mass function), and that the mass sampling is uniform over the redshift range 0.2 to 0.6, in agreement with the intended BOSS target selection. The galaxy masses probed by BOSS extend over ~ 10^{12} M_{sun}, providing unprecedented measurements of the high-mass end of the galaxy mass function. We find that the galaxy number density above ~ 2.5 10^{11} M_{sun} agrees with previous determinations within 2sigma, but there is a slight offset towards lower number densities in BOSS. This alleviates a tension between th...
Monreal-Ibero, A
2016-01-01
DIBs are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot stars, because of their smooth continuum. In an era where there are several going-on or planned massive Galactic surveys using multi-object spectrographs, cool stars constitute an appealing set of targets. From the technical point of view, the extraction of DIBs in their spectra is more challenging due to the complexity of the continuum. In this contribution we will provide the community with an improved set of stellar lines in the spectral regions associated to the strong DIBs at l6196, l6269, l6284, and l6379. These lines will allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB. The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the VALD stellar line list. ...
Non-thermal emission from Massive Young Stellar Objects
Parkin, E R; Hoare, M G
2009-01-01
In the young stellar object (YSO) phase of their lives, massive stars drive bi-polar molecular outflows. These outflows produce beautiful, often hourglass shaped, cavities. The central star possesses a powerful stellar wind (v ~ 2000 km s^-1), and possibly a dense equatorial disk wind (v ~ 400 km s^-1), which collide with the inner surface of the bi-polar cavity and produces hot (T ~ 10^5 - 10^8 K) shocked plasma. A reverse shock is formed at the point where the ram pressure between the preshock flow balances the thermal pressure of the postshock flow and provides a site for the acceleration of non-thermal particles to relativistic energies. Hydrodynamical models of the wind interaction, coupled with calculations of the non-thermal energy spectrum, are used to explore the observable synchrotron and gamma-ray emission from these objects.
An intermediate-luminosity-optical-transient (ILOT) model for the young stellar object ASASSN-15qi
Kashi, Amit
2016-01-01
We construct a scenario where the outburst of the young-stellar-object ASASSN-15qi is an intermediate luminosity optical transient (ILOT). In this scenario a sub-Jupiter young planet was tidally destructed on to a young main-sequence star. The system is young, therefore the radius of the planet is larger than its final value, and consequently it has smaller density. The lower density allows the tidal destruction of the young Saturn-like planet on to the main-sequence star of mass $\\approx 2.4 ~M_\\odot$, resulting in a formation of a disc and a gravitationally-powered ILOT. Unlike the case of the more energetic ILOT V838~Mon, the mass of the destroyed planet is too low to inflate a giant envelope, and hence the merger remnant stays hot. If our suggested model holds, this ILOT possesses two interesting properties: (1) its luminosity and total energy are below those of novae, and (2) it is not as red as other ILOTs. The unusual outburst of ASASSN-15qi, if indeed is an ILOT, further increases the diversity of the...
Blackman, Eric G
2015-01-01
Late-type main sequence stars exhibit an x-ray to bolometric flux that depends on the Corolis number $Co$ (product of convective turnover time and angular rotation speed) as $Co^{\\zeta}$ with $2\\le \\zeta \\le 3$ for $Co > 1$. Stars in the unsaturated regime also obey the Skumanich law--- their rotation speeds scale inversely with square root of their age. The associated stellar magnetic field strengths follow a similar decrease with age. While the connection between faster rotators, stronger fields, and higher activity has been well established observationally, a basic theory for the time evolution of x-ray luminosity, rotation, magnetic field and mass loss been lacking. Here we offer a minimalist model for the time evolution of these quantities built from combining a Parker wind with several new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the x-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of x-ray activity and mass loss saturation to dynamo...
Star Formation in Galaxy Mergers with Realistic Models of Stellar Feedback & the Interstellar Medium
Hopkins, Philip F; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C; Murray, Norman
2012-01-01
We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation micro...
Implications of WMAP observations on Li abundance and stellar evolution models
Richard, O; Richer, J; Richard, Olivier; Michaud, Georges; Richer, Jacques
2004-01-01
The WMAP determination of the baryon-to-photon ratio implies, through Big Bang nucleosynthesis, a cosmological Li abundance larger, by a factor of 2 to 3, than the Li abundance plateau observed in the oldest Pop II stars. It is however inescapable that there be a reduction by a factor of at least 1.6 to 2.0 of the surface Li abundance during the evolution of Pop II field stars with [Fe/H] < -1.5. That the observed Li be lower than cosmologically produced Li is expected from stellar evolution models. Since at turnoff most of the Li abundance reduction is caused by gravitational settling, the presence of Lithium 6 in some turnoff stars is also understood. Given that the WMAP implications for Li cosmological abundance and the Li Spite plateau can be naturally explained by gravitational settling in the presence of weak turbulence, there appears little need for exotic physics as suggested by some authors. Instead, there is a need for a better understanding of turbulent transport in the radiative zones of stars....
Hopkins, Philip F; Murray, Norman
2013-01-01
We consider the effects of different star formation criteria on galactic scales, in high-resolution simulations with explicitly resolved GMCs and stellar feedback. We compare: (1) a self-gravity criterion (based on the local virial parameter and the assumption that self-gravitating gas collapses to high density in a free-fall time), (2) a fixed density threshold, (3) a molecular-gas law, (4) a temperature threshold, (5) a Jeans-instability requirement, (6) a criteria that cooling times be shorter than dynamical times, and (7) a convergent-flow criterion. We consider these both MW-like and high-density (starburst) galaxies. With feedback present, all models produce identical integrated star formation rates (SFRs), in agreement with the Kennicutt relation. Without feedback all produce orders-of-magnitude excessive SFRs. This is totally dependent on feedback and independent of the SF law. However, the spatial and density distribution of SF depend strongly on the SF criteria. Because cooling rates are generally f...
Measurement, Modeling and Reconstruction of Parallel Currents in the HSX Stellarator
Schmitt, J. C.; Talmadge, J. N.; Lore, J.
2010-11-01
Parallel currents are measured with a set of magnetic diagnostics on the HSX. Measurements show that the Pfirsch-Schlüter current is helical due to the lack of toroidal curvature and is reduced in magnitude compared to an equivalent tokamak because of the high effective transform (˜3) in a quasihelically symmetric stellarator. The bootstrap current density is calculated using the PENTA code,^1 which includes momentum conservation between plasma species. The data shows better agreement with a model that includes momentum conservation. HSX plasmas are heated by a 28 GHz gyrotron which allows the electrons to access the low collisionality regime, while the cold ions are generally in the plateau. In HSX, a 3-D plasma with small symmetry-breaking, the calculations show that for two species in different collisionality regimes, the bootstrap current can be strong function of the radial electric field. In the plasma core, multiple stable electric field solutions to the ambipolarity constraint exist. The large positive electric field, the ``electron-root'' solution, can result in a reduction and even a reversal of the bootstrap current. The measured fields and fluxes are used in the V3FIT^2 code to reconstruct the current profile. Supported by DOE grant DE-FG02-93ER54222. ^1D.A. Spong, Phys. Plasmas 12 (2005) 056114. ^2J.D. Hanson, et al, Nucl. Fusion 49 (2009) 075031.
MODEL-INDEPENDENT STELLAR AND PLANETARY MASSES FROM MULTI-TRANSITING EXOPLANETARY SYSTEMS
Montet, Benjamin T. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Johnson, John Asher, E-mail: btm@astro.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, MC 170-25, Pasadena, CA 91125 (United States)
2013-01-10
Precise exoplanet characterization requires precise classification of exoplanet host stars. The masses of host stars are commonly estimated by comparing their spectra to those predicted by stellar evolution models. However, spectroscopically determined properties are difficult to measure accurately for stars that are substantially different from the Sun, such as M-dwarfs and evolved stars. Here, we propose a new method to dynamically measure the masses of transiting planets near mean-motion resonances and their host stars by combining observations of transit timing variations with radial velocity (RV) measurements. We derive expressions to analytically determine the mass of each member of the system and demonstrate the technique on the Kepler-18 system. We compare these analytic results to numerical simulations and find that the two are consistent. We identify eight systems for which our technique could be applied if follow-up RV measurements are collected. We conclude that this analysis would be optimal for systems discovered by next-generation missions similar to TESS or PLATO, which will target bright stars that are amenable to efficient RV follow-up.
Testing Stellar Population Models with Star Clusters in the Large Magellanic Cloud
Beasley, M A; Sharples, R M; Beasley, Michael A.; Hoyle, Fiona; Sharples, Ray M.
2002-01-01
We present high S/N integrated spectra of 24 star clusters in the LMC obtained using the FLAIR spectrograph at the UK Schmidt. The spectra have been placed onto the Lick/IDS system in order to test the calibration of Simple Stellar Population (SSP) models. We have compared the SSP-predicted metallicities of the clusters with literature Ca-Triplet values, and find that there is good agreement in the range --2.10 0. We present metallicities for 11 clusters with no previous measurements. Comparison of the SSP ages of the clusters (from Balmer lines) with the literature data shows good agreement for the majority. This includes six old globular clusters in our sample, which have ages consistent with their HST CMD turn-offs. However, two clusters, NGC 1754 and NGC 2005, have Hbeta line-strengths which lead to ages which are too young (~8 and ~6 Gyr respectively at 3 sigma) for their HST CMDs. Comparison between the horizontal branch (HB) morphology and Balmer lines of these clusters suggests that blue HBs have inc...
Geng, L S; Meng, J
2005-01-01
We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with $Z,N\\ge 8$ and $Z\\le 100$ from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is ne...
Wise, John
In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this
Sharma, Sanjib; Stello, Dennis; Huber, Daniel; Bland-Hawthorn, Joss; Bedding, Timothy R.
2017-02-01
Early attempts to apply asteroseismology to study the Galaxy have already shown unexpected discrepancies for the mass distribution of stars between the Galactic models and the data; a result that is still unexplained. Here, we revisit the analysis of the asteroseismic sample of dwarf and subgiant stars observed by Kepler and investigate in detail the possible causes for the reported discrepancy. We investigate two models of the Milky Way based on stellar population synthesis, Galaxia and TRILEGAL. In agreement with previous results, we find that TRILEGAL predicts more massive stars compared to Galaxia, and that TRILEGAL predicts too many blue stars compared to 2MASS observations. Both models fail to match the distribution of the stellar sample in ({log} g,{T}{eff}) space, pointing to inaccuracies in the models and/or the assumed selection function. When corrected for this mismatch in ({log} g,{T}{eff}) space, the mass distribution calculated by Galaxia is broader and the mean is shifted toward lower masses compared to that of the observed stars. This behavior is similar to what has been reported for the Kepler red giant sample. The shift between the mass distributions is equivalent to a change of 2% in νmax, which is within the current uncertainty in the νmax scaling relation. Applying corrections to the Δν scaling relation predicted by the stellar models makes the observed mass distribution significantly narrower, but there is no change to the mean.
The Stagger-grid: A Grid of 3D Stellar Atmosphere Models - I. Methods and General Properties
Magic, Z; Asplund, M; Trampedach, R; Hayek, W; Chiavassa, A; Stein, R F; Nordlund, Å
2013-01-01
We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications like stellar spectroscopy, asteroseismology and the study of stellar convection. In this introductory paper, we describe the methods used for the computation of the grid and discuss the general properties of the 3D models as well as their temporal and spatial averages (). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~220 grid models range in Teff from 4000 to 7000K in steps of 500K, in log g from 1.5 to 5.0 in steps of 0.5 dex, and [Fe/H] from -4.0 to +0.5 in steps of 0.5 and 1.0 dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy va...
Carlsten, B.E.; Fazio, M.V.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.
1992-01-01
We discuss basic Relativistic Klystron Amplifier physics. We show that in the intense space-charge regime the maximum power extraction does not coincide with the maximum harmonic bunching. In addition, we show that as the beam is bunched, the additional power stored in the Coulomb fields does not add significantly to the overall power extraction. Because of these effects, the power extraction at 1.3 GHz for a 500 kV, 5 kA beam with reasonable beam-to-wall spacing is limited to around 35%. 3 refs., 17 figs.
A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space
LI Lei; WANG Shun-Jin; ZHOU Shan-Gui; ZHANG Guang-Biao
2007-01-01
For describing the radial excited states a relativistic confining potential in momentum space is included in the meson effective light-cone Hamiltonian. The meson eigen equations are transformed from the front form to the instant form and formulated in total angular representation. Details about numerically solving these equations are discussed, mainly focusing on treating singularities arising from one-gluon exchange interactions and confinement. The results of pseudo-scalar mesons indicate that the improved meson effective light-cone Hamiltonian can describe the ground states and radial excited states well. Some radial excited states are also predicted and waiting for experimental test.