WorldWideScience

Sample records for relativistic reference systems

  1. Astronomical relativistic reference systems with multipolar expansion: the global one

    International Nuclear Information System (INIS)

    Xie Yi

    2014-01-01

    With the rapid development of techniques for astronomical observations, the precision of measurements has been significantly increasing. Theories describing astronomical relativistic reference systems, which are the foundation for processing and interpreting these data now and in the future, may require extensions to satisfy the needs of these trends. Besides building a framework compatible with alternative theories of gravity and the pursuit of higher order post-Newtonian approximation, it will also be necessary to make the first order post-Newtonian multipole moments of celestial bodies be explicitly expressed in the astronomical relativistic reference systems. This will bring some convenience into modeling the observations and experiments and make it easier to distinguish different contributions in measurements. As a first step, the global solar system reference system is expressed as a multipolar expansion and the post-Newtonian mass and spin moments are shown explicitly in the metric which describes the coordinates of the system. The full expression of the global metric is given. (research papers)

  2. Standard Relativistic Reference Systems and the IAU Framework

    Science.gov (United States)

    Soffel, Michael H.

    2009-05-01

    The classical post-Newtonian (PN) framework is formulated in one single reference system. In a series of papers Damour, Soffel and Xu laid the foundations for a new improved PN framework dealing with the celestial mechanical problem of N gravitationally interacting rotating bodies of arbitrary shape and the problem of astronomical reference systems. In the DSX-framework a total of N+1 reference systems with corresponding coordinates is introduced in the N-body problem: a global one covering the entire model manifold where the translational equations of motion are formulated and one local system attached to each of the N bodies that is co-moving with the body under consideration. In each of these systems the metric tensor is assumed to be of a special form determined by two potentials: a scalar and a vector potential. Theorems are given for the transformations between local and global coordinates and metric potentials. In each of the local systems outside the local body the metric potentials are expressed in terms of Blanchet-Damour mass- and spin-multipole moments. The talk first introduces the original DSX formalism and then concentrates on IAU resolutions related with it. Finally, the formalism is extended to include also effects from the cosmic expansion. The influence of the Hubble expansion on the dynamics of the solar system is explicitly discussed in some detail.

  3. The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vítek, V.; Vojtíšková, M.

    2007-01-01

    Roč. 81, č. 2 (2007), s. 103-110 ISSN 0949-7714 R&D Projects: GA ČR GA205/05/2381 Institutional research plan: CEZ:AV0Z10030501 Keywords : geopotential * vertical datum unification * relativistic atomic time scale Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.636, year: 2007

  4. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  5. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  6. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  7. Post-Newtonian reference ellipsoid for relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  8. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  9. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  10. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  11. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  12. Relativistic effects in a rotating coordinate system

    International Nuclear Information System (INIS)

    Chugreev, Y.V.

    1989-01-01

    The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center

  13. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  14. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  15. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  16. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems

    OpenAIRE

    Rubin , Jacques ,

    2014-01-01

    Version de travail de thèse d'habilitation à diriger des recherches; Preprint; Current positioning systems are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. We show how this conformal aspect can be the four-dime...

  17. Nuclear chromodynamics: applications of QCD to relativistic multiquark systems

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Ji, C.R.

    1984-07-01

    We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references

  18. Local supersymmetry in non-relativistic systems

    International Nuclear Information System (INIS)

    Urrutia, L.F.; Zanelli, J.

    1989-10-01

    Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparametrization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time. (author). 14 refs

  19. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  20. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  1. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  2. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  3. Relativistic quantum theory of composite systems

    International Nuclear Information System (INIS)

    Sogami, I.

    1978-01-01

    A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)

  4. On the Velocity of Moving Relativistic Unstable Quantum Systems

    Directory of Open Access Journals (Sweden)

    K. Urbanowski

    2015-01-01

    Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.

  5. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  6. The Relativistic Heavy Ion Collider control system

    International Nuclear Information System (INIS)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-01-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning

  7. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  8. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  9. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10 - 6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  10. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    International Nuclear Information System (INIS)

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  11. Relativistic many-body bound systems. Monograph report

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.

    1975-04-01

    The principles and the mathematical details of a fully relativistic nuclear theory are given. Since the concept of nuclear forces is a strictly non-relativistic construct, it must be abandoned, and the forces must be replaced explicitly by their physical origin, i.e., by the interaction between nucleons and mesons. Thus, in this monograph the description of a nucleus has been formulated as a problem of relativistic quantum field theory which is solved by nuclear physics methods; to wit: the physics is described by specifying a Lagrangian which is a functional of the constituent fields (= of the parton fields); the solutions for the physical systems then are obtained in a time-independent treatment as expansions in the parton fields: both particles and nuclei are composite systems, made up of parton configurations, which define a representation of the Hamiltonian (associated with the specified Lagrangian)

  12. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  13. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  14. Relativistic quantum Darwinism in Dirac fermion and graphene systems

    Science.gov (United States)

    Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis

    2012-02-01

    We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.

  15. Computational derivation of quantum relativist electromagnetic systems with forward-backward space-time shifts

    International Nuclear Information System (INIS)

    Dubois, Daniel M.

    2000-01-01

    This paper is a continuation of our preceding paper dealing with computational derivation of the Klein-Gordon quantum relativist equation and the Schroedinger quantum equation with forward and backward space-time shifts. The first part introduces forward and backward derivatives for discrete and continuous systems. Generalized complex discrete and continuous derivatives are deduced. The second part deduces the Klein-Gordon equation from the space-time complex continuous derivatives. These derivatives take into account forward-backward space-time shifts related to an internal phase velocity u. The internal group velocity v is related to the speed of light u.v=c 2 and to the external group and phase velocities u.v=v g .v p . Without time shift, the Schroedinger equation is deduced, with a supplementary term, which could represent a reference potential. The third part deduces the Quantum Relativist Klein-Gordon equation for a particle in an electromagnetic field

  16. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  17. Expert Systems in Reference Services.

    Science.gov (United States)

    Roysdon, Christine, Ed.; White, Howard D., Ed.

    1989-01-01

    Eleven articles introduce expert systems applications in library and information science, and present design and implementation issues of system development for reference services. Topics covered include knowledge based systems, prototype development, the use of artificial intelligence to remedy current system inadequacies, and an expert system to…

  18. Radiation from systems with relativistic electrons

    International Nuclear Information System (INIS)

    Ternov, I.M.; Khalilov, V.R.; Bagrov, V.G.; Nikitin, M.M.

    1980-01-01

    Different methods of generation of electromagnetic radiation in the course of electron motion in external electromagnetic fields are considered. Singularities of ''free electron lasers'' (FEL), synchrotronous, ondulator and Compton radiation sources are discussed. The effect of induced radiation of electrons moving in a magnetic field is studied on the basis of the quantum theory methods. The results obtained are compared with the results of the classical theory. The theoretical and experimental results of the main singularities of the ondulator radiation (OR) are presented. It is shown that when the recoil effects are negligible and nonequidistancy of the energy spectrum of an electron in a magnetic field is of an error character, the results for the dose rate calculated by the quantum and classical theory methods completely coincide in the range of great filling numbers. Both in the quantum and classical theories the effects of the induced radiation of electrons moving in external electromagnetic fields (nonstationary in a general case) of a rather general type depend on two main mechanisms, which are nonequidistancy of the energy spectrum and the recoil effect (the quantum theory); appearance of phase and longitudinal electron bunching under the effect of an alternating radiation field (the classical theory). On the basis of the investigations the conclusion is made that OR can be successfully used for measuring the charged particle beam parameters (dispersion of angular spread and the absolute energy), as well as for measuring the amplitude of the magnetic field intensity in a space-periodic system

  19. Evolution system study of a generalized scheme of relativistic magnetohydrodynamic

    International Nuclear Information System (INIS)

    Mahjoub, Bechir.

    1977-01-01

    A generalized scheme of relativistic magnetohydrodynamics is studied with a thermodynamical differential relation proposed by Fokker; this scheme takes account of interaction between the fluid and the magnetic field. Taking account of an integrability condition of this relation, the evolution system corresponding to this scheme is identical to the one corresponding to the usual scheme; it has the same characteristics; it is non-strictly hyperbolic with the same hypothesis of compressibility and it has, with respect to the Cauchy problem, an unique solution in a Gevrey class of index α=3/2 [fr

  20. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  1. Notes on nonlocal projective measurements in relativistic systems

    International Nuclear Information System (INIS)

    Lin, Shih-Yuin

    2014-01-01

    In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal

  2. Internal-time observable of classical relativistic systems

    International Nuclear Information System (INIS)

    Ben-Ya'acov, Uri

    2006-01-01

    The relativistic framework with its symmetries offers a natural definition for the internal time of classical (non-quantum) physical systems as a Lorentz-invariant observable. The internal-time observable, measuring the system's aging or internal evolution, is identified with the proper time of the system derived from its centre-of-mass (CM) coordinate. For its definition as an observable it is required that the system be symmetric not only under Lorentz-Poincare transformations but also under uniform scaling, with the associated existence of a dilatation function D, and yet that D be a varying-not conserved-quantity. Two alternative definitions are discussed, and it is found that in order to maintain simultaneity of the CM time with the events that define it, it is necessary to split the dilatation function into a CM part and an internal part

  3. Proper time axis of a closed relativistic system

    International Nuclear Information System (INIS)

    Chernikov, N.A.; Fadeev, N.G.; Shavokhina, N.S.

    1997-01-01

    The definition of a proper time axis of a closed relativistic system of colliding particles is given. The solution of the proper time axis problem is presented. If the light velocity c equals the imaginary unit i, then in the case of a plane motion of the system the problem about the proper time axis turns out to be equivalent to the known in engineering mechanics problem about the reduction of any system of forces, applied to a rigid body, to the dynamic screw. In the general case, when c=i, the problem about the proper time axis turns out to be equivalent to the problem about the reduction to the dynamic screw of a system of forces, applied to a rigid body in a four-dimensional Euclidean space

  4. Space-Time Reference Systems

    CERN Document Server

    Soffel, Michael

    2013-01-01

    The high accuracy of modern astronomical spatial-temporal reference systems has made them considerably complex. This book offers a comprehensive overview of such systems. It begins with a discussion of ‘The Problem of Time’, including recent developments in the art of clock making (e.g., optical clocks) and various time scales. The authors address  the definitions and realization of spatial coordinates by reference to remote celestial objects such as quasars. After an extensive treatment of classical equinox-based coordinates, new paradigms for setting up a celestial reference system are introduced that no longer refer to the translational and rotational motion of the Earth. The role of relativity in the definition and realization of such systems is clarified. The topics presented in this book are complemented by exercises (with solutions). The authors offer a series of files, written in Maple, a standard computer algebra system, to help readers get a feel for the various models and orders of magnitude. ...

  5. Relativistic formulations with Blankenbecler-Sugar reduction technique for the three-particle system

    International Nuclear Information System (INIS)

    Morioka, S.; Afnan, I.R.

    1980-05-01

    A critical comparison for two-types of three-dimensional covariant equations for the three-particle system obtained by the Blankenbecler-Sugar reduction technique with the Whitghtman-Garding momenta and the usual Jacobi variables is presented. The relations between the relativistic and non-relativistic equations in the low energy limit are discussed

  6. Relativistic quantum kinetic analysis of a pion--nucleon system

    International Nuclear Information System (INIS)

    Alonso, J.D.

    1985-01-01

    A relativistic plasma of nucleons interacting through pions via the usual isospin-invariant Yukawa coupling is analyzed in the framework of the covariant Wigner function technique. The method is manifestly covariant and the temperature effects are considered. The relativistic quantum BBGKY hierarchy for the pion--nucleon system is derived. By generalizing the Bogolioubov analysis of the classical BBGKY hierarchy a non-perturbative renormalizable method is elaborated which allows the solution of the kinetic problem in form of power series of two cluster parameters which measure the importance of correlations. In the lowest order of the cluster expansion (Hartree approximation of zero-order approximation) the quasi-nucleon Fock space is introduced, the fermion Wigner function in the thermodynamic equilibrium is obtained and the vacuum effects are renormalized. In this approximation the plasma behaves as a perfect Fermi gas of nucleons and antinucleons, but there exists an abnormal configuration with a uniform pion condensate which is unstable. In the next approximation (quadratic in the small parameters) the quasi-pion dispersion relation is obtained and the vacuum polarization tensor is renormalized. The quasi-pion rest-mass spectra (''plasma frequency'') and the effective-coupling behaviour as functions of the thermodynamic state are given. By estimating the size of the cluster parameters the self-consistency of the approximation scheme is proved. The quasi-pion Fock space is introduced and the quasi-pion equilibrium Wigner function is obtained. From these results the problem of the higher-order corrections to the Hartree thermodynamics is outlined

  7. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  8. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  9. SNAP operating system reference manual

    International Nuclear Information System (INIS)

    Sabuda, J.D.; Polito, J.; Walker, J.L.; Grant, F.H. III.

    1982-03-01

    The SNAP Operating System (SOS) is a FORTRAN 77 program which provides assistance to the safeguards analyst who uses the Safeguards Automated Facility Evaluation (SAFE) and the Safeguards Network Analysis Procedure (SNAP) techniques. Features offered by SOS are a data base system for storing a library of SNAP applications, computer graphics representation of SNAP models, a computer graphics editor to develop and modify SNAP models, a SAFE-to-SNAP interface, automatic generation of SNAP input data, and a computer graphic post-processor for SNAP. The SOS Reference Manual provides detailed application information concerning SOS as well as a detailed discussion of all SOS components and their associated command input formats. SOS was developed for the US Nuclear Regulatory Commission's Office of Nuclear Regulatory Research and the US Naval Surface Weapons Center by Pritsker and Associates, Inc., under contract to Sandia National Laboratories

  10. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    International Nuclear Information System (INIS)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H ''Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment

  11. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  12. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  13. Electromagnetic interactions in relativistic systems of many bodies

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-09-01

    In a previous report (Cook, 1986, 1987) on a formulation of a quasi-relativistic quantum mechanical equation of motion for many particles, little was said of the electromagnetic interactions that keep a set of particles in a bound state. That omission is to some extent repaired in this report. (author). 3 refs

  14. Relativistic band gaps in one-dimensional disordered systems

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs

  15. Motion of the relativistic charged particle in an axisymmetric toroidal system

    Energy Technology Data Exchange (ETDEWEB)

    Chiyoda, K; Sugimoto, H [Electrotechnical Labs., Sakura, Ibaraki (Japan)

    1980-01-01

    The relativistic theory of motion of one particle by Morozov and Solov'ev is summarized for convenience of the present study. Then, a drift equation is given and four constants of motion, E/sub 0/, J perpendicular, J and J parallel, are obtained. These constants of motion are used in analyzing the particle motion in an axisymmetric toroidal system. The displacement of the particle from the magnetic surface, ..delta..r, and the period of the banana motion, tau, are obtained. The relativistic expressions of the displacement, ..delta..r, and the period, tau, are obtained by multiplying the corresponding nonrelativistic expressions by (1 - v parallel/sup 2//c/sup 2/) - 1/2, where the relativistic expression of ..delta..r includes the relativistic mass in terms of Larmor radius r/sub L/.

  16. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  17. Genetics Home Reference: systemic scleroderma

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Systemic scleroderma Systemic scleroderma Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Systemic scleroderma is an autoimmune disorder that affects the skin ...

  18. Form factor of relativistic two-particle system and covariant hamiltonian formulation of quantum field theory

    International Nuclear Information System (INIS)

    Skachkov, N.; Solovtsov, I.

    1979-01-01

    Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential

  19. Relativistic instant-form approach to the structure of two-body composite systems

    International Nuclear Information System (INIS)

    Krutov, A.F.; Troitsky, V.E.

    2002-01-01

    An approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is the method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for the lepton decay constant of pions

  20. Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System

    International Nuclear Information System (INIS)

    Wang Qi

    2010-01-01

    In this letter, the homotopy analysis method is successfully applied to solve the Relativistic Toda lattice system. Comparisons are made between the results of the proposed method and exact solutions. Analysis results show that homotopy analysis method is a powerful and easy-to-use analytic tool to solve systems of differential-difference equations. (general)

  1. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  2. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Malkina, Olga L; Malkin, Vladimir G

    2013-12-27

    A four-component relativistic method for the calculation of NMR shielding constants of paramagnetic doublet systems has been developed and implemented in the ReSpect program package. The method uses a Kramer unrestricted noncollinear formulation of density functional theory (DFT), providing the best DFT framework for property calculations of open-shell species. The evaluation of paramagnetic nuclear magnetic resonance (pNMR) tensors reduces to the calculation of electronic g tensors, hyperfine coupling tensors, and NMR shielding tensors. For all properties, modern four-component formulations were adopted. The use of both restricted kinetically and magnetically balanced basis sets along with gauge-including atomic orbitals ensures rapid basis-set convergence. These approaches are exact in the framework of the Dirac-Coulomb Hamiltonian, thus providing useful reference data for more approximate methods. Benchmark calculations on Ru(III) complexes demonstrate good performance of the method in reproducing experimental data and also its applicability to chemically relevant medium-sized systems. Decomposition of the temperature-dependent part of the pNMR tensor into the traditional contact and pseudocontact terms is proposed.

  3. In-medium relativistic kinetic theory and nucleon-meson systems

    International Nuclear Information System (INIS)

    Morawetz, K.; Kremp, D.

    1995-01-01

    Within the σ-ω model of coupled nucleonmeson systems, a generalized relativistic Lennard-Balescu-equation is presented resulting from a relativistic random phase approximation (RRPA). This provides a systematic derivation of relativistic transport equations in the frame of nonequilibrium Green's function technique including medium effects as well as fluctuation effects. It contains all possible processes due to one-meson exchange and special attention is kept to the off-shell character of the particles. As a new feature of many-particle effects, processes are possible, which can be interpreted as particle creation and annihilation due to in-medium one-meson exchange. In-medium cross sections are obtained from the generalized derivation of collision integrals, which possess complete crossing symmetries. (orig.)

  4. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  5. Relativistic two-body forces in many-body systems

    International Nuclear Information System (INIS)

    Namyslowski, J.M.

    1979-01-01

    For the fully off-shell extension in the relativistic dynamics, based on a covariant light-front field theory, we define the relative momenta and their proper angular variables such that -1 < cos theta/sub α/ < 1. In terms of these variables and the timelike total momenta we write explicitly the Weinberg interaction, corresponding to the exchange of a spinless particle of mass μ. The total momentum dependence and the cluster decomposition property of the Weinberg interaction are presented in detail, together with its energy dependence and other nonlocal features. In the nonrelativistic limit we recover the Yukawa interaction, while for the finite masses the Weinberg interaction is a product of the Yukawa interaction and a form factor. The Weinberg two-body force goes to zero at large energies and is truly nonlocal, in spite of the fact that the underlying field theory has a local Lagrangian

  6. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-01-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ''Big Bang.'' The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful

  7. Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation

    International Nuclear Information System (INIS)

    Yang Hongxiang; Xu Xixiang; Sun Yepeng; Ding Haiyong

    2006-01-01

    Starting from a discrete isospectral problem, integrable positive and negative relativistic Toda type lattice hierarchies are derived. The two lattice hierarchies are proven to have discrete zero-curvature representations associated with a discrete spectral problem, and the positive and negative lattice hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. The integrable positive and negative coupling systems of the resulting hierarchies are constructed through enlarging Lax pairs. In addition, with the help of gauge transformations of spectral problems, a Darboux transformation is established for the relativistic Toda type lattice. As an application, an exact solution is explicitly presented

  8. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  9. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  10. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  11. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    International Nuclear Information System (INIS)

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-01-01

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  12. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  13. On classical solutions of the relativistic Vlasov-Klein-Gordon system

    Directory of Open Access Journals (Sweden)

    Michael Kunzinger

    2005-01-01

    Full Text Available We consider a collisionless ensemble of classical particles coupled with a Klein-Gordon field. For the resulting nonlinear system of partial differential equations, the relativistic Vlasov-Klein-Gordon system, we prove local-in-time existence of classical solutions and a continuation criterion which says that a solution can blow up only if the particle momenta become large. We also show that classical solutions are global in time in the one-dimensional case.

  14. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  15. Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zhang Fulin; Song Ci; Chen Jingling

    2009-01-01

    The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum L. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed

  16. The CEBAF fiber optic phase reference system

    International Nuclear Information System (INIS)

    Crawford, K.; Simrock, S.; Hovater, C.; Krycuk, A.

    1995-01-01

    The specified phase stability of the CEBAF RF distribution system is 2.9 degree rms per linac. Stability is achieved through the use of a temperature and pressure regulated coaxial drive line. Purpose of the fiber optic phase reference system is to monitor the relative phase at the beginning and ending of this drive line, between linacs, injector and separator to determine drift due to ambient temperature fluctuations. The system utilizes an Ortel 1310 nm single mode laser driving Sumitumo optical fiber to distribute a reference signal at 1497 MHz. Phase of this reference signal is compared to the 1427 MHz (LO) and the 70 MHz (IF) via a 360 degree phase detector. The detected information is then routed to the CEBAF control system for display with a specified resolution of ±0.2 degree over a 20 degree phase delta

  17. Heuristic models of two-fermion relativistic systems with field-type interaction

    International Nuclear Information System (INIS)

    Duviryak, A

    2002-01-01

    We use the chain of simple heuristic expedients for obtaining perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too

  18. Positional reference system for ultraprecision machining

    Science.gov (United States)

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  19. Positional reference system for ultraprecision machining

    International Nuclear Information System (INIS)

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlledmultiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base

  20. Relativistic gravitation from massless systems of scalar and vector fields

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1979-01-01

    Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt

  1. Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass

    International Nuclear Information System (INIS)

    Qiao Yongfen; Li Renjie; Ma Yongsheng

    2005-01-01

    Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.

  2. Propagation of a TE surface mode in a relativistic electron beam–quantum plasma system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.

    2012-01-01

    The dispersion properties of a transverse electric (TE) surface waves propagating along the interface between a magneto-quantum plasma–relativistic beam system and vacuum are studied by using the quantum hydrodynamic model. The general dispersion relations are derived and analyzed in some special cases of interest. Moreover, the effects of density gradients for the beam and plasma on the dispersion properties of surface waves are investigated. The kind of dispersion relations depends strongly on the ambient magnetic field B o via the gyro-frequency ω c , the quantum parameters, and the width of the plasma layer as well as the relativistic factor for the electron beam. It is found that the quantum effects play a crucial role to facilitate the propagation of TE surface waves. -- Highlights: ► Propagation of TE surface waves on bounded magneto-quantum plasma by relativistic beam is studied. ► The quantum plasma consists of transitional layer adjacent to uniform layer. ► Influence of quantum effects on the propagation of TE surface waves are taken into account. ► Effects of homogeneity and inhomogeneity for beam on TE surface waves are considered. ► It is found that quantum effects facilitate the propagation of TE surface modes.

  3. Relativistic Green function for atomic and molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, P.F.; Sherstyuk, A.I.

    1981-12-01

    The problem on Green function construction of Dirac equation is solved for a wide class of single electron potentials in the atom and molecule theory. The solution is obtained in the form of a spectrum analysis according to the total system of eigenfuctions of the generalized Dirac problem for eigenvalues. The problem possesses a purely discrete spectrum.

  4. Modcomp MAX IV System Processors reference guide

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.

    1990-10-01

    A user almost always faces a big problem when having to learn to use a new computer system. The information necessary to use the system is often scattered throughout many different manuals. The user also faces the problem of extracting the information really needed from each manual. Very few computer vendors supply a single Users Guide or even a manual to help the new user locate the necessary manuals. Modcomp is no exception to this, Modcomp MAX IV requires that the user be familiar with the system file usage which adds to the problem. At General Atomics there is an ever increasing need for new users to learn how to use the Modcomp computers. This paper was written to provide a condensed Users Reference Guide'' for Modcomp computer users. This manual should be of value not only to new users but any users that are not Modcomp computer systems experts. This Users Reference Guide'' is intended to provided the basic information for the use of the various Modcomp System Processors necessary to, create, compile, link-edit, and catalog a program. Only the information necessary to provide the user with a basic understanding of the Systems Processors is included. This document provides enough information for the majority of programmers to use the Modcomp computers without having to refer to any other manuals. A lot of emphasis has been placed on the file description and usage for each of the System Processors. This allows the user to understand how Modcomp MAX IV does things rather than just learning the system commands.

  5. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  6. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  7. Reference dosimeter system of the IAEA

    International Nuclear Information System (INIS)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-01-01

    Quality assurance programmes must be in operation at radiation facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit. (Author)

  8. Reference dosimeter system of the iaea

    Science.gov (United States)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-09-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.

  9. Reference dosimeter system of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1995-01-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit. (author)

  10. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  11. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  12. On the dynamics of relativistic multi-layer spherical shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.hu, E-mail: iracz@rmki.kfki.hu [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, Budapest (Hungary)

    2011-04-21

    The relativistic time evolution of multi-layer spherically symmetric shell systems-consisting of infinitely thin shells separated by vacuum regions-is examined. Whenever two shells collide the evolution is continued with the assumption that the collision is totally transparent. The time evolution of various multi-layer shell systems-comprising large number of shells thereby mimicking the behavior of a thick shell making it possible to study the formation of acoustic singularities-is analyzed numerically and compared in certain cases to the corresponding Newtonian time evolution. The analytic setup is chosen such that the developed code is capable of following the evolution even inside the black hole region. This, in particular, allowed us to investigate the mass inflation phenomenon in the chosen framework.

  13. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  14. Delocalization of Relativistic Dirac Particles in Disordered One-Dimensional Systems and Its Implementation with Cold Atoms

    International Nuclear Information System (INIS)

    Zhu Shiliang; Zhang Danwei; Wang, Z. D.

    2009-01-01

    We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.

  15. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  16. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    Science.gov (United States)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  17. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  18. Three-body forces, relativistic effects, isobars, and pions in nuclear systems

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1983-01-01

    Conventional microscopic calculations in nuclear physics start from a nonrelativistic Hamiltonian. The many-body Schroedinger equation is then solved to obtain the ground state energy, wave function, and expectation values of other quantities of interest. Such a procedure gives a qualitative description of nuclear saturation properties, but it is now well established that the simple H is quantitatively inadequate. For example, the light nuclei are underbound with too large a charge radius, while nuclear matter is overbound at far too high a density. This note reviews recent studies that go beyond the simple H. These include 1) the introduction of three-nucleon potentials, 2) estimates of relativistic effects, 3) the introduction of isobar degrees of freedom in the two-body potential, and 4) probing the influence of pion degrees of freedom on nuclear systems

  19. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  20. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2009-10-02

    Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.

  1. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  2. The relativistic rotation of spin and asymptotic behaviour of the form factor of the composite system

    International Nuclear Information System (INIS)

    Trubnikov, S.V.

    1984-01-01

    The relativistic rotation of nucleon spin in addition to deuteron spin leads to the appearance of the new term in the deuteron charge form factor (DCFF). This term is absent in the traditional approaches and essentially influences the asymptotic behaviour of DCFF. General formulae are obtained for the DCFF asymptotics in the relativistic and nonrelativistic impulse approximation

  3. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  4. Relativistic three-particle dynamical equations: II. Application to the trinucleon system

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.

    1993-11-01

    The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)

  5. Global Reference Tables for Management Information Systems

    Data.gov (United States)

    Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardize code structures and code usage of SSA...

  6. Global Reference Tables for Production Systems

    Data.gov (United States)

    Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardized code structures and code usage of SSA...

  7. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  8. On the basis of molecular orbitals for relativistic bound systems of many bodies

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-09-01

    The quasi-relativistic Hamiltonian for bound states of many bodies proposed in previous articles (Cook, 1986, 1987a) is shown to provide a basis for the molecular orbital scheme of constructing wavefunctions and calculating eigenenergies. (author). 5 refs

  9. Relativistic quantum chaos-An emergent interdisciplinary field.

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  10. Relativistic quantum chaos—An emergent interdisciplinary field

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  11. Relativistic description of nuclear systems in the Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Bouyssy, A.; Mathiot, J.F.; Nguyen Van Giai; Marcos, S.

    1986-03-01

    The structure of infinite nuclear matter and finite nuclei is studied in the framework of the relativistic Hartree-Fock approximation. A particular attention is paid to the contribution of isovector mesons. (π,p). A satisfactory description of binding energies and densities can be obtained for light as well as heavy nuclei. The spin-orbit splittings are well reproduced. Connections with non-relativistic formulations are also discussed

  12. Newtonian self-gravitating system in a relativistic huge void universe model

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  13. Genetics Home Reference: systemic lupus erythematosus

    Science.gov (United States)

    ... Twitter Home Health Conditions Systemic lupus erythematosus Systemic lupus erythematosus Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Systemic lupus erythematosus (SLE) is a chronic disease that causes inflammation ...

  14. Material control system simulator program reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences.

  15. Material control system simulator program reference manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences

  16. Behavioral Reference Model for Pervasive Healthcare Systems.

    Science.gov (United States)

    Tahmasbi, Arezoo; Adabi, Sahar; Rezaee, Ali

    2016-12-01

    The emergence of mobile healthcare systems is an important outcome of application of pervasive computing concepts for medical care purposes. These systems provide the facilities and infrastructure required for automatic and ubiquitous sharing of medical information. Healthcare systems have a dynamic structure and configuration, therefore having an architecture is essential for future development of these systems. The need for increased response rate, problem limited storage, accelerated processing and etc. the tendency toward creating a new generation of healthcare system architecture highlight the need for further focus on cloud-based solutions for transfer data and data processing challenges. Integrity and reliability of healthcare systems are of critical importance, as even the slightest error may put the patients' lives in danger; therefore acquiring a behavioral model for these systems and developing the tools required to model their behaviors are of significant importance. The high-level designs may contain some flaws, therefor the system must be fully examined for different scenarios and conditions. This paper presents a software architecture for development of healthcare systems based on pervasive computing concepts, and then models the behavior of described system. A set of solutions are then proposed to improve the design's qualitative characteristics including, availability, interoperability and performance.

  17. Mobile User Objective Systems (MUOS) Reference Implementation Laboratory (MRIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Mobile User Objective Systems (MUOS) Reference Implementation Laboratory (MRIL) performs verification and validation testing of various MUOS terminals. MRIL also...

  18. Mounting system for optical frequency reference cavities

    Science.gov (United States)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  19. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  20. Regionally Implicit Discontinuous Galerkin Methods for Solving the Relativistic Vlasov-Maxwell System Submitted to Iowa State University

    Science.gov (United States)

    Guthrey, Pierson Tyler

    The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications. High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase. The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL

  1. Relativistic bound-state problem of a one-dimensional system

    International Nuclear Information System (INIS)

    Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.

    1991-01-01

    A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)

  2. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  3. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  4. weHelp: A Reference Architecture for Social Recommender Systems.

    Science.gov (United States)

    Sheth, Swapneel; Arora, Nipun; Murphy, Christian; Kaiser, Gail

    2010-01-01

    Recommender systems have become increasingly popular. Most of the research on recommender systems has focused on recommendation algorithms. There has been relatively little research, however, in the area of generalized system architectures for recommendation systems. In this paper, we introduce weHelp : a reference architecture for social recommender systems - systems where recommendations are derived automatically from the aggregate of logged activities conducted by the system's users. Our architecture is designed to be application and domain agnostic. We feel that a good reference architecture will make designing a recommendation system easier; in particular, weHelp aims to provide a practical design template to help developers design their own well-modularized systems.

  5. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  6. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  7. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  8. Developing a Frame of Reference for understanding configuration systems

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Edwards, Kasper

    2008-01-01

    This paper uses the theory of technical systems to develop a frame of reference of product configuration systems. Following a definition of the configuration task, product model and product configuration system the theory of technical systems are presented. Configuration systems are then related...

  9. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  10. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    Science.gov (United States)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  11. On the invariance of world time reference system

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1978-01-01

    A universal reference system is studied. It is shown that time differentiation acquires an invariant meaning in the covariant theory of a curved space-time. All the principal covariant equations of the Einstein gravitational field theory can be interpreted successively relative to a universal reference system, whose base congruence is the S-congruence. The Lorentz calibration conditions determine the base tetrades of the universal reference system with an accuracy to rigid spatial rotations with constant coefficients. The use of rigid tetrades eliminates the ambiguity in the interpretation of the value of the energy momentum of a gravitational field

  12. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  13. A Reference Architecture for Network-Centric Information Systems

    National Research Council Canada - National Science Library

    Renner, Scott; Schaefer, Ronald

    2003-01-01

    This paper presents the "C2 Enterprise Reference Architecture" (C2ERA), which is a new technical concept of operations for building information systems better suited to the Network-Centric Warfare (NCW) environment...

  14. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  15. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  16. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  17. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  18. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  19. An Estimator for Attitude and Heading Reference Systems Based on Virtual Horizontal Reference

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    makes it possible to correct the output of roll and pitch of the attitude estimator in the situations without accelerometer measurements, which cannot be achieved by the conventional nonlinear attitude estimator. The performance of VHR is tested both in simulation and hardware environment to validate......The output of the attitude determination systems suffers from large errors in case of accelerometer malfunctions. In this paper, an attitude estimator, based on Virtual Horizontal Reference (VHR), is designed for an Attitude Heading and Reference System (AHRS) to cope with this problem. The VHR...... their estimation performance. Moreover, the hardware test results are compared with that of a high-precision commercial AHRS to verify the estimation results. The implemented algorithm has shown high accuracy of attitude estimation that makes the system suitable for many applications....

  20. Change in General Relativistic precession rates due to Lidov-Kozai oscillations in the Solar System

    Science.gov (United States)

    Sekhar, Aswin; Asher, David J.; Werner, Stephanie C.; Vaubaillon, Jeremie; Li, Gongjie

    2017-04-01

    Introduction: Two well known phenomena associated with low perihelion distance bodies in orbital dynamics are general relativistic (GR) precession and Lidov-Kozai (LK) oscillations. The accurate prediction of the perihelion shift of Mercury in accord with real observations is one of the significant triumphs of the general theory of relativity developed by Einstein. The Lidov-Kozai mechanism was first proposed and derived by Kozai and independently by Lidov explaining the periodic exchange between eccentricities e and inclinations i thereby increasing or decreasing the perihelion distance q secularly in the orbiting body. Co-existence of GR Precession and LK Oscillations: In this work, we were interested to identify bodies evolving in the near future (i.e. thousands of years in this case) into rapid sungrazing and sun colliding phases and undergoing inclination flips, due to LK oscillations and being GR active at the same time. Of all the bodies we checked from the IAU-Minor Planet Center, and Marsden plus Kracht families from the comet catalogue, 96P/Machholz 1 stands out because it shows all these trends in the near future. LK leads to secular lowering of q which in turn leads to a huge increase in GR precession of argument of pericentre. This in turn gives feedback to the LK mechanism as the e,i and argument of pericentre in Kozai cycles are closely correlated. In this work, we find real examples of solar system bodies which show the continuum nature between GR precession domi-nant and LK mechanism dominant regimes. Results and Discussion: We have shown that there are bodies in the solar system in which both GR precession and LK mechanism can co-exist at the same time and for which these effects can be measured and identified using analytical and numerical techniques. Thus there is a continuum of bodies encompassing, firstly GR precession dominant, secondly GR precession plus LK mechanism co-existing and finally LK mechanism dominant states which are all

  1. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  2. Standard map in magnetized relativistic systems: fixed points and regular acceleration.

    Science.gov (United States)

    de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B

    2010-08-01

    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.

  3. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  4. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  5. Relativistic nuclear reactions and the intranuclear cascade method

    International Nuclear Information System (INIS)

    Duarte, S.J.B.

    1983-01-01

    The intranuclear cascade (INC) procedure is analised as a method to describe the processes of relativistic heavy ions collisions. The effects caused by nucleon concentration during the collision are discussed. It is shown explicitly that the occurence of nonbinary collisions among particles is not at all negligible, in spite of the fact that the convencional INC only permits nucleon-nucleon binary collisions. The relativistic invariance of the results obtained by the INC method is discussed. This is especially important when the method is applied for much higher energies. Many of conventional procedures in the method will give certainly different predictions depending on what system of reference is used. The origin of such non-invariance nature of INC calculations is discussed and an alternative way of defining the INC procedure which presents a better credibility with respect to the relativistic invariance property is proposed. (Author) [pt

  6. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  7. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  8. A raster scanning power supply system for controlling relativistic heavy ion beams at the Bevalac Biomedical Facility

    International Nuclear Information System (INIS)

    Stover, G.; Nyman, M.; Halliwell, J.; Lutz, I.; Dwinell, R.

    1987-03-01

    A power supply system is currently being designed and constructed to sweep an 8.0 Tesla-meter relativistic heavy ion beam in a raster scanning mode for radiotherapy use. Two colinear dipole magnets with orthogonally oriented magnetic fields are driven by the system to produce a rectangular field (40 x 40 cm max.) with a uniform dose (+-2.5%) to a target volume 6 meters away. The ''fast'' horizontal scanning magnet is driven by a single power supply which in conjunction with a triac bridge network and a current regulated linear actuator will produce a 1200 cm/sec max. sweep rate. The ''slow'' (40 cm/sec) vertical scanning magnet will be controlled by dual current regulated linear actuators in a push-pull configuration. The scanner system can provide off-axis treatment profiles with large aspect ratios and unusual dimensions

  9. Analysis of the Reference Systems of Modern Selenographic Systems

    Science.gov (United States)

    Nefedyev, Yuri; Petrova, Natalia; Andreev, Alexey; Demina, Natalya

    2016-07-01

    In this work analysis of the reference systems of modern selenographic systems was made. The center of the Moon's mass position relative to its center of figure was determined from the data of "Clementine" and "Kaguya" missions and "ULCN" and "KSC-1162" catalogues. The knowledge of the Moon's center of mass position relative to its center of figure is important for researches of the lunar origin, structure and evolution and in terms of precision solutions circumlunar navigation tasks. At the present this task is the most relevant and demanded for cosmic lunar missions.The expansions by spherical harmonics N=5 degree and order of the lunar function h (λ, β) using the package ASNI USTU were executed. Module of the expansion of the local area to surfaces to full sphere was used. The parameters of cosmic missions are given for comparison (SAI; Bills, Ferrari). The normalized coefficients from expansions for eight sources of hypsometric information are obtained: "Clementine" (N=40), "KSC-1162" (N=5), "Kiev" (N=5), "SAI" (N=10; Chuikova (1975)), "Bills, Ferrari", "Kaguya" (Selena, Japan mission), "ULCN" (The Unified Lunar Control Network 2005). The displacements of the lunar center of figure relative to the lunar center of the mass were defined from equations (Chuikova (1975)): Δ ξ = C_{11} √{3}, Δ η= S_{11} √{3}, Δ ζ = C_{10} √{3}, where ξ is the axis directed towards the Earth, η is equatorial axis directed perpendicularly to ξ , ζ is rotation axis of the Moon, C_{11} , S_{11} , C_{10} are the normalized amplitudes of the harmonics of the first order expansion of the relief. After that we considered: - mathematical models in the form of expansions in spherical functions - methods for estimating the model parameters; - information technology data processing. As a model describing the behavior of the relief on the lunar sphere is used the expansion of the height in a series of spherical harmonics (Sagitov (1979)) in the form of a regression model

  10. An N+3 Technology Level Reference Propulsion System

    Science.gov (United States)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  11. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  12. Properties of gravi-inertial systems of reference

    International Nuclear Information System (INIS)

    Dozmorov, I.M.

    1977-01-01

    A number of papers of the author have been summarized devoted to gravi-inertial systems of reference in which the following problems are solved: a) analogs of inertial systems of reference (ISR), gravi-ISR, have been introduced into the general relativity the ory (GRT); b) using transformations between such ISR as symmetry transformation, obtained by variational methods are values with clear physical sense; c) using the gravi-ISR basis as the zero level of the deformation reading, the theory of elasticity in GRT has been constructed and someof its applications considered. The results are compared with those of other authors

  13. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  14. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  15. The MADE reference information model for interoperable pervasive telemedicine systems

    NARCIS (Netherlands)

    Fung, L.S.N.; Jones, Valerie M.; Hermens, Hermanus J.

    2017-01-01

    Objectives: The main objective is to develop and validate a reference information model (RIM) to support semantic interoperability of pervasive telemedicine systems. The RIM is one component within a larger, computer-interpretable "MADE language" developed by the authors in the context of the

  16. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    NARCIS (Netherlands)

    Wang, Y.; Leus, G.; Van der Veen, A.J.

    2009-01-01

    A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR) ultra-wideband (UWB) system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI) and the

  17. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  18. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system

    International Nuclear Information System (INIS)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre

    2008-01-01

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to

  19. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  20. Relativistic dissipative hydrodynamic equations at the second order for multi-component systems with multiple conserved currents

    International Nuclear Information System (INIS)

    Monnai, Akihiko; Hirano, Tetsufumi

    2010-01-01

    We derive the second order hydrodynamic equations for the relativistic system of multi-components with multiple conserved currents by generalizing the Israel-Stewart theory and Grad's moment method. We find that, in addition to the conventional moment equations, extra moment equations associated with conserved currents should be introduced to consistently match the number of equations with that of unknowns and to satisfy the Onsager reciprocal relations. Consistent expansion of the entropy current leads to constitutive equations which involve the terms not appearing in the original Israel-Stewart theory even in the single component limit. We also find several terms which exhibit thermal diffusion such as Soret and Dufour effects. We finally compare our results with those of other existing formalisms.

  1. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  2. Reference clock parameters for digital communications systems applications

    Science.gov (United States)

    Kartaschoff, P.

    1981-01-01

    The basic parameters relevant to the design of network timing systems describe the random and systematic time departures of the system elements, i.e., master (or reference) clocks, transmission links, and other clocks controlled over the links. The quantitative relations between these parameters were established and illustrated by means of numerical examples based on available measured data. The examples were limited to a simple PLL control system but the analysis can eventually be applied to more sophisticated systems at the cost of increased computational effort.

  3. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  4. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  5. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  6. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  7. Detection system for forward emitted XUV photons from relativistic ion beams at the ESR

    Energy Technology Data Exchange (ETDEWEB)

    Egelkamp, C.; Hannen, V.; Ortjohann, H.W.; Vollbrecht, J.; Weinheimer, C.; Winzen, D. [Institut fuer Kernphysik, Uni Muenster (Germany); Kuehl, T. [Institut fuer Kernchemie, Uni Mainz (Germany); GSI, Darmstadt (Germany); Helmholtz Institut Jena (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Uni Mainz (Germany); GSI, Darmstadt (Germany); Sanchez, R.; Winters, D. [GSI, Darmstadt (Germany); Stoehlker, T. [GSI, Darmstadt (Germany); Helmholtz Institut Jena (Germany); Uni Jena (Germany)

    2016-07-01

    Highly charged heavy ions stored at relativistic velocities provide a unique possibility to test atomic structure calculations. A possibility to investigate electron-electron correlations is the study of the {sup 3}P{sub 0} → {sup 3}P{sub 1} fine structure transition in Be-like Krypton ({sup 84}Kr{sup 32+}) in laser spectroscopy experiments. For this purpose Be-like krypton ions are stored in the experimental storage ring (ESR) at GSI at a velocity of β = 0.69. Through an anticollinear arrangement of the excitation laser and the ions the wavelength in the rest frame of the ions can be matched. After the excitation to the {sup 3}P{sub 1} level the ions immediately decay to the ground state, emitting λ ∼ 17 nm photons. Due to the Lorentz boost, the photons are emitted mainly in the forward direction and experience a Doppler shift to wavelengths < 10 nm. To collect these photons a moveable cathode plate with a central slit is brought into the beam line. The XUV photons mostly produce low energy secondary electrons on the plate which are electromagnetically guided onto a MCP detector. The design and working principle, as well as simulations and test measurements of the detector are presented.

  8. Performance evaluation of the Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Parker, J.R.; Woodfin, G.L.; Viswanathan, V.K.

    1985-01-01

    The Antares Reference Telescope System is a complicated electro-optical-mechanical system whose main purpose is to enable positioning of targets used in the Antares Laser System to within 10 μm of a selected nominal position. To date, it has been used successfully to position targets ranging in size from 300 μm to 2 mm. The system consists of two electro-optical systems positioned in a nearly orthogonal manner. This ''cross telescope'' configuration facilitates accurate positioning in three planes. The results obtained so far in resolution and positioning of targets using this system are discussed. It is shown that a resolution of 200 lp/mm and a positioning precision of 25 μm can be obtained

  9. On Chinese National Continuous Operating Reference Station System of GNSS

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-11-01

    Full Text Available Objective: Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System can maintain a accurate, 3D, geocentric and dynamic reference coordinate frame in the corresponding area, can provide positioning and navigation service. It can also serve for the meteorology, geodynamics, earthquake monitoring and Location Based services (LBS etc in the same area. Until now, our country can’t provide a facing National CORS System serving for every profession and trade, and the national sharing platform of CORS System resources has not been established. So this paper discusses some valuable insight how to construct the National CORS System in China. Method: Constructing goal、Service object、CORS distribution、CORS geographic、geology and communication environment and other factors, are major considerations for the Constructing the National CORS System. Moreover, constructing GNSS CORS is more specific, mainly from four aspects, namely site-selection、civil construction、security measures and equipment-selection for consideration. Outcome: The project of the Constructing Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is put forward, and is discussed from goal、principle、project and other for construction. Some meaning thought how to construct the National CORS System is submitted Conclusion: The Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is the lack of a unified planning and design in the national level. So far, the national CORS system serving all walks of life has not been provided, and the national sharing platform of CORS System resources has not been established The primary mission of the Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is as follows: using data set of GNSS and receiving, transport, process, integration, transmit information and

  10. Four Reference Models for Transparency Requirements in Information Systems

    OpenAIRE

    Hosseini, Mahmoud; Shahri, Alimohammad; Phalp, Keith T.; Ali, Ra

    2017-01-01

    Transparency is a key emerging requirement in modern businesses and their information systems. Transparency refers to the information which flows amongst stakeholders for the purpose of informed decision-making and taking the right action. Transparency is generally associated with positive connotations such as trust and accountability. However, it has been shown that it could have adverse effects such as information overload and affecting decisions objectiveness. This calls for systematic app...

  11. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  12. MATHEMATICAL MODEL OF TRIAXIAL MULTIMODE ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-07-01

    Full Text Available Purpose: The paper deals with the mathematical description of the gimballed attitude and heading reference systems, which can be applied in design of strategic precision navigation systems. The main goal is to created mathematical description taking into consideration the necessity to use different navigations operating modes of this class of navigation systems. To provide the high accuracy the indirect control is used when the position of the gimballed platform is controlled by signals of gyroscopic devices, which are corrected using accelerometer’s signals. Methods: To solve the given problem the methods of the classical theoretical mechanics, gyro theory, and inertial navigation are used. Results: The full mathematical model of the gimballed attitude and heading reference system is derived including descriptions of different operating modes. The mathematical models of the system Expressions for control and correction moments in the different modes are represented. The simulation results are given. Conclusions: The represented results prove efficiency of the proposed models. Developed mathematical models can be useful for design of navigation systems of the wide class of moving vehicles.

  13. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  14. Nuclear thermal rocket workshop reference system Rover/NERVA

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed

  15. On the kinetic collisional theory of beam-plasma system (relativistic dielectric tensor). Vol. 2.

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Sh M; Sayed, Y A; Zaki, N G [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Calculation of the dielectric tensor is useful for calculating and oscillations the stability of an inhomogeneous plasma. If the dielectric tensor is known, the problem of oscillations is reduced the derivation of the Maxwellian equations. In this case, there is no need to derive the equations of the motion of charged particles every time. The properties of the plasma, especially those connected to its instability, may be equally well specified through permittivity as through conductivity. The features of plasma instabilities and the plasma dielectric tensor are essentially affected by the presence of collision. Coloumb collisions (C.C.) are very important in the process of no linear saturation of some plasma instabilities (e.g., ion cyclotron instability, electron-ion two stream instability). For C.C., two basic properties are considered; (i) the cross section decreases rapidly as the particle velocity increases, (ii) the dominate contribution arises from a commutative effect of small-angle scattering or small-momentum transfer processes. If allowance is made for C.C. to derive the kinetic wave equations in a homogeneous plasma, it will remove the divergance in the matrix elements describing nonlinear interactions. In this paper, the collisional kinetic wave equation in cylindrical hot plasma is studied. The dielectric and polarizing tensor elements which describes the kinetic relativistic electron beam (REB) interaction with magnetized plasma into consideration the effect of pair C.C. is derived. Most research carried out in this direction has neglected the effect of C.C. In the absence of collisions, a `plauste` is formed on the distribution function, and the adsorption of the energy by the plasma stops. 1 fig.

  16. Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems

    International Nuclear Information System (INIS)

    Boll, Raphael; Petrera, Matteo; Suris, Yuri B

    2015-01-01

    We establish the pluri-Lagrangian structure for families of Bäcklund transformations of relativistic Toda-type systems. The key idea is a novel embedding of these discrete-time (one-dimensional) systems into certain two-dimensional (2D) pluri-Lagrangian lattice systems. This embedding allows us to identify the corner equations (which are the main building blocks of the multi-time Euler–Lagrange equations) with local superposition formulae for Bäcklund transformations. These superposition formulae, in turn, are key ingredients necessary to understand and to prove commutativity of the multi-valued Bäcklund transformations. Furthermore, we discover a 2D generalization of the spectrality property known for families of Bäcklund transformations. This result produces a family of local conservations laws for 2D pluri-Lagrangian lattice systems, with densities being derivatives of the discrete 2-form with respect to the Bäcklund (spectral) parameter. Thus, a relation of the pluri-Lagrangian structure with more traditional integrability notions is established. (paper)

  17. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)

    2018-01-15

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)

  18. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Science.gov (United States)

    Mitra, Sukanya

    2018-01-01

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.

  19. From the LHC Reference Database to the Powering Interlock System

    CERN Document Server

    Dehavay, C; Schmidt, R; Veyrunes, E; Zerlauth, M

    2003-01-01

    The protection of the magnet powering system for the Large Hadron Collider (LHC) currently being built at CERN is a major challenge due to the unprecedented complexity of the accelerator. The Powering Interlock System of the LHC will have to manage more than 1600 DC circuits for magnet powering, different in their structure, complexity and importance to the accelerator. For the coherent description of such complex system, a Reference Database as unique source of the parameters of the electrical circuits has been developed. The information, introduced via a generic circuit description language, is first used for installing the accelerator and making all electrical connections. The data is then used for tests and commissioning. During operation, the Powering Interlock System manages all critical functions. It consists of 36 PLC based controllers dis tributed around the machine and requires a flexible and transparent way of configuration, since each controller manages different numbers and types of electrical ci...

  20. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

    Science.gov (United States)

    Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R

    2003-12-04

    The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).

  1. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ''bottom-up'' cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%

  2. Testing and reference model analysis of FTTH system

    Science.gov (United States)

    Feng, Xiancheng; Cui, Wanlong; Chen, Ying

    2009-08-01

    With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN , WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network.. Fiber to the Home (FTTH) will be the goal of telecommunications cable broadband access. In accordance with the development trend of telecommunication services, to enhance the capacity of integrated access network, to achieve triple-play (voice, data, image), based on the existing optical Fiber to the curb (FTTC), Fiber To The Zone (FTTZ), Fiber to the Building (FTTB) user optical cable network, the optical fiber can extend to the FTTH system of end-user by using EPON technology. The article first introduced the basic components of FTTH system; and then explain the reference model and reference point for testing of the FTTH system; Finally, by testing connection diagram, the testing process, expected results, primarily analyze SNI Interface Testing, PON interface testing, Ethernet performance testing, UNI interface testing, Ethernet functional testing, PON functional testing, equipment functional testing, telephone functional testing, operational support capability testing and so on testing of FTTH system. ...

  3. Relativistic shocks in the systems containing domains with anomalous equation of state and quark baryonic matter hadronization

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Gorenshtejn, M.I.; Zhdanov, V.I.

    1987-01-01

    Theoretical basis for general stability criterion of relativistic shocks in baryonic matter is proposed. Different formulations of shock mechanical stability are considered and applied to the analysis of rarefaction shock hadronization transition. 13 refs.; 2 figs

  4. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system

    CERN Document Server

    Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O

    2003-01-01

    The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.

  5. Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid

    International Nuclear Information System (INIS)

    Ignat, M.

    1980-01-01

    Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)

  6. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  7. CONSERATION LAWS OF RELATIVISTIC VARLABLE MASS SYSTEM%相对论性变质量系统的守恒律

    Institute of Scientific and Technical Information of China (English)

    方建会

    2001-01-01

    研究相对论性变质量系统的守恒律. 给出相对论性变质量系统的 d'Alembert-Lagrange原理,利用其在无限小变换下的不变性条件,得到相对论性变质量 系统的守恒律存在的条件和形式,并举例说明结果的应用.%The conservation laws of relativistic variable mass system were studied. The d' Alembert-Lagrange principle of relativistic variable mass system are given. By using invariant condition of The d'Alembert-Lagrange principle under the infin itesimal transformations, the conditions and forms which the conserved quantities of the system do exist were obtained. An example is given to illustrate the ap plication of the result..

  8. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    Science.gov (United States)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  9. Activity Management System user reference manual. Revision 1

    International Nuclear Information System (INIS)

    Gates, T.A.; Burdick, M.B.

    1994-01-01

    The Activity Management System (AMS) was developed in response to the need for a simple-to-use, low-cost, user interface system for collecting and logging Hanford Waste Vitrification Plant Project (HWVP) activities. This system needed to run on user workstations and provide common user access to a database stored on a local network file server. Most important, users wanted a system that provided a management tool that supported their individual process for completing activities. Existing system treated the performer as a tool of the system. All AMS data is maintained in encrypted format. Users can feel confident that any activities they have entered into the database are private and that, as the originator, they retain sole control over who can see them. Once entered into the AMS database, the activities cannot be accessed by anyone other than the originator, the designated agent, or by authorized viewers who have been explicitly granted the right to look at specific activities by the originator. This user guide is intended to assist new AMS users in learning how to use the application and, after the initial learning process, will serve as an ongoing reference for experienced users in performing infrequently used functions. Online help screens provide reference to some of the key information in this manual. Additional help screens, encompassing all the applicable material in this manual, will be incorporated into future AMS revisions. A third, and most important, source of help is the AMS administrator(s). This guide describes the initial production version of AMS, which has been designated Revision 1.0

  10. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  11. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  12. Reference material systems: a sourcebook for material assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, N. (ed.)

    1976-12-01

    A reference set of data related to material systems and a framework for carrying out the material technologies assessment are presented. While the bulk of renewables have been considered in this report, the nonrenewable materials dealt with here include structural materials only, such as steel, aluminum, cement and concrete, and bricks. The complete data set is supposed to include material flows, energy requirements, capital and labor inputs, and environmental effects for each process that a resource must go through to become a useful material for an end use. Although effort has been made to obtain as much information as possible, considerable gaps in data, apparent throughout this report, could not be avoided. A new material technology can be evaluated by substituting that technology for appropriate elements of the reference materials system and calculating the net change in material resource, energy, capital and labor requirements, and environmental impacts. This combination of information thus serves as a means of evaluating the potential benefits to be gained by research in various material technologies.

  13. Scalar material reference systems and loop quantum gravity

    International Nuclear Information System (INIS)

    Giesel, K; Thiemann, T

    2015-01-01

    In the past, the possibility to employ (scalar) material reference systems in order to describe classical and quantum gravity directly in terms of gauge invariant (Dirac) observables has been emphasized frequently. This idea has been picked up more recently in loop quantum gravity with the aim to perform a reduced phase space quantization of the theory, thus possibly avoiding problems with the (Dirac) operator constraint quantization method for a constrained system. In this work, we review the models that have been studied on the classical and/or the quantum level and parametrize the space of theories considered so far. We then describe the quantum theory of a model that, to the best of our knowledge, has only been considered classically so far. This model could arguably be called the optimal one in this class of models considered as it displays the simplest possible true Hamiltonian, while at the same time reducing all constraints of general relativity. (paper)

  14. Data Link Test and Analysis System/ATCRBS Transponder Test System Technical Reference

    Science.gov (United States)

    1990-05-01

    This document references material for personnel using or making software changes : to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar : Beacon System (ATCRBS) transponder testing and data collection. This is one of : a se...

  15. Front-End Light Source for aWaveform-Controlled High-Contrast Few-Cycle Laser System for High-Repetition Rate Relativistic Optics

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopez-Martens

    2013-03-01

    Full Text Available We present the current development of an injector for a high-contrast, ultrashort laser system devoted to relativistic laser-plasma interaction in the few-cycle regime. The front-end is based on CEP-stabilized Ti:Sa CPA followed by XPW filter designed at the mJ level for temporal cleaning and shortening. Accurate characterization highlights the fidelity of the proposed injector. Measured CEP drift is 170 mrad rms.

  16. On the description of classical Einstein relativistic two-particle systems

    International Nuclear Information System (INIS)

    Aaberge, T.

    1978-01-01

    The author starts by considering the system of one free particle, and gives a sufficiently general description of this system to include the center of mass of systems of several particles. He then passes to the system of two particles. The coordinates separating the center of mass and the internal system are defined and the dynamics discussed. Finally the author outlines the construction of a more restrictive two-particle theory, and studies some consequences of the definition of a particle in an external field as a two-particle system in the limit where the mass of one of the particles becomes infinite. (Auth.)

  17. Canonical formalism for relativistic dynamics

    International Nuclear Information System (INIS)

    Penafiel-Nava, V.M.

    1982-01-01

    The possibility of a canonical formalism appropriate for a dynamical theory of isolated relativistic multiparticle systems involving scalar interactions is studied. It is shown that a single time-parameter structure satisfying the requirements of Poincare invariance and simultaneity of the constituents (global tranversality) can not be derived from a homogeneous Lagrangian. The dynamics is deduced initially from a non-homogeneous but singular Lagrangian designed to accommodate the global tranversality constraints with the equaltime plane associated to the total momentum of the system. An equivalent standard Lagrangian is used to generalize the parametrization procedure which is referred to an arbitrary geodesic in Minkowski space. The equations of motion and the definition of center of momentum are invariant with respect to the choice of geodesic and the entire formalism becomes separable. In the original 8N-dimensional phase-space, the symmetries of the Lagrangian give rise to a canonical realization of a fifteen-generator Lie algebra which is projected in the 6N dimensional hypersurface of dynamical motions. The time-component of the total momentum is thus reduced to a neutral element and the canonical Hamiltonian survives as the only generator for time-translations so that the no-interaction theorem becomes inapplicable

  18. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  19. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  20. Enhanced electricity system analysis for decision making - A reference book

    International Nuclear Information System (INIS)

    2000-01-01

    The objective of electricity system analysis in support of decision making is to provide comparative assessment results upon which relevant policy choices between alternative technology options and supply strategies can be based. This reference book offers analysts, planners and decision makers documented information on enhanced approaches to electricity system analysis, that can assist in achieving this objective. The book describes the main elements of comprehensive electricity system analysis and outlines an advanced integrated analysis and decision making framework for the electric power sector. Emphasis is placed on mechanisms for building consensus between interested and affected parties, and on aspects of planning that go beyond the traditional economic optimisation approach. The scope and contents of the book cover the topics to be addressed in decision making for the power sector and the process of integrating economic, social, health and environmental aspects in the comparative assessment of alternative options and strategies. The book describes and discusses overall frameworks, processes and state of the art methods and techniques available to analysts and planners for carrying out comparative assessment studies, in order to provide sound information to decision makers. This reference book is published as part of a series of technical reports and documents prepared in the framework of the inter-agency joint project (DECADES) on databases and methodologies for comparative assessment of different energy sources for electricity generation. The overall objective of the DECADES project is to enhance capabilities for incorporating economic, social, health and environmental issues in the comparative assessment of electricity generation options and strategies in the process of decision making for the power sector. The project, established in 1992, is carried out jointly by the European Commission (EC), the Economic and Social Commission for Asia and the Pacific

  1. Global well posedness of the relativistic Vlasov-Yukawa system with small data

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Lee, Ho

    2007-01-01

    In this paper, we present an existence theory and uniform L 1 -stability estimate for classical solutions with small data to the Vlasov-Yukawa system. The Vlasov-Yukawa system corresponds to a short-range correction of the Vlasov-Poisson system appearing in plasma physics and astrophysics. For the existence and stability of classical solutions, we crucially use dispersion estimates due to the smallness of data

  2. Realization of a reference system for the generation radon 222

    International Nuclear Information System (INIS)

    Guelin, M.

    1990-11-01

    After some general considerations on radon and its calibration techniques, the methods and technologies developed in order to realize a reference system for the generation of radon 222 are presented. Two original patented techniques have been developed. The former technique deals with the realization of radon 222 solid sources from radium 226 deposit on acrylic fibres. This new technology offers the advantage of very quickly obtaining a constant emission rate near to 100%. The latter technique deals with the standard measurement of radon 222 volumic activity via gamma spectrometry of its short-lived daughters. This new procedure is the only one allowing to relate this measure to gaseous standards. An aeraulic/ventilation circuit makes it possible to calibrate the radon measurement instrumentation within a wide volumic activity range from to 4 to 4 000 Bq/m 3

  3. Dosimetric methodology and reference system for diagnostic level X radiation

    International Nuclear Information System (INIS)

    Potiens, Maria da Penha Albuquerque

    1999-01-01

    Several methodologies for the calibration of diagnostic radiology instruments were developed and established at the Calibration Laboratory of IPEN. These established radiation qualities are recommended by international standards. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. A reference system was proposed using two identical ionization chambers developed at IPEN. They differ only by the collecting electrode material, one of aluminium and the other of graphite. The different energetic dependence of the chamber's response provided a ratio related to the tube potential. The variation of only 0.28%, from 14.3 to 111 keV, on the energetic dependence of the graphite electrode chamber, provided the possibility of air kerma rate determination in the studied radiation beams. (author)

  4. sl (6,r) as the group of symmetries for non relativistic quantum systems

    African Journals Online (AJOL)

    It is shown that the 13 one parameter generators of the Lie group SL(6, R) are the maximal group of symmetries for nonrelativistic quantum systems. The group action on the set of states S Ĥ (H complex Hilbert space) preserves transition probabilities as well as the dynamics of the system. By considering a prolongation of ...

  5. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  6. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  7. Modification of reference temperature program in reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sung Sik; Lee, Byung Jin; Kim, Se Chang; Cheong, Jong Sik [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Ji In; Doo, Jin Yong [Korea Electric Power Cooperation, Yonggwang (Korea, Republic of)

    1999-12-31

    In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold temperature was very close to the technical specification limit of 298 deg C during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended. 6 refs., 4 figs., 2 tabs. (Author)

  8. Modification of reference temperature program in reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sung Sik; Lee, Byung Jin; Kim, Se Chang; Cheong, Jong Sik [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Ji In; Doo, Jin Yong [Korea Electric Power Cooperation, Yonggwang (Korea, Republic of)

    1998-12-31

    In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold temperature was very close to the technical specification limit of 298 deg C during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended. 6 refs., 4 figs., 2 tabs. (Author)

  9. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  10. Relativistic mechanics, time and inertia

    International Nuclear Information System (INIS)

    Kilmister, C.W.; Tocaci, E.

    1985-01-01

    This book offers a thought-provoking approach to the fundamentals of relativity, and is structured to provide a clear-cut introduction to the essentials of relativistic mechanics. It seeks to emphasize the sensible content of concepts, to improve on their inherent or often forgotten fuzziness, and to explore prospects for their further exploitation. The work also provides an analysis conducive to a rigorous, normative definition of Time, which is seen as a synthesis of universal motion, instrumental in defining a general measure to transformations, and as a sufficient reason to suppose that the speed of light must be the same in all inertial reference frames - hence showing this cardinal postulate to be a demonstrable truth. Moreover it provides an augmented perception of what inertial vs. non-inertial systems are. In addition, the book offers a natural, time-like interpretation of Space that departs from the usual converse approach; it offers a self-consistent proposal to rationalize the axiomatic grounds of mechanics, based on a single postulate in conjunction with the overall approach developed. (author). refs.; figs.; tabs

  11. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  12. Overview of external reference pricing systems in Europe.

    Science.gov (United States)

    Rémuzat, Cécile; Urbinati, Duccio; Mzoughi, Olfa; El Hammi, Emna; Belgaied, Wael; Toumi, Mondher

    2015-01-01

    External reference pricing (ERP) is a price regulation tool widely used by policy makers in the European Union (EU) Member States (MS) to contain drug cost, although in theory, it may contribute to modulate prices up and down. The objective of this article was to summarise and discuss the main findings of part of a large project conducted for the European Commission ('External reference pricing of medicinal products: simulation-based considerations for cross-country coordination'; see www.ec.europa.eu/health/healthcare/docs/erp_reimbursement_medicinal_products_en.pdf) that aimed to provide an overview of ERP systems, both on processes and potential issues in 31 European countries (28 EU MS, Iceland, Norway, and Switzerland). A systematic structured literature review was conducted to identify and characterise the use of ERP in the selected countries, to describe its impact on the prices of pharmaceuticals, and to discuss the possible cross-country coordination issues in EU MS. This research was complemented with a consultation of competent authorities' and international organisations' representatives to address the main issues or uncertainties identified through the literature review. All selected countries applied ERP, except the United Kingdom and Sweden. Twenty-three countries used ERP as the main systematic criterion for pricing. In the majority of European countries, ERP was based on legislated pricing rules with different levels of accuracy. ERP was applied either for all marketed drugs or for specific categories of medicines; it was mainly used for publicly reimbursed medicines. The number of reference countries included in the basket varied from 1 to 31. There was a great variation in the calculation methods used to compute the price; 15 countries used the average price, 7 countries used the lowest price, and 7 countries used other calculation methods. Reported limitations of ERP application included the lack of reliable sources of price information, price

  13. A time-of-flight system for precise measurements of a relativistic charged particle beam momentum

    International Nuclear Information System (INIS)

    Avramenko, S.A.; Belikov, Yu.A.; Golokhvastov, A.I.; Lukstin'sh, Yu.; Man'yakov, P.K.; Rukoyatkin, P.A.; Khorozov, S.A.

    1996-01-01

    A time-of-flight system with a time resolution (σ) about 100 ps is described. The methods for the calibration, stability verification and the method for the time resolution evaluation in conditions of a nonmonochromatic beam are discussed especially. The system was applied in charge exchange ( 3 H, 3 He) experiments with the GIBS spectrometer for a measurement of 3 H-nuclei momenta at 2 GeV/c per nucleon with a precision about 0.2%. (author). 4 refs., 7 figs., 1 tab

  14. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  15. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed

  16. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  17. Memory systems interaction in the pigeon: working and reference memory.

    Science.gov (United States)

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  18. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  19. Simulating relativistic beam and plasma systems using an optimal boosted frame

    International Nuclear Information System (INIS)

    Vay, J.-L.; Bruhwiler, D. L.; Geddes, C. G. R.; Fawley, W. M.; Martins, S. F.; Cary, J. R.; Cormier-Michel, E.; Cowan, B.; Fonseca, R. A.; Furman, M. A.; Lu, W.; Mori, W. B.; Silva, L. O.

    2009-01-01

    It was shown recently that it may be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it was pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup. In this paper, we summarize the findings, the difficulties and their solutions, and review the applications of the technique that have been performed to date.

  20. Speeding Up Simulations of Relativistic Systems using an Optimal Boosted Frame

    International Nuclear Information System (INIS)

    Vay, J.-L.; Fawley, W.M.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2009-01-01

    It can be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it has been pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup. We summarize the findings, the difficulties and their solutions, and show that the technique enables simulations important to several areas of accelerator physics that are otherwise problematic, including self-consistent modeling in three-dimensions of laser wokefield accelerator stages at energies of 10 GeV and above.

  1. A Modernized National Spatial Reference System in 2022: Focus on the Caribbean Terrestrial Reference Frame

    Science.gov (United States)

    Roman, D. R.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames the four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on practical application in the Caribbean region. A working group is being re-established for development of the North American region and will likely also result in analysis of the Pacific region as well. Both of these regions are adequately covered with existing CORS sites to model the EPPs. The Mariana region currently lacks sufficient coverage, but a separate project is underway to collect additional information to help in defining EPPs for that region at a later date. The Caribbean region has existing robust coverage through UNAVCO's COCONet and other data sets, but these require further analysis. This discussion will focus on practical examination of Caribbean sites to establish candidates for determining the Caribbean frame EPPs as well as an examination of any remaining velocities that might inform a model of the remaining velocities within that frame (Intra-Frame Velocity Model). NGS has a vested interest in defining such a model to meet obligations to U.S. citizens in Puerto Rico and the U.S. Virgin Islands. Beyond this, NGS aims to collaborate with other countries in the region through efforts with SIRGAS and UN-GGIM-Americas for a more acceptable regional model to serve everyone's needs.

  2. Beyond the relativistic point particle: A reciprocally invariant system and its generalisation

    International Nuclear Information System (INIS)

    Pavsic, Matej

    2009-01-01

    We investigate a reciprocally invariant system proposed by Low and Govaerts et al., whose action contains both the orthogonal and the symplectic forms and is invariant under global O(2,4) intersection Sp(2,4) transformations. We find that the general solution to the classical equations of motion has no linear term in the evolution parameter, τ, but only the oscillatory terms, and therefore cannot represent a particle propagating in spacetime. As a remedy, we consider a generalisation of the action by adopting a procedure similar to that of Bars et al., who introduced the concept of a τ derivative that is covariant under local Sp(2) transformations between the phase space variables x μ (τ) and p μ (τ). This system, in particular, is similar to a rigid particle whose action contains the extrinsic curvature of the world line, which turns out to be helical in spacetime. Another possible generalisation is the introduction of a symplectic potential proposed by Montesinos. We show how the latter approach is related to Kaluza-Klein theories and to the concept of Clifford space, a manifold whose tangent space at any point is Clifford algebra Cl(8), a promising framework for the unification of particles and forces.

  3. Referring to IAEA system to improve Chinese standards system on nuclear and radiation safety

    International Nuclear Information System (INIS)

    Shang Zhaorong; Wang Wenhai

    2010-01-01

    Referring to the standards system of IAEA, to build and improve the Chinese standards system of nuclear and radiation safety is a long term infrastructure work and an assurance to keep sustainable development of nuclear industry and nuclear technology application in China. The paper analyses the current main problem, and gives some suggestions on developing and improving the system. (authors)

  4. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  5. On quantization of relativistic string theory

    International Nuclear Information System (INIS)

    Isaev, A.P.

    1982-01-01

    Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained

  6. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yiyin

    2009-01-01

    Full Text Available Abstract A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR ultra-wideband (UWB system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI and the intersymbol interference (ISI into consideration. Moreover, the bias caused by the interpulse interference (IPI in one frame is also taken into account. Based on the analysis of the stochastic properties of the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE estimator, the least squares (LS estimator, and the matched filter (MF. We check the performance of different combinations of channel estimation and equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and performance.

  7. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Yiyin Wang

    2009-01-01

    Full Text Available A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR ultra-wideband (UWB system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI and the intersymbol interference (ISI into consideration. Moreover, the bias caused by the interpulse interference (IPI in one frame is also taken into account. Based on the analysis of the stochastic properties of the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE estimator, the least squares (LS estimator, and the matched filter (MF. We check the performance of different combinations of channel estimation and equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and performance.

  8. Reference pricing system and competition: case study from Portugal.

    Science.gov (United States)

    Portela, Conceiçăo

    2009-10-01

    To characterize the patterns of competition for a sample of drugs in the Portuguese pharmaceutical market before (January 2002-March 2003) and after (April 2003-June 2003) the introduction of the reference pricing system (RPS). We performed a descriptive, retrospective, longitudinal analysis, with monthly observations from January 2002 until June 2003 of 15 homogeneous groups. The groups represented the upper limit of public pharmaceutical expenditure in the RPS segment in 2003 (n=270). Measures of competition were: 1) number of presentations; 2) prescriptions' concentration in the generic and originator (brand) segments, using Herfindahl-Hirschman Index (HHI); and 3) dominant positions of market leader in the homogeneous group. A correlation analysis between the number of presentations, the HHI, and the dominant position of the market leader was performed using Pearson coefficient of correlation. The structure of the market changed with the introduction of RPS. We found an increasing number of generic presentations (from 4+/-3 to 7+/-4; mean+/-standard deviation) and a decrease in the HHI for the generics market segment (from 0.7+/-0.2 to 0.6+/-0.3). There was a negative correlation between those variables that increased after the introduction of RPS (from -0.6 to -0.8). The HHI for brands and the dominant positions remained unchanged. After the implementation of RPS, the increased competition was mainly driven by economic and social agents in the generics market segment but not in the brands market segment.

  9. Realization of Massive Relativistic Spin- 3 / 2 Rarita-Schwinger Quasiparticle in Condensed Matter Systems

    Science.gov (United States)

    Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang

    Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

  10. On some aspects of the relativistic description of the two-nucleon system

    International Nuclear Information System (INIS)

    Zuilhof, M.

    1981-01-01

    It has been shown that the Bethe-Salpeter equation (BSE) with a one-boson exchange (OBE) as the driving force is capable of giving a reasonable description of the two-nucleon system. They find it necessary to use a pseudo-vector (PV) pion-nucleon coupling, instead of the usual pseudo-scalar (PS) coupling, due to the very strong effects induced by the coupling of positive and negative-energy states in the latter case. Within such a field-theoretic model it is possible to study the electro-magnetic effects in a consistent way and the results, which are described in this thesis, do not deviate markedly from those calculated within a nonrelativistic model without corrections. A detailed analysis of the perturbative approach, is given and reveals both for PV and for PS coupling that there are effects which compensate the accepted contributions substantially. In particular, it is important to include the corrections due to special relativity in a consistent way. In addition the convergence of the quasipotential approach to the BSE has also been studied by adding higher order one-loop corrections. In general the author finds that the inclusion of corrections from the two-pion direct-box diagram to the driving force does not yield phase shifts close to the ones obtained from the BSE. The crossed-box effects are also of interest because one expects that there are cancellations with the direct-box diagram. This turns out not to be the case. Although there are essentially no problems in including these contributions in the description of the nucleon-nucleon interaction within the Blankenbeckler and Sugar framework, difficulties arise in the evaluation of the electromagnetic deuteron vertex function. (Auth.)

  11. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  12. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  13. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  14. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  15. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  16. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  17. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  18. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  19. Manifestation of the relativistic effects and conserving currents in the interference longitudinally-transverse structure function in (e,e'p)-reactions on few-body systems

    International Nuclear Information System (INIS)

    Nagornyj, S.I.; Kasatkin, Yu.A.; Zolenko, V.A.

    1992-01-01

    A study is made of the effects of Lorentz invariance and nuclear current conservation in calculations of the AΦ-asymmetry of the cross sections for (e,e',p) reactions on few-body systems. The AΦ-value is shown to be very sensitive to different relativistic effects and to nuclear current conservation. In the quasi-elastic region (q 2 /2mν∼1, P mis /m p cm >50 0 the AΦ-asymmetry is determined by both the reaction mechanisms and the intranuclear dynamics. 12 refs.; 3 figs. (author)

  20. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  1. Computation and brain processes, with special reference to neuroendocrine systems.

    Science.gov (United States)

    Toni, Roberto; Spaletta, Giulia; Casa, Claudia Della; Ravera, Simone; Sandri, Giorgio

    2007-01-01

    The development of neural networks and brain automata has made neuroscientists aware that the performance limits of these brain-like devices lies, at least in part, in their computational power. The computational basis of a. standard cybernetic design, in fact, refers to that of a discrete and finite state machine or Turing Machine (TM). In contrast, it has been suggested that a number of human cerebral activites, from feedback controls up to mental processes, rely on a mixing of both finitary, digital-like and infinitary, continuous-like procedures. Therefore, the central nervous system (CNS) of man would exploit a form of computation going beyond that of a TM. This "non conventional" computation has been called hybrid computation. Some basic structures for hybrid brain computation are believed to be the brain computational maps, in which both Turing-like (digital) computation and continuous (analog) forms of calculus might occur. The cerebral cortex and brain stem appears primary candidate for this processing. However, also neuroendocrine structures like the hypothalamus are believed to exhibit hybrid computional processes, and might give rise to computational maps. Current theories on neural activity, including wiring and volume transmission, neuronal group selection and dynamic evolving models of brain automata, bring fuel to the existence of natural hybrid computation, stressing a cooperation between discrete and continuous forms of communication in the CNS. In addition, the recent advent of neuromorphic chips, like those to restore activity in damaged retina and visual cortex, suggests that assumption of a discrete-continuum polarity in designing biocompatible neural circuitries is crucial for their ensuing performance. In these bionic structures, in fact, a correspondence exists between the original anatomical architecture and synthetic wiring of the chip, resulting in a correspondence between natural and cybernetic neural activity. Thus, chip "form

  2. Light-water reactors reference system classification for the European reliability data system (ERDS)

    International Nuclear Information System (INIS)

    Melis, M.; Mancini, G.

    1982-01-01

    The reference system classification represents a basic stage in the organization of the European reliability data system (ERDS) for light-water reactors, a project actually in development at the Joint Research Centre, Ispra. This project is concerned with operational reliability data collection from the various ''national'' data banks, and centralization in a European reliability data system, so improving the significance of the resulting reliability evaluations. In the framework of the ERDS project, the reference system classification provides a LWR functional break-down and represents a plant-unique identification in the process of homogenization of event-data coming from the various ''national'' organizations. The report, after a brief description of the main objectives of the ERDS project, reviews the criteria followed in the elaboration of the reference system classification; then the detailed classification is presented. The nuclear power station is subdivided in about 180 systems. To each system a sheet is associated, containing: a comprehensive description of system-functions and boundaries; a descritpion of the plant operating mode, linked to the various system functions; a list of the main interface system; and finally, a list of the main components, including type and safety classification

  3. Shock waves in relativistic nuclear matter, I

    International Nuclear Information System (INIS)

    Gleeson, A.M.; Raha, S.

    1979-02-01

    The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references

  4. Relativistic Boltzmann theory for a plasma. II

    International Nuclear Information System (INIS)

    Erkelens, H. van; Leeuwen, W.A. van

    1977-01-01

    The linear or phenomenological laws such as Ohm's law, Fourier's law and Fick's law are derived for a relativistic plasma in an electromagnetic field. It is shown that the choice of a reference frame as proposed by Landau and Lifshitz entails - in contrast to, for instance, the choice of Eckart - the validity of Onsager's reciprocity relations. (Auth.)

  5. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  6. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  7. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  8. A systems study of an RF power source for a 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-11-01

    A systems study, including physics, engineering and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars

  9. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  10. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  11. Exact quantisation of the relativistic Hopfield model

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)

    2016-11-15

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  12. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  13. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  14. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  15. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  16. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  17. Anomalies in the Spectra of the Uncorrelated Components of the Electric Field of the Earth at Frequencies that are Multiples of the Frequencies of Rotation of Relativistic Binary Star Systems

    Science.gov (United States)

    Grunskaya, L. V.; Isakevich, V. V.; Isakevich, D. V.

    2018-05-01

    A system is constructed, which, on the basis of extensive experimental material and the use of eigenoscopy, has allowed us to detect anomalies in the spectra of uncorrelated components localized near the rotation frequencies and twice the rotation frequencies of relativistic binary star systems with vanishingly low probability of false alarm, not exceeding 10-17.

  18. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  19. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  20. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  1. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  2. Spinorial relativistic rotator: the transformation from quasi-Newtonian to Minkowski coordinates

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Bohm, A.; Tarlini, M.; van Dam, H.; Mukunda, N.

    1983-12-01

    There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies. 31 references

  3. The Nuclear Science References (NSR) database and Web Retrieval System

    International Nuclear Information System (INIS)

    Pritychenko, B.; Betak, E.; Kellett, M.A.; Singh, B.; Totans, J.

    2011-01-01

    The Nuclear Science References (NSR) database together with its associated Web interface is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 200,000 articles since the beginning of nuclear science. The weekly updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr).

  4. A Methodology For Developing an Agent Systems Reference Architecture

    Science.gov (United States)

    2010-05-01

    agent framworks , we create an abstraction noting similarities and differences. The differences are documented as points of variation. The result...situated in the physical en- vironment. Addressing how conceptual components of an agent system is beneficial to agent system architects, developers, and

  5. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-22

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).

  6. A Reference Model for Software and System Inspections. White Paper

    Science.gov (United States)

    He, Lulu; Shull, Forrest

    2009-01-01

    Software Quality Assurance (SQA) is an important component of the software development process. SQA processes provide assurance that the software products and processes in the project life cycle conform to their specified requirements by planning, enacting, and performing a set of activities to provide adequate confidence that quality is being built into the software. Typical techniques include: (1) Testing (2) Simulation (3) Model checking (4) Symbolic execution (5) Management reviews (6) Technical reviews (7) Inspections (8) Walk-throughs (9) Audits (10) Analysis (complexity analysis, control flow analysis, algorithmic analysis) (11) Formal method Our work over the last few years has resulted in substantial knowledge about SQA techniques, especially the areas of technical reviews and inspections. But can we apply the same QA techniques to the system development process? If yes, what kind of tailoring do we need before applying them in the system engineering context? If not, what types of QA techniques are actually used at system level? And, is there any room for improvement.) After a brief examination of the system engineering literature (especially focused on NASA and DoD guidance) we found that: (1) System and software development process interact with each other at different phases through development life cycle (2) Reviews are emphasized in both system and software development. (Figl.3). For some reviews (e.g. SRR, PDR, CDR), there are both system versions and software versions. (3) Analysis techniques are emphasized (e.g. Fault Tree Analysis, Preliminary Hazard Analysis) and some details are given about how to apply them. (4) Reviews are expected to use the outputs of the analysis techniques. In other words, these particular analyses are usually conducted in preparation for (before) reviews. The goal of our work is to explore the interaction between the Quality Assurance (QA) techniques at the system level and the software level.

  7. Nuclear emergency response exercises and decision support systems - integrating domestic experience with international reference systems

    International Nuclear Information System (INIS)

    Slavnicu, D.S.; Vamanu, D.V.; Gheorghiu, D.; Acasandrei, V.T.; Slavnicu, E.

    2010-01-01

    The paper glosses on the experience of a research-oriented team routinely involved in emergency preparedness and response management activities, with the assimilation, implementation, and application of decision support systems (DSS) of continental reference in Europe, and the development of supportive, domestic radiological assessment tools. Two exemplary nuclear alert exercises are discussed, along with solutions that emerged during drill planning and execution, to make decision support tools of various origins and strength to work synergistically and complement each other. (authors)

  8. Dark matter: a problem in relativistic metrology?

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2017-01-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  9. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  10. Relativistic rotation and the anholonomic object

    International Nuclear Information System (INIS)

    Corum, J.F.

    1977-01-01

    The purpose of this communication is to call attention to the conceptual economy provided by the object of anholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space--time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four-dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space--time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the object of anholonomity

  11. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  12. A global reference model of the domain name system

    NARCIS (Netherlands)

    Koc, Y.; Jamakovic, A.; Gijsen, B.M.M.

    2012-01-01

    The domain name system (DNS) is a crucial component of the Internet. At this time, the DNS is facing major changes such as the introduction of DNSSEC and Internationalized Domain Name extensions (IDNs), the adoption of IPv6 and the upcoming extension of new generic top-level domains. These changes

  13. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.

    Science.gov (United States)

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Huang, Yong; Tan, Xiaodi

    2018-02-19

    A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

  14. 49 CFR 614.101 - Cross-reference to management systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Cross-reference to management systems. 614.101... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT § 614.101 Cross-reference to management systems. The regulations in 23 CFR Part 500, subparts A and B shall be followed in...

  15. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements

    International Nuclear Information System (INIS)

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson)

  16. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  17. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  18. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  19. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  20. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  1. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  2. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  3. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  4. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  5. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  6. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  7. Data quality system using reference dictionaries and edit distance algorithms

    Science.gov (United States)

    Karbarz, Radosław; Mulawka, Jan

    2015-09-01

    The real art of management it is important to make smart decisions, what in most of the cases is not a trivial task. Those decisions may lead to determination of production level, funds allocation for investments etc. Most of the parameters in decision-making process such as: interest rate, goods value or exchange rate may change. It is well know that these parameters in the decision-making are based on the data contained in datamarts or data warehouse. However, if the information derived from the processed data sets is the basis for the most important management decisions, it is required that the data is accurate, complete and current. In order to achieve high quality data and to gain from them measurable business benefits, data quality system should be used. The article describes the approach to the problem, shows the algorithms in details and their usage. Finally the test results are provide. Test results show the best algorithms (in terms of quality and quantity) for different parameters and data distribution.

  8. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  9. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  10. The classical field limit of scattering theory for non-relativistic many-boson systems. Pt. 1

    International Nuclear Information System (INIS)

    Ginibre, J.

    1979-01-01

    We study the classical field limit of non-relativistic many-boson theories in space dimension n >= 3. When h → 0, the correlation functions, which are the averages of products of bounded functions of field operators at different times taken in suitable states, converge to the corresponding functions of the appropriate solutions of the classical field equation, and the quantum fluctuations, are described by the equation obtained by linearizing the field equation around the classical solution. These properties were proved by Hepp for suitably regular potentials and in finite time intervals. Using a general theory of existence of global solutions and a general scattering theory for the clasical equation, we extend these results in two directions: (1) we consider more singular potentials, (2) more imortant, we prove that for dispersive classical solutions, the h → 0 limit is uniform in time in an appropriate representation of the field operators. As a consequence we obtain the convergence of suitable matrix elements of the wave operators and, if asymptotic completeness holds, of the S-matrix. (orig.) [de

  11. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  12. Inaccuracies when mixing coordinate reference frameworks in a system of systems simulation

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-09-01

    Full Text Available commonly used are flat and spherical earth. Another well known ERM is the World Geodetic System from 1984 (WGS 84). For the purposes of this paper the authors however focus on the simpler flat and spherical earth models with example coordinate... words, the equatorial and pole to pole diameters of the earth, as modelled in this ERM, are equal. This paper will use the term ‘real world’ ERMs to refer to spherical, WGS 84 and better ERM approximations. A. The Earth-Centred, Earth...

  13. Speed Sensorless Control of PMSM using Model Reference Adaptive System and RBFN

    OpenAIRE

    Wei Gao; Zhirong Guo

    2013-01-01

    In the speed sensorless vector control system, the amended method of estimating the rotor speed about model reference adaptive system (MRAS) based on radial basis function neural network (RBFN) for PMSM sensorless vector control system was presented. Based on the PI regulator, the radial basis function neural network which is more prominent learning efficiency and performance is combined with MRAS. The reference model and the adjust model are the PMSM itself and the PMSM current, respectively...

  14. On the theory of transformations of coordinates for massive systems of reference

    International Nuclear Information System (INIS)

    Sadykov, B.S.

    1978-01-01

    Suggested is a new local group of coordinate transformations of reference systems connected with massive bodies, such as the Earth, the Sun and so on, which are rather inertial in the kinematic relation, but possess different gravitational fields. The effect of the gravitational field of the reference body upon the metric of the system is taken into account. For identical systems the new group transfers into the Lorentz group

  15. An implicit adaptation algorithm for a linear model reference control system

    Science.gov (United States)

    Mabius, L.; Kaufman, H.

    1975-01-01

    This paper presents a stable implicit adaptation algorithm for model reference control. The constraints for stability are found using Lyapunov's second method and do not depend on perfect model following between the system and the reference model. Methods are proposed for satisfying these constraints without estimating the parameters on which the constraints depend.

  16. The Necessity of Real-Time: Fact and Fiction in Digital Reference Systems.

    Science.gov (United States)

    Lankes, R. David; Shostack, Pauline

    2002-01-01

    Discussion of digital reference services and the use of real-time versus asynchronous services such as email focuses on data from the AskERIC digital reference service to demonstrate that asynchronous services are not only useful but may have greater utility than real-time systems. (Author/LRW)

  17. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  18. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  19. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  20. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  1. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  2. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  3. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  4. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  5. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  6. Relativistic electrodynamics of dissipative elastic media

    International Nuclear Information System (INIS)

    Kranys, M.

    1980-01-01

    A phenomenological general relativistic electrodynamics is proposed for a dissipative elastic solid which is polarizable and magnetizable and whose governing equations form a hyperbolic system. Non-stationary transport equations are proposed for dissipative fluxes (and constitutive equations of electrodynamics) containing new cross-effect terms, as required for compatibility with an entropy principle expressed by a new balance equation (including a new Gibbs equation). The dynamic equations are deduced from the unified Minkowski-Abraham-Eckart energy-momentum tensor. The theory, formed by a set of 29 (reducible to 23) partial differential equations (in special relativity) governing the material behaviour of the system characterized by generalizing the constitutive equations of quasineutral media, together with Maxwell's equations, may be referred to as the electrodynamics of dissipative elastic media (or fluid). The proposed transport laws for polarization and magnetization generalize the well-known Debye law for relaxation and show the influence of shear and bulk viscosity on polarization and magentization. Besides the form of the entropy function, the free energy function in the non-stationary regime is also formulated. (auth)

  7. Relativistic dynamical reduction models and nonlocality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-09-01

    We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs

  8. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  9. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    DEFF Research Database (Denmark)

    Hofener, S.; Ahlrichs, R.; Knecht, S.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...

  10. Reference Concepts for a Space-Based Hydrogen-Oxygen Combustion, Turboalternator, Burst Power System

    National Research Council Canada - National Science Library

    Edenburn, Michael

    1990-01-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform...

  11. Initial Stage Reference Search : Driver Simulators to Test Shared Controls, Limited Autonomy Vehicle Systems

    Science.gov (United States)

    2015-09-01

    This literature review and reference scanning focuses on the use of driver simulators for semiautonomous (or shared control) vehicle systems (2012present), including related research from other modes of transportation (e.g., rail or aviation). Foc...

  12. A reference system for animal biometrics: application to the northern leopard frog

    Science.gov (United States)

    Petrovska-Delacretaz, D.; Edwards, A.; Chiasson, J.; Chollet, G.; Pilliod, D.S.

    2014-01-01

    Reference systems and public databases are available for human biometrics, but to our knowledge nothing is available for animal biometrics. This is surprising because animals are not required to give their agreement to be in a database. This paper proposes a reference system and database for the northern leopard frog (Lithobates pipiens). Both are available for reproducible experiments. Results of both open set and closed set experiments are given.

  13. Sourcebook for energy assessment. [Reference Energy Systems for 1972-2020

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1975-12-01

    An analytical approach is presented that is broadly applicable to the assessment of energy technologies and policies. Using the Reference Energy System approach, it permits the examination of the economic, environmental, and resource implications resulting from the substitution of one fuel or technology for another. Included as tools for such analyses are the necessary data and methodology, as well as a set of Reference Energy Systems covering the 1972-2020 period to serve as baselines for the perturbation analyses of interest. 46 tables, 25 figures, 71 references.

  14. Radio Ranging Techniques to test Relativistic Gravitation

    OpenAIRE

    Cowsik, R.

    1999-01-01

    It is suggested that modern techniques of radio ranging when applied to study the motion of the Moon, can improve the accuracy of tests of relativistic gravitation obtained with currently operating laser ranging techniques. Other auxillary information relevant to the Solar system would also emerge from such a study.

  15. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  16. General-relativistic celestial mechanics. II. Translational equations of motion

    International Nuclear Information System (INIS)

    Damour, T.; Soffel, M.; Xu, C.

    1992-01-01

    The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies

  17. Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems

    NARCIS (Netherlands)

    Nijboer, R.C.; Verdonschot, P.F.M.; Piechocki, A.; Tonczyk, G.; Klukowska, M.

    2006-01-01

    A central feature of the European Water Framework Directive are the reference conditions. The ecological quality status is determined by calculating the distance between the present situation and the reference conditions. To describe reference conditions the natural variation of biota in pristine

  18. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  19. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  20. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  1. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  2. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  3. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  4. Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electromagnetic field

    International Nuclear Information System (INIS)

    Alba, D.; Crater, H.W.; Lusanna, L.

    2010-01-01

    A complete exposition of the rest-frame instant form of dynamics for arbitrary isolated systems (particles, fields, strings, fluids) admitting a Lagrangian description is given. The starting point is the parametrized Minkowski theory describing the system in arbitrary admissible noninertial frames in Minkowski space-time, which allows one to define the energy-momentum tensor of the system and to show the independence of the description from the clock synchronization convention and from the choice of the 3-coordinates. The restriction to the inertial rest frame, centered on the inertial observer having the Fokker-Pryce center-of-inertia world-line, and the study of relativistic collective variables replacing the nonrelativistic center of mass lead to the description of the isolated system as a decoupled globally defined noncovariant canonical external center of mass carrying a pole-dipole structure (the invariant mass M and the rest spin S¯ of the system) and an external realization of the Poincare group. Mc and S¯ are the energy and angular momentum of a unfaithful internal realization of the Poincare group built with the energy-momentum tensor of the system and acting inside the instantaneous Wigner 3-spaces where all the 3-vectors are Wigner covariant. The vanishing of the internal 3-momentum and of the internal Lorentz boosts eliminate the internal 3-center of mass inside the Wigner 3-spaces, so that at the end the isolated system is described only by Wigner-covariant canonical internal relative variables. Then an isolated system of positive-energy charged scalar articles with mutual Coulomb interaction plus a transverse electromagnetic field in the radiation gauge is investigated as a classical background for defining relativistic atomic physics. The electric charges of the particles are Grassmann-valued to regularize the self-energies. The external and internal realizations of the Poincare algebra in the rest-frame instant form of dynamics are found. This

  5. Normalization references for USEtoxTM-based toxic impact categories: North American and European economic systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Lautier, Anne; Rosenbaum, Ralph K.

    2011-01-01

    economic regions, North America and Europe, to calculate normalization references for the three currently-modelled USEtoxTM-based impact categories, i.e. freshwater ecotoxicity, human toxicity, divided into cancer effects and non-cancer effects. Base years for the references are 2004 for Europe and 2006...... coverage of organics in both the inventory and the CF databases. With respect to the intended global character of the USEtoxTM model, different approaches to determine normalization references of other economic systems (e.g. Asia or world) are discussed in relation to these findings. Overall, we thus...... recommend the use of the provided set of normalization references for USEtoxTM, but we also advocate 1) to perform an update as soon as a more comprehensive inventory can be obtained and as soon as characterization factors for metals are revised; 2) to consider extension to other economic systems in order...

  6. Design and implementation of predictive filtering system for current reference generation of active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Tomislav; Milun, Stanko; Petrovic, Goran [FESB University of Split, Faculty of Electrical Engineering, Machine Engineering and Naval Architecture, R. Boskovica bb, 21000, Split (Croatia)

    2007-02-15

    The shunt active power filters are used to attenuate the harmonic currents in power systems by injecting equal but opposite compensating currents. Successful control of the active filters requires an accurate current reference. In this paper the current reference determination based on predictive filtering structure is presented. Current reference was obtained by taking the difference of load current and its fundamental harmonic. For fundamental harmonic determination with no time delay a combination of digital predictive filter and low pass filter is used. The proposed method was implemented on a laboratory prototype of a three-phase active power filter. The algorithm for current reference determination was adapted and implemented on DSP controller. Simulation and experimental results show that the active power filter with implemented predictive filtering structure gives satisfactory performance in power system harmonic attenuation. (author)

  7. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  8. Water Quality in Small Community Distribution Systems. A Reference Guide for Operators

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has developed this reference guide to assist the operators and managers of small- and medium-sized public water systems. This compilation provides a comprehensive picture of the impact of the water distribution system network on dist...

  9. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS

    International Nuclear Information System (INIS)

    THAN, Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies

  10. General relativistic chaos and nonlinear dynamics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    How new ideas in dynamical systems theory find application in the description of general relativistic systems is described. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations. (author)

  11. General relativistic chaos and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, J D [California Univ., Berkeley (USA). Dept. of Physics

    1982-06-01

    How new ideas in dynamical systems theory find application in the description of general relativistic systems is described. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations.

  12. Environmental systems analysis of biogas systems-Part II: The environmental impact of replacing various reference systems

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2007-01-01

    This paper analyses the overall environmental impact when biogas systems are introduced and replace various reference systems for energy generation, waste management and agricultural production. The analyses are based on Swedish conditions using a life-cycle perspective. The biogas systems included are based on different combinations of raw materials and final use of the biogas produced (heat, power and transportation fuel). A general conclusion is that biogas systems normally lead to environmental improvements, which in some cases are considerable. This is often due to indirect environmental benefits of changed land use and handling of organic waste products (e.g. reduced nitrogen leaching, emissions of ammonia and methane), which often exceed the direct environmental benefits achieved when fossil fuels are replaced by biogas (e.g. reduced emissions of carbon dioxide and air pollutants). Such indirect benefits are seldom considered when biogas is evaluated from an environmental point of view. The environmental impact from different biogas systems can, however, vary significantly due to factors such as the raw materials utilised, energy service provided and reference system replaced

  13. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory

    DEFF Research Database (Denmark)

    Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.

    2013-01-01

    of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...

  14. The System For Co-Reference Resolution For Slovenian Texts Analysis and Possibilities of its Use

    Directory of Open Access Journals (Sweden)

    Peter Holozan

    2015-10-01

    Full Text Available Co-reference resolution is an important part of language technologies, but has not yet been developed for Slovenian. There are various types of co-references and the paper focuses on anaphora resolution of personal pronouns. Seven methods, used in combination, were used; the most important one is based on activation. First results are promising, but for more extensive evaluation, Slovenian corpus with marked examples is needed. Co-reference resolution was used in the question answering system Crammer, which can, as a result, answer more questions than before, because it can replace personal pronouns. At the same time, some other improvement were added to Crammer, e.g. answering to individual words and phrases and answering to declarative sentences. Added was also generation of long answers to questions with interrogative particles. Co-reference resolution also improved working of Presis machine translation, especially for determining of gender of pronouns and for disambiguation of attributive subordinate clauses.

  15. Data reference and retrieval system for Richton Dome, Mississippi: annual status report for fiscal year 1982

    International Nuclear Information System (INIS)

    1983-06-01

    The Geologic Data Base for Richton Dome, Mississippi, was updated and expanded in FY 82 to support National Waste Terminal Storage characterization studies. The existing data base, consisting of references, maps, remote sensing data, and well-boring information, was inventoried to catalog the data acquired during previous studies. This catalog is maintained on Ertec's in-house computer. Bibliographies of selected documents were reviewed and commercial data bases were searched to identify additional references pertinent to future geologic characterization studies to be added to the data base. In addition to the references, selected preliminary safety analysis report sections and associated reports for nuclear generating stations, oil and gas well completion records, and US Geological Survey System 2000 hydrologic data were obtained for specific areas of Mississippi and Alabama. These additional data and references provide a comprehensive and current data base for Richton Dome

  16. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  17. Semiclassical neutral atom as a reference system in density functional theory.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  18. A STUDY ON DETERMINING THE REFERENCE SPREADING SEQUENCES FOR A DS/CDMACOMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Cebrail ÇİFTLİKLİ

    2002-02-01

    Full Text Available In a direct sequence/code division multiple access (DS/CDMA system, the role of the spreading sequences (codes is crucial since the multiple access interference (MAI is the main performance limitation. In this study, we propose an accurate criterion which enables the determination of the reference spreading codes which yield lower bit error rates (BER's in a given code set for a DS/CDMA system using despreading sequences weighted by stepping chip waveforms. The numerical results show that the spreading codes determined by the proposed criterion are the most suitable codes for using as references.

  19. Functional representation for the grand partition function of a multicomponent system of charged particles: Correlation functions of the reference system

    Directory of Open Access Journals (Sweden)

    O.V.Patsahan

    2006-01-01

    Full Text Available Based on the method of collective variables (CV with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the n-th particle correlation functions of the reference system which is presented as a m-component system of "colour" hard spheres of the same diameter. A two-component model is considered in more detail. In this case the recurrence formulas for the correlation functions are found. A general case of a m-component inhomogeneous system of the "colour" hard spheres is also analysed.

  20. Relativistic Tsiolkovsky equation -- a case study in special relativity

    Science.gov (United States)

    Redd, Jeremy; Panin, Alexander

    2011-10-01

    A possibility of using antimatter in future space propulsion systems is seriously discussed in scientific literature. Annihilation of matter and antimatter is not only the energy source of ultimate density 9x10^16 J/kg (provided that antimatter fuel is available on board or can be collected along the journey) but also potentially allows to reach ultimate exhaust speed -- speed of light c. Using relativistic rocket equation we discuss the feasibility of achieving relativistic velocities with annihilation powered photon engine, as well as the advantages and disadvantages of interstellar travel with relativistic and ultrarelativistic velocities.

  1. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  2. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  3. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  4. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  5. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  6. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  7. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  8. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  9. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  10. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  11. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  12. RF Phase Reference Distribution System for the TESLA Technology Based Projects

    CERN Document Server

    Czuba, K; Romaniuk, R S

    2013-01-01

    Since many decades physicists have been building particle accelerators and usually new projects became more advanced, more complicated and larger than predecessors. The importance and complexity of the phase reference distribution systems used in these accelerators have grown significantly during recent years. Amongst the most advanced of currently developed accelerators are projects based on the TESLA technology. These projects require synchronization of many RF devices with accuracy reaching femtosecond levels over kilometre distances. Design of a phase reference distribution system fulfilling such requirements is a challenging scientific task. There are many interdisciplinary problems which must be solved during the system design. Many, usually negligible issues, may became very important in such system. Furthermore, the design of a distribution system on a scale required for the TESLA technology based projects is a new challenge and there is almost no literature sufficiently covering this subject. This th...

  13. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  14. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  15. Reference-tracking feedforward control design for linear dynamical systems through signal decomposition

    NARCIS (Netherlands)

    Kasemsinsup, Y.; Romagnoli, R.; Heertjes, M.F.; Weiland, S.; Butler, H.

    2017-01-01

    In this work, we study a novel approach towards the reference-tracking feedforward control design for linear dynamical systems. By utilizing the superposition property and exploiting signal decomposition together with a quadratic optimization process, we obtain a feedforward design procedure for

  16. Reference Models of Information Systems Constructed with the use of Technologies of Cloud Calculations

    Directory of Open Access Journals (Sweden)

    Darya Sergeevna Simonenkova

    2013-09-01

    Full Text Available The subject of the research is analysis of various models of the information system constructed with the use of technologies of cloud calculations. Analysis of models is required for constructing a new reference model which will be used for develop a security threats model.

  17. Nouns referring to tools and natural objects differentially modulate the motor system.

    Science.gov (United States)

    Gough, Patricia M; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni

    2012-01-01

    While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns - those referring to artifacts or natural items, and items that are graspable or ungraspable - would differentially modulate the system. A Transcranial Magnetic Stimulation (TMS) study was carried out to compare modulation of the motor system when subjects read nouns referring to objects which are Artificial or Natural and which are Graspable or Ungraspable. TMS was applied to the primary motor cortex representation of the first dorsal interosseous (FDI) muscle of the right hand at 150 ms after noun presentation. Analyses of Motor Evoked Potentials (MEPs) revealed that across the duration of the task, nouns referring to graspable artifacts (tools) were associated with significantly greater MEP areas. Analyses of the initial presentation of items revealed a main effect of graspability. The findings are in line with an embodied view of nouns, with MEP measures modulated according to whether nouns referred to natural objects or artifacts (tools), confirming tools as a special class of items in motor terms. Additionally our data support a difference for graspable versus non graspable objects, an effect which for natural objects is restricted to initial presentation of items. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Towards a reference ontology of complex economic exchanges for Accounting Information Systems

    NARCIS (Netherlands)

    Blums, Ivar; Weigand, Hans; Matthes, Flores; Mendling, Jan; Rinderle-Ma, Stefanie

    Although the field of Accounting Information Systems (AIS) has a long tradition, there is still a lack of a widely adopted conceptualization. The Unified Foundational Ontology (UFO) and its Services sub- ontology (UFO-S) are regarded as grounding the engineering of a reference ontology for AIS. The

  19. A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Schutyser, F.A.C.; Barth, E.L.; Groeve, P. De; Mey, A. De

    2006-01-01

    The purpose of this study was to present a new innovative three-dimensional (3-D) cephalometric method. Part I deals with the set-up and validation of a voxel-based semi-automatic 3-D cephalometric reference system. The CT data (DICOM 3.0 files) of 20 control patients with normal skeletal

  20. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  1. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  2. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  3. Causal dissipation for the relativistic dynamics of ideal gases.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  4. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  5. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  6. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE

    International Nuclear Information System (INIS)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L.

    2001-01-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10 5 Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  7. EUPOS - Satellite multifunctional system of reference stations in Central and Eastern Europe

    Science.gov (United States)

    Sledzinski, J.

    2003-04-01

    The European project EUPOS (European Position Determination System) of establishment of a system of multifunctional satellite reference stations in Central and Eastern Europe is described in the paper. Fifteen countries intend to participate in the project: Bulgaria, Croatia, Czech Republic, Estonia, Germany, Hungary, Latvia, Lithuania, Macedonia, Poland, Romania, Russia, Serbia, Slovak Republic and Slovenia. One common project will be prepared for all countries, however it will include the existing or developed infrastructure in particular countries. The experiences of establishing and operating of the German network SAPOS as well as experiences gained by other countries will be used. The European network of stations will be compatible with the system SAPOS and future European system Galileo. The network of reference stations will provide signal for both positioning of the geodetic control points and for land, air and marine navigation. Several levels of positioning accuracy will be delivered.

  8. Initial testing of a neutron activation analysis system by analysing standard reference materials

    International Nuclear Information System (INIS)

    Suhaimi Hamzah; Roslan Idris; Abdul Khalik Haji Wood; Che Seman Mahmood; Abdul Rahim Mohamad Noor.

    1983-01-01

    This paper describes the data acquisition and processing system in our laboratories (ND6600), the methods of activation analysis and the results obtained from our analysis of IAEA standard reference material (SL-l lake sediments and NBS coal ash 1632a). These standards were analysed in order to check the capability of the system, which was designed in such a way as to enable the user to independently collect and process data from multiple radiation detectors. (author)

  9. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  10. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    Science.gov (United States)

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  11. Development of picture quality monitoring system for IPTV service based on the reduced reference framework

    Science.gov (United States)

    Sugimoto, Osamu; Kawada, Ryoichi; Koike, Atsushi

    2006-01-01

    The authors developed a software-based realtime IPTV monitoring system based on Reduced Reference framework, and evaluated the proposed system. One of the quality issues of the IPTV service is the picture quality degradation caused by packet loss. The proposed system precisely estimates the PSNR of the corrupted received picture by extracting and comparing image features from transmission and receiver side. Computer simulations show that PSNR estimation with a 0.945 correlation coefficient at a data channel bitrate of 36kbps is possible using the proposed system.

  12. System for effluent treatment with particular reference to the reuse of the water

    Energy Technology Data Exchange (ETDEWEB)

    Rolke, O.E.

    1979-01-01

    A system for effluent treatment with particular reference to the reuse of the water consisted of biological treatment, flocculation, filtration, activated carbon adsorption and ion exchange. Such a multistage system is needed to treat wastewaters from coal gasification and coke-oven plants since the effluents, derived from cooling water for scrubbers, waste heat boilers, and heat exchangers, contains high levels of phenols, fatty acids, ammonia, suspended tar oil, and coal particles. A pilot plant, which has been built based on the system, will produce water of sufficient quality for reuse as cooling water. It is hoped that cooling systems for coal gasification plants can be 90% closed circuit.

  13. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...... velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation....

  14. Halo nuclei studied by relativistic mean-field approach

    International Nuclear Information System (INIS)

    Gmuca, S.

    1997-01-01

    Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)

  15. Quantum theoretical physics is statistical and relativistic

    International Nuclear Information System (INIS)

    Harding, C.

    1980-01-01

    A new theoretical framework for the quantum mechanism is presented. It is based on a strict deterministic behavior of single systems. The conventional QM equation, however, is found to describe statistical results of many classical systems. It will be seen, moreover, that a rigorous synthesis of our theory requires relativistic kinematics. So, QM is not only a classical statistical theory, it is, of necessity, a relativistic theory. The equation of the theory does not just duplicate QM, it indicates an inherent nonlinearity in QM which is subject to experimental verification. It is shown, therefore, that conventional QM is a corollary of classical deterministic principles. It is suggested that this concept of nature conflicts with that prevalent in modern physics. (author)

  16. LibraryH3lp: A New Flexible Chat Reference System

    Directory of Open Access Journals (Sweden)

    Pam Sessoms

    2008-09-01

    Full Text Available LibraryH3lp is an integrated IM and web chat system designed specifically for Virtual Reference services in libraries. The software was designed for, and is currently used by, a night-time chat reference collaboraton between several large academic libraries. LibraryH3lp is designed for the workflow of chat reference, supporting multiple simultaneous operators and routing to queues of operators in a particular service area. It also supports web page embeddable chat 'widgets', as well as simultaneous gateways to multiple IM protocols. This article discusses the motivation for the development of the software, and provides an overview of LibraryH3lp's features and technical architecture. Parts of LibraryH3lp are available as open source. The complete application is available as a low-cost hosted service, and will eventually be available to be licensed for local hosting.

  17. Fundamental problem in the relativistic approach to atomic structure theory

    International Nuclear Information System (INIS)

    Kagawa, Takashi

    1987-01-01

    It is known that the relativistic atomic structure theory contains a serious fundamental problem, so-called the Brown-Ravenhall (BR) problem or variational collapse. This problem arises from the fact that the energy spectrum of the relativistic Hamiltonian for many-electron systems is not bounded from below because the negative-energy solutions as well as the positive-energy ones are obtained from the relativistic equation. This report outlines two methods to avoid the BR problem in the relativistic calculation, that is, the projection operator method and the general variation method. The former method is described first. The use of a modified Hamiltonian containing a projection operator which projects the positive-energy solutions in the relativistic wave equation has been proposed to remove the BR difficulty. The problem in the use of the projection operator method is that the projection operator for the system cannot be determined uniquely. The final part of this report outlines the general variation method. This method can be applied to any system, such as relativistic ones whose Hamiltonian is not bounded from below. (Nogami, K.)

  18. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  19. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    Science.gov (United States)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  20. Study on the System Requirements and Structures of Mailbox Declaration System for Reference Pyroprocessing Facility in the ROK

    International Nuclear Information System (INIS)

    Jeon, Jong Kyu

    2011-01-01

    The mailbox declaration system applied for the implementation of Safeguards at the Reference Pyroprocessing Facility (REPF) plays important role to support the declared information provided from Near-Real Time Accountancy (NRTA) and provides reference data to confirm the measurement results generated from the Unattended Monitoring System (UMS) for the purposes of verification and real-time monitoring of the movements and changes of nuclear materials (NM) at the processes in the REPF. In order to install and operate the mailbox declaration system at the REPF, this study focused on the operation, security, transmission of confidential information, procedure for transmission of mailbox declaration system as system requirements, and structure of mailbox declaration system to review the declared information through the mailbox by the national authority and to transmit the revised information to the IAEA

  1. Using MUSIC to study relativistic nuclear collisions

    International Nuclear Information System (INIS)

    1983-01-01

    A large Multiple Sampling Ionization Chamber (MUSIC) has been developed as a part of the Heavy Ion Spectrometer System (HISS). This facility is being used for the study of relativistic nuclear collisions at the Bevalac of Lawrence Berkeley Laboratory. Preliminary data from MUSIC indicate that a charge resolution of one unit should be achieved from Z approximately equal to 7 to Z approximately equal to 100. (author)

  2. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  3. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  4. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  5. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  6. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  7. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  8. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  9. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  10. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  11. CCF analysis of high redundancy systems safety/relief valve data analysis and reference BWR application

    International Nuclear Information System (INIS)

    Mankamo, T.; Bjoere, S.; Olsson, Lena

    1992-12-01

    Dependent failure analysis and modeling were developed for high redundancy systems. The study included a comprehensive data analysis of safety and relief valves at the Finnish and Swedish BWR plants, resulting in improved understanding of Common Cause Failure mechanisms in these components. The reference application on the Forsmark 1/2 reactor relief system, constituting of twelve safety/relief lines and two regulating relief lines, covered different safety criteria cases of reactor depressurization and overpressure protection function, and failure to re close sequences. For the quantification of dependencies, the Alpha Factor Model, the Binomial Probability Model and the Common Load Model were compared for applicability in high redundancy systems

  12. Camera Calibration of Stereo Photogrammetric System with One-Dimensional Optical Reference Bar

    International Nuclear Information System (INIS)

    Xu, Q Y; Ye, D; Che, R S; Qi, X; Huang, Y

    2006-01-01

    To carry out the precise measurement of large-scale complex workpieces, accurately calibration of the stereo photogrammetric system has becoming more and more important. This paper proposed a flexible and reliable camera calibration of stereo photogrammetric system based on quaternion with one-dimensional optical reference bar, which has three small collinear infrared LED marks and the lengths between these marks have been precisely calibration. By moving the optical reference bar at a number of locations/orientations over the measurement volume, we calibrate the stereo photogrammetric systems with the geometric constraint of the optical reference bar. The extrinsic parameters calibration process consists of linear parameters estimation based on quaternion and nonlinear refinement based on the maximum likelihood criterion. Firstly, we linear estimate the extrinsic parameters of the stereo photogrameetric systems based on quaternion. Then with the quaternion results as the initial values, we refine the extrinsic parameters through maximum likelihood criterion with the Levenberg-Marquardt Algorithm. In the calibration process, we can automatically control the light intensity and optimize the exposure time to get uniform intensity profile of the image points at different distance and obtain higher S/N ratio. The experiment result proves that the calibration method proposed is flexible, valid and obtains good results in the application

  13. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  14. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  15. Fluorescence tracers as a reference for pesticide transport in wetland systems

    Science.gov (United States)

    Lange, Jens; Passeport, Elodie; Tournebize, Julien

    2010-05-01

    Two different fluorescent tracers, Uranine (UR) and Sulforhodamine (SRB), were injected as a pulse into surface flow wetlands. Tracer breakthrough curves were used to document hydraulic efficiencies, peak attenuation and retention capacities of completely different wetland systems. The tracers were used as a reference to mimic photolytic decay (UR) and sorption (SRB) of contaminants, since a real herbicide (Isoproturon, IPU) was injected in parallel to UR and SRB. Analysis costs limited IPU sampling frequency and single samples deviated from the tracer breakthrough curves. Still, a parallel behavior of IPU and SRB could be observed in totally different wetland systems, including underground passage through drainage lines. Similar recovery rates for IPU and SRB confirmed this observation. Hence, SRB was found to be an appropriate reference tracer to mimic the behavior of mobile pesticides (low KOC, without degradation) in wetland systems and the obtained wetland characteristics for SRB may serve as an indication for contaminant retention. Owing to the properties of IPU, the obtained results should be treated as worst case scenarios for highly mobile pesticides. A comparison of six different wetland types suggested that non-steady wetland systems with large variation in water level may temporally store relatively large amounts of tracers (contaminants), partly in areas that are not continuously saturated. This may lead to an efficient attenuation of peak concentrations. However, when large parts of these systems are flushed by natural storm events, tracers (contaminants) may be re-mobilized. In steady systems vegetation density and water depth were found to be the most important factors for tracer/contaminant retention. Illustrated by SRB, sorption on sediments and vegetation was a quick, almost instantaneous process which lead to considerable tracer losses even at high flow velocities and short contact times. Shallow systems with dense vegetation appeared to be the

  16. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  17. Meson spectra using relativistic quark models

    International Nuclear Information System (INIS)

    Eggers, M.C.

    1985-01-01

    The complexity of QCD has led to the use of simpler, phenomenological models for hadrons, notably potential models. A short overview of the origin, rationale, merits and demerits of such models is given. Nonrelativistic models and scaling laws are discussed using the WKB technique for illustrative purposes. The failure of nonrelativistic models to describe the lighter mesons motivates the introduction of relativistic equations. Relativistic kinematics are incorporated into a Schroedinger formalism using equations derived by A. Barut, while two-body kinematics are brought into a one-body form via a substitution related to the Todorov equation. The potential used involves a semi-analytic solution to a harmonic oscillator modified by a spin-spin interaction term. The results seem to indicate that such a harmonic oscillator is unsuitable to describe diquark systems adequately

  18. Calibration of a multi-beam Laser System by using a TLS-generated Reference

    Directory of Open Access Journals (Sweden)

    M. Gordon

    2013-10-01

    Full Text Available Rotating multi-beam LIDARs mounted on moving platforms have become very successful for many applications such as autonomous navigation, obstacle avoidance or mobile mapping. To obtain accurate point coordinates, a precise calibration of such a LIDAR system is required. For the determination of the corresponding parameters we propose a calibration scheme which exploits the information of 3D reference point clouds captured by a terrestrial laser scanning (TLS device. It is assumed that the accuracy of this point clouds is considerably higher than that from the multi-beam LIDAR and that the data represent faces of man-made objects at different distances. After extracting planes in the reference data sets, the point-plane-incidences of the measured points and the reference planes are used to formulate the implicit constraints. We inspect the Velodyne HDL-64E S2 system as the best-known representative for this kind of sensor system. The usability and feasibility of the calibration procedure is demonstrated with real data sets representing building faces (walls, roof planes and ground. Beside the improvement of the point accuracy by considering the calibration results, we test the significance of the parameters related to the sensor model and consider the uncertainty of measurements w.r.t. the measured distances. The Velodyne returns two kinds of measurements – distances and encoder angles. To account for this, we perform a variance component estimation to obtain realistic standard deviations for the observations.

  19. Implementation of a system for external audits beam radiation therapy in terms of reference no

    International Nuclear Information System (INIS)

    Alonso Samper, Jose Luis; Dominguez, Lourdes; Alert Silva, Jose; Alfonso Laguardia, Rodolfo; Larrinaga Cortina, Eduardo; Garcia Yip, Fernando; Rodriguez Machado, Jorge; Morales Lopez, Jorge Luis; Silvestre Patallo, Ileana

    2009-01-01

    This paper presents our experience in implementing a external audit system for radiotherapy beam in no reference conditions with the use of CIRS and a summary of the measurements with him made.This paper presents our experience in implementing a external audit system for radiotherapy beam in no reference conditions with the use of CIRS and a summary of the measurements with him made. Centers were audited with external beam high-energy Co-60, 6 MV and 15 MV and were considered 4 treatment planning systems (TPS): AMEPLAN, Theraplan Plus, Precise Plan and MIRS to calculate doses prescribed in each test case. All measurements were acquired by the audit team using the anthropomorphic phantom CIRS, Semiflex chamber PTW 31010 and PTW electrometer STATES. The implementation and development of the external audits of beams radiotherapy in terms of 'no reference' has brought an improvement in both clinical aspects of treatment and the radiation safety and the quality control, has given us greater confidence and for this reason we believe has become essential. (Author)

  20. Relativistic theory of electron-impact ionization

    International Nuclear Information System (INIS)

    Rosenberg, Leonard

    2010-01-01

    A relativistic version of an earlier, non-relativistic, formulation of the theory of ionization of an atomic system by electron impact is presented. With a time-independent resolvent operator taken as the basis for the dynamics, a wave equation is derived for a system with open channels consisting of two positive-energy electrons in an external field generated by the residual ion. Virtual intermediate states can be accounted for by the effective Hamiltonian that appears in the wave equation and which in principle may be constructed perturbatively. The asymptotic form of the wavefunction, modified by the effects of the long-range Coulomb interactions of the two electrons in the external field, is derived. These electrons are constrained, by projection operators which appear naturally in the theory, to propagate in positive-energy states only. The long-range Coulomb effects take the form of phase factors similar to those that are found in the non-relativistic version of the theory. With the boundary conditions established, an integral identity for the ionization amplitude is derived, and used to set up a distorted-wave Born expansion for the transition amplitude involving Coulomb-modified propagating waves.

  1. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  2. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  3. Development of reference problems for neutron capture therapy treatment planning systems

    International Nuclear Information System (INIS)

    Albritton, J.R.; Kiger, W.S. III

    2006-01-01

    Currently, 5 different treatment planning systems (TPSs) are or have been used in clinical trials of Neutron Capture Therapy (NCT): MacNCTPlan, NCTPlan, BNCT Rtpe, SERA, and JCDS. This paper describes work performed to comprehensively test and compare 4 of these NCT treatment planning systems in order to facilitate the pooling of patient data from the different clinical sites for analysis of the clinical results as well as to provide an important quality assurance tool for existing and future TPSs. Two different phantoms were used to evaluate the planning systems: the modified Snyder head phantom and a large water-filled box, similar to that used in the International Dosimetry Exchange for NCT. The comparison of the resulting dose profile, isodose contours, and dose volume histograms to reference calculations performed with the Monte Carlo radiation transport code MCNP5 yielded many interesting differences. Each of the planning systems deviated from the reference calculations, with the newer systems (i.e., SERA and NCTPlan) most often yielding better agreement than their predecessors (i.e., BNCT Rtpe and MacNCTPlan). The combination of simple phantoms and sources with more complicated and realistic planning conditions has produced a well-rounded and useful suite of test problems for NCT treatment planning system analysis. (author)

  4. Causality and relativistic effects in intranuclear cascade calculations

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.

    1983-01-01

    Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt

  5. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Rogers, J.D.

    1979-01-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility dirunal load leveling; however, such a device will function to meet much faster power demands including dynamic stabilization. The study has explored several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. The study examines aspects of the coil design; superconductor supported off of the dewar shell; the dewar shell, its configuration and stresses; the underground excavation and related construction for holding the superconducting coil and its dewar; the helium refrigeration system; the electrical converter system; the vacuum system; the guard coil; and the costs. The report is a condensation of the more comprehensive study which is in the process of being printed

  6. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  7. A reference system for the measurement of low-strength magnetic flux density

    International Nuclear Information System (INIS)

    Fiorillo, F.; Durin, G.F.; Rocchino, L.

    2006-01-01

    Magnetic flux density standards traceable to the SI units have been developed at IEN-INRIM, by which dissemination for general measurement and testing activities can be pursued. The reference system covers a range of values extending from μ 0 H∼1T to μ 0 H∼10μT and is centered on the use of NMR magnetometers, calibrated coils, and stable current sources. The relative measuring uncertainty of the system is shown to increases with decreasing the field strength value and it is estimated to range between a few 10 -6 and some 10 -3

  8. Decision support systems in nuclear emergencies: A scenario-based comparison of domestic and reference tools

    International Nuclear Information System (INIS)

    Vamanu, D.; Slavnicu, S. D.; Slavnicu, E.; Vamanu, B.

    2004-01-01

    The article reports selective results of a comparison between RODOS - an emerging decision support system for the management of nuclear emergencies in Europe developed by an international research consortium under EEC aegis, and a resident software package developed and maintained for similar purposes at IFIN-HH, Bucharest. Reproducible similarity patterns obtained in the output data distributions provide for simple normalising procedures that may ensure convergent radiological assessments. When properly consolidated on a sufficient scenario casuistry, such procedures could lend a certain resilience to domestic decision support tools over the interim lead time required by the full implementation of RODOS, or other major league, internationally accepted reference systems. (authors)

  9. New reference object for metrological performance testing of industrial CT systems

    DEFF Research Database (Denmark)

    Müller, Pavel; Hiller, Jochen; Cantatore, Angela

    2012-01-01

    This paper presents a new reference object, so called “CT ball plate”, used for metrological performance testing of industrial CT systems, and discusses both the calibration procedure using a tactile coordinate measuring machine and the first results carried out using an industrial CT scanner....... This artefact can be used to determine several characteristics of the CT system like, probing errors of spheres, length measuring errors between sphere centers, measurement errors in the whole CT volume and effects in connection with image artefacts....

  10. A Nonlinear Attitude Estimator for Attitude and Heading Reference Systems Based on MEMS Sensors

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper, a nonlinear attitude estimator is designed for an Attitude Heading and Reference System (AHRS) based on Micro Electro-Mechanical Systems (MEMS) sensors. The design process of the attitude estimator is stated with detail, and the equilibrium point of the estimator error model...... the problems in previous research works. Moreover, the estimation of MEMS gyroscope bias is also inclueded in this estimator. The designed nonlinear attitude estimator is firstly tested in simulation environment and then implemented in an AHRS hardware for further experiments. Finally, the attitude estimation...

  11. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  12. Integrated security systems design a complete reference for building enterprise-wide digital security systems

    CERN Document Server

    Norman, Thomas L

    2014-01-01

    Integrated Security Systems Design, 2nd Edition, is recognized as the industry-leading book on the subject of security systems design. It explains how to design a fully integrated security system that ties together numerous subsystems into one complete, highly coordinated, and highly functional system. With a flexible and scalable enterprise-level system, security decision makers can make better informed decisions when incidents occur and improve their operational efficiencies in ways never before possible. The revised edition covers why designing an integrated security system is essential a

  13. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  14. Noninvariance of Space and Time Scale Ranges under a Lorentz Transformation and the Implications for the Numerical Study of Relativistic Systems

    International Nuclear Information System (INIS)

    Vay, J.-L.; Vay, J.-L.

    2007-01-01

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems

  15. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    Science.gov (United States)

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Decision support systems in nuclear emergencies: harmonizing domestic and reference tools

    International Nuclear Information System (INIS)

    Vamanu, D.; Mateescu, Gh.; Berinde, A.; Slavnicu, D.; Acasandrei, V.; Slavnicu, E.

    2001-01-01

    The paper addresses the issue of securing the compatibility and inter-operability of computer packages designed to perform as decision support tools in the management of radiological emergencies, over the transition times towards the implementation and uniform acceptance and uniform acceptance of internationally-shared reference tools such as the European Union's RODOS (Real Time On-Line Decision Support System for Off-Site Nuclear Emergencies in Europe). One submits that a harmonization between the currently operational, domestic, and the reference tool can be contemplated, based on extensive code comparison and benchmarking. A case in point is presented, paralleling selected RODOS applications on simulated abnormal nuclear events, and the concurrent application of a resident software package, NOTEPAD, developed to emulate RODOS-wise function at IFIH-HH Bucharest. The reproducible similarity may make domestic decision support system (DSS) facilities useful as both practical tools and factors promoting the emergency preparedness awareness, during the interim time laps till the full development and deployment of RODOS as a reference DSS in Europe. (authors)

  17. Normalization of NDVI from Different Sensor System using MODIS Products as Reference

    International Nuclear Information System (INIS)

    Wenxia, Gan; Liangpei, Zhang; Wei, Gong; Huanfeng, Shen

    2014-01-01

    Medium Resolution NDVI(Normalized Difference Vegetation Index) from different sensor systems such as Landsat, SPOT, ASTER, CBERS and HJ-1A/1B satellites provide detailed spatial information for studies of ecosystems, vegetation biophysics, and land cover. Limitation of sensor designs, cloud contamination, and sensor failure highlighted the need to normalize and integrate NDVI from multiple sensor system in order to create a consistent, long-term NDVI data set. In this paper, we used a reference-based method for NDVI normalization. And present an application of this approach which covert Landsat ETM+ NDVI calculated by digital number (NDVI DN ) to NDVI calculated by surface reflectance (NDVI SR ) using MODIS products as reference, and different cluster was treated differently. Result shows that this approach can produce NDVI with highly agreement to NDVI calculated by surface reflectance from physical approaches based on 6S (Second Simulation of the satellite Signal in the Solar Spectrum). Although some variability exists, the cluster specified reference based approach shows considerable potential for NDVI normalization. Therefore, NDVI products in MODIS era from different sources can be combined for time-series analysis, biophysical parameter retrievals, and other downstream analysis

  18. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    International Nuclear Information System (INIS)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs

  19. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs.

  20. Modular TPC's for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.

    1989-01-01

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs

  1. Fast breeder reactor reference system classification for the ENEA data bank

    International Nuclear Information System (INIS)

    Righini, R.

    1988-01-01

    This report contains the Reference System Classification (RSC) of fast breeder reactors: it provides a functional system breakdown of the reactor. For each system the following important characteristics are reported: the main function, the mode of operation, its location in the reactor, the main interface system, its main components and the component working environment (fluid and/or atmosphere type). The RSC represent a basic step in organizing the ENEA data bank for the registration and processing of reliability data on typical fast reactor components; it provides a functional component breakdown and represent a plant-unique identification in the process of omogenization of event-data coming from different reactors. In this report it was tried to take into account different generations of nuclear power plants, different plant layouts and solutions: in particular loop and pool reactors are separately treated

  2. Localization and Entanglement in Relativistic Quantum Physics

    Science.gov (United States)

    Yngvason, Jakob

    These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  3. Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System

    Science.gov (United States)

    Stone, W. A.; Caccamise, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) mission is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The NSRS is an assemblage of geophysical and geodetic models, tools, and data, with the most-visible components being the North American Datum of 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88), which together provide a consistent spatial reference framework for myriad geospatial applications and positioning requirements throughout the United States. The NGS is engaged in an ongoing and comprehensive multi-year project of modernizing the NSRS, a makeover necessitated by technological developments and user accuracy requirements, all with a goal of providing a modern, accurate, accessible, and globally aligned national positioning framework exploiting the substantial power and utility of the Global Navigation Satellite System - of both today and tomorrow. The modernized NSRS will include four new-generation geometric terrestrial reference frames (replacing NAD83) and a technically unprecedented geopotential datum (replacing NAVD88), all to be released in 2022 (anticipated). This poster/presentation will describe the justification for this modernization effort and will update the status and planned evolution of the NSRS as 2022 draws ever closer. Also discussed will be recent developments, including the publication of "blueprint" documents addressing technical details of various facets of the modernized NSRS and a continued series of public Geospatial Summits. Supporting/ancillary projects such as Gravity for the Redefinition of the American Vertical Datum (GRAV-D), which will result in the generation of a highly accurate gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential datum, and Geoid Slope Validation Surveys (GSVS), which are exploring the achievable

  4. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  5. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  6. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  7. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  8. Relativistic density matrix in the diagonal momentum representation. Bose-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed

  9. Moving to a Modernized Height Reference System in Canada: Rationale, Status and Plans

    Science.gov (United States)

    Veronneau, M.; Huang, J.

    2007-05-01

    A modern society depends on a common coordinate reference system through which geospatial information can be interrelated and exploited reliably. For height measurements this requires the ability to measure mean sea level elevations easily, accurately, and at the lowest possible cost. The current national reference system for elevations, the Canadian Geodetic Vertical Datum of 1928 (CGVD28), offers only partial geographic coverage of the Canadian territory and is affected by inaccuracies that are becoming more apparent as users move to space- based technologies such as GPS. Furthermore, the maintenance and expansion of the national vertical network using spirit-levelling, a costly, time consuming and labour intensive proposition, has only been minimally funded over the past decade. It is now generally accepted that the most sustainable alternative for the realization of a national vertical datum is a gravimetric geoid model. This approach defines the datum in relation to an ellipsoid, making it compatible with space-based technologies for positioning. While simplifying access to heights above mean sea level all across the Canadian territory, this approach imposes additional demands on the quality of the geoid model. These are being met by recent and upcoming space gravimetry missions that have and will be measuring the Earth`s gravity field with increasing and unprecedented accuracy. To maintain compatibility with the CGVD28 datum materialized at benchmarks, the current first-order levelling can be readjusted by constraining geoid heights at selected stations of the Canadian Base Network. The new reference would change CGVD28 heights of benchmarks by up to 1 m across Canada. However, local height differences between benchmarks would maintain a relative precision of a few cm or better. CGVD28 will co-exist with the new height reference as long as it will be required, but it will undoubtedly disappear as benchmarks are destroyed over time. The adoption of GNSS

  10. A reference model for model-based design of critical infrastructure protection systems

    Science.gov (United States)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  11. The disposal of Canada's nuclear fuel waste: comments on the postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Allan, C.J.; Goodwin, B.W.

    1996-07-01

    Canada, like other countries, is developing technology for disposal of its nuclear fuel waste , based on the concept of geological disposal in stable plutonic rock of the Canadian Shield. The choice of methods, materials, and designs for a disposal system will ultimately be made on the basis of safety, taking into account the characteristics of the specific site on which the facility is to be developed, costs and practicality. As part of its work in developing the technology for the disposal of Canada's nuclear fuel waste, AECL analyzed the performance of a hypothetical disposal facility that incorporates specific design choices for the engineered barriers and that assumes a specific geological setting. This system, comprising the disposal facility and the geological setting, and the results of the performance analysis, is described in an Environmental Impact Statement that AECL submitted in 1994 and in a Primary Reference for the EIS 'The Disposal of Canada's Nuclear Fuel Waste: Postclosure Assessment of a Reference System.' The performance analysis was not intended to be a general proof of the safety of disposal, but rather it presents a safety analysis of one specific system to illustrate the postclosure assessment methodology and to demonstrate that safety could be achieved for the system in question. Although the design of the disposal facility analyzed and the geological setting have specific features, the results obtained from the safety analysis can, however, be used to provide considerable insight into the performance of the various components that comprise the multibarrier geological disposal system. Moreover, the results can show how changes in the performance of specific components can affect the overall performance of the system. This report discusses these aspects of the postclosure analysis. (author)

  12. The Gaussian formula and spherical aberrations of static and relativistic curved mirrors from Fermat's principle

    International Nuclear Information System (INIS)

    Sutanto, Sylvia H; Tjiang, Paulus C

    2011-01-01

    The Gaussian formula and spherical aberrations of static and relativistic curved mirrors are analyzed using the optical path length (OPL) and Fermat's principle. The geometrical figures generated by the rotation of conic sections about their symmetry axes are considered for the shapes of the mirrors. By comparing the results in static and relativistic cases, it is shown that the focal lengths and the spherical aberration relations of the relativistic mirrors obey the Lorentz contraction. Further analysis of the spherical aberrations for both static and relativistic cases have resulted in information about the limits for the paraxial approximation, as well as for the minimum speed of the systems to reduce the spherical aberrations

  13. Relativistic calculations of one-photon bound-free transition amplitudes in hydrogenic atoms

    International Nuclear Information System (INIS)

    Simo, E.; Kwato Njock, M.G.

    2005-04-01

    Photoionization transition matrix of hydrogenic systems are investigated theoretically within the framework of the tensorial formalism with relativistic arguments. Calculations are carried out exactly, without approximation. We derive continuum second-order Dirac-Coulomb Sturmian functions. The numerical simulation of our results is performed in the dipole approximation. We test our theory on selected nucleus from the Periodic Table. The results of the fully relativistic calculations are compared with those of the quasi-relativistic calculations. A conclusion is drawn about the level of reliability of the quite simplified quasi-relativistic approach. (author)

  14. New reference trajectory optimization algorithm for a flight management system inspired in beam search

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2017-08-01

    Full Text Available With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graph-tree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm’s ability to find the global optimal solution, a heuristic methodology introducing a parameter called “optimism coefficient was used in order to estimate the trajectory’s flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS. The global optimal solution was validated against an exhaustive search algorithm(ESA, other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.

  15. Comparison of the TLDA with the Nanodrop and the reference Qubit system

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M; Arthure, K; Riedel, S; McMillan, ND [Drop Technology Ltd., Tallaght Business Park, Whitestown, Dublin 24 (Ireland); McPartlin, J, E-mail: martina.oneill@droptechnology.com [Vitamin Research Unit, Department of Clinical Medicine, Sir Patrick Duns Laboratory, CPL, St. James' s Hospital, Dublin 8 (Ireland)

    2011-08-17

    The TLDA (transmitted light drop analyser) is a new microvolume UV-visible drop spectrophotometer new to the market. Assays were compared between a TLDA, NanoDrop and the Qubit system which is based on the gold standard for DNA assay, PicoGreen. The evaluation was carried out by the Trinity Biobank in St. James Hospital, Dublin on Buccal swabs and Blood samples. The data is discussed in this paper. The Qubit system is seen as the reference method in most studies as this is believed to provide more accurate results than UV absorbance methods because it distinguishes between DNA, RNA, free nucleotides, and other contaminants. The Qubit system uses fluorescent dyes to measure the concentration of the molecule of interest. The results compare both the spectrophotometric methods against the Qubit fluorescence technique.

  16. On-board landmark navigation and attitude reference parallel processor system

    Science.gov (United States)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  17. Software reference for SaTool - a Tool for Structural Analysis of Automated Systems

    DEFF Research Database (Denmark)

    Lorentzen, Torsten; Blanke, Mogens

    2004-01-01

    This software reference details the functions of SaTool – a tool for structural analysis of technical systems. SaTool is intended used as part of an industrial systems design cycle. Structural analysis is a graph-based technique where principal relations between variables express the system’s...... of the graph. SaTool makes analysis of the structure graph to provide knowledge about fundamental properties of the system in normal and faulty conditions. Salient features of SaTool include rapid analysis of possibility to diagnose faults and ability to make autonomous recovery should faults occur........ The list of such variables and functional relations constitute the system’s structure graph. Normal operation means all functional relations are intact. Should faults occur, one or more functional relations cease to be valid. In a structure graph, this is seen as the disappearance of one or more nodes...

  18. Anthology of the renin-angiotensin system: a one hundred reference approach to angiotensin II antagonists.

    Science.gov (United States)

    Ménard, J

    1993-04-01

    To provide a historical overview of the renin-angiotensin system as a guide to the introduction of a new therapeutic pathway, non-peptide inhibition of a angiotensin II. One hundred references were selected as a personal preference, for their originality or for their potential impact on medicine. This review raises the following questions for future research. (1) Will the long-term cardiovascular effects of angiotensin converting enzyme (ACE) inhibition, angiotensin II antagonism and renin inhibition be similar or not, and dependent or independent of blood pressure levels? (2) What are the local-regional interactions between vasoconstrictor and vasodilator systems, and does the renin-angiotensin system synchronize these regional hemodynamic regulatory mechanisms? (3) If hypertension is the result of an interaction between genetic and environmental factors, do proteins secreted through constitutive pathways contribute to the genetic abnormality (prorenin, angiotensinogen, ACE) while regulated secretion (renin) and other regulatory mechanisms (angiotensin II receptors) provide biological support for the environmental effects?

  19. Effect of long-lived containers on the postclosure performance of a reference disposal system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Hajas, W.C.; LeNeveu, D.M.

    1996-05-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced in a scaled vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The concept permits a choice of methods, materials, site locations, and designs. The technical feasibility of this concept and its impact on the environment and human health are summarized in an Environmental Impact Statement (AECL 1994a,b), supported by nine detailed reference documents (Davis et al. 1993; Davison et al. 1994a,b; Goodwin et al. 1994; Greber et al. 1994; Grondin et al. 1994; Johnson et al. 1994a,b; Simmons and Baumgartner 1994). In the assessment of the reference disposal system, we assumed the containers encapsulating the nuclear fuel waste were constructed from Grade-2 titanium. In this report, we investigate the effect of a different choice, and assume the use of long-lived containers constructed from materials such as high-purity copper or Grades-12 or -16 titanium alloys. These alternative materials would provide much longer periods of protection, based on the expectation that the only container failure mechanism, for times up to 10 5 a, involves initial fabrication defects. We explore the effects of long-lived containers for the same vault layout and orientation that were assumed for the reference disposal vault. We also explore effects for two less favourable situations, in which the vault is closer to a nearby fracture zone and in which the vault is extended to have emplacement rooms on both sides of the fracture zone. Our analyses use the probabilistic assessment computer code, SYVAC3-CC3, an acronym for SYstems Variability Analysis Code, generation 3. with a system model describing the Canadian Concept, generation 3, for the disposal of nuclear fuel waste. The input data for the code have been adjusted to approximate the expected protection characteristics of alternative container materials. (author). 31 refs., 1 tab., 16 figs

  20. Relativistic theory for syntonization of clocks in the vicinity of the Earth

    Science.gov (United States)

    Wolf, Peter; Petit, G.

    1995-01-01

    A well known prediction of Einstein's general theory of relativity states that two ideal clocks that move with a relative velocity, and are submitted to different gravitational fields will, in general, be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate time of some spacetime reference system is dependent on the velocity of the clock in that reference system and on the gravitational fields it is submitted to. For the syntonization of clocks and the realization of coordinate times (like TAI) this rate shift has to be taken into account at an accuracy level which should be below the frequency stability of the clocks in question, i.e. all terms that are larger than the instability of the clocks should be corrected for. We present a theory for the calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms larger than one part in 10(exp 18). This, together with previous work on clock synchronization (Petit & Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time scales at picosecond synchronization and 10(exp -18) syntonization accuracy, which should be sufficient to accommodate future developments in time transfer and clock technology.

  1. Reference system architecture for trade promotion management: leveraging business intelligence technologies and decision support systems

    NARCIS (Netherlands)

    Balmus, Andra Bianca; Iacob, Maria Eugenia; van Sinderen, Marten J.; van Busschbach, Murk

    Working towards gaining competitive advantage and establishing stable relationships with their supply chain intermediaries, fast moving consumer goods companies are currently focusing their attention on intelligent, goal-based funds investment. Traditional trade promotion management systems (TPMS),

  2. Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2013-01-01

    Full Text Available The paper deals with a speed estimation of the induction motor using observer with Model Reference Adaptive System and Kalman Filter. For simulation, Hardware in Loop Simulation method is used. The first part of the paper includes the mathematical description of the observer for the speed estimation of the induction motor. The second part describes Kalman filter. The third part describes Hardware in Loop Simulation method and its realization using multifunction card MF 624. In the last section of the paper, simulation results are shown for different changes of the induction motor speed which confirm high dynamic properties of the induction motor drive with sensorless control.

  3. Computerized literature reference system: use of an optical scanner and optical character recognition software.

    Science.gov (United States)

    Lossef, S V; Schwartz, L H

    1990-09-01

    A computerized reference system for radiology journal articles was developed by using an IBM-compatible personal computer with a hand-held optical scanner and optical character recognition software. This allows direct entry of scanned text from printed material into word processing or data-base files. Additionally, line diagrams and photographs of radiographs can be incorporated into these files. A text search and retrieval software program enables rapid searching for keywords in scanned documents. The hand scanner and software programs are commercially available, relatively inexpensive, and easily used. This permits construction of a personalized radiology literature file of readily accessible text and images requiring minimal typing or keystroke entry.

  4. Disposable Miniaturized Screen‐Printed pH and Reference Electrodes for Potentiometric Systems

    DEFF Research Database (Denmark)

    Musa, Arnaud Emmanuel; del Campo, Francisco Javier; Abramova, Natalia

    2011-01-01

    This work describes the development of a miniaturized potentiometric system comprising a miniaturized quasi‐reference electrode (QRE) coupled to a solid‐state ion‐selective electrode (ISE) for the monitoring of pH. We describe the optimization of materials and fabrication processes including screen‐printing...... electrode) that can be used continuously for a period of not less than 7 days in aqueous solutions. Curing the Ag/AgCl pastes during 20 minutes at 120 °C after printing allowed the QREs to display excellent potential stability, as demonstrated by an open‐circuit‐potential standard deviation of ±1.2 mV over...

  5. Method of collective variables with reference system for the grand canonical ensemble

    International Nuclear Information System (INIS)

    Yukhnovskii, I.R.

    1989-01-01

    A method of collective variables with special reference system for the grand canonical ensemble is presented. An explicit form is obtained for the basis sixth-degree measure density needed to describe the liquid-gas phase transition. Here the author presents the fundamentals of the method, which are as follows: (1) the functional form for the partition function in the grand canonical ensemble; (2) derivation of thermodynamic relations for the coefficients of the Jacobian; (3) transition to the problem on an adequate lattice; and (4) obtaining of the explicit form for the functional of the partition function

  6. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  7. Normal gravity field in relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are

  8. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  9. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  10. BOOK REVIEW: Relativistic Figures of Equilibrium

    Science.gov (United States)

    Mars, M.

    2009-08-01

    losing material, and the black hole transition, where rotating fluids are seen to approach black holes for suitable limits of their parameters. As the authors themselves mention, one of the emphasis of this book is placed 'on the rigorous treatment of simple models instead of trying to describe real objects with their many complex facets...'. After discussing constant density models both in Newtonian theory (the Maclaurin spheroids) and in the non-rotating relativistic case (the Schwarzschild interior model), the book concentrates on the so-called rigidly rotating disc of dust. Chapter two is mainly devoted to deriving this model and presenting its physical properties. The derivation is based in the so-called inverse scattering method of integrable systems and on a thorough knowledge of the theory of integration on Riemann surfaces. The details, which take up about one fifth of the whole length, are difficult to follow for any reader without a previous mastering of the techniques involved. For the expert, however, this part of the book is very useful because it brings together all the steps required for the complete determination of the solution. After the derivation of the disc of dust, the physical properties of the resulting one-parameter family of solutions are described, including its multipole moment structure, the existence of ergospheres, the Newtonian limit or the motion of test particles. Of particular interest is the transition from the disc of dust to the extreme black hole configuration corresponding to the limit when the parameter describing the fluid approaches its upper end. After this chapter devoted to exact models, the book looks at the problem from a completely different point of view, namely by using numerical methods. This tool has proven to be fundamental for a proper study of this physical problem. This book concentrates on the so-called pseudo-spectral methods and the use of multidomains adapted to the different regions of the spacetime with

  11. An update to the analysis of the Canadian Spatial Reference System

    Science.gov (United States)

    Ferland, R.; Piraszewski, M.; Craymer, M.

    2015-12-01

    The primary objective of the Canadian Spatial Reference System (CSRS) is to provide users access to a consistent geo-referencing infrastructure over the Canadian landmass. Global Navigation Satellite System (GNSS) positioning accuracy requirements ranges from meter level to mm level (e.g.: crustal deformation). The highest level of the Canadian infrastructure consist of a network of continually operating GPS and GNSS receivers, referred to as active control stations. The network includes all Canadian public active control stations, some bordering US CORS and Alaska stations, Greenland active control stations, as well as a selection of IGS reference frame stations. The Bernese analysis software is used for the daily processing and the combination into weekly solutions which form the basis for this analysis. IGS weekly final orbit, Earth Rotation parameters (ERP's) and coordinates products are used in the processing. For the more demanding users, the time dependant changes of station coordinates is often more important.All station coordinate estimates and related covariance information is used in this analysis. For each input solution, variance factor, translation, rotation and scale (and if needed their rates) or subsets of these are estimated. In the combination of these weekly solutions, station positions and velocities are estimated. Since the time series from the stations in these networks often experience changes in behavior, new (or reuse of) parameters are generally used in these situations. As is often the case with real data, unrealistic coordinates may occur. Automatic detection and removal of outliers is used in these cases. For the transformation, position and velocity parameters loose apriori estimates and uncertainties are provided. Alignment using the usual Helmert transformation to the latest IGb08 realization of ITRF is also performed during the adjustment.

  12. Development of the Korean Reference Vertical Disposal System Concept for Spent Fuels

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Kim, S.G.; Choi, H.J.; Choi, J.W.; Hahn, P.S.

    2006-01-01

    The development of a deep geologic disposal system for the spent fuel from nuclear power plants has been carried out since this program was launched at 1997 in Korea. In ' this paper, a pre-conceptual design of the Korean Reference HLW Vertical disposal System (KRS-V1) is presented. Though no site for the underground repository has yet been specified in Korea, a generic site with granitic rock is considered for reference HLW repository design. Depth of the repository is assumed to be 500 meters. The repository consists of the disposal area, technical rooms with four shafts to connect them to the ground level in the controlled area and technical rooms with an access tunnel and three shafts to connect them to the ground level in the uncontrolled area. Disposal area consists of disposal tunnels, panel tunnels and a central tunnel. The repository will be excavated, operated and backfilled in several phases including an Underground Research Laboratory (URL) phase. The result of this preliminary conceptual design will be used for an evaluation of the feasibility, analyses of the long term safety, information for public communication and a cost estimation etc. (authors)

  13. Test reference years - meteorological bases for the technical simulation of heating systems and air-conditioning systems

    International Nuclear Information System (INIS)

    Perl, J.

    1991-01-01

    For the FRG (western part) for 12 regions with different climate test reference years (TRY) have been established. The TRYs are used for the simulation of the thermal behaviour of buildings, of the operation of heating and space avc systems, lighting control, solar plants as well as of comparable technical systems. A TRY is a collection of hourly data of important meterological parameters over a whole year. The TRYs include 14 meteorological parameters for temperature, humidity, wind, short- and long-wave radiation, atmospheric pressure, precipitation and description of the weather at that time. A TRY is to correspond to the characteristic weather conditions of the TRY region. (orig.) [de

  14. Terminological reference of a knowledge-based system: the data dictionary.

    Science.gov (United States)

    Stausberg, J; Wormek, A; Kraut, U

    1995-01-01

    The development of open and integrated knowledge bases makes new demands on the definition of the used terminology. The definition should be realized in a data dictionary separated from the knowledge base. Within the works done at a reference model of medical knowledge, a data dictionary has been developed and used in different applications: a term definition shell, a documentation tool and a knowledge base. The data dictionary includes that part of terminology, which is largely independent of a certain knowledge model. For that reason, the data dictionary can be used as a basis for integrating knowledge bases into information systems, for knowledge sharing and reuse and for modular development of knowledge-based systems.

  15. Preliminary measurements of the establishment of a quality control programme for the activimeter calibration reference system

    International Nuclear Information System (INIS)

    Martins, Elaine W.; Potiens, Maria da Penha A.

    2009-01-01

    The nuclear medicine techniques efficiency and safety depends on, beside other factors, a quality control programme, mainly regards to the nuclides activimeter utilization. The Calibration Laboratory of IPEN uses as a work standard, a tertiary standard system Capintec, calibrated at the Accredited Dosimetry Calibration Laboratory of the Medical radiation Research Center - University of Wisconsin. In this work, as preliminary measurements to establish a quality control programme for the activimeter calibration procedures, initially the repeatability and reproducibility (long term stability) tests were performed using a sealed check source of 133 Ba. Later on, to complete this quality control programme other check sources ( 137 Cs, 57 Co, 60 Co) will be used to perform the same tests. A series of 80 experiments of 10 measurements each has been carried out. The reference system showed a good behaviour to the repeatability test, considering the tolerance limits of 5%. The percent deviations of all tested sources in the activity measurements were lower 1% to 133 Ba. (author)

  16. Development of the relativistic impulse approximation

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1985-01-01

    This talk contains three parts. Part I reviews the developments which led to the relativistic impulse approximation for proton-nucleus scattering. In Part II, problems with the impulse approximation in its original form - principally the low energy problem - are discussed and traced to pionic contributions. Use of pseudovector covariants in place of pseudoscalar ones in the NN amplitude provides more satisfactory low energy results, however, the difference between pseudovector and pseudoscalar results is ambiguous in the sense that it is not controlled by NN data. Only with further theoretical input can the ambiguity be removed. Part III of the talk presents a new development of the relativistic impulse approximation which is the result of work done in the past year and a half in collaboration with J.A. Tjon. A complete NN amplitude representation is developed and a complete set of Lorentz invariant amplitudes are calculated based on a one-meson exchange model and appropriate integral equations. A meson theoretical basis for the important pair contributions to proton-nucleus scattering is established by the new developments. 28 references

  17. Relativistic theory of the falling retroreflector gravimeter

    Science.gov (United States)

    Ashby, Neil

    2018-02-01

    We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.

  18. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  19. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage system reference design

    International Nuclear Information System (INIS)

    Rogers, J.D.; Hassenzahl, W.V.; Schermer, R.I.

    1979-09-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility diurnal load-leveling but can also function to meet much faster power demands including dynamic stabilization. This study explores several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. This report examines aspects of the coil, the superconductor supported off of the dewar shell, the dewar shell, and its configuration and stresses, the underground excavation and construction for holding the superconducting coil and its dewar, the helium refrigeration system, the electrical converter system, the vacuum system, the guard coil, and the costs. This report is divided into two major portions. The first is a general treatment of the work and the second is seven detailed technical appendices issued as separate reports. The information presented on the aluminum stabilizer for the conductor, on the excavation, and on the converter is based upon industrial studies contracted for this work

  20. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  1. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  2. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  3. Causal localizations in relativistic quantum mechanics

    Science.gov (United States)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  4. Non-relativistic conformal symmetries and Newton-Cartan structures

    International Nuclear Information System (INIS)

    Duval, C; Horvathy, P A

    2009-01-01

    This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

  5. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-01-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit

  6. High-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system

    International Nuclear Information System (INIS)

    Ross, M.

    1979-01-01

    A variational theory is developed that is accurate at normal liquid densities and densities up to 4 times that of the argon triple point. This theory uses the inverse 12th-power potential as a reference system. The properties of this reference system are expressed in terms of hard-sphere packing fractions by using a modified form of hard-space variational theory. As a result of this ''bootstrapping,'' a variational procedure may be followed that employs the inverse 12th-power system as a reference but uses the hard-sphere packing fraction as the scaling parameter with which to minimize the Helmholtz free energy

  7. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  8. Venous, Arterialized-Venous, or Capillary Glucose Reference Measurements for the Accuracy Assessment of a Continuous Glucose Monitoring System

    NARCIS (Netherlands)

    Kropff, Jort; van Steen, Sigrid C.; deGraaff, Peter; Chan, Man W.; van Amstel, Rombout B. E.; DeVries, J. Hans

    2017-01-01

    Background: Different reference methods are used for the accuracy assessment of continuous glucose monitoring (CGM) systems. The effect of using venous, arterialized-venous, or capillary reference measurements on CGM accuracy is unclear. Methods: We evaluated 21 individuals with type 1 diabetes

  9. Determining the direction of a geometrical/optical reference axis in the coordinate system of a triaxial magnetometer sensor

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Brauer, Peter; Merayo, José M.G.

    2002-01-01

    optical or geometrical axes in order to be able to determine the precise orientation of the magnetic coordinate axes in an external reference system. Two methods for determining a reference axis in the sensor coordinates are discussed: (1) using a triaxial coil facility to measure the sensor orientation...

  10. Relativistic predictive quantum potential: the N-body case

    International Nuclear Information System (INIS)

    Garuccio, A.; Kyprianidis, A.; Vigier, J.P.

    1984-01-01

    It is generalized to a system of N scalar particles the casual description with action at a distance already given for two-particle systems in EPR type of experiments. The many body quantum potential is shown to satisfy the predictivity constraints established by Droz-Vincent for relativistic mechanics

  11. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  12. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  13. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  14. Optimization of a relativistic quantum mechanical engine.

    Science.gov (United States)

    Peña, Francisco J; Ferré, Michel; Orellana, P A; Rojas, René G; Vargas, P

    2016-08-01

    We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.

  15. A system for environmental protection. Reference dose models for fauna and flora

    International Nuclear Information System (INIS)

    Pentreath, R.J.; Woodhead, D.S.

    2000-01-01

    Ideas have already been published on how the current problems relating to environmental protection could be explicitly addressed. One of the basic cornerstones of the proposed system is that of the use of reference dose models for fauna and flora, in a manner analogous to those used for the human species. The concept is that, for a number of both aquatic and terrestrial fauna and flora types, 'reference' dose models, and dose per unit (internal and external) exposure tables, could be compiled. These would then be used to draw broad conclusions on the likely effects for such organisms in relation to three broad environment end points of concern: life shortening; impairment of reproductive capacity; and scorable, cytogenetic damage. The level of complexity of the dose models needs to be commensurate with the morphological complexity of the modelled organism, its size, and the data bases which are either available or could be reasonably obtained. The most basic models considered are either solid ellipsoids or spheres, with fixed dimensions. Secondary models contain internal, but relatively simple geometric features representative of those key organs or tissues for which more precise estimates of dose are required. Their level of complexity is also a function of different internal and external sources of radiation, and expected differences in radiosensitivities. Tertiary models -of greater complexity- are only considered to be of value for higher vertebrates. The potential derivation and use of all three sets of models is briefly discussed. (author)

  16. Distributed Consensus Tracking for Second-Order Nonlinear Multiagent Systems with a Specified Reference State

    Directory of Open Access Journals (Sweden)

    Guoguang Wen

    2014-01-01

    Full Text Available This paper mainly addresses the distributed consensus tracking problem for second-order nonlinear multiagent systems with a specified reference trajectory. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position and velocity information of its neighbors. The consensus reference is taken as a virtual leader, whose output is only its position and velocity information that is available to only a subset of a group of followers. To achieve consensus tracking, a class of nonsmooth control protocols is proposed which reply on the relative information among the neighboring agents. Then some corresponding sufficient conditions are derived. It is shown that if the communication graph associated with the virtual leader and followers is connected at each time instant, the consensus can be achieved at least globally exponentially with the proposed protocol. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Finally, numerical examples are presented to illustrate the theoretical analysis.

  17. Oncogenetics service and the Brazilian public health system: the experience of a reference Cancer Hospital.

    Science.gov (United States)

    Palmero, Edenir I; Galvão, Henrique C R; Fernandes, Gabriela C; Paula, André E de; Oliveira, Junea C; Souza, Cristiano P; Andrade, Carlos E; Romagnolo, Luis G C; Volc, Sahlua; C Neto, Maximiliano; Sabato, Cristina; Grasel, Rebeca; Mauad, Edmundo; Reis, Rui M; Michelli, Rodrigo A D

    2016-05-13

    The identification of families at-risk for hereditary cancer is extremely important due to the prevention potential in those families. However, the number of Brazilian genetic services providing oncogenetic care is extremely low for the continental dimension of the country and its population. Therefore, at-risk patients do not receive appropriate assistance. This report describes the creation, structure and management of a cancer genetics service in a reference center for cancer prevention and treatment, the Barretos Cancer Hospital (BCH). The Oncogenetics Department (OD) of BCH offers, free of charge, to all patients/relatives with clinical criteria, the possibility to perform i) genetic counseling, ii) preventive examinations and iii) genetic testing with the best quality standards. The OD has a multidisciplinary team and is integrated with all specialties. The genetic counseling process consists (mostly) of two visits. In 2014, 614 individuals (371 families) were seen by the OD. To date, over 800 families were referred by the OD for genetic testing. The support provided by the Oncogenetics team is crucial to identify at-risk individuals and to develop preventive and personalized behaviors for each situation, not only to the upper-middle class population, but also to the people whose only possibility is the public health system.

  18. The derivation of the general form of kinematics with the universal reference system

    Directory of Open Access Journals (Sweden)

    Karol Szostek

    2018-03-01

    Full Text Available In the article, the whole class of time and position transformations was derived. These transformations were derived based on the analysis of the Michelson-Morley experiment and its improved version, that is the Kennedy-Thorndike experiment. It is possible to derive a different kinematics of bodies based on each of these transformations. In this way, we demonstrated that the Special Theory of Relativity is not the only theory explaining the results of experiments with light. There is the whole continuum of the theories of kinematics of bodies which correctly explain the Michelson-Morley experiment and other experiments in which the velocity of light is measured. Based on the derived transformations, we derive the general formula for the velocity of light in vacuum measured in any inertial reference system. We explain why the Michelson-Morley and Kennedy-Thorndike experiments could not detect the ether. We present and discuss three examples of specific transformations. Finally, we explain the phenomenon of anisotropy of the cosmic microwave background radiation by means of the presented theory. The theory derived in this work is called the Special Theory of Ether – with any transverse contraction. The entire article contains only original research conducted by its authors. Keywords: Kinematics of bodies, Universal frame of reference, Transformation of time and position, One-way speed of light, Anisotropy of cosmic microwave background

  19. The economic value of one ton CO2: what system of reference for public action?

    International Nuclear Information System (INIS)

    2007-04-01

    Given the convergence of scientific analyses of global warming and its consequences for the planet - evaluated for years by the Intergovernmental Panel on Climate Change (IPCC) - it is no longer possible to postpone the efforts required to reduce our emissions of greenhouse gases substantially. However, the choice of actions to take and the calendar of priorities are proving complex to define: the social and economic consequences are great, and neither France (which represents 2% of global emissions) nor Europe (15%) are up to treating the problem independently of the rest of the world. Faced with this challenge, and with budgetary constraints imposing a rationalisation of expenditure, public action must have measuring instruments at its disposal: the value of one ton of carbon is one such instrument. This Strategic Newswatch has a twofold objective: to recall the usefulness of this reference value which, though it cannot guarantee the validity of different public policies, may contribute to ensuring their consistency; and to present the different approaches and difficulties that producing such a reference system introduces. (author)

  20. A Practical Method for Implementing an Attitude and Heading Reference System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2014-04-01

    Full Text Available This paper describes a practical and reliable algorithm for implementing an Attitude and Heading Reference System (AHRS. This kind of system is essential for real time vehicle navigation, guidance and control applications. When low cost sensors are used, efficient and robust algorithms are required for performance to be acceptable. The proposed method is based on an Extended Kalman Filter (EKF in a direct configuration. In this case, the filter is explicitly derived from both the kinematic and error models. The selection of this kind of EKF configuration can help in ensuring a tight integration of the method for its use in filter-based localization and mapping systems in autonomous vehicles. Experiments with real data show that the proposed method is able to maintain an accurate and drift-free attitude and heading estimation. An additional result is to show that there is no ostensible reason for preferring that the filter have an indirect configuration over a direct configuration for implementing an AHRS system.

  1. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  2. What forces act in relativistic gyroscope precession?

    Science.gov (United States)

    Semerák, Oldrich

    1996-11-01

    The translation of the relativistic motion into the language of forces, proposed by the author (1995, Nuovo Cimento B 110 973), is employed to interpret the gyroscope precession in general relativity. The precession is referred to the comoving Frenet triad built up along the projection of the gyroscope's trajectory onto the 3-space of the local hypersurface-orthogonal observer. The contributions of the centrifugal, the gravitational and the dragging + Coriolis forces are identified respectively with the Thomas, the geodetic, and the gravitomagnetic components of precession. Explicit expressions are given for several simple types of motion in the Kerr (or simpler) field in order to show that the general formulae obtained are not only very simple, but also yield clear results in accord with intuition in concrete situations.

  3. Swiss hydropower in competition - an analysis with reference to the future European power supply system

    International Nuclear Information System (INIS)

    Balmer, M.; Spreng, D.; Moest, D.

    2006-01-01

    This article takes a look at a number of questions in relation to the future use of Swiss hydropower that are neither clear nor unchallenged. Questions concerning the replacement or refurbishment of hydropower schemes that will have to be renewed in the next few years are asked. Also, developments in the European power market are looked at. The future influence of wind power, trading with CO 2 certificates, increases in the price of gas etc. are examined. An analysis of the competitiveness of Swiss hydropower with reference to the European power supply system that was made by the Centre for Energy Policy and Economics CEPE at the Swiss Federal Institute of Technology ETH is described. The 'Perseus'-model developed by CEPE and the Industrial Technology Institute at the University of Karlsruhe in Germany is used to analyse possible developments over the period up to 2030. The results are presented in graphical form and commented on

  4. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  5. Patients' knowledge and attitude towards therapeutic reference pricing system in Slovenia.

    Science.gov (United States)

    Marđetko, Nika; Kos, Mitja

    2016-10-01

    Background The therapeutic reference pricing (TRP) in Slovenia was implemented for proton pump inhibitors in 2013 and for angiotensin-converting enzyme inhibitors and lipid-lowering medicines in 2014. Objective The study aimed to assess patients' knowledge and attitude towards the TRP system. Moreover, the patients' willingness to pay was evaluated for patients who rejected the substitution of a current medicine within a therapeutic class by the reference medicine for which no co-payment is needed. Setting Invitation of patients to participate in a survey and filling in the first part of the questionnaire was run in the community pharmacies in Slovenia. The second part of the questionnaire was filled in at patients' home. Method A representative sample of 676 patients that had been prescribed at least one medicine from the three therapeutic classes was surveyed. The survey was carried out from 15th May to 15th June 2014 in 40 community pharmacies with the help of the pharmacists, who filled in the first part of the questionnaire in the presence of the patients. The second part of the questionnaire was filled in by 475 patients at home and returned by prepaid mail. Main outcome measure Patients' knowledge of and attitude to the TRP system implemented into Slovenian health care practice. Results Most of the statements describing patient' rights and duties within the TRP system were known by approximately 50 % of the patients. Patients were inhomogeneous in their view about the necessity and benefits of the TRP system, most of them regarded it as an unnecessary burden. Among 50.4 % of the patients who were required to copay for their medicine, 46.7 % accepted and 3.7 % rejected co-payment. The average co-payment was € 6.92, while the expressed average willingness to co-pay was € 10.4 per 3 months of therapy. Conclusion Our results indicate that the implementation of the TRP system and potential upgrades represent a significant challenge for the patients.

  6. Examining egocentric and allocentric frames of reference in virtual space systems

    NARCIS (Netherlands)

    Friedman, A.

    2005-01-01

    The aim of this paper is to examine the egocentric and allocentric frames of reference, through evidence from both gesture and linguistic communication. The action of frames of reference, helps the user refer to the agent as a base for movement or to the object as a guiding point. We will show that

  7. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  8. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  9. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  10. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  11. Effect of the waste exclusion distance on the postclosure performance of a reference disposal system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Hajas, W.C.; Melnyk, T.W.; Kitson, C.I.

    1995-07-01

    The concept for disposal of Canada's nuclear fuel waste involves the isolation of the waste in corrosion-resistant containers placed in a sealed vault at a depth of 500 to 1000 metres in plutonic rock of the Canadian Shield. The technical feasibility of this concept, and its impact on the environment and human health, are summarized in an Environmental Impact Statement (EIS). The EIS is supported by nine primary references, one of which describes the postclosure assessment of the concept. The postclosure assessment is concerned with the long-term performance and behaviour of the disposal system, starting from the time the disposal facility is closed and extending far into the future. The discussions presented in the EIS and the postclosure assessment are based on a case study of a hypothetical disposal system with specific design features and host rock characteristics. The design features are founded on a conceptual engineering study and the rock characteristics are derived from geological studies of a field research area. In the case study, the long-term performance of the hypothetical disposal system was strongly dependent on a design parameter called the waste exclusion distance. This distance is defined as the minimum length of low-permeability sparsely fractured rock between the waste-emplacement part of the hypothetical vault and a nearby conductive fracture zone in the host rock. In this report, we examine trends in estimates of radiological impact as a function of the waste exclusion distance. (author). 18 refs., 14 figs

  12. Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell J.

    2014-09-01

    The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

  13. Histological and reference system for the analysis of mouse intervertebral disc.

    Science.gov (United States)

    Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny

    2018-01-01

    A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. VEPP-4 electron-positron storage ring RF-system on the base of gyrocon-power SHF-generator with a debunched relativistic beam

    International Nuclear Information System (INIS)

    Budker, G.I.; Gaponov, V.A.; Gorniker, Eh.I.

    1982-01-01

    A gyrocon, SHF-generator, is described in which the energy of debunched relativistic electron beam is converted to the energy of electromagnetic oscillations. The gyrocon is intended for supplying the VEPP-4 accelerating resonators. A high-voltage accelerator is used as an electron source. An electron beam is scanned by a rotating magnetic field of the resonator and in different points of the orbit circumscribed by the beam and is injected into the outlet resonator. The resonator represents a ring-form waveguide with slots for the beam passage. A travelling wave, whose field decelerates electrons, is excited in the resonator tuned in to the scanning frequency, converting the beam power to RF-power which is taken off through the energy outlets. The design parameters of the gyrocon are as follows: electron efficiency > 95%, the general efficiency > 80%, amplification factor 23 dB, output power = 5 MW. Results of preliminary tests of the gyrocon are presented

  15. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  16. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  17. A Software Reference Architecture for Service-Oriented 3D Geovisualization Systems

    Directory of Open Access Journals (Sweden)

    Dieter Hildebrandt

    2014-12-01

    Full Text Available Modern 3D geovisualization systems (3DGeoVSs are complex and evolving systems that are required to be adaptable and leverage distributed resources, including massive geodata. This article focuses on 3DGeoVSs built based on the principles of service-oriented architectures, standards and image-based representations (SSI to address practically relevant challenges and potentials. Such systems facilitate resource sharing and agile and efficient system construction and change in an interoperable manner, while exploiting images as efficient, decoupled and interoperable representations. The software architecture of a 3DGeoVS and its underlying visualization model have strong effects on the system’s quality attributes and support various system life cycle activities. This article contributes a software reference architecture (SRA for 3DGeoVSs based on SSI that can be used to design, describe and analyze concrete software architectures with the intended primary benefit of an increase in effectiveness and efficiency in such activities. The SRA integrates existing, proven technology and novel contributions in a unique manner. As the foundation for the SRA, we propose the generalized visualization pipeline model that generalizes and overcomes expressiveness limitations of the prevalent visualization pipeline model. To facilitate exploiting image-based representations (IReps, the SRA integrates approaches for the representation, provisioning and styling of and interaction with IReps. Five applications of the SRA provide proofs of concept for the general applicability and utility of the SRA. A qualitative evaluation indicates the overall suitability of the SRA, its applications and the general approach of building 3DGeoVSs based on SSI.

  18. The Poisson alignment reference system implementation at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Feier, I.

    1998-01-01

    The Poisson spot was established using a collimated laser beam from a 3-mW diode laser. It was monitored on a quadrant detector and found to be very sensitive to vibration and air disturbances. Therefore, for future work we strongly recommend a sealed vacuum tube in which the Poisson line may be propagated. A digital single-axis feedback system was employed to generate an straight line reference (SLR) on the X axis. Pointing accuracy was better than 8 ± 2 microns at a distance of 5 m. The digital system was found to be quite slow with a maximum bandwidth of 47 ± 9 Hz. Slow drifts were easily corrected but any vibration over 5 Hz was not. We recommend an analog proportional-integral-derivative (PID) controller for high bandwidth and smooth operation of the kinematic mirror. Although the Poisson alignment system (PAS) at the Advanced Photon Source is still in its infancy, it already shows great promise as a possible alignment system for the low-energy undulator test line (LEUTL). Since components such as wigglers and quadruples will initially be aligned with respect to each other using conventional means and mounted on some kind of rigid rail, the goal would be to align six to ten such rails over a distance of about 30 m. The PAS could be used to align these rails by mounting a sphere at the joint between two rails. These spheres would need to be in a vacuum pipe to eliminate the refractive effects of air. Each sphere would not be attached to either rail but instead to a flange connecting the vacuum pipes of each rail. Thus the whole line would be made up of straight, rigid segments that could be aligned by moving the joints. Each sphere would have its own detector, allowing the operators to actively monitor the position of each joint and therefore the overall alignment of the system

  19. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  20. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest