WorldWideScience

Sample records for relativistic point coupling

  1. A relativistic point coupling model for nuclear structure calculations

    International Nuclear Information System (INIS)

    Buervenich, T.; Maruhn, J.A.; Madland, D.G.; Reinhard, P.G.

    2002-01-01

    A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock approximations. Different fitting strategies for the determination of the parameters have been applied and the quality of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field approaches both formally and in the context of applications to ground-state properties of known and superheavy nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order Fierz transformation are discussed briefly. (author)

  2. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  3. Two point function for a simple general relativistic quantum model

    OpenAIRE

    Colosi, Daniele

    2007-01-01

    We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.

  4. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  5. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  6. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  7. Relativistic dynamics of point magnetic moment

    Science.gov (United States)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew

    2018-01-01

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.

  8. Relativistic dynamics of point magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)

    2018-01-15

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)

  9. Structure and applications of point form relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Klink, W.H.

    2003-01-01

    The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)

  10. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  11. Dynamics of relativistic point particles as a problem with constraints

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1976-01-01

    The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation

  12. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    Science.gov (United States)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  13. Inflationary magnetogenesis, derivative couplings and relativistic Van der Waals interactions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of a few hundredths of a nG and over typical length scales between few Mpc and $100$ Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e. the backreaction constr...

  14. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  15. Coupling of (ultra- relativistic atomic nuclei with photons

    Directory of Open Access Journals (Sweden)

    M. Apostol

    2013-11-01

    Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  16. Relativistic particles coupled to Chern-Simons term-revisited

    International Nuclear Information System (INIS)

    Chakraborty, B.

    1995-01-01

    The author considers the model of N relativistic spinless particles coupled to an abelian Chern-Simons term. Rewriting the action in a time reparamaterized form by introducing an arbitary parameter, parameterizing the world line of the particles, the author makes a classical constraint Hamiltonian analysis of the model. Subsequent to gauge fixing by equating the arbitrary parameter with the time the author identifies the Hamiltonian of the system, which agrees with the Hamiltonian obtained by using Banerjee's method of fixing the arbitrary Langrange multiplier by using equations of motion. The author exhibits the Poincare invariance of the model, at the classical level, by constructing spacetime generators using either the canonical or symmetric definition of the energy-momentum tensor. A detailed comparison of the expressions of angular momentum obtained by both methods show that both agree up to a boundary term. In presence of rotationally symmetric vortex configuration this term can be interpreted as an anomalous angular momentum term. The author also heuristically discusses the effect of gauge fixing on the transformation properties. 13 refs

  17. Relativistic point dynamics general equations, constant proper masses, interactions between electric charges, variable proper masses, collisions

    CERN Document Server

    Arzeliès, Henri

    1972-01-01

    Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int

  18. Relativistic coupled-cluster calculations of 20Ne, 40Ar, 84Kr, and 129Xe: Correlation energies and dipole polarizabilities

    International Nuclear Information System (INIS)

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-01-01

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  19. Metal-oxide-junction, triple point cathodes in a relativistic magnetron

    International Nuclear Information System (INIS)

    Jordan, N. M.; Gilgenbach, R. M.; Hoff, B. W.; Lau, Y. Y.

    2008-01-01

    Triple point, defined as the junction of metal, dielectric, and vacuum, is the location where electron emission is favored in the presence of a sufficiently strong electric field. To exploit triple point emission, metal-oxide-junction (MOJ) cathodes consisting of dielectric ''islands'' over stainless steel substrates have been fabricated. The two dielectrics used are hafnium oxide (HfO x ) for its high dielectric constant and magnesium oxide (MgO) for its high secondary electron emission coefficient. The coatings are deposited by ablation-plasma-ion lithography using a KrF laser (0-600 mJ at 248 nm) and fluence ranging from 3 to 40 J/cm 2 . Composition and morphology of deposited films are analyzed by scanning electron microscopy coupled with x-ray energy dispersive spectroscopy, as well as x-ray diffraction. Cathodes are tested on the Michigan Electron Long-Beam Accelerator with a relativistic magnetron, at parameters V=-300 kV, I=1-15 kA, and pulse lengths of 0.3-0.5 μs. Six variations of the MOJ cathode are tested, and are compared against five baseline cases. It is found that particulate formed during the ablation process improves the electron emission properties of the cathodes by forming additional triple points. Due to extensive electron back bombardment during magnetron operation, secondary electron emission also may play a significant role. Cathodes exhibit increases in current densities of up to 80 A/cm 2 , and up to 15% improvement in current start up time, as compared to polished stainless steel cathodes

  20. Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes

    DEFF Research Database (Denmark)

    Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav

    2018-01-01

    We have investigated the performance of the most popular relativistic density functional theory methods, zeroth order regular approximation (ZORA) and 4-component Dirac-Kohn-Sham (DKS), in the calculation of the recently measured hyperfine coupling constants of ReIV and IrIV in their hexafluorido...

  1. Should the coupling constants be mass dependent in the relativistic mean field models

    International Nuclear Information System (INIS)

    Levai, P.; Lukacs, B.

    1986-05-01

    Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)

  2. Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation

    International Nuclear Information System (INIS)

    Yang Hongxiang; Xu Xixiang; Sun Yepeng; Ding Haiyong

    2006-01-01

    Starting from a discrete isospectral problem, integrable positive and negative relativistic Toda type lattice hierarchies are derived. The two lattice hierarchies are proven to have discrete zero-curvature representations associated with a discrete spectral problem, and the positive and negative lattice hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. The integrable positive and negative coupling systems of the resulting hierarchies are constructed through enlarging Lax pairs. In addition, with the help of gauge transformations of spectral problems, a Darboux transformation is established for the relativistic Toda type lattice. As an application, an exact solution is explicitly presented

  3. Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We explore the phase transitions of the ideal relativistic neutral Bose gas confined in a cubic box, without assuming the thermodynamic limit nor continuous approximation. While the corresponding non-relativistic canonical partition function is essentially a one-variable function depending on a particular combination of temperature and volume, the relativistic canonical partition function is genuinely a two-variable function of them. Based on an exact expression for the canonical partition function, we performed numerical computations for up to 10 5 particles. We report that if the number of particles is equal to or greater than a critical value, which amounts to 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a critical point. This enables us to depict the phase diagram of the ideal Bose gas. The consequent phase transition is first order below the critical pressure or second order at the critical pressure. The exponents corresponding to the singularities are 1/2 and 2/3, respectively. We also verify the recently observed 'Widom line' in the supercritical region.

  4. Optimality with feedback control in relativistic dynamics of a mass point. Part 1

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pauchard, M.; Tahri-Yousfi, N.; Wickers, D.

    1984-01-01

    This article is an account of part of a research task currently in progress; it deals with relativistic dynamics of a mass-point from the point of view of the theory of optimal feedback control. In the first part, the theoretical frame is presented with an application to the case of special Relativity. This application shows that the way followed in this article is a natural one for approaching Wave mechanics, and that it closely parallels the way along which Louis de Broglie introduced Wave mechanics [fr

  5. Relativistic convergent close-coupling method applied to electron scattering from mercury

    International Nuclear Information System (INIS)

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    We report on the extension of the recently formulated relativistic convergent close-coupling (RCCC) method to accommodate two-electron and quasi-two-electron targets. We apply the theory to electron scattering from mercury and obtain differential and integrated cross sections for elastic and inelastic scattering. We compared with previous nonrelativistic convergent close-coupling (CCC) calculations and for a number of transitions obtained significantly better agreement with the experiment. The RCCC method is able to resolve structure in the integrated cross sections for the energy regime in the vicinity of the excitation thresholds for the (6s6p) 3 P 0,1,2 states. These cross sections are associated with the formation of negative ion (Hg - ) resonances that could not be resolved with the nonrelativistic CCC method. The RCCC results are compared with the experiment and other relativistic theories.

  6. Relativistic New Yukawa-Like Potential and Tensor Coupling

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.

    2012-01-01

    We approximately solve the Dirac equation for a new suggested generalized inversely quadratic Yukawa potential including a Coulomb-like tensor interaction with arbitrary spin-orbit coupling quantum number κ. In the framework of the spin and pseudo spin (p-spin) symmetry, we obtain the energy eigenvalue equation and the corresponding eigenfunctions, in closed form, by using the parametric Nikiforov-Uvarov method. The numerical results show that the Coulomb-like tensor interaction, -T/r, removes degeneracies between spin and p-spin state doublets. The Dirac solutions in the presence of exact spin symmetry are reduced to Schroedinger solutions for Yukawa and inversely quadratic Yukawa potentials. (author)

  7. Standard map in magnetized relativistic systems: fixed points and regular acceleration.

    Science.gov (United States)

    de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B

    2010-08-01

    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.

  8. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2009-10-02

    Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.

  9. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    International Nuclear Information System (INIS)

    Haas, Fernando

    2016-01-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced. (paper)

  10. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    Science.gov (United States)

    Haas, Fernando

    2016-11-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.

  11. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case

    International Nuclear Information System (INIS)

    Bettoni, Dario; Colombo, Mattia; Liberati, Stefano

    2014-01-01

    Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales

  12. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  13. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Caroline; Litvinova, Elena [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2016-07-15

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ-meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes {sup 68-78}Ni. A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data. (orig.)

  14. Naturalness of Nonlinear Scalar Self-Couplings in a Relativistic Mean Field Theory for Neutron Stars

    International Nuclear Information System (INIS)

    Maekawa, Claudio; Razeira, Moises; Vasconcellos, Cesar A. Z.; Dillig, Manfred; Bodmann, Bardo E. J.

    2004-01-01

    We investigate the role of naturalness in effective field theory. We focus on dense hadronic matter using a generalized relativistic multi-baryon lagrangian density mean field approach which contains nonlinear self-couplings of the σ, δ meson fields and the fundamental baryon octet. We adjust the model parameters to describe bulk static properties of ordinary nuclear matter. Then, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars

  15. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    Science.gov (United States)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  16. Gravitational waves from nonlinear couplings of radial and polar nonradial modes in relativistic stars

    International Nuclear Information System (INIS)

    Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro

    2007-01-01

    The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors

  17. The fully relativistic implementation of the convergent close-coupling method

    International Nuclear Information System (INIS)

    Bostock, Christopher James

    2011-01-01

    The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures. (tutorial)

  18. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere?

    International Nuclear Information System (INIS)

    Baker, D.N.; Blake, J.B.; Gorney, D.J.; Higbie, P.R.; Klebesadel, R.W.; King, J.H.

    1987-01-01

    Long-term (1979-present) observations of relativistic electrons (2--15 MeV) at geostationary orbit show a strong solar cycle dependence. Such electrons were largely absent near the last solar maximum (1979--80), while they were prominent during the approach to solar minimum (1983--85). This population now is dwindling as solar minimum has been reached. The strong magnetospheric presence of high-speed solar wind streams which results from solar coronal hole structures during the approach to solar activity (sunspot) minimum. We clearly observe 27-day periodic enhancements of the relativistic electrons in association with concurrently measured solar wind streams (V/sub S//sub W/approx. >600 km/s). We have used a numerical transport code to study the coupling of these high-energy electrons to earth's upper and middle atmosphere. We calculate using the observed energy spectra of the electrons that, when precipitated, these electrons show a large (maximum of ∼100 keV/cm 3 -s) energy deposition at 40--60 km altitude, which is 3--4 orders of magnitude greater than the galactic cosmic ray or solar EUV energy deposition at these altitudes. We also find that the global energy deposition in the mid-latitudes totals nearly 10 21 ergs for a typical 2--3 day event period. We conclude that this previously unrecognized electron population could play an important role in coupling solar wind and magnetospheric variability (on 27--day and 11--year cycles) to the middle atmosphere through a modulating effect on lower D-region ionization and, possibly, on upper level ozone chemistry. These electrons also may contribute to the recent Antarctic polar ozone depletion phenomenon. copyright American Geophysical Union 1987

  19. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  20. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-01-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag

  1. Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry

    NARCIS (Netherlands)

    Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.

    2009-01-01

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and

  2. Investigating pointing tasks across angularly coupled display areas

    DEFF Research Database (Denmark)

    Hennecke, Fabian; De Luca, Alexander; Nguyen, Ngo Dieu Huong

    2013-01-01

    Pointing tasks are a crucial part of today’s graphical user interfaces. They are well understood for flat displays and most prominently are modeled through Fitts’ Law. For novel displays (e.g., curved displays with multi-purpose areas), however, it remains unclear whether such models for predicting...... that the target position affects overall pointing speed and offset in both conditions. However, we also found that Fitts’ Law can in fact still be used to predict performance as on flat displays. Our results help designers to optimize user interfaces on angularly coupled displays when pointing tasks are involved....... user performance still hold – in particular when pointing is performed across differently oriented areas. To answer this question, we conducted an experiment on an angularly coupled display – the Curve – with two input conditions: direct touch and indirect mouse pointer. Our findings show...

  3. Two- and four-component relativistic generalized-active-space coupled cluster method: implementation and application to BiH.

    Science.gov (United States)

    Sørensen, Lasse K; Olsen, Jeppe; Fleig, Timo

    2011-06-07

    A string-based coupled-cluster method of general excitation rank and with optimal scaling which accounts for special relativity within the four-component framework is presented. The method opens the way for the treatment of multi-reference problems through an active-space inspired single-reference based state-selective expansion of the model space. The evaluation of the coupled-cluster vector function is implemented by considering contractions of elementary second-quantized operators without setting up the amplitude equations explicitly. The capabilities of the new method are demonstrated in application to the electronic ground state of the bismuth monohydride molecule. In these calculations simulated multi-reference expansions with both doubles and triples excitations into the external space as well as the regular coupled-cluster hierarchy up to full quadruples excitations are compared. The importance of atomic outer core-correlation for obtaining accurate results is shown. Comparison to the non-relativistic framework is performed throughout to illustrate the additional work of the transition to the four-component relativistic framework both in implementation and application. Furthermore, an evaluation of the highest order scaling for general-order expansions is presented. © 2011 American Institute of Physics

  4. Restricted magnetically balanced basis applied for relativistic calculations of indirect nuclear spin-spin coupling tensors in the matrix Dirac-Kohn-Sham framework

    International Nuclear Information System (INIS)

    Repisky, Michal; Komorovsky, Stanislav; Malkina, Olga L.; Malkin, Vladimir G.

    2009-01-01

    The relativistic four-component density functional approach based on the use of restricted magnetically balanced basis (mDKS-RMB), applied recently for calculations of NMR shielding, was extended for calculations of NMR indirect nuclear spin-spin coupling constants. The unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component while to solve the second-order coupled perturbed DKS equations a restricted magnetically balanced basis set for the small component was applied. Benchmark relativistic calculations have been carried out for the X-H and H-H spin-spin coupling constants in the XH 4 series (X = C, Si, Ge, Sn and Pb). The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in our method for property calculations

  5. Development of Pointing Device Using DC-Coupled Electrooculogram

    Science.gov (United States)

    Uchitomi, Hirotaka; Hori, Junichi

    A purpose of this study is to support communication of developmentally disabled individuals with motor paralysis, such as Guillain-Barre Syndrome, brain-stem infarction, having difficulty in conveying their intention. In the present paper, a pointing device controlled by DC-coupled electrooculograms (EOGs) has been developed. The optic angle of the subject was estimated from the amplitude of vertical and horizontal EOGs for determining the two dimensional pointing position on the PC screen in real time. The eye blinking artifact was reduced using a median filter. The displacement of electrode position was compensated by considering the potential gradient. Moreover, the position error caused by drift phenomenon was adjusted by using head movement. The accuracy and operating speed of the proposed method were evaluated in human experiments.

  6. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation

    International Nuclear Information System (INIS)

    Green, Timothy F. G.; Yates, Jonathan R.

    2014-01-01

    We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1 J(P-Ag) and 2 J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW

  7. Gravitational radiation from the radial infall of highly relativistic point particles into Kerr black holes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.

    2003-01-01

    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe

  8. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  9. Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Minami, Yuki; Tsumura, Kyosuke

    2009-01-01

    The dynamical density fluctuations around the QCD critical point (CP) are analyzed using relativistic dissipative fluid dynamics, and we show that the sound mode around the QCD CP is strongly attenuated whereas the thermal fluctuation stands out there. We speculate that if possible suppression or disappearance of a Mach cone, which seems to be created by the partonic jets at RHIC, is observed as the incident energy of the heavy-ion collisions is decreased, it can be a signal of the existence of the QCD CP. We have presented the Israel-Stewart type fluid dynamic equations that are derived rigorously on the basis of the (dynamical) renormalization group method in the second part of the talk, which we omit here because of a lack of space.

  10. Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation

    Science.gov (United States)

    Kunihiro, Teiji; Minami, Yuki; Tsumura, Kyosuke

    2009-11-01

    The dynamical density fluctuations around the QCD critical point (CP) are analyzed using relativistic dissipative fluid dynamics, and we show that the sound mode around the QCD CP is strongly attenuated whereas the thermal fluctuation stands out there. We speculate that if possible suppression or disappearance of a Mach cone, which seems to be created by the partonic jets at RHIC, is observed as the incident energy of the heavy-ion collisions is decreased, it can be a signal of the existence of the QCD CP. We have presented the Israel-Stewart type fluid dynamic equations that are derived rigorously on the basis of the (dynamical) renormalization group method in the second part of the talk, which we omit here because of a lack of space.

  11. Physical equivalence of the point and instant forms of relativistic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, S N [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1975-01-01

    As a proof of total physical equivalence of point and instantaneous forms of dynamics, a unitary transformation is derived which connects these forms of dynamics without changing the scattering matrix.

  12. Simulations of non-relativistic quantum chromodynamics at strong and weak coupling

    Science.gov (United States)

    Shakespeare, Norman Harold

    In this thesis heavy quarks are investigated using lattice nonrelativistic quantum chromodynamics (NRQCD). Two major research works are presented. In the first major work, simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed at both leading and next-to-leading order in the relativistic expansion, using a large number of lattice spacings. A detailed comparison between mean-link and average plaquette tadpole renormalization schemes is undertaken with a number of features favouring the use of mean-links. These include much better scaling behavior of the hyperfine splittings and smaller relativistic corrections to the spin splittings. Signs of a breakdown in the NRQCD expansion are seen when the bare quark mass, in lattice units, falls below about one. In the second work, coefficients for the perturbative expansion of the static quark self energy are extracted from Monte Carlo simulations in the perturbative region of lattice quantum chromodynamics (QCD). A very large systematic study resulted in a major extension of existing methods. Twisted boundary conditions are used to eliminate the effects of zero modes and to suppress tunneling between the degenerate Z3 vacua. The Monte Carlo results are in excellent agreement with analytic perturbation theory, which is known through second order. New results for the third order coefficient are reported. Preliminary work is reported on quark propagators which will be used to measure second order mass renormalizations for NRQCD fermions.

  13. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  14. Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method

    International Nuclear Information System (INIS)

    Eshghi, M.; Ikhdair, S. M.

    2014-01-01

    A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin (p-spin) symmetry setting Σ = C ps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin—orbit coupling number κ. Special attention is devoted to the case Σ = 0 for which p-spin symmetry is exact. The Laplace transform approach (LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods. (general)

  15. Beyond the relativistic point particle: A reciprocally invariant system and its generalisation

    International Nuclear Information System (INIS)

    Pavsic, Matej

    2009-01-01

    We investigate a reciprocally invariant system proposed by Low and Govaerts et al., whose action contains both the orthogonal and the symplectic forms and is invariant under global O(2,4) intersection Sp(2,4) transformations. We find that the general solution to the classical equations of motion has no linear term in the evolution parameter, τ, but only the oscillatory terms, and therefore cannot represent a particle propagating in spacetime. As a remedy, we consider a generalisation of the action by adopting a procedure similar to that of Bars et al., who introduced the concept of a τ derivative that is covariant under local Sp(2) transformations between the phase space variables x μ (τ) and p μ (τ). This system, in particular, is similar to a rigid particle whose action contains the extrinsic curvature of the world line, which turns out to be helical in spacetime. Another possible generalisation is the introduction of a symplectic potential proposed by Montesinos. We show how the latter approach is related to Kaluza-Klein theories and to the concept of Clifford space, a manifold whose tangent space at any point is Clifford algebra Cl(8), a promising framework for the unification of particles and forces.

  16. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    Science.gov (United States)

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  17. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    Science.gov (United States)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  18. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    International Nuclear Information System (INIS)

    Tecmer, Paweł; Visscher, Lucas; Severo Pereira Gomes, André; Knecht, Stefan

    2014-01-01

    We present a study of the electronic structure of the [UO 2 ] + , [UO 2 ] 2 + , [UO 2 ] 3 + , NUO, [NUO] + , [NUO] 2 + , [NUN] − , NUN, and [NUN] + molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results obtained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)

  19. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas

    2014-07-01

    We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  20. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  1. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, C. A. Zen, E-mail: cesarzen@cesarzen.com [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre (Brazil); International Center for Relativistic Astrophysics Network (ICRANet), Piazza della Repubblica 10, 65122 Pescara (Italy)

    2015-12-17

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  2. Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment

    Science.gov (United States)

    Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh

    2018-01-01

    A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.

  3. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    Science.gov (United States)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  4. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL2 (L=CH3, Cl, Br, I) and trigonal planar [HgCl3]- complexes using four-component relativistic Dirac-Coulomb (DC) and non...

  5. Distributed Interior-point Method for Loosely Coupled Problems

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    In this paper, we put forth distributed algorithms for solving loosely coupled unconstrained and constrained optimization problems. Such problems are usually solved using algorithms that are based on a combination of decomposition and first order methods. These algorithms are commonly very slow a...

  6. A Useful Expression for Relativistic Energy Conservation of a Point Mass in an Isotropic Static Gravitational Field

    Science.gov (United States)

    Augousti, A. T.; Radosz, A.; Ostasiewicz, K.

    2011-01-01

    By using the symmetry and time-independence properties of Schwarzschild spacetime it is demonstrated that an energy conservation law may be expressed in terms of local velocity. From this form three important results may be derived very concisely. This highlights analogies and differences between relativistic and classical approaches to mechanics…

  7. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  8. [Sexuality of aging couples--from women's point of view].

    Science.gov (United States)

    Araki, Chineko

    2005-09-01

    The Sexuality Study Group (chairperson: Chineko Araki) has researched the sexuality of middle-aged to elderly men and women who were having problems with their spouse, and suggestions for an improved sexual life. According to the result of the survey, the problem seemed to lie in the gap between men and women; men want sexual intercourse with women, while many women are satisfied with emotional affection. Discontinuance of intercourse is mainly caused by the loss of women's interest in sex. The responses to 'What kind of sexual relationship do you want to have with your spouse?' and other questions showed that whether women want to have sexual intercourse or not is not simply caused by a physical problem such as decrease of sexual desire or pain during intercourse, but is affected by various factors such as the affection to the spouse, physical and mental satisfaction by intercourse and a different way of thinking about sex. Also the survey showed even though both men and women wanted to have a 'casual conversation' or 'showing affection daily', in actual life they lacked having conversations and had little physical contact except for sex. For aging couples to keep matured sexual relations, it is more desirable to build the couples' relationship with casual conversation and physical contact, and also enjoy slow sex, such as pillow talk or caressing one another and not focusing on sex only.

  9. Smartphone-coupled rhinolaryngoscopy at the point of care

    Science.gov (United States)

    Mink, Jonah; Bolton, Frank J.; Sebag, Cathy M.; Peterson, Curtis W.; Assia, Shai; Levitz, David

    2018-02-01

    Rhinolaryngoscopy remains difficult to perform in resource-limited settings due to the high cost of purchasing and maintaining equipment as well as the need for specialists to interpret exam findings. While the lack of expertise can be obviated by adopting telemedicine-based approaches, the capture, storage, and sharing of images/video is not a common native functionality of medical devices. Most rhinolaryngoscopy systems consist of an endoscope that interfaces with the patient's naso/oropharynx, and a tower of modules that record video/images. However, these expensive and bulky modules can be replaced by a smartphone that can fulfill the same functions but at a lower cost. To demonstrate this, a commercially available rhinolaryngoscope was coupled to a smartphone using a 3D-printed adapter. Software developed for other clinical applications was repurposed for ENT use, including an application that controls image and video capture, a HIPAA-compliant image/video storage and transfer cloud database, and customized software features developed to improve practitioner competency. Audio recording capabilities to assess speech pathology were also integrated into the smartphone rhinolaryngoscope system. The illumination module coupled onto the endoscope remained unchanged. The spatial resolution of the rhinolaryngoscope system was defined by the fiber diameter of endoscope fiber bundle, rather than the smartphone camera. The mobile rhinolaryngoscope system was used with appropriate patients by a general practitioner in an office setting. The general practitioner then consulted with an ENT specialist via the HIPAA compliant cloud database and workflow modules on difficult cases. These results suggest the smartphone-based rhinolaryngoscope holds promise for use in low-resource settings.

  10. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-01-01

    Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...

  11. HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda.

    Directory of Open Access Journals (Sweden)

    T Déirdre Hollingsworth

    2010-05-01

    Full Text Available It has been hypothesized that HIV-1 viral load set-point is a surrogate measure of HIV-1 viral virulence, and that it may be subject to natural selection in the human host population. A key test of this hypothesis is whether viral load set-points are correlated between transmitting individuals and those acquiring infection. We retrospectively identified 112 heterosexual HIV-discordant couples enrolled in a cohort in Rakai, Uganda, in which HIV transmission was suspected and viral load set-point was established. In addition, sequence data was available to establish transmission by genetic linkage for 57 of these couples. Sex, age, viral subtype, index partner, and self-reported genital ulcer disease status (GUD were known. Using ANOVA, we estimated the proportion of variance in viral load set-points which was explained by the similarity within couples (the 'couple effect'. Individuals with suspected intra-couple transmission (97 couples had similar viral load set-points (p = 0.054 single factor model, p = 0.0057 adjusted and the couple effect explained 16% of variance in viral loads (23% adjusted. The analysis was repeated for a subset of 29 couples with strong genetic support for transmission. The couple effect was the major determinant of viral load set-point (p = 0.067 single factor, and p = 0.036 adjusted and the size of the effect was 27% (37% adjusted. Individuals within epidemiologically linked couples with genetic support for transmission had similar viral load set-points. The most parsimonious explanation is that this is due to shared characteristics of the transmitted virus, a finding which sheds light on both the role of viral factors in HIV-1 pathogenesis and on the evolution of the virus.

  12. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  13. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  14. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System

    International Nuclear Information System (INIS)

    Ping, Liu; Sen-Yue, Lou

    2010-01-01

    The coupled Volterra system, an integrable discrete form of a coupled Korteweg–de Vries (KdV) system applied widely in fluids, Bose–Einstein condensation and atmospheric dynamics, is studied with the help of the Lie point symmetries. Two types of delayed differential reduction systems are derived from the coupled Volterra system by means of the symmetry reduction approach and symbolic computation. Cnoidal wave and solitary wave solutions for a delayed differential reduction system and the coupled Volterra system are proposed, respectively. (general)

  15. Comments on gluon 6-point scattering amplitudes in N = 4 SYM at strong coupling

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Dobashi, Suguru; Ito, Katsushi; Nastase, Horatiu

    2007-01-01

    We use the AdS-CFT prescription of Alday and Maldacena [1] to analyze gluon 6-point scattering amplitudes at strong coupling in N = 4 SYM. By cutting and gluing we obtain AdS 6-point amplitudes that contain extra boundary conditions and come close to matching the field theory results. We interpret them as parts of the field theory amplitudes, containing only certain diagrams. We also analyze the collinear limits of 6- and 5-point amplitudes and discuss the results

  16. An approximate factorization procedure for solving nine-point elliptic difference equations. Application for a fast 2-D relativistic Fokker-Planck solver

    International Nuclear Information System (INIS)

    Peysson, Y.

    1997-09-01

    A full implicit numerical procedure based on the use of a nine-point difference operator is presented to solve the two dimensional (2 D ) relativistic Fokker-Planck equation for the current drive problem and synergetic effects between the lower hybrid and the electron cyclotron waves in tokamaks. As compared to the standard approach based on the use of a five-point difference operator [M. Shoucri, I. Shkarofsky, Comput. Phys. Comm. 82 (1994) 287], the convergence rate towards the steady state solution may be significantly enhanced with no loss of accuracy on the distribution function. Moreover, it is shown that the numerical stability may be strongly improved without a large degradation of the CPU time consumption as in the five-point scheme, making this approach very attractive for a fast solution of the 2-D Fokker-Planck equation on a fine grid in conjunction with other numerical codes for realistic plasma simulations. This new algorithm, based on an approximate matrix factorization technique, may be applied to all numerical problems with large sets of equations which involve nine-point difference operators. (author)

  17. An approximate factorization procedure for solving nine-point elliptic difference equations. Application for a fast 2-D relativistic Fokker-Planck solver

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y. [Association Euratom-CEA, CEA Grenoble, 38 (France). Dept. de Recherches sur la Fusion Controlee; Choucri, M. [Centre Canadien de Fusion Magnetique, Varennes, PQ (Canada)

    1997-09-01

    A full implicit numerical procedure based on the use of a nine-point difference operator is presented to solve the two dimensional (2{sub D}) relativistic Fokker-Planck equation for the current drive problem and synergetic effects between the lower hybrid and the electron cyclotron waves in tokamaks. As compared to the standard approach based on the use of a five-point difference operator [M. Shoucri, I. Shkarofsky, Comput. Phys. Comm. 82 (1994) 287], the convergence rate towards the steady state solution may be significantly enhanced with no loss of accuracy on the distribution function. Moreover, it is shown that the numerical stability may be strongly improved without a large degradation of the CPU time consumption as in the five-point scheme, making this approach very attractive for a fast solution of the 2-D Fokker-Planck equation on a fine grid in conjunction with other numerical codes for realistic plasma simulations. This new algorithm, based on an approximate matrix factorization technique, may be applied to all numerical problems with large sets of equations which involve nine-point difference operators. (author) 21 refs.

  18. Strong coupling strategy for fluid-structure interaction problems in supersonic regime via fixed point iteration

    Science.gov (United States)

    Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.

    2009-03-01

    In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.

  19. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  20. Nonlinear Dynamics, Fixed Points and Coupled Fixed Points in Generalized Gauge Spaces with Applications to a System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Adrian Petruşel

    2015-01-01

    Full Text Available We will discuss discrete dynamics generated by single-valued and multivalued operators in spaces endowed with a generalized metric structure. More precisely, the behavior of the sequence (fn(xn∈N of successive approximations in complete generalized gauge spaces is discussed. In the same setting, the case of multivalued operators is also considered. The coupled fixed points for mappings t1:X1×X2→X1 and t2:X1×X2→X2 are discussed and an application to a system of nonlinear integral equations is given.

  1. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  2. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  3. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-01

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  4. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-07

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  5. A Coupled Fixed Point Theorem in Fuzzy Metric Space Satisfying ϕ-Contractive Condition

    Directory of Open Access Journals (Sweden)

    B. D. Pant

    2013-01-01

    Full Text Available The intent of this paper is to prove a coupled fixed point theorem for two pairs of compatible and subsequentially continuous (alternately subcompatible and reciprocally continuous mappings, satisfying ϕ-contractive conditions in a fuzzy metric space. We also furnish some illustrative examples to support our results.

  6. Infrared fixed point solution for the top quark mass and unification of couplings in the MSSM

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Carena, M.; Pokorski, S.; Wagner, C.E.M.

    1993-08-01

    We analyze the implications of the infrared quasi fixed point solution for the top quark mass in the Minimal Supersymmetric Standard Model. This solution could explain in a natural way the relatively large value of the top quark mass and, if confirmed experimentally, may be suggestive of the onset of nonperturbative physics at very high energy scales. In the framework of grand unification, the expected bottom quark -- tau lepton Yukawa coupling unification is very sensitive to the fixed point structure of the top quark mass. For the presently allowed values of the electroweak parameters and the bottom quark mass, the Yukawa coupling unification implies that the top quark mass must be within ten percent of its fixed point values

  7. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  8. Ferromagnetic Spin Coupling as the Origin of 0.7 Anomaly in Quantum Point Contacts

    OpenAIRE

    Aryanpour, K.; Han, J. E.

    2008-01-01

    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that $0.7(2e^{2}/h)$ anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incohe...

  9. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    International Nuclear Information System (INIS)

    Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei

    2015-01-01

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  10. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)

    2015-09-18

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  11. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    Science.gov (United States)

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  13. Mechanism research on coupling effect between dew point corrosion and ash deposition

    International Nuclear Information System (INIS)

    Wang, Yun-Gang; Zhao, Qin-Xin; Zhang, Zhi-Xiang; Zhang, Zhi-Chao; Tao, Wen-Quan

    2013-01-01

    In order to study the coupling mechanism between ash deposition and dew point corrosion, five kinds of tube materials frequently used as anti-dew point corrosion materials were selected as research objects. Dew point corrosion and ash deposition experiments were performed with a new type experimental device in a Chinese thermal power plant. The microstructures of the materials and the composition of ash deposition were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS). The results showed that the ash deposition layer could be divided into non-condensation zone, the main condensation zone and the secondary condensation zone. The acid vapor condensed in the main condensation zone rather than directly on the tube wall surface. The dew point corrosion mainly is oxygen corrosion under the condition of the viscosity ash deposition, and the corrosion products are composed of the ash and acid reaction products in the outer layer, iron sulfate in the middle layer, and iron oxide in the inner layer. The innermost layer is the main corrosion layer. With the increase of the tube wall temperature, the ash deposition changes from the viscosity ash deposition to the dry loose ash deposition, the ash deposition rate decreases dramatically and dew point corrosion is alleviated efficiently. The sulfuric dew point corrosion resistance of the five test materials is as follows: 316L > ND > Corten>20G > 20 steel. -- Highlights: ► Dew point corrosion and ash deposition tests of five materials were performed. ► Acid vapor condensed in the ash deposit rather than directly on the tube surface. ► Dew point corrosion resistance is as follow: 316L > ND > Corten>20G > 20 steel. ► Dew point corrosion mainly is oxygen corrosion under viscosity ash deposition

  14. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.

    Science.gov (United States)

    Chen, Yuntian; Zhang, Yan; Femius Koenderink, A

    2017-09-04

    We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

  15. An unsteady point vortex method for coupled fluid-solid problems

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, Sebastien [Jacobs School of Engineering, UCSD, Department of Mechanical and Aerospace Engineering, La Jolla, CA (United States); Ecole Nationale Superieure des Mines de Paris, Paris (France); Llewellyn Smith, Stefan G. [Jacobs School of Engineering, UCSD, Department of Mechanical and Aerospace Engineering, La Jolla, CA (United States)

    2009-06-15

    A method is proposed for the study of the two-dimensional coupled motion of a general sharp-edged solid body and a surrounding inviscid flow. The formation of vorticity at the body's edges is accounted for by the shedding at each corner of point vortices whose intensity is adjusted at each time step to satisfy the regularity condition on the flow at the generating corner. The irreversible nature of vortex shedding is included in the model by requiring the vortices' intensity to vary monotonically in time. A conservation of linear momentum argument is provided for the equation of motion of these point vortices (Brown-Michael equation). The forces and torques applied on the solid body are computed as explicit functions of the solid body velocity and the vortices' position and intensity, thereby providing an explicit formulation of the vortex-solid coupled problem as a set of non-linear ordinary differential equations. The example of a falling card in a fluid initially at rest is then studied using this method. The stability of broadside-on fall is analysed and the shedding of vorticity from both plate edges is shown to destabilize this position, consistent with experimental studies and numerical simulations of this problem. The reduced-order representation of the fluid motion in terms of point vortices is used to understand the physical origin of this destabilization. (orig.)

  16. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wen, X.; Deng, Q.; Guo, J.; Zhao, X.; Zhao, Y.; Ji, S.

    2012-01-01

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L -1 , which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  17. Coupling-reducing k-points for photonic crystal fibre calculations

    DEFF Research Database (Denmark)

    Albertsen, Maja; Lægsgaard, Jesper; Barkou Libori, Stig Eigil

    2003-01-01

    When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice of the tran......When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice...... of the transverse Bloch wave vector, k. We describe a method to derive k-points that minimize the coupling between repeated images of the guided modes in real space. Calculations have been done for a quadratic and a triangular photonic crystal fiber structure. With the new coupling reducing (CR) k...

  18. Application of relativistic distorted-wave method to electron-impact excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas

    Science.gov (United States)

    Chen, Zhanbin

    2018-05-01

    The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.

  19. Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts.

    Science.gov (United States)

    Aryanpour, K; Han, J E

    2009-02-06

    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of the 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that 0.7(2e;{2}/h) anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incoherent scattering at high temperature when the electron traversal time matches the time scale of dynamic ferromagnetic excitations.

  20. Spin symmetry in the relativistic symmetrical well potential including a proper approximation to the spin-orbit coupling term

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2010-01-01

    In the case of exact spin symmetry, we approximately solve the Dirac equation with scalar and vector symmetrical well potentials by using a proper approximation to the spin-orbit coupling term, and obtain the corresponding energy equation and spinor wave functions for the bound states. We find that there exist only positive-energy bound states in the case of spin symmetry. Also, the energy eigenvalue approaches a constant when the potential parameter α goes to zero. The special case for equally scalar and vector symmetrical well potentials is studied briefly.

  1. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  2. SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS

    Directory of Open Access Journals (Sweden)

    Jan Schnabel

    2017-12-01

    Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.

  3. Side-Scan Sonar Image Mosaic Using Couple Feature Points with Constraint of Track Line Positions

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2018-06-01

    Full Text Available To obtain large-scale seabed surface image, this paper proposes a side-scan sonar (SSS image mosaic method using couple feature points (CFPs with constraint of track line positions. The SSS geocoded images are firstly used to form a coarsely mosaicked one and the overlapping areas between adjacent strip images can be determined based on geographic information. Inside the overlapping areas, the feature point (FP detection and registration operation are adopted for both strips. According to the detected CFPs and track line positions, an adjustment model is established to accommodate complex local distortions as well as ensure the global stability. This proposed method effectively solves the problem of target ghosting or dislocation and no accumulated errors arise in the mosaicking process. Experimental results show that the finally mosaicked image correctly reflects the object distribution, which is meaningful for understanding and interpreting seabed topography.

  4. Relativistic hadrodynamics with field-strength dependent coupling of the scalar fields in Hartree and Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Lindner, J.

    1992-09-01

    In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)

  5. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  6. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    Science.gov (United States)

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  7. A correction procedure for thermally two-way coupled point-particles

    Science.gov (United States)

    Horwitz, Jeremy; Ganguli, Swetava; Mani, Ali; Lele, Sanjiva

    2017-11-01

    Development of a robust procedure for the simulation of two-way coupled particle-laden flows remains a challenge. Such systems are characterized by O(1) or greater mass of particles relative to the fluid. The coupling of fluid and particle motion via a drag model means the undisturbed fluid velocity evaluated at the particle location (which is needed in the drag model) is no longer equal to the interpolated fluid velocity at the particle location. The same issue arises in problems of dispersed flows in the presence of heat transfer. The heat transfer rate to each particle depends on the difference between the particle's temperature and the undisturbed fluid temperature. We borrow ideas from the correction scheme we have developed for particle-fluid momentum coupling by developing a procedure to estimate the undisturbed fluid temperature given the disturbed temperature field created by a point-particle. The procedure is verified for the case of a particle settling under gravity and subject to radiation. The procedure is developed in the low Peclet, low Boussinesq number limit, but we will discuss the applicability of the same correction procedure outside of this regime when augmented by appropriate drag and heat exchange correlations. Supported by DOE, J. H. Supported by NSF GRF

  8. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  9. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  10. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  11. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  12. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  13. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  14. Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji

    2014-06-01

    We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

  15. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  16. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  17. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  18. K -essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Zhuk, Alexander, E-mail: mbl@ubi.pt, E-mail: sravan@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Street Dvoryanskaya 2, Odessa 65082 (Ukraine)

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  19. The general problem of the motion of coupled rigid bodies about a fixed point

    CERN Document Server

    Leimanis, Eugene

    1965-01-01

    In the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo­ metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen­ tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.

  20. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  1. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  2. Mass scale of vectorlike matter and superpartners from IR fixed point predictions of gauge and top Yukawa couplings

    Science.gov (United States)

    Dermíšek, Radovan; McGinnis, Navin

    2018-03-01

    We use the IR fixed point predictions for gauge couplings and the top Yukawa coupling in the minimal supersymmetric model (MSSM) extended with vectorlike families to infer the scale of vectorlike matter and superpartners. We quote results for several extensions of the MSSM and present results in detail for the MSSM extended with one complete vectorlike family. We find that for a unified gauge coupling αG>0.3 vectorlike matter or superpartners are expected within 1.7 TeV (2.5 TeV) based on all three gauge couplings being simultaneously within 1.5% (5%) from observed values. This range extends to about 4 TeV for αG>0.2 . We also find that in the scenario with two additional large Yukawa couplings of vectorlike quarks the IR fixed point value of the top Yukawa coupling independently points to a multi-TeV range for vectorlike matter and superpartners. Assuming a universal value for all large Yukawa couplings at the grand unified theory scale, the measured top quark mass can be obtained from the IR fixed point for tan β ≃4 . The range expands to any tan β >3 for significant departures from the universality assumption. Considering that the Higgs boson mass also points to a multi-TeV range for superpartners in the MSSM, adding a complete vectorlike family at the same scale provides a compelling scenario where the values of gauge couplings and the top quark mass are understood as a consequence of the particle content of the model.

  3. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  4. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    Science.gov (United States)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  5. Properties of the twisted Polyakov loop coupling and the infrared fixed point in the SU(3) gauge theories

    Science.gov (United States)

    Itou, Etsuko

    2013-08-01

    We report the nonperturbative behavior of the twisted Polyakov loop (TPL) coupling constant for the SU(3) gauge theories defined by the ratio of Polyakov loop correlators in finite volume with twisted boundary condition. We reveal the vacuum structures and the phase structure for the lattice gauge theory with the twisted boundary condition. Carrying out the numerical simulations, we determine the nonperturbative running coupling constant in this renormalization scheme for the quenched QCD and N_f=12 SU(3) gauge theories. First, we study the quenched QCD theory using the plaquette gauge action. The TPL coupling constant has a fake fixed point in the confinement phase. We discuss this fake fixed point of the TPL scheme and obtain the nonperturbative running coupling constant in the deconfinement phase, where the magnitude of the Polyakov loop shows the nonzero values. We also investigate the system coupled to fundamental fermions. Since we use the naive staggered fermion with the twisted boundary condition in our simulation, only multiples of 12 are allowed for the number of flavors. According to the perturbative two-loop analysis, the N_f=12 SU(3) gauge theory might have a conformal fixed point in the infrared region. However, recent lattice studies show controversial results for the existence of the fixed point. We point out possible problems in previous work, and present our careful study. Finally, we find the infrared fixed point (IRFP) and discuss the robustness of the nontrivial IRFP of a many-flavor system under the change of the analysis method. Some preliminary results were reported in the proceedings [E. Bilgici et al., PoS(Lattice 2009), 063 (2009); Itou et al., PoS(Lattice 2010), 054 (2010)] and the letter paper [T. Aoyama et al., arXiv:1109.5806 [hep-lat

  6. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  7. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  8. A flat Chern-Simons gauge theory for (2+1)-dimensional gravity coupled to point particles

    International Nuclear Information System (INIS)

    Grignani, G.; Nardelli, G.

    1991-01-01

    We present a classical ISO (2,1) Chern-Simons gauge theory for planar gravity coupled to point-like sources. The theory is defined in terms of flat coordinates whose relation with the space-time coordinates is established. Though flat, the theory is equivalent to Einstein's as we show explicitly in two examples. (orig.)

  9. Distributed primal–dual interior-point methods for solving tree-structured coupled convex problems using message-passing

    DEFF Research Database (Denmark)

    Khoshfetrat Pakazad, Sina; Hansson, Anders; Andersen, Martin S.

    2017-01-01

    In this paper, we propose a distributed algorithm for solving coupled problems with chordal sparsity or an inherent tree structure which relies on primal–dual interior-point methods. We achieve this by distributing the computations at each iteration, using message-passing. In comparison to existi...

  10. Renormalization group flows and fixed points for a scalar field in curved space with nonminimal F (ϕ )R coupling

    Science.gov (United States)

    Merzlikin, Boris S.; Shapiro, Ilya L.; Wipf, Andreas; Zanusso, Omar

    2017-12-01

    Using covariant methods, we construct and explore the Wetterich equation for a nonminimal coupling F (ϕ )R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This includes the often considered nonminimal coupling ξ ϕ2R as a special case. We consider the truncations without and with scale- and field-dependent wave-function renormalization in dimensions between four and two. Thereby the main emphasis is on analytic and numerical solutions of the fixed point equations and the behavior in the vicinity of the corresponding fixed points. We determine the nonminimal coupling in the symmetric and spontaneously broken phases with vanishing and nonvanishing average fields, respectively. Using functional perturbative renormalization group methods, we discuss the leading universal contributions to the RG flow below the upper critical dimension d =4 .

  11. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  12. Solving the strongly coupled 2D gravity III. String suspectibility and topological N-point functions

    International Nuclear Information System (INIS)

    Gervais, J.-L.; Roussel, J.-F.

    1996-01-01

    For pt.II see ibid., vol 426, p.140-86, 1994. We spell out the derivation of novel features, put forward earlier in a letter, of two-dimensional gravity in the strong coupling regime, at C L =7, 13, 19. Within the operator approach previously developed, they neatly follow from the appearance of a new cosmological term/marginal operator, different from the standard weak-coupling one, that determines the world-sheet interaction. The corresponding string susceptibility is obtained and found real contrary to the continuation of the KPZ formula. Strongly coupled (topological like) models - only involving zero-mode degrees of freedom - are solved up to sixth order, using the Ward identities which follow from the dependence upon the new cosmological constant. They are technically similar to the weakly coupled ones, which reproduce the matrix model results, but gravity and matter quantum numbers are entangled differently. (orig.)

  13. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  14. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  15. Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-04-15

    We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)

  16. Fundamental laws of relativistic classical dynamics revisited

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1977-01-01

    By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics [fr

  17. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  18. Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements.

    Science.gov (United States)

    Höfener, Sebastian; Ahlrichs, Reinhart; Knecht, Stefan; Visscher, Lucas

    2012-12-07

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga(2) to Br(2) , the 5p-block dimers In(2) to I(2) , and their atoms. Extended basis sets up to pentuple zeta are employed and energies extrapolated to the complete basis-set limit. Relativistic and non-relativistic results for the dissociation energy D(e) are in close agreement with each other and previously published data, provided non-relativistic or scalar-relativistic results are corrected for spin-orbit contributions taken from the literature. An exception is Te(2) where theoretical results scatter by 0.085 eV. By virtue of this agreement it is unexpected that comparison with the experimental D(0) or D(e) dissociation energies (zero-point vibrational effects are negligible in this context) reveal errors larger than 0.1 eV for Ga(2), Ge(2), and Sb(2). Only relativistic treatments are presented for the 6p-block cases Tl(2) to At(2). Sufficient agreement with experimental data is found only for Pb(2) and Bi(2), the deviation of the computed and experimental D(0) values for Po(2) is again larger than 0.1 eV. Deviations of 0.1 eV between the computed and experimental D(0) values are a major reason for concern and call for additional investigations in both fields to clarify the situation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relativistic stars in vector-tensor theories

    Science.gov (United States)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  20. Coupling reducing k-points for supercell models of defects in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    The optimum choice of k-point for supercell calculations of defect states in a three-dimensional photonic crystal is investigated for the case of a supercell with a simple cubic (SC) structure. By using the k-point (1/4,1/4,1/4) it is possible to eliminate the symmetric part of the repeated...

  1. Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    International Nuclear Information System (INIS)

    Konopelchenko, B; Alonso, L MartInez; Medina, E

    2010-01-01

    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock-type singularities are presented.

  2. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    Science.gov (United States)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  3. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  4. Relativistic model-potential oscillator strengths and transition probabilities for 4fsup(n)6s-4fsup(n)6p transitions in Eu(II), Tb(II), and Ho(II) in J1j coupling

    International Nuclear Information System (INIS)

    Migdalek, J.

    1984-01-01

    The lowest 4fsup(n)6s-4fsup(n)6p transitions are studied for the Eu(II) (n=7), Tb(II) (n=9), and Ho(II) (n=11) spectra, where the J 1 J coupling is an acceptable approximation. The relativistic radial integrals, required to evaluate the oscillator strengths and transition probabilities, are calculated with the model-potential method, which includes also core-polarization effects. The similarities observed in oscillator strengths for transitions with given ΔJ but different J values are discussed and explained. The computed oscillator strengths are compared with those obtained with the Coulomb approximation and it is found that the latter are only 11-12% lower. The core polarization influence on oscillator strengths is also investigated and the 19-21% decrease in oscillator strengths due to this effect is predicted. This result may, however, be overestimated because of some deficiencies in our procedure. (author)

  5. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  6. Potential Improvements of Supercritical Recompression CO2 Brayton Cycle Coupled with KALIMER-600 by Modifying Critical Point of CO2

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon

    2010-01-01

    Most of the existing designs of a Sodium cooled Fast Reactor (SFR) have a Rankine cycle as an electric power generation cycle. This has the risk of a sodium water reaction. To prevent any hazards from a sodium water reaction, an indirect Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluids for a SFR is an alternative approach to improve the current SFR design. The supercritical Brayton cycle is defined as a cycle with operating conditions above the critical point and the main compressor inlet condition located slightly above the critical point of working fluid. This is because the main advantage of the cycle comes from significantly decreased compressor work just above the critical point due to high density near boundary between supercritical state and subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the minimum temperature of a thermodynamic cycle can increase the efficiency and the minimum temperature can be decreased by shifting the critical point of CO 2 as mixed with other gases. In this paper, potential enhancement of S-CO 2 cycle coupled with KALIMER-600, which has been developed at KAERI, was investigated using a developed cycle code with a gas mixture property program

  7. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  8. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  9. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  10. Method of Measuring the Coupled Lattice Functions at the Interaction Point in e sup + e sup - Storage Rings

    CERN Document Server

    Cai, Y

    2003-01-01

    We have investigate a method of measuring the complete lattice functions including the coupling parameters at any azimuthal position in a periodic an symplectic system. In particular, the method is applied to measure the lattice functions at the interaction point where the beams collide. It has been demonstrate that a complete set of lattice functions can be accurately measured with two adjacent beam position monitors and the known transformation matrix between them. As a by-product, the method also automatically measures the complete one-turn matrix.

  11. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  12. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  13. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  14. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  15. Renormalization group summation, spectrality constraints, and coupling constant analyticity for phenomenological applications of two-point correlators in QCD

    International Nuclear Information System (INIS)

    Pivovarov, A.A.

    2003-01-01

    The analytic structure in the strong coupling constant that emerges for some observables in QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A consistent description of peculiar features of perturbation theory series related to hypothetical infrared renormalons and corresponding power corrections is considered. It is shown that perturbation theory series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be summed in all orders using the definition of the moments that avoids integration through the infrared region in momentum space. Such a definition of the moments relies on the analytic properties of two-point correlators in the momentum variable that allows for shifting the integration contour into the complex plane of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail

  16. Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)

    2006-10-15

    Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)

  17. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    Science.gov (United States)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  18. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    Science.gov (United States)

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  19. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  20. Point Climat no. 20 'CDM Policy Dialogue: a traditional 'treatment' coupled with new 'prescriptions' '

    International Nuclear Information System (INIS)

    Shishlov, Igor; Bellassen, Valentin

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: As the Clean Development Mechanism (CDM) reached the milestone billionth CER issued and the secondary CER price tipped below 2 euros, the recommendations of the High Level Panel on the CDM Policy Dialogue published on 11 September 2012 could not be timelier. By focusing on the current supply-demand disequilibrium that threatens the very survival of the CDM, the Panel extended its recommendations beyond the traditional scope of CDM reform. The Panel's ambition to pro-actively engage with other climate initiatives such as the Green Fund and regional markets is also innovative. Indeed, the CDM toolbox enriched by 10-years of experience stands to apply to or be partly recycled through new mechanisms. Along the 51 recommendations from the Policy Dialogue, there are calls for further standardization and streamlining, together with both old and new ideas on governance and contribution of the CDM to sustainable development

  1. Coupling Adaptation Tipping Points and Engineering Options: New Insights for Resilient Water Infrastructure Replacement Planning

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2017-12-01

    This work presents an innovative approach for replacement planning for aging water infrastructure given uncertain future conditions. We draw upon two existing methodologies to develop an integrated long-term replacement planning framework. We first expand the concept of Adaptation Tipping Points to generate long-term planning timelines that incorporate drivers of investment related to both internal structural processes as well as changes in external operating conditions. Then, we use Engineering Options to explore different actions taken at key moments in this timeline. Contrasting to the traditionally more static approach to infrastructure design, designing the next generation of infrastructure so it can be changed incrementally is a promising method to safeguard current investments given future uncertainty. This up-front inclusion of structural options in the system actively facilitates future adaptation, transforming uncertainty management in infrastructure planning from reactive to more proactive. A two-part model underpins this approach. A simulation model generates diverse future conditions, allowing development of timelines of intervention moments in the structure's life. This feeds into an economic model, evaluating the lifetime performance of different replacement strategies, making explicit the value of different designs and their flexibility. A proof of concept study demonstrates this approach for a pumping station. The strategic planning timelines for this structure demonstrate that moments when capital interventions become necessary due to reduced functionality from structural degradation or changed operating conditions are widely spread over the structure's life. The disparate timing of these necessary interventions supports an incremental, adaptive mindset when considering end-of-life and replacement decisions. The analysis then explores different replacement decisions, varying the size and specific options included in the proposed new structure

  2. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  3. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  4. Differential regularization of a non-relativistic anyon model

    International Nuclear Information System (INIS)

    Freedman, D.Z.; Rius, N.

    1993-07-01

    Differential regularization is applied to a field theory of a non-relativistic charged boson field φ with λ(φ * φ) 2 self-interaction and coupling to a statistics-changing 0(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the φ * φ * φφ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ, e) vanish, and β(λ, ε) itself vanishes when the ''self-dual'' condition relating λ to the gauge coupling e is imposed. (author). 12 refs, 1 fig

  5. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    Energy Technology Data Exchange (ETDEWEB)

    Křístková, Anežka; Malkin, Vladimir G. [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava (Slovakia); Komorovsky, Stanislav; Repisky, Michal [Centre for Theoretical and Computational Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø (Norway); Malkina, Olga L., E-mail: olga.malkin@savba.sk [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava (Slovakia); Department of Inorganic Chemistry, Comenius University, Bratislava (Slovakia)

    2015-03-21

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  6. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    International Nuclear Information System (INIS)

    Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.

    2015-01-01

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method

  7. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  8. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  9. Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field

    International Nuclear Information System (INIS)

    Schwabl, H; Mesa Pascasio, J; Fussy, S; Grössing, G

    2012-01-01

    In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a 'particle' as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hω o and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with Ref. [2], expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works.

  10. Relativistic treatment of mesonic contributions to quasielastic (e,e')

    International Nuclear Information System (INIS)

    Blunden, P.G.; Butler, M.N.

    1988-03-01

    Meson exchange currents play an important role in the description of observables in electron scattering. The authors use a relativistic model with pseudovector pion coupling to study the exchange current contributions, with emphasis on quasielastic kinematics. Starting with the Lagrangian for nucleons interacting with a scalar and vector mason along with pseudovector coupling to pions, they derive the one and two-body electromagnetic currents. They then calculate the longitudinal and transverse pieces of the quasielastic cross section for various nuclei and kinematics. The effects of meson exchange currents are found to be much more important in a relativistic model than in a non-relativistic one

  11. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  12. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  13. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  14. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  15. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  16. Investigating the use of multi-point coupling for single-sensor bearing estimation in one direction

    Science.gov (United States)

    Woolard, Americo G.; Phoenix, Austin A.; Tarazaga, Pablo A.

    2018-04-01

    Bearing estimation of radially propagating symmetric waves in solid structures typically requires a minimum of two sensors. As a test specimen, this research investigates the use of multi-point coupling to provide directional inference using a single-sensor. By this provision, the number of sensors required for localization can be reduced. A finite-element model of a beam is constructed with a symmetrically placed bipod that has asymmetric joint-stiffness properties. Impulse loading is applied at different points along the beam, and measurements are taken from the apex of the bipod. A technique is developed to determine the direction-of-arrival of the propagating wave. The accuracy when using the bipod with the developed technique is compared against results gathered without the bipod and measuring from an asymmetric location along the beam. The results show 92% accuracy when the bipod is used, compared to 75% when measuring without the bipod from an asymmetric location. A geometry investigation finds the best accuracy results when one leg of the bipod has a low stiffness and a large diameter relative to the other leg.

  17. Testing of an End-Point Control Unit Designed to Enable Precision Control of Manipulator-Coupled Spacecraft

    Science.gov (United States)

    Montgomery, Raymond C.; Ghosh, Dave; Tobbe, Patrick A.; Weathers, John M.; Manouchehri, Davoud; Lindsay, Thomas S.

    1994-01-01

    This paper presents an end-point control concept designed to enable precision telerobotic control of manipulator-coupled spacecraft. The concept employs a hardware unit (end-point control unit EPCU) that is positioned between the end-effector of the Space Shuttle Remote Manipulator System and the payload. Features of the unit are active compliance (control of the displacement between the end-effector and the payload), to allow precision control of payload motions, and inertial load relief, to prevent the transmission of loads between the end-effector and the payload. This paper presents the concept and studies the active compliance feature using a simulation and hardware. Results of the simulation show the effectiveness of the EPCU in smoothing the motion of the payload. Results are presented from initial, limited tests of a laboratory hardware unit on a robotic arm testbed at the l Space Flight Center. Tracking performance of the arm in a constant speed automated retraction and extension maneuver of a heavy payload with and without the unit active is compared for the design speed and higher speeds. Simultaneous load reduction and tracking performance are demonstrated using the EPCU.

  18. On large N fixed points of a U(N) symmetric (phisup(*)xphi)3sub(D=3) model coupled to fermions

    International Nuclear Information System (INIS)

    Nissimov, E.R.; Pacheva, S.J.

    1984-01-01

    The three-dimensional U(N) symmetric eta(phisup(*) x phi) 3 model coupled to N component fermions is considered within the 1/N expansion. In contrast to the purely bosonic case, here we find in the large N limit only a (nonperturbative) ultraviolet fixed point at eta=etasup(*) approx.= 179, whereas infrared fixed points are absent. (orig.)

  19. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  20. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  1. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  2. The modulational and filamentational instabilities of two coupled electromagnetic waves in plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.

    1992-01-01

    The modulational and filamentational instabilities of two coupled electromagnetic waves have been investigated, taking into account the combined effect of relativistic electron mass variations and nonresonant density fluctuations that are driven by the ponderomotive force. The relevance of our investigation to phenomena related with nonlinear mixing of electromagnetic waves is pointed out. (orig.)

  3. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  4. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  5. Properties of general relativistic kink solution

    International Nuclear Information System (INIS)

    Kodama, T.; Oliveira, L.C.S. de; Santos, F.C.

    1978-12-01

    Properties of the general relativistic kink solution of a nonlinear scalar field recently obtained, are discussed. It has been shown that the kink solution is stable against radical perturbations. Possible applications to Hadron physics from the geometrodynamic point of view are suggested [pt

  6. Some remarks concerning relativistic kinetic theory

    International Nuclear Information System (INIS)

    Schroeter, J.

    1990-01-01

    The starting point of our investigation is a classical kinetic theory which includes correlational effects as well as the complete electromagnetic interaction. Also classical gravitation can be incorporated. The relativistic version of this theory is written down using some heuristic arguments. Its essential feature is the difference between terms representing gravitational interaction and the metric tensor representing geometrical properties. (author)

  7. Production of hypernuclei in relativistic ion beams

    International Nuclear Information System (INIS)

    Bando, H.; Sano, M.; Wakai, M.; Zofka, J.

    1988-05-01

    The hypernuclear formation in collisions of relativistic beams of 4 He, 7 Li, 12 C and 19 F with target of 12 C is calculated at energies used in the recent Dubna experiment. The hyperfragments optimal for observation are pointed out and the secondary (π + K + ) formation is evaluated and found to be nonnegligible. (author)

  8. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  9. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  10. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  11. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  12. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  14. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  15. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models

    Science.gov (United States)

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-11-01

    Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.

  16. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  17. Relativistic dynamical reduction models and nonlocality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-09-01

    We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs

  18. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  19. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    KAUST Repository

    Wang, Yuwen; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlö gl, Udo

    2016-01-01

    the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse

  20. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    KAUST Repository

    Wang, Yuwen

    2016-09-22

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. © The Author(s) 2016.

  1. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  2. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  3. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  4. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  5. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  6. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  7. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    DEFF Research Database (Denmark)

    Hofener, S.; Ahlrichs, R.; Knecht, S.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...

  8. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: binhu@whu.edu.cn

    2007-10-15

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg{sup 2+} was complexed with I{sup -} to form HgI{sub 4}{sup 2-}, and the HgI{sub 4}{sup 2-} reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg{sup +}) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L{sup -1} HNO{sub 3} for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg{sup +} by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg{sup +}. The MeHg{sup +} in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg{sup +} with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg{sup +}, respectively. The limits of detection (LODs) were 56.3 ng L{sup -1} for Hg(II) and 94.6 ng L{sup -1} for MeHg{sup +} (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg{sup +} (C = 10 {mu}g L{sup -1}, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.

  9. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Li Yingjie; Hu Bin

    2007-01-01

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg 2+ was complexed with I - to form HgI 4 2- , and the HgI 4 2- reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg + ) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L -1 HNO 3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg + by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg + . The MeHg + in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg + with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg + , respectively. The limits of detection (LODs) were 56.3 ng L -1 for Hg(II) and 94.6 ng L -1 for MeHg + (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg + (C = 10 μg L -1 , n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values

  10. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  11. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  12. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  13. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  14. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  15. Development and application of a coupled bio-geochmical and hydrological model for point and non-point source river water pollution

    Science.gov (United States)

    Pohlert, T.

    2007-12-01

    The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/

  16. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  17. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  18. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  19. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  20. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  1. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  2. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  3. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  4. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  5. Relativistic effects in elastic scattering of electrons in TEM

    International Nuclear Information System (INIS)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  6. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  7. Facilitated disclosure versus clinical accommodation of infidelity secrets: an early pivot point in couple therapy. Part 1: couple relationship ethics, pragmatics, and attachment.

    Science.gov (United States)

    Butler, Mark H; Harper, James M; Seedall, Ryan B

    2009-01-01

    A critical and potentially polarizing decision in treating infidelity is whether facilitating partner disclosure or accommodating nondisclosure is most beneficial following private disclosure of infidelity to the therapist. Given couple distress and volatility following disclosure, understandably some therapists judge accommodating an infidelity secret both efficient and compassionate. Employing Western ethics and an attachment/intimacy lens, we consider ethical, pragmatic, and attachment intimacy implications of accommodating infidelity secrets. Issues bearing on the decision to facilitate disclosure or accommodate nondisclosure include (a) relationship ethics and pragmatics; (b) attachment and intimacy consequences; and (c) prospects for healing. We conclude that facilitating voluntary disclosure of infidelity, although difficult and demanding, represents the most ethical action with the best prospects for renewed and vital attachment intimacy.

  8. A Unique Coupled Common Fixed Point Theorem for Symmetric (φ,ψ-Contractive Mappings in Ordered G-Metric Spaces with Applications

    Directory of Open Access Journals (Sweden)

    Manish Jain

    2013-01-01

    Full Text Available We establish the existence and uniqueness of coupled common fixed point for symmetric (φ,ψ-contractive mappings in the framework of ordered G-metric spaces. Present work extends, generalize, and enrich the recent results of Choudhury and Maity (2011, Nashine (2012, and Mohiuddine and Alotaibi (2012, thereby, weakening the involved contractive conditions. Our theoretical results are accompanied by suitable examples and an application to integral equations.

  9. NUMERICAL ANALYSIS OF MATHEMATICAL MODELS OF THE FACTUAL CONTRIBUTION DISTRIBUTION IN ASYMMETRY AND DEVIATION OF VOLTAGE AT THE COMMON COUPLING POINTS OF ENERGY SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Yu.L. Sayenko

    2016-05-01

    Full Text Available Purpose. Perform numerical analysis of the distribution of the factual contributions of line sources of distortion in the voltage distortion at the point of common coupling, based on the principles of superposition and exclusions. Methodology. Numerical analysis was performed on the results of the simulation steady state operation of power supply system of seven electricity consumers. Results. Mathematical model for determining the factual contribution of line sources of distortion in the voltage distortion at the point of common coupling, based on the principles of superposition and exclusions, are equivalent. To assess the degree of participation of each source of distortion in the voltage distortion at the point of common coupling and distribution of financial compensation to the injured party by all sources of distortion developed a one-dimensional criteria based on the scalar product of vectors. Not accounting group sources of distortion, which belong to the subject of the energy market, to determine their total factual contribution as the residual of the factual contribution between all sources of distortion. Originality. Simulation mode power supply system was carried out in the phase components space, taking into account the distributed characteristics of distortion sources. Practical value. The results of research can be used to develop methods and tools for distributed measurement and analytical systems assessment of the power quality.

  10. Interferometric Measurement of Acceleration at Relativistic Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-10

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  11. Holographic quenches towards a Lifshitz point

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Giancarlo [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil); Cuadros-Melgar, Bertha [Escola de Engenharia de Lorena, Universidade de São Paulo,Estrada Municipal do Campinho S/N, CEP: 12602-810, Lorena (Brazil); Abdalla, Elcio [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil)

    2016-02-01

    We use the holographic duality to study quantum quenches of a strongly coupled CFT that drive the theory towards a non-relativistic fixed point with Lifshitz scaling. We consider the case of a Lifshitz dynamical exponent z close to unity, where the non-relativistic field theory can be understood as a specific deformation of the corresponding CFT and, hence, the standard holographic dictionary can be applied. On the gravity side this amounts to finding a dynamical bulk solution which interpolates between AdS and Lishitz spacetimes as time evolves. We show that an asymptotically Lifshitz black hole is always formed in the final state. This indicates that it is impossible to reach the vacuum state of the Lifshitz theory from the CFT vacuum as a result of the proposed quenching mechanism. The nonequilibrium dynamics following the breaking of the relativistic scaling symmetry is also probed using both local and non-local observables. In particular, we conclude that the equilibration process happens in a top-down manner, i.e., the symmetry is broken faster for UV modes.

  12. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  13. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  14. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  15. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  16. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  17. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  18. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  19. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  20. Determination of isoquercitrin in rat plasma by high performance liquid chromatography coupled with a novel synergistic cloud point extraction.

    Science.gov (United States)

    Zhou, Jun; Sun, Jiang Bing; Wang, Qiao Feng

    2018-01-01

    A novel improved preconcentration method known as synergistic cloud point extraction was established for isoquercitrin preconcentration and determination in rat plasma prior to its determination by high performance liquid chromatography. Synergistic cloud point extraction greatly simplified isoquercitrin extraction and detection. This method was accomplished at room temperature (about 22°C) in 1min with the nonionic surfactant Tergitol TMN-6 as the extractant, n-octanol as cloud point revulsant and synergic reagent. Parameters that affect the synergistic cloud point extraction processes, such as the concentrations of Tergitol TMN-6, volume of n-octanol, sample pH, salt content and extraction time were investigated and optimized. Under the optimum conditions, the calibration curve for the analyte was linear in the range from 5 to 500ngmL -1 with the correlation coefficients greater than 0.9996. Meanwhile, limit of detection (S/N=3) was less than 1.6ngmL -1 and limit of quantification (S/N=10) was less than 5ngmL -1 . It demonstrated that the method can be successfully applied to the pharmacokinetic investigation of isoquercitrin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of the H-point standard additions method for coupled liquid-chromatography and UV-visible spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Campins-Falco, Pilar; Bosch-Reig, Francisco; Herraez-Hernandez, Rosa; Sevillano-Cabeza, Adela (Universidad de Valencia (Spain). Facultad de Quimica, Departamento de Quimica Analitica)

    1992-02-10

    This work establishes the fundamentals of the H-point standard additions method for liquid chromatography for the simultaneous analysis of binary mixtures with overlapped chromatographic peaks. The method was compared with the deconvolution method of peak suppression and the second derivative of elution profiles. Different mixtures of diuretics were satisfactorily resolved. (author). 21 refs.; 9 figs.; 2 tabs.

  2. Physical stress, mass, and energy for non-relativistic matter

    Science.gov (United States)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  3. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  4. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  5. On the relativistic calculation of spontaneous emission

    International Nuclear Information System (INIS)

    Boudet, R.

    1993-01-01

    In a recent work, Barut and Salamin (1988) have derived a method for calculating the relativistic decay rates in atoms, in a formulation of quantum electrodynamics based upon the electron's self-energy. The decay rate appears as the imaginary part of a formula giving a complex energy shift, the real part of the formula being the Lamb shift. The presence of the the decay rate in the imaginary part of a formula, giving an energy in its real part, may appear a bit strange. A confirmation of the Barut and Alamin calculation, by means of a quite different point of view, would be useful. Therefore in this work the Einstein A coefficients are calculated, in all cases of degeneracies of the Dirac transition currents, by means of the energy balance method. This point of view is based on the balance between the energy released during the transitions of electrons from a higher state to a lower one, and the flux of the Poynting vector of the classical electromagnetic field, created by the electrons, through a sphere a large radius. The particularity of the present work lies in the direct calculation of the relativistic Dirac transition currents and the fact that the dipole and Pauli approximations are avoided. The quantum part of the relativistic calculation is based on the determination of the transition charge currents in the Darwin solutions of the Dirac equation. 13 refs

  6. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  7. Form of relativistic dynamics with world lines

    International Nuclear Information System (INIS)

    Mukunda, N.; Sudarshan, E.C.G.

    1981-01-01

    In any Hamiltonian relativistic theory there are ten generators of the Poincare group which are realized canonically. The dynamical evolution is described by a Hamiltonian which is one of the ten generators in Dirac's generator formalism. The requirement that the canonical transformations reproduce the geometrical transformation of world points generates the world-line conditions. The Dirac identification of the Hamiltonian and the world-line conditions together lead to the no-interaction theorem. Interacting relativistic theories with world-line conditions should go beyond the Dirac theory and have eleven generators. In this paper we present a constraint dynamics formalism which describes an eleven-generator theory of N interacting particles using 8(N+1) variables with suitable constraints. The (N+1)th pair of four-vectors is associated with the uniform motion of a center which coincides with the center of energy for free particles. In such theories dynamics and kinematics cannot be separated out in a simple fashion

  8. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  9. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  10. Effective leaf area index retrieving from terrestrial point cloud data: coupling computational geometry application and Gaussian mixture model clustering

    Science.gov (United States)

    Jin, S.; Tamura, M.; Susaki, J.

    2014-09-01

    Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.

  11. Giant Andreev Backscattering through a Quantum Point Contact Coupled via a Disordered Two-Dimensional Electron Gas to Superconductors

    International Nuclear Information System (INIS)

    den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.

    1997-01-01

    We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. copyright 1997 The American Physical Society

  12. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  13. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  14. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  15. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  16. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  17. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  18. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  19. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  20. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  1. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  2. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  3. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  4. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  5. Relativistic electron precipitation in the auroral zone

    International Nuclear Information System (INIS)

    Simons, D.J.

    1975-01-01

    The energy spectra and pitch angle distributions of electrons in the energy range 50 keV to 2 MeV have been determined by a solid state electron energy spectrometer during the Relativistic Electron Precipitation (REP) event of 31 May 1972. The experiment was carried aboard a Nike-Cajun sounding rocket as the University of Maryland component of a joint American-Norwegian (NASA-NDRE) ionospheric investigation. The difficulty of determining the expected electron flux prior to the experiment required an instrument with a large dynamic range. The design and theoretical modeling of this instrument is described in great detail. The electron pitch angle distributions are determined from a knowledge of the rocket aspect and the direction in space of the Earth's magnetic field. The electron fluxes during the REP event were highly variable demonstrating correlated energy, flux and pitch angle pulsations with time periods less than one second. Increases in flux were accompanied by marked filling of the loss cone at lower energies (near 50 keV). Drawing upon the quasilinear equations of plasma wave-electron interactions, a theoretical model for the production of relativistic electrons is proposed. A self consistent set of fully relativistic equations for the evolution of the electron distribution function due to the interaction of the electrons with parallel propagating whistler waves is derived in the Appendix. An examination of these equations leads to the conclusion that at comparatively low background electron densities, the anomalous Doppler resonance leads to the acceleration of near relativistic particles. The results of a computer solution of the five coupled integrodifferential quasilinear equations confirms this conclusion

  6. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  7. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  8. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  9. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  10. BOOK REVIEW: Relativistic Figures of Equilibrium

    Science.gov (United States)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  11. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  12. Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm.

    Science.gov (United States)

    Ma, Denglong; Tan, Wei; Zhang, Zaoxiao; Hu, Jun

    2017-03-05

    In order to identify the parameters of hazardous gas emission source in atmosphere with less previous information and reliable probability estimation, a hybrid algorithm coupling Tikhonov regularization with particle swarm optimization (PSO) was proposed. When the source location is known, the source strength can be estimated successfully by common Tikhonov regularization method, but it is invalid when the information about both source strength and location is absent. Therefore, a hybrid method combining linear Tikhonov regularization and PSO algorithm was designed. With this method, the nonlinear inverse dispersion model was transformed to a linear form under some assumptions, and the source parameters including source strength and location were identified simultaneously by linear Tikhonov-PSO regularization method. The regularization parameters were selected by L-curve method. The estimation results with different regularization matrixes showed that the confidence interval with high-order regularization matrix is narrower than that with zero-order regularization matrix. But the estimation results of different source parameters are close to each other with different regularization matrixes. A nonlinear Tikhonov-PSO hybrid regularization was also designed with primary nonlinear dispersion model to estimate the source parameters. The comparison results of simulation and experiment case showed that the linear Tikhonov-PSO method with transformed linear inverse model has higher computation efficiency than nonlinear Tikhonov-PSO method. The confidence intervals from linear Tikhonov-PSO are more reasonable than that from nonlinear method. The estimation results from linear Tikhonov-PSO method are similar to that from single PSO algorithm, and a reasonable confidence interval with some probability levels can be additionally given by Tikhonov-PSO method. Therefore, the presented linear Tikhonov-PSO regularization method is a good potential method for hazardous emission

  13. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  14. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  15. Relativistic model for statevector reduction

    International Nuclear Information System (INIS)

    Pearle, P.

    1991-04-01

    A relativistic quantum field model describing statevector reduction for fermion states is presented. The time evolution of the states is governed by a Schroedinger equation with a Hamiltonian that has a Hermitian and a non-Hermitian part. In addition to the fermions, the Hermitian part describes positive and negative energy mesons of equal mass, analogous to the longitudinal and timelike photons of electromagnetism. The meson-field-sum is coupled to the fermion field. This ''dresses'' each fermion so that, in the extreme nonrelativistic limit (non-moving fermions), a fermion in a position eigenstate is also in an eigenstate of the meson-field-difference with the Yukawa-potential as eigenvalue. However, the fermions do not interact: this is a theory of free dressed fermions. It is possible to obtain a stationary normalized ''vacuum'' state which satisfies two conditions analogous to the gauge conditions of electromagnetism (i.e., that the meson-field-difference, as well as its time derivative, give zero when applied to the vacuum state), to any desired degree of accuracy. The non-Hermitian part of the Hamiltonian contains the coupling of the meson-field-difference to an externally imposed c-number fluctuating white noise field, of the CSL (Continuous Spontaneous Localization) form. This causes statevector reduction, as is shown in the extreme nonrelativistic limit. For example, a superposition of spatially separated wavepackets of a fermion will eventually be reduced to a single wavepacket: the meson-field-difference discriminates among the Yukawa-potential ''handles'' attached to each wavepacket, thereby selecting one wavepacket to survive by the CSL mechanism. Analysis beyond that given in this paper is required to see what happens when the fermions are allowed to move. (It is possible that the ''vacuum'' state becomes involved in the dynamics so that the ''gauge'' conditions can no longer be maintained.) It is shown how to incorporate these ideas into quantum

  16. Study of the O-mode in a relativistic degenerate electron plasma

    Science.gov (United States)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  17. Genealogical electronic coupling procedure incorporating the Hartree--Fock interacting space and suitable for degenerate point groups. Application to excited states of BH3

    International Nuclear Information System (INIS)

    Swope, W.C.; Schaefer, H.F. III; Yarkony, D.R.

    1980-01-01

    The use of Clebsch--Gordan-type coupling coefficients for finite point groups is applied to the problem of constructing symmetrized N-electron wave functions (configurations) for use by the Hartree--Fock SCF and CI methods of determining electronic wave functions for molecular systems. The configurations are eigenfunctions of electronic spin operators, and transform according to a particular irreducible representation of the relevant group of spatial operations which leave the Born--Oppenheimer Hamiltonian invariant. The method proposed for constructing the configurations involves a genealogical coupling procedure. It is particularly useful for studies of molecules which belong to a group which has multiply degenerate irreducible representations. The advantage of the method is that it results in configurations which are real linear combinations of determinants of real symmetry orbitals. This procedure for constructing configurations also allows for the identification of configurations which have no matrix element of the Hamiltonian with a reference configuration. It is therefore possible to construct a Hartree--Fock interacting space of configurations which can speed the convergence of a CI wave function. The coupling method is applied to a study of the ground and two excited electronic states of BH 3 in its D/sub 3h/ geometry. The theoretical approach involved Hartree--Fock SCF calculations followed by single and double substitution CI calculations, both of which employed double-zeta plus polarization quality basis sets

  18. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources

    Directory of Open Access Journals (Sweden)

    E. G. Chapman

    2009-02-01

    Full Text Available The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous-phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number to precipitation and an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs and produced clouds of comparable thickness to observations at approximately the proper times and places. The model overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest

  19. Determination of rhodium in metallic alloy and water samples using cloud point extraction coupled with spectrophotometric technique

    Science.gov (United States)

    Kassem, Mohammed A.; Amin, Alaa S.

    2015-02-01

    A new method to estimate rhodium in different samples at trace levels had been developed. Rhodium was complexed with 5-(4‧-nitro-2‧,6‧-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (NDPHPD) as a complexing agent in an aqueous medium and concentrated by using Triton X-114 as a surfactant. The investigated rhodium complex was preconcentrated with cloud point extraction process using the nonionic surfactant Triton X-114 to extract rhodium complex from aqueous solutions at pH 4.75. After the phase separation at 50 °C, the surfactant-rich phase was heated again at 100 °C to remove water after decantation and the remaining phase was dissolved using 0.5 mL of acetonitrile. Under optimum conditions, the calibration curve was linear for the concentration range of 0.5-75 ng mL-1 and the detection limit was 0.15 ng mL-1 of the original solution. The enhancement factor of 500 was achieved for 250 mL samples containing the analyte and relative standard deviations were ⩽1.50%. The method was found to be highly selective, fairly sensitive, simple, rapid and economical and safely applied for rhodium determination in different complex materials such as synthetic mixture of alloys and environmental water samples.

  20. Relativistic dynamics, Green function and pseudodifferential operators

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo-Lombardo, Diego Julio [National Institute of Plasma Physics (INFIP), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2016-06-15

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  1. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    Science.gov (United States)

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-05

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    Science.gov (United States)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  3. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  4. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  5. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  6. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  7. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  8. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  9. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  10. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  11. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    Science.gov (United States)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  12. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    International Nuclear Information System (INIS)

    Brambleby, J.; Goddard, P. A.; Singleton, John; Jaime, Marcelo; Lancaster, T.

    2017-01-01

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.

  13. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  14. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  15. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  16. Relativistic theory of stopping for heavy ions

    International Nuclear Information System (INIS)

    Lindhard, J.; So/rensen, A.H.

    1996-01-01

    We calculate the electronic stopping power and the corresponding straggling for ions of arbitrary charge number, penetrating matter at any relativistic energy. The stopping powers are calculated by a simple method. Its starting point is the deviation of the precise theory from first-order quantum perturbation. We show that this deviation can be expressed in terms of the transport cross section, σ tr , for scattering of a free electron by the ion. In the nonrelativistic case the deviation is precisely the Bloch correction to Bethe close-quote s formula; we look into the nonrelativistic case in order to clarify both some features of our method and a seeming paradox in Rutherford scattering. The corresponding relativistic correction is obtained from σ tr for scattering of a Dirac electron in the ion potential. Here, the major practical advantage of the method shows up; we need not find the scattering distribution, but merely a single quantity, σ tr , determined by differences of successive phase shifts. For a point nucleus our results improve and extend those of Ahlen. Our final results, however, are based on atomic nuclei with standard radii. Thereby, the stopping is changed substantially already for moderate values of γ=(1-v 2 /c 2 ) -1/2 . An asymptotic saturation in stopping is obtained. Because of finite nuclear size, recoil corrections remain negligible at all energies. The average square fluctuation in energy loss is calculated as a simple fluctuation cross section for a free electron. The fluctuation in the relativistic case is generally larger than that of the perturbation formula, by a factor of ∼2 endash 3 for heavy ions. But the finite nuclear radius leads to a strong reduction at high energies and the elimination of the factor γ 2 belonging to point nuclei. copyright 1996 The American Physical Society

  17. Dielectric response of planar relativistic quantum plasmas

    International Nuclear Information System (INIS)

    Bardos, D.C.; Frankel, N.E.

    1991-01-01

    The dielectric response of planar relativistic charged particle-antiparticle plasmas is investigated, treating Fermi and Bose plasmas. The conductivity tensor in each case is derived in the self-consistent Random Phase Approximation. The tensors are then evaluated at zero temperature for the case of no external fields, leading to explicit dispersion relations for the electrodynamic modes of the plasma. The longitudinal and transverse modes are in general coupled for plasma layers. This coupling vanishes, however, in the zero field case, allowing 'effective' longitudinal and transverse dielectric functions to be defined in terms of components of the conductivity tensor. Solutions to the longitudinal mode equations (i.e. plasmon modes) are exhibited, while purely transverse modes are found not to exist. In the case of the Bose plasma the screening of a test charge is investigated in detail. 41 refs., 1 fig

  18. Relativistic transport theory for hadronic matter

    International Nuclear Information System (INIS)

    Shun-Jin Wang; Bao-An Li; Bauer, W.; Randrup, J.

    1991-01-01

    We derive coupled equations of motion for the density matrices for nucleons, Δ resonances, and π mesons, as well as for the pion--baryon interaction vertex function for the description of nuclear reactions at intermediate energies. We start from an effective hadronic Lagrangian density with minimal coupling between baryons and mesons. By truncating at the level of three-body correlations and using the G-matrix method to solve the equations of motion for the two-body correlation functions, a closed equation of motion for the one-body density matrices is obtained. A subsequent Wigner transformation then leads to a tractable set of relativistic transport equations for interacting nucleons, deltas, and pions. copyright 1991 Academic Press, Inc

  19. Modular TPC's for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.

    1989-01-01

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs

  20. Angular analyses in relativistic quantum mechanics; Analyses angulaires en mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    This work describes the angular analysis of reactions between particles with spin in a fully relativistic fashion. One particle states are introduced, following Wigner's method, as representations of the inhomogeneous Lorentz group. In order to perform the angular analyses, the reduction of the product of two representations of the inhomogeneous Lorentz group is studied. Clebsch-Gordan coefficients are computed for the following couplings: l-s coupling, helicity coupling, multipolar coupling, and symmetric coupling for more than two particles. Massless and massive particles are handled simultaneously. On the way we construct spinorial amplitudes and free fields; we recall how to establish convergence theorems for angular expansions from analyticity hypothesis. Finally we substitute these hypotheses to the idea of 'potential radius', which gives at low energy the usual 'centrifugal barrier' factors. The presence of such factors had never been deduced from hypotheses compatible with relativistic invariance. (author) [French] On decrit un formalisme permettant de tenir compte de l'invariance relativiste, dans l'analyse angulaire des amplitudes de reaction entre particules de spin quelconque. Suivant Wigner, les etats a une particule sont introduits a l'aide des representations du groupe de Lorentz inhomogene. Pour effectuer les analyses angulaires, on etudie la reduction du produit de deux representations du groupe de Lorentz inhomogene. Les coefficients de Clebsch-Gordan correspondants sont calcules dans les couplages suivants: couplage l-s couplage d'helicite, couplage multipolaire, couplage symetrique pour plus de deux particules. Les particules de masse nulle et de masse non nulle sont traitees simultanement. Au passage, on introduit les amplitudes spinorielles et on construit les champs libres, on rappelle comment des hypotheses d'analyticite permettent d'etablir des theoremes de convergence pour les developpements angulaires. Enfin on fournit un substitut a la

  1. Integrated thin film Si fluorescence sensor coupled with a GaN microLED for microfluidic point-of-care testing

    Science.gov (United States)

    Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro

    2018-02-01

    An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.

  2. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  3. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  4. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  5. Unification of Gravitation and Electromagnetism in a Relativistic ...

    African Journals Online (AJOL)

    A theory of gravitation is considered in a relativistic version of Finslerian geometry. It is found that both the geodesic equations and the Finslerian analogue of the Einstein\\'s field equations have terms that involve the electromagnetic field tensor, thereby pointing out to the geometrization of electrodynamics and hence to a ...

  6. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  7. In-situ determination of cross-over point for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2008-01-01

    A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location - the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na-Ca, Ca-Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as - 30% for conventional measurements in the

  8. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  9. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  10. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  11. Quasiparticle method in relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.

    1988-01-01

    In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  12. Variational approach to dense relativistic matter using functional techniques

    International Nuclear Information System (INIS)

    Hoodbhoy, P.

    1982-01-01

    The zero temperature ground state of an infinite system of baryons interacting with each other through the exchange of scalar and vector mesons is studied by means of a variational principle appropriate to relativistic systems. A trial wavefunctional is constructed which represents the fluctuation of the quantum fields about their mean values. The renormalized ground-state energy is subsequently calculated at a point where the vacuum is stable. Renormalization to all orders in the strong coupling constants is thereby obtained. A simple expression for the binding energy per particle with three free parameters is found. These parameters are fixed by fitting to the observed nucleon mass and to the values of the fermi momentum and binding energy of nuclear matter. A prediction for the binding energy and equation of state of nuclear and neutron matter is obtained for densities far away from the density of normal nuclei. Finally, a comparison is made with results obtained by other authors who have used classical-perturbative methods for the same system

  13. Introduction to the renormalization group study in relativistic quantum field theory

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Roditi, I.

    1985-01-01

    An introduction to the renormalization group approach in relativistic quantum field theories is presented, beginning with a little historical about the subject. Further, this problem is discussed from the point of view of the perturbation theory. (L.C.) [pt

  14. A Hamilton-like vector for the special-relativistic Coulomb problem

    International Nuclear Information System (INIS)

    Munoz, Gerardo; Pavic, Ivana

    2006-01-01

    A relativistic point charge moving in a Coulomb potential does not admit a conserved Hamilton vector. Despite this fact, a Hamilton-like vector may be developed that proves useful in the derivation and analysis of the particle's orbit

  15. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  16. The Post-Newtonian Approximation for Relativistic Compact Binaries

    Directory of Open Access Journals (Sweden)

    Futamase Toshifumi

    2007-03-01

    Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.

  17. Zero-Point Corrections for Isotropic Coupling Constants for Cyclohexadienyl Radical, C6H7 and C6H6Mu: Beyond the Bond Length Change Approximation

    Directory of Open Access Journals (Sweden)

    Bruce S. Hudson

    2013-04-01

    Full Text Available Zero-point vibrational level averaging for electron spin resonance (ESR and muon spin resonance (µSR hyperfine coupling constants (HFCCs are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on 13C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C6H7, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH2 of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0, can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  18. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  19. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  20. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  1. A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone

    Energy Technology Data Exchange (ETDEWEB)

    Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy [Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535 (South Africa); Clarkson, Chris, E-mail: umeobinna@gmail.com, E-mail: beautifulheart369@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: chris.clarkson@gmail.com [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2017-03-01

    Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone, as well as from relativistic corrections to the dynamics. As an initial step towards a fully relativistic analysis of the galaxy bispectrum, we compute for the first time the local relativistic lightcone effects on the bispectrum, which come from Doppler and gravitational potential contributions. For the galaxy bispectrum, the problem is much more complex than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the local lightcone projection effects for squeezed shapes at z ∼ 1 mean that the bispectrum can differ from the Newtonian prediction by ∼> 10% when the short modes are k ∼< (50 Mpc){sup −1}. These relativistic projection effects, if ignored in the analysis of observations, could be mistaken for primordial non-Gaussianity. For upcoming surveys which probe equality scales and beyond, all relativistic lightcone effects and relativistic dynamical corrections should be included for an accurate measurement of primordial non-Gaussianity.

  2. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    International Nuclear Information System (INIS)

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  3. New General Relativistic Contribution to Mercury's Perihelion Advance

    Science.gov (United States)

    Will, Clifford M.

    2018-05-01

    We point out the existence of a new general relativistic contribution to the perihelion advance of Mercury that, while smaller than the contributions arising from the solar quadrupole moment and angular momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in part from relativistic "crossterms" in the post-Newtonian equations of motion between Mercury's interaction with the Sun and with the other planets, and in part from an interaction between Mercury's motion and the gravitomagnetic field of the moving planets. At a few parts in 1 06 of the leading general relativistic precession of 42.98 arcseconds per century, these effects are likely to be detectable by the BepiColombo mission to place and track two orbiters around Mercury, scheduled for launch around 2018.

  4. New General Relativistic Contribution to Mercury's Perihelion Advance.

    Science.gov (United States)

    Will, Clifford M

    2018-05-11

    We point out the existence of a new general relativistic contribution to the perihelion advance of Mercury that, while smaller than the contributions arising from the solar quadrupole moment and angular momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in part from relativistic "crossterms" in the post-Newtonian equations of motion between Mercury's interaction with the Sun and with the other planets, and in part from an interaction between Mercury's motion and the gravitomagnetic field of the moving planets. At a few parts in 10^{6} of the leading general relativistic precession of 42.98 arcseconds per century, these effects are likely to be detectable by the BepiColombo mission to place and track two orbiters around Mercury, scheduled for launch around 2018.

  5. The infrared problem for the dressed non-relativistic electron in a magnetic field

    International Nuclear Information System (INIS)

    Amour, L.; Faupin, J.; Grebert, B.; Guillot, J.C.

    2008-01-01

    We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x 3 -axis and with a quantized electromagnetic field. The system is translation invariant in the x 3 -direction and the corresponding Hamiltonian has a decomposition H ≅∫ R + H(P 3 )dP 3 . For a fixed momentum P 3 sufficiently small, we prove that H(P 3 ) has a ground state in the Fock representation if and only if E'(P 3 )=0, where P 3 →E'(P 3 ) is the derivative of the map P 3 →E(P 3 )=infσ(H(P 3 )). If E'(P 3 )≠0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)

  6. μ- and tau-pair production from relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1986-01-01

    The question is addressed of μ- and tau-pair production from the motional Coulomb fields available at the new relativistic heavy-ion accelerators. A semiclassical field theory is developed which is appropriate for families of leptons which are coupled electromagnetically. The field equations are mapped on to a lattice of collocation points using basis spline methods, and techniques for solving the resulting lattice equations are outlined. The properties of the transverse electromagnetic field near the heavy-ion beam are examined and physical arguments are given as to the feasibility of pair creation under a variety of circumstances. Using the Dirac-Hartree equations developed in part one, we shall dynamically evolve the vacuum, using the appropriate fields, and compute μ-pair and tau-pair production cross sections. 16 refs., 10 figs

  7. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    velocity perturbations including the rotation coincide with the ones in Newton's gravity. All equations in this work include the cosmological constant in the background world model. We emphasize that our relativistic/Newtonian correspondences in several situations and pure general relativistic corrections in the context of Newtonian equations are mainly about the dynamic equations of density and velocity perturbations without using the gravitational potential (metric perturbations). Consequently, our relativistic/Newtonian correspondences do not imply the absence of many space-time (i.e., pure general relativistic) effects like frame dragging, and redshift and deflection of photons even in such cases. We also present the case of multiple minimally coupled scalar fields, and properly derive the large-scale conservation properties of curvature perturbation variable in various temporal gauge conditions to the second order

  8. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  9. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  10. A relativistic gauge model describing N particles bound by harmonic forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1987-01-01

    Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods

  11. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin-orbit coupling

    Science.gov (United States)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Newrock, Richard S.; Cahay, Marc; Herbert, Stephen T.

    2013-03-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta-Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin-orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin-orbit coupling and a strong e-e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. Keynote talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  12. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin–orbit coupling

    International Nuclear Information System (INIS)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Cahay, Marc; Newrock, Richard S; Herbert, Stephen T

    2013-01-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta–Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin–orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin–orbit coupling and a strong e–e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. (review)

  13. Collision strengths from ground levels of Ti XIII using relativistic-Breit-Pauli approximation

    International Nuclear Information System (INIS)

    Mohan, M.; Hibbert, H.; Burke, P.G.; Keenan, F.

    1998-09-01

    The R-matrix method is used to calculate collision strengths from ground state to the first twenty-six fine structure levels of neon-like titanium by including the relativistic term coupling coefficients in the semi-Breit-Pauli approximation. Configuration interaction wave-functions are used to represent the first fifteen lowest LS-coupled target states in the R-matrix expansion. Results obtained are compared with other calculations. This is the first detailed calculation on this ion in which relativistic, exchange, channel couplings and short-range correlation effects are taken into account. (author)

  14. Chaos of the Relativistic Forced van der Pol Oscillator

    International Nuclear Information System (INIS)

    Ashkenazya, Y.; Gorma, C; Horwitz, L. P.

    1998-01-01

    A manifestly relativistically covariant form of the van der Pol oscillator in 1 + 1 dimensions is studied. We show that the driven relativistic equations, for which z and t are coupled, relax very quickly to a pair of identical decoupled equations, due to a rapid vanishing of the angular momentum (the boost in 1 + 1 dimensions). A similar effect occurs in the damped driven covariant Duffing oscillator previously treated. This effect is an example of entrainment, or synchronization (phase locking) , of coupled chaotic systems. The Lyapunov exponents are calculated using the very efficient method of Habib and Ryne. We show a Poincare map that demonstrates this effect and maintains remarkable stability in spite of the inevitable accumulation of computer error in the chaotic region. For our choice of parameters, the positive Lyapunov exponent is about 0.242 almost independently of the integration method

  15. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  16. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  17. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    International Nuclear Information System (INIS)

    Voitkiv, A.B

    2007-01-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schroedinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Z a ∼ a is the atomic nuclear charge

  18. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  19. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  20. Coherent oscillations of a ring of relativistic particles

    International Nuclear Information System (INIS)

    Hofmann, I.

    1976-07-01

    The effect of ring curvature on the coherent perturbations of a ring of relativistic particles is studied within the framework of the linearized Vlasov equation. Finite curvature is shown to have a minor effect on the dynamics of the 'negative mass' mode; the 'transverse' mode in radial direction, however, is found to be coupled with a simultaneous longitudinal density modulation which modifies the dispersion relation. In the limit of small mode frequency (ω/Ω [de

  1. Dual cloud point extraction coupled with hydrodynamic-electrokinetic two-step injection followed by micellar electrokinetic chromatography for simultaneous determination of trace phenolic estrogens in water samples.

    Science.gov (United States)

    Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin

    2013-07-01

    A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.

  2. Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome.

    Science.gov (United States)

    Panizza, Elena; Branca, Rui M M; Oliviusson, Peter; Orre, Lukas M; Lehtiö, Janne

    2017-07-03

    Protein phosphorylation is involved in the regulation of most eukaryotic cells functions and mass spectrometry-based analysis has made major contributions to our understanding of this regulation. However, low abundance of phosphorylated species presents a major challenge in achieving comprehensive phosphoproteome coverage and robust quantification. In this study, we developed a workflow employing titanium dioxide phospho-enrichment coupled with isobaric labeling by Tandem Mass Tags (TMT) and high-resolution isoelectric focusing (HiRIEF) fractionation to perform in-depth quantitative phosphoproteomics starting with a low sample quantity. To benchmark the workflow, we analyzed HeLa cells upon pervanadate treatment or cell cycle arrest in mitosis. Analyzing 300 µg of peptides per sample, we identified 22,712 phosphorylation sites, of which 19,075 were localized with high confidence and 1,203 are phosphorylated tyrosine residues, representing 6.3% of all detected phospho-sites. HiRIEF fractions with the most acidic isoelectric points are enriched in multiply phosphorylated peptides, which represent 18% of all the phospho-peptides detected in the pH range 2.5-3.7. Cross-referencing with the PhosphoSitePlus database reveals 1,264 phosphorylation sites that have not been previously reported and kinase association analysis suggests that a subset of these may be functional during the mitotic phase.

  3. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  4. Electromagnetic field of a circular beam of relativistic particles

    International Nuclear Information System (INIS)

    Vybiral, B.

    1978-01-01

    The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)

  5. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  6. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  7. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  8. Non-relativistic scalar field on the quantum plane

    International Nuclear Information System (INIS)

    Jahan, A.

    2005-01-01

    We apply the coherent state approach to the non-commutative plane to check the one-loop finiteness of the two-point and four-point functions of a non-relativistic scalar field theory in 2+1 dimensions. We show that the two-point and four-point functions of the model are finite at one-loop level and one recovers the divergent behavior of the model in the limit θ->0 + by appropriate redefinition of the non-commutativity parameter

  9. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  10. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  11. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  12. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  13. Physical equivalence of three forms of relativistic dynamics and addition of interactions in the front and instant forms

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1977-01-01

    The point, instant and front forms of the relativistic Hamiltonian theory are shown to be S-matrix equivalent in the general case (of many channels and particles with spin). The corresponding transformations are found. The problem of relativistic addition of the direct interactions is solved for the front and instant forms of dynamics

  14. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  15. Instability of extremal relativistic charged spheres

    International Nuclear Information System (INIS)

    Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood

  16. Compact objects in relativistic theories of gravity

    Science.gov (United States)

    Okada da Silva, Hector

    2017-05-01

    of slowly rotating neutron stars, both in general relativity and in scalar-tensor gravity. We show that a sufficient amount of pressure anisotropy results in neutron star models whose properties in scalar-tensor theory deviate significantly from their general relativistic counterparts. Moreover, the presence of anisotropy allows these deviations to be considerable even for values of the theory's coupling parameter for which neutron stars in scalar-tensor theory would be otherwise indistinguishable from those in general relativity. Within scalar-tensor theory we also investigate the effects of the scalar field on the crustal torsional oscillations of neutron stars, which have been associated to quasi-periodic oscillations in the X-ray spectra in the aftermath of giant flares. We show that the presence of the scalar field has an influence on the thickness of the stellar crust, and investigate how it affects the oscillation frequencies. Deviations from the predictions of general relativity can be large for certain values of the theory's coupling parameter. However, the influence of the scalar field is degenerate with uncertainties in the equation of state of the star's crust and microphysics effects (electron screening) for values of the coupling allowed by binary pulsar observations. We also derive the stellar structure equations for slowly-rotating neutron stars in a broader class of scalar-tensor theories in which matter and scalar field are coupled through the so-called disformal coupling. We study in great detail how the disformal coupling affects the structure of neutron stars, and we investigate the existence of universal (equation of state-independent) relations connecting the stellar compactness and moment of inertia. In particular, we find that these universal relations can deviate considerably from the predictions of general relativity. (Abstract shortened by ProQuest.).

  17. Studies of Ionic Photoionization Using Relativistic Random Phase Approximation and Relativistic Multichannel Quantum Defect Theory

    Science.gov (United States)

    Haque, Ghousia Nasreen

    The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The

  18. Extended quasiparticle approximation for relativistic electrons in plasmas

    Directory of Open Access Journals (Sweden)

    V.G.Morozov

    2006-01-01

    Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.

  19. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  20. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  1. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  2. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  3. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  4. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  5. Non equilibrium relativistic cosmology

    International Nuclear Information System (INIS)

    Novello, M.; Salim, J.M.

    1982-01-01

    A certain systematization through the discussion of results already known on cosmology and the presentation of new ones is given. In section 2 a brief review of the necessary mathematical background is also given. The theory of perturbation of Friedmann-like Universes is presented in section 3. The reduction of Einstein's equations for homogeneous Universes to an autonomous planar system of differential equations is done in section 4. Finally in section 5 the alternative gravitational non-minimal coupling and its consequences to cosmology are discussed. (Author) [pt

  6. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor

    Science.gov (United States)

    Caballero-Rivera, Daniel; Cruz-Nieves, Omar A; Oyola-Cintrón, Jessica; Torres-Núñez, David A; Otero-Cruz, José D

    2011-01-01

    The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and 125I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300–301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery. PMID:21785268

  7. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  8. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  9. Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves

    International Nuclear Information System (INIS)

    Xu Hui; Sheng Zhengming; Zhang Jie

    2007-01-01

    The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)

  10. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  11. Degree of mapping for general relativistic kinks

    International Nuclear Information System (INIS)

    Harriot, Tina A.; Williams, J.G.

    2005-01-01

    The Finkelstein-Misner metrical kinks of general relativity are homo topically nontrivial light cone configurations that can occur on space-time hypersurfaces. The number of kinks corresponds to the winding number of a timelike vector field that that is determined from the metric. This paper uses the usual Euclidean integral formula for degree of mapping as a starting point and so produces a covariant formula that can be applied to counting general relativistic kinks in any dimension. The kink number is calculated for some simple-to-visualize examples in 2 + 1 dimensions. These include hypersurfaces of differing topologies and so have relevance to mechanisms of topology change in semi-classical theories of quantum gravity

  12. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  13. Relationship between quantum walks and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.

    2010-01-01

    Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

  14. Relativistic continuum random phase approximation in spherical nuclei

    International Nuclear Information System (INIS)

    Daoutidis, Ioannis

    2009-01-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  15. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  16. Relativistic BCS-BEC crossover at finite temperature and its application to color superconductivity

    International Nuclear Information System (INIS)

    He Lianyi; Zhuang Pengfei

    2007-01-01

    The nonrelativistic G 0 G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The uncondensed pairs contribute a pseudogap to the fermion excitations. The theory recovers the BCS mean field approximation at zero temperature and the nonrelativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the nonrelativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors

  17. Relativistic Band Calculation and the Optical Properties of Gold

    DEFF Research Database (Denmark)

    Christensen, N Egede; Seraphin, B. O.

    1971-01-01

    of magnitude as the gaps (approximately 1 eV). Various integrated functions, density of states, joint density of states, and energy distributions of joint density of states are derived from the RAPW calculation. These functions are used in an interpretation of photoemission and static reflectance measurements......The energy band structure of gold is calculated by the relativistic augmented-plane-wave (RAPW) method. A nonrelativistic calculation is also presented, and a comparison between this and the RAPW results demonstrates that the shifts and splittings due to relativistic effects are of the same order...... to trace out the regions in k→ space where the edge and tail transitions occur. It is demonstrated that structure in the static reflection curves are not related to critical points in the band structure. The arguments are supported by calculations of temperature shifts of the critical-point energies...

  18. Prospects for development of powerful, highly efficient, relativistic gyrodevices

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Granatstein, V.L.

    1992-01-01

    For various applications the required parameters of sources of powerful microwave radiation lie far beyond the capabilities of existing tubes. This provokes an interest in reconsidering basic principles of relevant microwave sources in order to search for alternative concepts in their development. One of the most promising devices in the short-wavelength region of microwaves is the cyclotron resonance maser (CRM). During the last decade, two important varieties of CRMs have been distinguished, namely, gyrotrons, which operate at frequencies close to cut-off, and cyclotron autoresonance masers (CARMs), which operate at frequencies far from cut-off. When the axial phase velocity of the wave in properly adjusted to the beam voltage and electron pitch-ratio, the efficiency of relativistic CRMs may be high (≥50%). The method of optimizing efficiency based on a partial compensation of the shift in the relativistic electron cyclotron frequency by the change in the Doppler term can be, in principle, accompanied by a corresponding profiling of the external magnetic field and/or the wave phase velocity in a slightly irregular waveguide. These methods can be used in such relativistic CRMs as relativistic gyrotrons, gyroklystrons, gyro-traveling-wave-tubes and gyrotwistrons. The most important point is their sensitivity to a spread in electron parameters. As the beam voltage grows, the operation becomes more sensitive. However, at relatively low voltages such devices are quite tolerant to electron velocity spread

  19. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  20. Note of positions of particles in classical relativistic mechanics

    International Nuclear Information System (INIS)

    Pazma, V.

    1983-01-01

    The relation between world-lines and the position vector of a particle is studied from the point of view of gauge system theory. The expressions for the position vector of a free relativistic particle and of two interacting particles described by the Todorov-Komar model are derived under plausible assumptions. The relation between the physical meaning of basic canonical variables and the choice of a gauge is also discussed. (author)

  1. A new approach to experiments with non-relativistic antiprotons

    International Nuclear Information System (INIS)

    Poth, H.

    1990-05-01

    Is low-energy antiproton physics phasing out with the present round of experiments or are there good reasons to continue at an improved slow antiproton facility which could be located at a high intensity hadron accelerator? We point out, that there are four frontiers where substantial advances could be made. In particular, we discuss the low-energy frontier and emphasize that experiments with no-relativistic antiprotons would increase drastically the sensitivity and would reveal new effects. (orig.)

  2. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  3. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    International Nuclear Information System (INIS)

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-01-01

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state

  4. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  5. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter

    Directory of Open Access Journals (Sweden)

    Houzeng Han

    2016-07-01

    Full Text Available Precise Point Positioning (PPP makes use of the undifferenced pseudorange and carrier phase measurements with ionospheric-free (IF combinations to achieve centimeter-level positioning accuracy. Conventionally, the IF ambiguities are estimated as float values. To improve the PPP positioning accuracy and shorten the convergence time, the integer phase clock model with between-satellites single-difference (BSSD operation is used to recover the integer property. However, the continuity and availability of stand-alone PPP is largely restricted by the observation environment. The positioning performance will be significantly degraded when GPS operates under challenging environments, if less than five satellites are present. A commonly used approach is integrating a low cost inertial sensor to improve the positioning performance and robustness. In this study, a tightly coupled (TC algorithm is implemented by integrating PPP with inertial navigation system (INS using an Extended Kalman filter (EKF. The navigation states, inertial sensor errors and GPS error states are estimated together. The troposphere constrained approach, which utilizes external tropospheric delay as virtual observation, is applied to further improve the ambiguity-fixed height positioning accuracy, and an improved adaptive filtering strategy is implemented to improve the covariance modelling considering the realistic noise effect. A field vehicular test with a geodetic GPS receiver and a low cost inertial sensor was conducted to validate the improvement on positioning performance with the proposed approach. The results show that the positioning accuracy has been improved with inertial aiding. Centimeter-level positioning accuracy is achievable during the test, and the PPP/INS TC integration achieves a fast re-convergence after signal outages. For troposphere constrained solutions, a significant improvement for the height component has been obtained. The overall positioning accuracies

  6. A major point in the relativistic gravitation theory

    International Nuclear Information System (INIS)

    Draminsky, P.

    1976-01-01

    In this article Draminsky gives his answer to those critics who, while noting his objections to Einstein's General Theory of Relativity, have been uncertain what Draminsky would put in its place. Draminsky's theory is based on the same foundation as Einstein's, that real space in a gravitational field is non-Euclidean. This space is contracted or dilated in relation to time in different ways from place to place. The tracks of free particles in such space are geodetic lines calculated from second-order differential equations, the form and solution of which is described. The single assumption required to provide a rigid and exact field equation is that the inertial mass of a particle in a local system of reference is the same as its gravitational mass measured and operative in the reference system: which is the 'identity principle' of Einstein formulated in the only entirely precise manner. (A.D.N.)

  7. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  8. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  9. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  10. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  11. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  12. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  13. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  14. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  15. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  16. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  17. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  18. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  19. Analytic approaches to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka

    2016-12-15

    I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.

  20. Characteristic manifolds in relativistic hypoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S [Messina Univ. (Italy). Istituto di Matematica

    1978-10-02

    The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.

  1. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  2. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  3. Theory of a relativistic peniotron

    International Nuclear Information System (INIS)

    Zhurakhovskii, V.A.

    1986-01-01

    A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented

  4. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  5. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  6. Relationship Between Tobacco Retailers’ Point-of-Sale Marketing and the Density of Same-Sex Couples, 97 U.S. Counties, 2012

    Directory of Open Access Journals (Sweden)

    Joseph G. L. Lee

    2015-07-01

    Full Text Available The reasons for higher rates of smoking among lesbian, gay, and bisexual (LGB people than among heterosexual people are not well known. Research on internal migration and neighborhood selection suggests that LGB people are more likely to live in neighborhoods where the tobacco industry has historically targeted their marketing efforts (lower income, more racial/ethnic diversity. We used multi-level models to assess the relationship between the rate of same-sex couples per 1000 coupled households and 2012 marketing characteristics of tobacco retailers (n = 2231 in 1696 census tracts in 97 U.S. counties. We found no evidence of tobacco marketing at retailers differing by same-sex couple rates in census tracts with the exception of three findings in the opposite direction of our hypotheses: a small, significant positive relationship for the rate of same-sex male couples and the price of Newport Green (mentholated cigarettes. For male and female same-sex couples, we also found a small negative relationship between tobacco advertisements and same-sex household rate. Tobacco retailers’ tobacco marketing characteristics do not differ substantially by the rate of same-sex couples in their neighborhood in ways that would promote LGB health disparities. Further work is needed to determine if these patterns are similar for non-partnered LGB people.

  7. Relationship Between Tobacco Retailers' Point-of-Sale Marketing and the Density of Same-Sex Couples, 97 U.S. Counties, 2012.

    Science.gov (United States)

    Lee, Joseph G L; Goldstein, Adam O; Pan, William K; Ribisl, Kurt M

    2015-07-28

    The reasons for higher rates of smoking among lesbian, gay, and bisexual (LGB) people than among heterosexual people are not well known. Research on internal migration and neighborhood selection suggests that LGB people are more likely to live in neighborhoods where the tobacco industry has historically targeted their marketing efforts (lower income, more racial/ethnic diversity). We used multi-level models to assess the relationship between the rate of same-sex couples per 1000 coupled households and 2012 marketing characteristics of tobacco retailers (n = 2231) in 1696 census tracts in 97 U.S. counties. We found no evidence of tobacco marketing at retailers differing by same-sex couple rates in census tracts with the exception of three findings in the opposite direction of our hypotheses: a small, significant positive relationship for the rate of same-sex male couples and the price of Newport Green (mentholated) cigarettes. For male and female same-sex couples, we also found a small negative relationship between tobacco advertisements and same-sex household rate. Tobacco retailers' tobacco marketing characteristics do not differ substantially by the rate of same-sex couples in their neighborhood in ways that would promote LGB health disparities. Further work is needed to determine if these patterns are similar for non-partnered LGB people.

  8. Relationship Between Tobacco Retailers’ Point-of-Sale Marketing and the Density of Same-Sex Couples, 97 U.S. Counties, 2012

    Science.gov (United States)

    Lee, Joseph G. L.; Goldstein, Adam O.; Pan, William K.; Ribisl, Kurt M.

    2015-01-01

    The reasons for higher rates of smoking among lesbian, gay, and bisexual (LGB) people than among heterosexual people are not well known. Research on internal migration and neighborhood selection suggests that LGB people are more likely to live in neighborhoods where the tobacco industry has historically targeted their marketing efforts (lower income, more racial/ethnic diversity). We used multi-level models to assess the relationship between the rate of same-sex couples per 1000 coupled households and 2012 marketing characteristics of tobacco retailers (n = 2231) in 1696 census tracts in 97 U.S. counties. We found no evidence of tobacco marketing at retailers differing by same-sex couple rates in census tracts with the exception of three findings in the opposite direction of our hypotheses: a small, significant positive relationship for the rate of same-sex male couples and the price of Newport Green (mentholated) cigarettes. For male and female same-sex couples, we also found a small negative relationship between tobacco advertisements and same-sex household rate. Tobacco retailers’ tobacco marketing characteristics do not differ substantially by the rate of same-sex couples in their neighborhood in ways that would promote LGB health disparities. Further work is needed to determine if these patterns are similar for non-partnered LGB people. PMID:26225987

  9. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  10. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    allows us to to discover and eliminate spurious coordinate effects that have no physical meaning. The basic mathematical technique used in our theoretical treatment is based on matching of asymptotic post-Newtonian expansions of the solutions of the gravity field equations. In Chapter 6, we discuss the principles of relativistic celestial mechanics of massive bodies and particles. We focus on derivation of the post-Newtonian equations of orbital and rotational motion of an extended body possessing multipolar moments. These moments couple with the tidal gravitational fields of other bodies, making the motion of the body under consideration very complicated. Simplification is possible if the body can be assumed spherically symmetric. We discuss the conditions under which this simplification can be afforded, and derive the equations of motion of spherically-symmetric bodies. These equations are solved in the case of the two-body problem, and we demonstrate the rich nature of the possible coordinate presentations of such a solution. The relativistic celestial mechanics of light particles (photons) propagating in a time-dependent gravitational field of an N-body system is addressed in Chapter 7. This is a primary subject of relativistic astrometry which became especially important for the analysis of space observations from the Hipparcos satellite in the early 1990s. New astrometric space missions, orders of magnitude more accurate than Hipparcos, for example, Gaia, SIM, JASMINE, and so on, will require even more complete developments. Additionally, relativistic effects play an important role in other areas of modern astronomy, such as, pulsar timing, very long baseline radio interferometry, cosmological gravitational lensing, and so on. High-precision measurements of gravitational light bending in the solar system are among the most crucial experimental tests of the general theory of relativity. Einstein predicted that the amount of light bending by the Sun is twice that

  11. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  12. Spin-dependent transport in ferromagnet/semiconductor/ferromagnet junctions: a fully relativistic approach

    International Nuclear Information System (INIS)

    Popescu, Voicu; Ebert, Hubert; Papanikolaou, Nikolaos; Zeller, Rudolf; Dederichs, Peter H

    2004-01-01

    We present a fully relativistic generalization of the Landauer-Buettiker formalism that has been implemented within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker Green function method. This approach, going beyond the two-current model, supplies a more general description of the electronic transport. It is shown that the relativistic conductance can be split in terms of individual spin-diagonal and spin-off-diagonal (spin-flip) components, which allows a detailed analysis of the influence of spin-orbit-coupling-induced spin-flip processes on the spin-dependent transport. We apply our method to calculate the ballistic conductance in Fe/GaAs/Fe magnetic tunnel junctions. We find that, by removing the spin selection rules, the spin-orbit coupling strongly influences the conductance, not only qualitatively but also quantitatively, especially in the anti-parallel alignment of the magnetization in the two Fe leads

  13. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  14. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  15. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  16. Estimations for the Schwinger functions of relativistic quantum field theories

    International Nuclear Information System (INIS)

    Mayer, C.D.

    1981-01-01

    Schwinger functions of a relativistic neutral scalar field the basing test function space of which is S or D are estimated by methods of the analytic continuation. Concerning the behaviour in coincident points it is shown: The two-point singularity of the n-point Schwinger function of a field theory is dominated by an inverse power of the distance of both points modulo a multiplicative constant, if the other n-2 points a sufficiently distant and remain fixed. The power thereby, depends only on n. Using additional conditions on the field the independence of the power on n may be proved. Concerning the behaviour at infinite it is shown: The n-point Schwinger functions of a field theory are globally bounded, if the minimal distance of the arguments is positive. The bound depends only on n and the minimal distance of the arguments. (orig.) [de

  17. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  18. On the Stability of L4,5 in the Relativistic R3BP with Radiating ...

    Indian Academy of Sciences (India)

    Abstract. This paper discusses the motion of a test particle in the neigh- bourhood of the triangular points L4,5 by considering the less massive primary (secondary) as a source of radiation in the framework of the relativistic restricted three-body problem (R3BP). It is found that the positions and stability of the triangular point ...

  19. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  20. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  1. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  2. Fully relativistic free-electron laser in a completely filled waveguide

    International Nuclear Information System (INIS)

    Farokhi, B.; Abdykian, A.

    2005-01-01

    An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)

  3. Matrix elements of the electric multiple transition and relativistic correction operators in the case of complex configurations

    International Nuclear Information System (INIS)

    Kanyauskas, Yu.M.; Rudzikas, Z.B.

    1976-01-01

    Operators and their submatrix elements are studied in the framework of the electric multipole transitions of complex atoms with account of relativistic corrections of the order of the square of the fine structure constant. The analysis is performed by means of irreducible tensor operators and genealogical coefficients. It has been assumed that angular momenta of individual shells are coupled with each other according to ls, lk, jk and jj coupling. Formulas are given for the operator which causes the relativistic corrections for the single-electron multipole transition and for its submatrix element in the case of configurations with two unfilled shells. A possibility is discussed of using the formulas suggested for calculation. As follows from analysis, the relativistic correction operators even with the pure ls coupling allow intercombination transitions with ΔS equals +-1. The expressions obtained may turn out to be useful for performing calculations in the case of the intermediate type of coupling

  4. Relativistic one-boson-exchange model for the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Gross, F.; Van Orden, J.W.; Holinde, K.

    1992-01-01

    Nucleon-nucleon data below 300-MeV laboratory energy are described by a manifestly covariant wave equation in which one of the intermediate nucleons is restricted to its mass shell. Antisymmetrization of the kernel yields an equation in which the two nucleons are treated in an exactly symmetric manner, and in which all amplitudes satisfy the Pauli principle exactly. The kernel is modeled by the sum of one boson exchanges, and four models, all of which fit the data very well (χ 2 congruent 3 per data point) are discussed. Two models require the exchange of only the π, σ, ρ, and ω, but also require an admixture of γ 5 coupling for the pion, while two other models restrict the pion coupling to pure γ 5 γ μ , but require the exchange of six mesons, including the η, and a light scalar-isovector meson referred to as σ 1 . Deuteron wave functions resulting from these models are obtained. The singularities and relativistic effects which are a part of this approach are discussed, and a complete development of the theory is presented

  5. Non-relativistic and relativistic quantum kinetic equations in nuclear physics

    International Nuclear Information System (INIS)

    Botermans, W.M.M.

    1989-01-01

    In this thesis an attempt is made to draw up a quantummechanical tranport equation for the explicit calculation oof collision processes between two (heavy) ions, by making proper approaches of the exact equations (non-rel.: N-particles Schroedinger equation; rel.: Euler-Lagrange field equations.). An important starting point in the drag-up of the theory is the behaviour of nuclear matter in equilibrium which is determined by individual as well as collective effects. The central point in this theory is the effective interaction between two nucleons both surrounded by other nucleons. In the derivation of the tranport equations use is made of the green's function formalism as developed by Schwinger and Keldys. For the Green's function kinematic equations are drawn up and are solved by choosing a proper factorization of three- and four-particle Green's functions in terms of one- and two-particle Green's functions. The necessary boundary condition is obtained by explicitly making use of Boltzmann's assumption that colliding particles are statistically uncorrelated. Finally a transport equation is obtained in which the mean field as well as the nucleon-nucleon collisions are given by the same (medium dependent) interaction. This interaction is the non-equilibrium extension of the interaction as given in the Brueckner theory of nuclear matter. Together, kinetic equation and interaction, form a self-consistent set of equations for the case of a non-relativistic as well as for the case of a relativistic starting point. (H.W.) 148 refs.; 6 figs.; 411 schemes

  6. Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations

    International Nuclear Information System (INIS)

    Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias

    2010-01-01

    Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)

  7. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2....... The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit...... scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory....

  8. Isoscalar compression modes in relativistic random phase approximation

    International Nuclear Information System (INIS)

    Ma, Zhong-yu; Van Giai, Nguyen.; Wandelt, A.; Vretenar, D.; Ring, P.

    2001-01-01

    Monopole and dipole compression modes in nuclei are analyzed in the framework of a fully consistent relativistic random phase approximation (RRPA), based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The large effect of Dirac sea states on isoscalar strength distribution functions is illustrated for the monopole mode. The main contribution of Fermi and Dirac sea pair states arises through the exchange of the scalar meson. The effect of vector meson exchange is much smaller. For the monopole mode, RRPA results are compared with constrained relativistic mean-field calculations. A comparison between experimental and calculated energies of isoscalar giant monopole resonances points to a value of 250-270 MeV for the nuclear matter incompressibility. A large discrepancy remains between theoretical predictions and experimental data for the dipole compression mode

  9. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  10. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  11. Relativistic sonic geometry for isothermal accretion in the Kerr metric

    Science.gov (United States)

    Arif Shaikh, Md

    2018-03-01

    We linearly perturb advective isothermal transonic accretion onto rotating astrophysical black holes to study the emergence of the relativistic acoustic spacetime and to investigate how the salient features of this spacetime is influenced by the spin angular momentum of the black hole. We have perturbed three different quantities—the velocity potential, the mass accretion rate and the relativistic Bernoulli’s constant to show that the acoustic metric obtained for these three cases are the same up to a conformal factor. By constructing the required causal structures, it has been demonstrated that the acoustic black holes are formed at the transonic points of the flow and the acoustic white holes are formed at the shock location. The corresponding acoustic surface gravity has been computed in terms of the relevant accretion variables and the background metric elements. We have performed a linear stability analysis of the background stationary flow.

  12. IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION

    International Nuclear Information System (INIS)

    LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

    2005-01-01

    A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics

  13. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  14. Relativistic generalizations of simple pion-nucleon models

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1981-01-01

    A relativistic, partial wave N/D dispersion theory is developed for low energy pion-nucleon elastic scattering. The theory is simplified by treating crossing symmetry only to lowest order in the inverse nucleon mass. The coupling of elastic scattering to inelastic channels is included by taking the necessary inelasticity from experimental data. Three models are examined: pseudoscalar coupling of pions and nucleons, pseudovector coupling, and a model in which all intermediate antinucleons are projected out of the amplitude. The phase shifts in the dominant P 33 channel are quantitatively reproduced for P/sub lab/ 33 phase shifts. Thus a model of the pion-nucleon interaction which does not include antinucleon degrees of freedom is found to be unphysical

  15. Relativistic electron beam source with an air-core step-up transformer

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Masuzaki, Masaru; Tsuzuki, Tetsuya; Fujiwaka, Setsuya.

    1975-04-01

    An air-core step-up transformer with a high coupling factor has been developed to generate a high voltage pulse for charging the pulse forming line of a relativistic electron beam source. A beam source using the transformer was constructed and well operated for the beam injection into a toroidal system. (auth.)

  16. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  17. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  18. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  19. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  20. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  1. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  2. Relativistic theory of vector mesons in laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W; Mitter, H [Tuebingen Univ. (F.R. Germany). Inst. fuer Theoretische Physik

    1975-01-01

    The relativistic wave equation for a particle with spin 1 and an anomalous magnetic moment ..mu.. in an external wave field is reduced to a set of coupled ordinary differential equations for three amplitudes, which multiply the exponential known from the spin 0 case. These amplitudes are constant for ..mu..=1 (and not ..mu..=0). Exact solutions are given for a linear polarized laser wave of finite pulse shape and for an infinitely extended plane wave with circular polarization. In contrast to the situation in a constant magnetic field there are no internal inconsistencies.

  3. Semiclassical expansions of the nuclear relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Weigel, M.K.; Haddad, S.

    1991-01-01

    Semiclassical expansions for Green functions, self-energy, phase-space density and density are given and discussed. The many-body problem was treated in the relativistic Hartree-Fock approximation with a Lagrangian with a standard OBE potential structure including the possibility of space-dependent couplings. The expansions are obtained by formulating the many-body problem in the mixed position-momentum (Wigner) representation and application of the (h/2π)-Wigner-Kirkwood expansion scheme. The resulting self-consistency problems for the zeroth and second order are formulated in three versions. (author)

  4. Relativistic effects on inner-shell electron properties

    International Nuclear Information System (INIS)

    Desclaux, J.P.

    1976-01-01

    The influence of relativistic effects on hydrogen-like systems is first reviewed. After having considered one-electron systems, the influence of the other electrons is to be taken into account when considering inner ionization energy and ionization cross sections. Two-hole states in inner shells being then dealt with, the problem of angular momentum coupling among electrons can no longer be neglected. In an other way, this implies that wave functions are to be built on a jj basis instead of a ls one. Ksub(α)sup(h) hypersatellite spectra and KLL Auger transition energies are successively discussed

  5. A finite Zitterbewegung model for relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    Starting from steps of length h/mc and time intervals h/mc 2 , which imply a quasi-local Zitterbewegung with velocity steps ±c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig

  6. A finite Zitterbewegung model for relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-02-19

    Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.

  7. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  8. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  9. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...

  10. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  11. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  12. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  13. Non-double-couple earthquake mechanism as an artifact of the point-source approach applied to a finite-extent focus

    Czech Academy of Sciences Publication Activity Database

    Adamová, Petra; Šílený, Jan

    2010-01-01

    Roč. 100, č. 2 (2010), s. 447-457 ISSN 0037-1106 R&D Projects: GA ČR GA205/09/0724 Grant - others:GA MŠk(CZ) specifický-výzkum Institutional research plan: CEZ:AV0Z30120515 Keywords : non-double-couple earthquake mechanism * moment tensor * finite-extent focus Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.027, year: 2010

  14. A quasi-relativistic treatment of nuclear motion in atoms and molecules

    International Nuclear Information System (INIS)

    Chen, W.Q.; Cook, A.H.

    1987-01-01

    A quasi-relativistic Hamiltonian for an atom and a molecule is constructed. The Foldy-Wouthuysen transformation is applied to the Hamiltonian. Consequently, extra terms from interactions between the electronic motion and the nuclear magnetic field contributing to the Darwin term and the spin-orbit coupling are derived explicitly. Moreover, the coupling between nuclear motion and the spin of the electron is obtained. (author)

  15. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  16. Relativistic theory of spontaneous emission

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1987-06-01

    We derive a formula for the relativistic decay rates in atoms in a formulation of Quantum Electrodynamics based upon the electron's self energy. Relativistic Coulomb wavefunctions are used, the full spin calculation is carried out and the dipole approximation is not employed. The formula has the correct nonrelativistic limit and is used here for calculating the decay rates in Hydrogen and Muonium for the transitions 2P → 1S 1/2 and 2S 1/2 → 1S 1/2 . The results for Hydrogen are: Γ(2P → 1S 1/2 )=6.2649x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.4946x10 -6 s -1 . Our result for the 2P → 1S 1/2 transition rate is in perfect agreement with the best nonrelativistic calculations as well as with the results obtained from the best known radiative decay lifetime measurements. As for the Hydrogen 2S 1/2 → 1S 1/2 decay rate, the result obtained here is also in good agreement with the best known magnetic dipole calculations. For Muonium we get: Γ(2P → 1S 1/2 )=6.2382x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.3997x10 -6 s -1 . (author). 23 refs, 4 tabs

  17. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  18. 24-Hour Relativistic Bit Commitment.

    Science.gov (United States)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-30

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  19. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  20. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  1. Coupling of c  =  ‑2 and c =\\frac{1}{2} and c  =  0 conformal field theories: the geometrical point of view

    Science.gov (United States)

    Najafi, M. N.

    2018-04-01

    The coupling of the c  =  ‑2, c=\\frac{1}{2} and c  =  0 conformal field theories are numerically considered in this paper. As the prototypes of the couplings, (c_1=-2)\\oplus (c_2=0) and (c_1=-2)\\oplus (c_2=\\frac{1}{2}) , we consider the Bak–Tang–Weisenfeld (BTW) model on the 2D square critical site-percolation and the BTW model on Ising-correlated percolation lattices respectively. Some geometrical techniques are used to characterize the presumable conformal symmetry of the resultant systems. Based on the numerical analysis of the diffusivity parameter (κ) in the Schramm–Loewner evolution (SLE) theory we propose that the algebra of the central charges of the coupled models is closed. This result is based on the analysis of the conformal loop ensemble (CLE) analysis. The diffusivity parameter in each case is obtained by calculating the fractal dimension of loops (and the corresponding exponent of mean-square root distance), the direct SLE mapping method, the left passage probability and the winding angle analysis. More precisely we numerically show that the coupling (c_1=-2)\\oplus (c_2=\\frac{1}{2}) results to 2D self-avoiding walk (SAW) fixed point corresponding to c  =  0 conformal field theory, whereas the coupling (c_1=-2)\\oplus (c_2=0) results to the 2D critical Ising fixed point corresponding to the c=\\frac{1}{2} conformal field theory.

  2. Evaluation of harmonic disturbances at the common point of coupling of the Eurotunnel and of the HVDC France-England link

    Energy Technology Data Exchange (ETDEWEB)

    Chazottes, B.; Deflandre, T.

    1992-12-31

    On startup of the Trans Manch Tunnel in 1993, the harmonic currents generated by the railway will raise the harmonic levels in a point of the network already subject to the demand of convertors of the DC France-England 2000 MW link (IFA 2000). Digital simulations enabled the rise in harmonic voltages at the tunnel termination point as well as its consequences upon the conversion station filtering for a great number of network diagrams and various railway traffic hypotheses to be evaluated. After having described the methodology and the results of the study, the report presents the influence of the network topology upon the harmonic impedance and poses the technical and commercial problems met with the junction in a same point of several large-capacity disturbing elements on the 400 kV system. (authors). 10 figs., 5 refs.

  3. Two centre problems in relativistic atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Sean R.

    2013-01-09

    The work contained within this thesis is concerned with the explanation and usage of a set of theoretical procedures for the study of static and dynamic two-centre problems in the relativistic framework of Dirac's equation. Two distinctly different theories for handling time-dependent atomic interactions are reviewed, namely semi-classical perturbation theory and a non-perturbative numerical technique based on the coupled channel equation to directly solve the time-dependent, two-centre Dirac equation. The non-perturbative numerical technique has been developed independently and the calculations performed with it are entirely new. Calculations for ionisation cross sections and state occupancies are conducted for both these methods. The non-perturbative technique for relativistic two-centre problems is extensively explained and, given its novelty, a probity test is conducted between this technique and that of the well established perturbation theory in calculating K-and L-shell ionisation cross sections for the alpha decay of initially Hydrogen-like Polonium. To that end, an in depth outline of the perturbative technique is also made for both collision and decay processes. As well as the comparison test mentioned, this technique is also applied to the analysis of cross sections of the promotion of a single electron into the positive continuum from either a K- or L-shell due to the alpha decay of heavy, neutral nuclei (Gadolinium, Polonium and Thorium). Dirac-Coulomb eigenfunctions centred on the parent nucleus of the decay pair are taken as the basis for use in the cross section calculations utilising first order, semi-classical pertubation theory. The excellent congruence between both techniques justifies the usage of the non-perturbative algorithms in the subsequent analysis of collisions between very heavy, highly charged ions. As such, a set of calculations are performed examining the bound and continuum state occupancy of the electronic levels during a

  4. Relativistic QRPA Calculation of β-Decay Rates of r-process Nuclei

    International Nuclear Information System (INIS)

    Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.; Ring, P.

    2009-01-01

    A systematic, fully self-consistent calculation of β-decay rates is presented, based on a microscopic theoretical framework. Analysis is performed on a large number of nuclei from the valley of β stability towards the neutron drip-line. Nuclear ground state is determined using the Relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-nucleon coupling constants. Transition rates are calculated within the proton-neutron relativistic quasiparticle RPA (pn-RQRPA) using the same interaction that was used in the RHB equations.

  5. Uncertainty dimension and basin entropy in relativistic chaotic scattering

    Science.gov (United States)

    Bernal, Juan D.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2018-04-01

    Chaotic scattering is an important topic in nonlinear dynamics and chaos with applications in several fields in physics and engineering. The study of this phenomenon in relativistic systems has received little attention as compared to the Newtonian case. Here we focus our work on the study of some relevant characteristics of the exit basin topology in the relativistic Hénon-Heiles system: the uncertainty dimension, the Wada property, and the basin entropy. Our main findings for the uncertainty dimension show two different behaviors insofar as we change the relativistic parameter β , in which a crossover behavior is uncovered. This crossover point is related with the disappearance of KAM islands in phase space, which happens for velocity values above the ultrarelativistic limit, v >0.1 c . This result is supported by numerical simulations and by qualitative analysis, which are in good agreement. On the other hand, the computation of the exit basins in the phase space suggests the existence of Wada basins for a range of β relevant in galactic dynamics, and it also has important implications in other topics in physics such as as in the Störmer problem, among others.

  6. Probing Higgs self-coupling of a classically scale invariant model in e+e- → Zhh: Evaluation at physical point

    Science.gov (United States)

    Fujitani, Y.; Sumino, Y.

    2018-04-01

    A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.

  7. BLINDAGE: A neutron and gamma-ray transport code for shieldings with the removal-diffusion technique coupled with the point-kernel technique

    International Nuclear Information System (INIS)

    Fanaro, L.C.C.B.

    1984-01-01

    It was developed the BLINDAGE computer code for the radiation transport (neutrons and gammas) calculation. The code uses the removal - diffusion method for neutron transport and point-kernel technique with buil-up factors for gamma-rays. The results obtained through BLINDAGE code are compared with those obtained with the ANISN and SABINE computer codes. (Author) [pt

  8. Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD Vision Sensor with Artificial Illumination

    Directory of Open Access Journals (Sweden)

    Juntao Xiong

    2018-03-01

    Full Text Available Night-time fruit-picking technology is important to picking robots. This paper proposes a method of night-time detection and picking-point positioning for green grape-picking robots to solve the difficult problem of green grape detection and picking in night-time conditions with artificial lighting systems. Taking a representative green grape named Centennial Seedless as the research object, daytime and night-time grape images were captured by a custom-designed visual system. Detection was conducted employing the following steps: (1 The RGB (red, green and blue. Color model was determined for night-time green grape detection through analysis of color features of grape images under daytime natural light and night-time artificial lighting. The R component of the RGB color model was rotated and the image resolution was compressed; (2 The improved Chan–Vese (C–V level set model and morphological processing method were used to remove the background of the image, leaving out the grape fruit; (3 Based on the character of grape vertical suspension, combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight line detection method, straight-line fitting for the fruit stem was conducted and the picking point was calculated using the stem with an angle of fitting line and vertical line less than 15°. The visual detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest was 80%. The results demonstrate that the proposed method of night-time green grape detection and picking-point calculation can provide technical support to the grape-picking robots.

  9. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    Science.gov (United States)

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  10. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  11. Relativistic effects in resonance absorption

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1976-01-01

    The role of the relativistic-electron-mass variation in the generation of plasma waves by the linear mode conversion of intense electromagnetic waves is investigated. The increase in the electron mass in high intensity regions of the mode-converted wave reduces the local plasma frequency and thereby strongly modifies the plasma-driver resonance. A spatial discontinuity in the structure of the mode-converted wave results and causes the wave to break. Under rather modest restrictions, the wave breaking resulting from these effects occurs before the wave amplitude is limited either by thermal convection or by breaking caused by previously investigated nonrelativistic effects. Consequently, the amplitude of the mode-converted plasma wave should saturate at a much lower level than previously predicted. For simplicity, the analysis is limited to the initial stages of mode conversion where the ion dynamics can be neglected. The validity of this approximation is discussed

  12. Parton distribution in relativistic hadrons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.

    1979-01-01

    The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance

  13. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.

    2016-01-01

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  14. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)

    2016-05-15

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  15. In-medium relativistic kinetic theory and nucleon-meson systems

    International Nuclear Information System (INIS)

    Morawetz, K.; Kremp, D.

    1995-01-01

    Within the σ-ω model of coupled nucleonmeson systems, a generalized relativistic Lennard-Balescu-equation is presented resulting from a relativistic random phase approximation (RRPA). This provides a systematic derivation of relativistic transport equations in the frame of nonequilibrium Green's function technique including medium effects as well as fluctuation effects. It contains all possible processes due to one-meson exchange and special attention is kept to the off-shell character of the particles. As a new feature of many-particle effects, processes are possible, which can be interpreted as particle creation and annihilation due to in-medium one-meson exchange. In-medium cross sections are obtained from the generalized derivation of collision integrals, which possess complete crossing symmetries. (orig.)

  16. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... is obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...

  17. Multifragmentation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Trautmann, W.

    1996-11-01

    Multifragmentation is the dominant decay mode of heavy nuclear systems with excitation energies in the vicinity of their binding energies. It explores the partition space associated with the number of nucleonic constituents and it is characterized by a multiple production of nuclear fragments with intermediate mass. Reactions at relativistic bombarding energies, exceeding several hundreds of MeV per nucleon, have been found very efficient in creating such highly excited systems. Peripheral collisions of heavy symmetric systems or more central collisions of mass asymmetric systems produce spectator nuclei with properties indicating a high degree of equilibration. The observed decay patterns are well described by statistical multifragmentation models. The present experimental and theoretical studies are particularly motivated by the fact that multifragmentation is being considered a possible manifestation of the liquid-gas phase transition in finite nuclear systems. From the simultaneous measurement of the temperature and of the energy content of excited spectator systems a caloric curve of nuclei has been obtained. The characteristic S-shaped behavior resembles that of ordinary liquids. Signatures of critical phenomena in finite nuclear systems are searched for in multifragmentation data. These studies, supported by the success of percolation in reproducing the experimental mass or charge correlations, concentrate on the fluctuations observed in these observables. Attempts have been made to deduce critical-point exponents associated with multifragmentation. (orig.)

  18. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  19. Instabilities constraint and relativistic mean field parametrization

    International Nuclear Information System (INIS)

    Sulaksono, A.; Kasmudin; Buervenich, T.J.; Reinhard, P.-G.; Maruhn, J.A.

    2011-01-01

    Two parameter sets (Set 1 and Set 2) of the standard relativistic mean field (RMF) model plus additional vector isoscalar nonlinear term, which are constrained by a set of criteria 20 determined by symmetric nuclear matter stabilities at high densities due to longitudinal and transversal particle–hole excitation modes are investigated. In the latter parameter set, δ meson and isoscalar as well as isovector tensor contributions are included. The effects in selected finite nuclei and nuclear matter properties predicted by both parameter sets are systematically studied and compared with the ones predicted by well-known RMF parameter sets. The vector isoscalar nonlinear term addition and instability constraints have reasonably good effects in the high-density properties of the isoscalar sector of nuclear matter and certain finite nuclei properties. However, even though the δ meson and isovector tensor are included, the incompatibility with the constraints from some experimental data in certain nuclear properties at saturation point and the excessive stiffness of the isovector nuclear matter equation of state at high densities as well as the incorrect isotonic trend in binding the energies of finite nuclei are still encountered. It is shown that the problem may be remedied if we introduce additional nonlinear terms not only in the isovector but also in the isoscalar vectors. (author)

  20. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  1. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  2. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  3. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  4. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  5. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  6. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  7. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  8. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  9. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  10. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  11. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  12. New relativistic generalization of the Heisenberg commutation relations

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.

    1984-01-01

    A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator

  13. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  14. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  15. On quantization of relativistic string theory

    International Nuclear Information System (INIS)

    Isaev, A.P.

    1982-01-01

    Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained

  16. Fourth sound in relativistic superfluidity theory

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  17. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  18. Relativistic nuclear physics and quantum chromodynamics. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The data of investigations on problems of high energy physics are given. Special attention pays to quantum chromodynamics at large distances, cumulative processes, multiquark states and relativistic nuclear collisions

  19. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    International Nuclear Information System (INIS)

    MCLERRAN, L.

    1999-01-01

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities

  20. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)