International Nuclear Information System (INIS)
Oganesyan, Yu.Ts.; Karamyan, S.A.
1994-01-01
One of the main topics of modern nuclear physics is the investigation of exotic nuclei including hyper-nuclei, trans fermium elements, proton and neutron rich isotopes near drip lines as well as high-spin excited states and states with anomalous deformation. The isomerism of nuclei is closely related with such phenomena as the alignment of single-particle orbitals, the coexistence of various deformations and the manifestation of intruder-levels from neighbouring shells. The investigation of electromagnetic and nuclear interactions of isomers could give important information on their shell structure and its role in the mechanism of nuclear reactions. For such experiments one can either make isomeric targets (sufficiently long-lived) or use the methods of acceleration of isomeric nuclei. Recently, an exotic 16 + four-quasiparticle isomer of 178 Hf m 2 was produced in a micro weight quantity and the first nuclear reactions on it were successfully observed. The talk describes these experiments as well as new ideas for the continuation of the studies and some advantageous ways for the isomeric beams production by the method of direct acceleration or by the secondary beam method. 35 refs., 15 figs., 8 tabs
Experiments with neutron-rich isomeric beams
International Nuclear Information System (INIS)
Rykaczewski, K.; Lewitowicz, M.; Pfuetzner, M.
1998-01-01
A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented
Relativistic electron beams above thunderclouds
DEFF Research Database (Denmark)
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
Relativistic beaming and quasar statistics
International Nuclear Information System (INIS)
Orr, M.J.L.; Browne, I.W.A.
1982-01-01
The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)
Production of hypernuclei in relativistic ion beams
International Nuclear Information System (INIS)
Bando, H.; Sano, M.; Wakai, M.; Zofka, J.
1988-05-01
The hypernuclear formation in collisions of relativistic beams of 4 He, 7 Li, 12 C and 19 F with target of 12 C is calculated at energies used in the recent Dubna experiment. The hyperfragments optimal for observation are pointed out and the secondary (π + K + ) formation is evaluated and found to be nonnegligible. (author)
Foil focusing of relativistic electron beams
Energy Technology Data Exchange (ETDEWEB)
Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-26
When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.
Self-acceleration of relativistic modulated beams
International Nuclear Information System (INIS)
Ajzatskij, N.I.
1989-01-01
Unlike the case of self-acceleration of continuous beams, the self-acceleration of relativistic modulated beams requires the energy redistribution between the particles not at the period of excited oscillations but rather between the bunches. This may occur only in the case when the electron beam creates a multifrequency equilibrium state in the passive structure. In this case, there is a possibility for some bunches to be captured in the accelerating phase of the field without any external action. The authors have analyzed this possibility both theoretically and experimentally. 12 refs., 2 figs
Beam-beam observations in the Relativistic Heavy Ion Collider
Energy Technology Data Exchange (ETDEWEB)
Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)
2015-06-24
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.
Plasma heating by a relativistic electron beam
International Nuclear Information System (INIS)
Janssen, G.C.A.M.
1983-01-01
This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)
Intense relativistic electron beam: generation and propagation
International Nuclear Information System (INIS)
Mittal, K.C.; Mondal, J.
2010-01-01
A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)
Atomic physics using relativistic H- beams
International Nuclear Information System (INIS)
Bryant, H.C.
2005-01-01
Full text: An 8 GeV hydrogen atom can traverse a focused laser beam of width of 1 micron in a time of 353 attoseconds in its rest frame. A design is currently underway at Fermilab for a superconducting linear accelerator that will accelerate H - ions to 8 GeV. This 'Proton Driver' beam is intended to be injected, after stripping down to protons, into the 120 GeV Main Injector for the mass production of neutrinos aimed at a neutrino detector (MINOS) in a mine shaft in Soudan, Minnesota (USA) for the study of neutrino oscillations. It has not passed unnoticed that with some advance planning a few nanoamps from the up-to-250 mA beam could be diverted for atomic physics experiments. Relativistic kinematics enable the creation of extreme conditions for a beam atom. For example, the Doppler shift allows a very large tuning range in the atom's rest frame of a laser beam that is fixed- frequency in the lab. At 8 GeV the rest frame Doppler shift ranges from a factor of 19 in the forward direction to 0.05 backward. The laser intensity is enhanced by the square of the Doppler shift, so that the world's most intense laser beam would be amplified by a factor of 360 in the atom's rest frame. Furthermore, although there are extreme changes in the frequency and intensity in the atom's frame as one changes the intersection angle, the ponderomotive potential remains constant, as it is a relativistic invariant. One of the interesting problems that arises in the planning for this accelerator is the stripping of electrons from the negative ions by photodetachment from Doppler shifted thermal photons. We estimate that, if the transfer lines are kept at 300 K (room temperature), the mean free path at 8 GeV for stripping from collisions with cavity radiation is about 1300 km. The physics of the interactions of such a beam with very thin material foils, again in the attosecond regime, has been treated theoretically, but has not been studied experimentally at such high energies. We will
Coulomb-Driven Relativistic Electron Beam Compression
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-01
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Coulomb-Driven Relativistic Electron Beam Compression.
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-26
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Beam analysis spectrometer for relativistic heavy ions
International Nuclear Information System (INIS)
Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.
1983-01-01
A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)
Fundamentals of relativistic particle beam optics
International Nuclear Information System (INIS)
Cornacchia, M.
1995-12-01
This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly
RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS
International Nuclear Information System (INIS)
Singal, Ashok K.
2016-01-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
Relativistic Doppler Beaming and Misalignments in AGN Jets
Singal, Ashok K.
2016-08-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
Recent progresses in relativistic beam-plasma instability theory
Directory of Open Access Journals (Sweden)
A. Bret
2010-11-01
Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.
Coherent instabilities of a relativistic bunched beam
International Nuclear Information System (INIS)
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references
Coherent instabilities of a relativistic bunched beam
Energy Technology Data Exchange (ETDEWEB)
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.
Broadband lasercooling of relativistic ion beams at ESR
Energy Technology Data Exchange (ETDEWEB)
Bussmann, Michael; Seltmann, Michael; Siebold, Matthias; Schramm, Ulrich [HZDR (Germany); Wen, Weiqiang; Zhang, Dacheng; Ma, Xinwen [IMPCAS, Lanzhou (China); Winters, Danyal; Clark, Colin; Kozhuharov, Christophor; Steck, Markus; Dimopoulou, Christina; Nolden, Fritz; Stoehlker, Thomas [GSI (Germany); Beck, Tobias; Rein, Benjamin; Walther, Thomas; Tichelmann, Sascha; Birkl, Gerhard [TU Darmstadt (Germany); Sanchez-Alarcon, Rodolfo; Ullmann, Johannes; Lochmann, Matthias; Noertershaeuser, Wilfried [GSI (Germany); Univ. Mainz (Germany)
2013-07-01
We present new results on laser cooling of relativistic C{sup 3+} ion beams at the Experimental Storage Ring at GSI. For the first time we could show laser cooling of bunched relativistic ion beams using fast scanning of the frequency of the cooling laser over a range larger than the momentum acceptance of the bucket. Unlike previously employed cooling schemes where the bucket frequency was scanned relatively to a fixed laser frequency, scanning of the laser frequency can be readily applied to future high energy storage rings such as HESR or SIS100 at FAIR.
Beam dynamics issues in an extended relativistic klystron
International Nuclear Information System (INIS)
Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.
1995-04-01
Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented
Nonlinear analysis of a relativistic beam-plasma cyclotron instability
Sprangle, P.; Vlahos, L.
1986-01-01
A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.
Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1977-01-01
The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed
Relativistic beaming and orientation effects in core-dominated quasars
International Nuclear Information System (INIS)
Ubachukwu, A.A.; Chukwude, A.E.
2002-07-01
In this paper, we investigate the relativistic beaming effects in a well-defined sample of core- dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-ll radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, γ opt ∼6-16, and also highly anisotropic, with an average viewing angle, ∼ 9 deg. - 16 deg. Furthermore, the largest boosting occurs within a critical cone angle of ∼ 4 deg. - 10 deg. The results suggest that relativistic bulk flow appears to extend to kilo-parsec scales in these sources. (author)
Plasma lenses for focusing relativistic electron beams
International Nuclear Information System (INIS)
Govil, R.; Wheeler, S.; Leemans, W.
1997-01-01
The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated
Electromagnetic field of a circular beam of relativistic particles
International Nuclear Information System (INIS)
Vybiral, B.
1978-01-01
The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)
Ekstrom, A; Dijulio, D D; Cederkall, J; Van de Walle, J
2010-01-01
A method based on the coupled decay-chain equations for extracting the isotopic and the isomeric composition of a postaccelerated radioactive ion beam is presented and demonstrated on a data set from a Coulomb excitation experiment. This is the first attempt of analyzing the content of a postaccelerated radioactive ion beam using this technique. The beam composition is required for an absolute normalization of the measurement. The strength of the method, as compared to present online-based methods, lies in the determination of the isomeric fraction of a partially isomeric beam using all data accumulated during the experiment. We discuss the limitations and sensitivity of the method with respect to the gamma-ray detection efficiency and the accumulated flux. (C) 2010 Elsevier B.V. All rights reserved.
Relativistic Beaming and Orientation Effects in BL Lacertae Objects ...
Indian Academy of Sciences (India)
tation paradigm for high peaked and low-peaked BL Lacs (X-ray and radio selected .... consequences of relativistic beaming and geometric projection were studied in high- ... model. If we assume α = 0 (for synchrotron self-absorbed sources) and β ∼ 1, it can .... for RBL and XBL subsamples at confidence level of ∼ 95.0%.
Decontamination of drug vegetative raw material by relativistic electron beam
International Nuclear Information System (INIS)
Gorbanyuk, A.G.; Dikiy, I.L.; Yegorov, A.M.; Linnik, A.F.; Uskov, V.V.
2004-01-01
The new technology of decontamination of drug vegetative raw material and medical products is proposed. Advantages of use of relativistic beams in a range of electron energies from 0.5 MeV to 5 MeV for these purposes are shown in comparison with X-radiation of energy from 80 keV to 1 MeV
Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program
International Nuclear Information System (INIS)
Sharp, W.M.; Yu, S.S.; Lee, E.P.
1987-01-01
A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations
Intense non-relativistic cesium ion beam
International Nuclear Information System (INIS)
Lampel, M.C.
1984-02-01
The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm
From laser cooling of non-relativistic to relativistic ion beams
International Nuclear Information System (INIS)
Schramm, U.; Bussmann, M.; Habs, D.
2004-01-01
Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path
Intense relativistic electron beam generation from KALI-5000 pulse accelerator
International Nuclear Information System (INIS)
Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.
2006-01-01
Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)
Pulsar signals from relativistic electron beams
International Nuclear Information System (INIS)
Elsaesser, K.; Kirk, J.
1976-01-01
The possibility of the radio emission from pulsars originating in a beam-plasma system is discussed. We calculate the curvature radiation which arises if this system is placed in a very strong curved magnetic field. Numerical experiments show that the beam instability evolves into a rather stationary wave pattern whose Fourier components are concentrated near the most unstable mode. This result leads us to estimates of the radiation intensity of its autocorrelation function in time, and its bandwidth. The results are compared with measurements of the micro-structure of pulses, and the constraints imposed on radiation mechanisms by longer time-scale properties are shown to be satisfied. (orig.) [de
Generation and study of relativistic electron beam
International Nuclear Information System (INIS)
Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.
1977-01-01
Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)
Self-focusing of laser beams in magnetized relativistic electron beams
International Nuclear Information System (INIS)
Whang, M.H.; Ho, A.Y.; Kuo, S.P.
1989-01-01
Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed
Radiative cooling of relativistic electron beams
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhirong [Stanford Univ., CA (United States)
1998-05-01
Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.
Radiative cooling of relativistic electron beams
International Nuclear Information System (INIS)
Huang, Z.
1998-05-01
Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored
Relativistic electron beam interaction with a thin target
International Nuclear Information System (INIS)
Gazaix, M.
1981-03-01
This study is concerned with the increasing possibilities of electron energy deposition in thin targets. The thesis theoretical part studies the relativistic electron beam-plasma instability; the Buneman-Pierce instability in limited medium is also studied. In the experimental part, several questions are tentatively answered: - what is the spatial and temporal evolution of the anode material, in temperature and in density. - What sort of interaction is the beam-target interaction; more particularly questions about focusing and energy deposition are studied [fr
Collective ion acceleration by relativistic electron beams in plasmas
International Nuclear Information System (INIS)
Galvez, M.; Gisler, G.
1991-01-01
A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena
Relativistic electron-beam transport in curved channels
International Nuclear Information System (INIS)
Vittitoe, C.N.; Morel, J.E.; Wright, T.P.
1982-01-01
Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area
On the limiting stationary currents of relativistic electron beams
International Nuclear Information System (INIS)
Kavchuk, V.N.; Kondratenko, A.N.
1987-01-01
The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium
Coherent emission from relativistic beam-plasma interactions
International Nuclear Information System (INIS)
Latham, P.E.
1986-01-01
A theoretical model for the production of high-power, high-frequency electromagnetic radiation from unmagnetized, relativistic beam-plasma interactions is studied. Emphasis is placed on the injected-beam system, for which the dominant portion of the radiation is emitted near the point where the beam enters the plasma. In such systems, frequencies much larger than the plasma frequency and power levels many orders of magnitude above that predicted by single-particle radiation have been observed experimentally. A two-step process is proposed to explain these observations: electrostatic bunching of the beam followed by coherent radiation by the bunches. The first step, beam bunching, produces large-amplitude electrostatic waves. A Green's function analysis is employed to understand the convective growth of those waves near the plasma boundary; their saturation amplitude is found by applying conservation of energy to the beam-plasma system. An azimuthally symmetric model is used to compute the saturated spectrum analytically, and a relatively simple expression is found. The second step, the interaction of the electron beam with the electrostatic spectrum, leads to the production of high-power, high-frequency electromagnetic radiation. From a detailed analysis of the phase-space evolution of the trapped beam, an analytic expression for the electromagnetic spectrum is found as a function of angle and frequency
Microwave generation and frequency conversion using intense relativistic electron beams
International Nuclear Information System (INIS)
Buzzi, J.M.; Doucet, H.J.; Etlicher, B.
1977-01-01
Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic
Relativistic focusing and ponderomotive channeling of intense laser beams
International Nuclear Information System (INIS)
Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.
2000-01-01
The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society
Status report on the relativistic electron beam technology
International Nuclear Information System (INIS)
Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.
1974-01-01
The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)
Injection of a relativistic electron beam into neutral hydrogen gas
International Nuclear Information System (INIS)
de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.
1982-01-01
The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation
Higher harmonics generation in relativistic electron beam with virtual cathode
Energy Technology Data Exchange (ETDEWEB)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)
2014-09-15
The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.
Thermal equilibrium properties of an intense relativistic electron beam
International Nuclear Information System (INIS)
Davidson, R.C.; Uhm, H.S.
1979-01-01
The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0
Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam
Andreev, Andrey
2005-10-01
The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.
Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up
International Nuclear Information System (INIS)
Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.
1994-03-01
It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities
Design of a relativistic klystron two-beam accelerator prototype
International Nuclear Information System (INIS)
Westenskow, G.; Caporaso, G.; Chen, Y.
1995-01-01
We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented
Development of a nuclear data base for relativistic ion beams
International Nuclear Information System (INIS)
Townsend, L.W.; Wong, M.; Schimmerling, W.; Wilson, J.W.
1987-01-01
The primary limitation on the development of heavy ion beam transport methods is the lack of an accurate nuclear data base. Because of the large number of ion/target combinations, the complexity of the reaction products, and the broad range of energies required, it is unlikely that the data base will ever be compiled from experiments alone. For the last 15 years, relativistic heavy-ion accelerators have been available, but the experimental data base remains inadequate. However, theoretical models of heavy-ion reactions are being derived to provide cross section data for beam transport problems. A concurrent experimental program to provide sufficient experimental data to validate the model is also in progress. Model development and experimental results for model validation are discussed. The need for additional nuclear fragmentation data is identified
International Nuclear Information System (INIS)
Brenner, S.E.; Gandul', E.M.; Podkopaev, A.P.
1995-01-01
This paper is devoted to obtaining the components of own magnetic field of high current relativistic electron beam passing through the cylindrical drift space superconducting walls: the peculiarities of applied numerical scheme have been also described briefly. (author). 6 refs
Relativistic electron beam - plasma interaction with intense self-fields
International Nuclear Information System (INIS)
Davidson, R.C.
1984-01-01
The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc
Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma
International Nuclear Information System (INIS)
Patil, S. D.; Takale, M. V.
2013-01-01
In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works
Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.
2015-05-01
211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.
Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams
International Nuclear Information System (INIS)
Alexander, K.F.; Hintze, W.
1976-01-01
Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)
Plasma waves in hot relativistic beam-plasma systems: Pt. 1
International Nuclear Information System (INIS)
Magneville, A.
1990-01-01
Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)
Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas
Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.
2018-01-01
We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.
International Nuclear Information System (INIS)
Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.
1996-01-01
Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics
A monolithic relativistic electron beam source based on a dielectric laser accelerator structure
International Nuclear Information System (INIS)
McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney
2012-01-01
Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.
Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP
Energy Technology Data Exchange (ETDEWEB)
Eronen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 (Finland)], E-mail: tommi.eronen@jyu.fi; Elomaa, V.-V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Rahaman, S.; Rissanen, J.; Weber, C.; Aystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 (Finland)
2008-10-15
A new procedure to prepare isomerically clean samples of short-lived ions with a mass resolving power of more than 1 x 10{sup 5} has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.
Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam
Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Carpenter, M. P.; Chen, J.; Deibel, C. M.; Hood, A. A.; Hoffman, C. R.; Janssens, R. V. F.; Jiang, C. L.; Kay, B. P.; Kuvin, S. A.; Lauer, A.; Schiffer, J. P.; Sethi, J.; Talwar, R.; Wiedenhöver, I.; Winkelbauer, J.; Zhu, S.
2018-03-01
A beam containing a substantial component of both the Jπ=5+ , T1 /2=162 ns isomeric state of F 18 and its 1+, 109.77-min ground state is utilized to study members of the ground-state rotational band in F 19 through the neutron transfer reaction (d ,p ) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13 /2+ band-terminating state. The agreement between shell-model calculations using an interaction constructed within the s d shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.
Proposal for the study of laminar relativistic electron beam generation by a foilless diode
International Nuclear Information System (INIS)
Jones, M.E.; Thode, L.E.
1979-02-01
The continuation of an analytical and numerical study of intense relativistic electron beam generation by foilless diodes is proposed. The investigation is aimed at optimizing the diode design to produce a laminar flow
International Nuclear Information System (INIS)
Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang
2012-01-01
Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.
Relativistic electron beam source with an air-core step-up transformer
International Nuclear Information System (INIS)
Mohri, Akihiro; Ikuta, Kazunari; Masuzaki, Masaru; Tsuzuki, Tetsuya; Fujiwaka, Setsuya.
1975-04-01
An air-core step-up transformer with a high coupling factor has been developed to generate a high voltage pulse for charging the pulse forming line of a relativistic electron beam source. A beam source using the transformer was constructed and well operated for the beam injection into a toroidal system. (auth.)
M. Füllekrug; C. Hanuise; M. Parrot
2010-01-01
Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...
Beam transfer functions for relativistic proton bunches with beam–beam interaction
Energy Technology Data Exchange (ETDEWEB)
Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)
2015-03-21
We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.
Intense relativistic electron beam injector system for tokamak current drive
International Nuclear Information System (INIS)
Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.
1983-01-01
We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode
Applications of pulsed intense relativistic electron beam to aquatic conservation
International Nuclear Information System (INIS)
Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Imada, Go
2012-01-01
In this study, we propose aquatic conservations by using a pulsed intense relativistic electron beam (PIREB). Treatments of introduced species and toxics azo dyes by irradiating PIREB are investigated in this report. Zooplankton contained in water have been inactivated by irradiation of PIREB. A treatment chamber is filled with a solution of 3-wt% salt in water containing Artemia larvae as zooplankton samples, and is irradiated using the PIREB (2 MeV, 0.4 kA, 140 ns). We found that up to 24% of the Artemia are inactivated by firing 10 shots of PIREB irradiation. It is found that pH changes did not affect to inactivate the Artemia larvae during the time scale of PIREB irradiation. The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by PIREB. An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)
Merger and reconnection of Weibel separated relativistic electron beam
Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.
2018-02-01
The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Energy Technology Data Exchange (ETDEWEB)
Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Cooling and focusing of a relativistic charged particle beam in crossed laser field
International Nuclear Information System (INIS)
Li Fuli
1987-01-01
A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)
Studies of beam dynamics in relativistic klystron two-beam accelerators
Energy Technology Data Exchange (ETDEWEB)
Lidia, Steven M.
1999-11-01
Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also
Novel non-intercepting diagnostic techniques for low-emittance relativistic electron beams
International Nuclear Information System (INIS)
Moran, M.J.; Chang, B.
1988-01-01
Relativistic electron beams are being generated with emittances low enough that diffraction radiation can be used for beam diagnostics. Techniques based on diffraction radiation can be used to measure the beam transverse momentum distribution and to measure the transverse spatial distribution. The radiation is intense and can be in the visible spectral region where optical diagnostic techniques can be used to maximum advantage. 4 refs. 3 figs
Instabilities excited by head-on collisions of two relativistic electron beams
Energy Technology Data Exchange (ETDEWEB)
Kou Shu-Ying
1982-02-01
In this paper, we studied the instabilities excited by head-on collision of two relativistic electron beams in transporting, taking account of the magnetic field B/sub 0/ and the thermal pressure delp of the beams. The conditions under which the instabilities occur and the growth rate of instabilities are obtained. The results show that these instabilities can be excited or inhibited by controlling the velocity of the beams.
International Nuclear Information System (INIS)
Friedman, M.
1989-01-01
This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived
A calculation technique of passing of a powerful relativistic beam through substance
International Nuclear Information System (INIS)
Pobitko, A.I.; Sal'nikov, L.I.; Sukhovitskij, E.Sh.
1995-01-01
The calculation algorithm of passing powerful relativistic beam through substance is developed. Algorithm of calculation is separated on the following problems: 1) a trial charge movement in electromagnetic field of the cylindrical geometry; 2) a computing of own electromagnetic field arising at movement of a particle heavy-current beam in a target; 3) accounting of an interaction of a beam with target atoms; 4) accounting of change of the target properties in a time; 5) geometry and construction of an iterative procedure of calculation. The calculation of passing heavy-current beams of charged particles for transient case is carried out by Monte Carlo method. A conclusion of equations of movement trial charge and technique of calculation own electromagnetic field of the powerful relativistic beam at passing through substance are resulted. 6 refs
Energy Technology Data Exchange (ETDEWEB)
Wu, Y. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xu, Z.; Li, Z. H. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Tang, C. X. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)
2012-07-15
In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.
Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.
2012-07-01
In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.
Transport of a relativistic electron beam through hydrogen gas
International Nuclear Information System (INIS)
Haan, P. de.
1981-01-01
In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)
Relativistic beam self-contraction in the inhomogeneous magnetic field with a neck
International Nuclear Information System (INIS)
Grishin, V.K.
1979-01-01
For production of short bunches of relativistic electrons and accompanying electromagnetic fields with amplitudes (up to MW/cm), considered was self-contraction of a relativistic electron beam (REB) in a magnetic field with a neck. REB dynamics in a ferrodielectric channel with permeability >> 1 was considered as well. It is shown, that in a such system, 10 m beam with a current up to ten kA is contracted to a length of approximately 0.5 m. Also the possible ways of application of the considered method of REB contraction are shown. For instance, a slow REB, fearing a great field, can be used for the capture and subsequent acceleration of heavy ions. The contracted beam application for generating powerful pulses of a h.f. field with, in fact, a homogeneous spectrum up to 100-300 MHz and total field energy up to 10-15% of initial beam energy is of great interest as well
Radial focusing of a relativistic electron beam in a bipotential electrostatic lens
International Nuclear Information System (INIS)
Genoni, T.C.
1994-01-01
The focusing of a relativistic electron beam in a bipotential electrostatic lens is discussed. An iterative scheme for the solution of the paraxial ray equation is used to derive approximate analytic formulas for the lens parameters and lens transfer matrix elements. The formulas are compared to results of direct numerical integration of the paraxial ray equation
The dispersion relation of charge and current compensated relativistic electron beam-plasma system
International Nuclear Information System (INIS)
Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.
1978-01-01
The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)
The EMP excitation of radiation by the pulsed relativistic electron beam
International Nuclear Information System (INIS)
Balakirev, V.A.; Sidelnikov, G.L.
1996-01-01
The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs
The EMP excitation of radiation by the pulsed relativistic electron beam
Energy Technology Data Exchange (ETDEWEB)
Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)
1997-12-31
The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.
Plasma heating in a long solenoid by a laser or a relativistic electron beam
International Nuclear Information System (INIS)
Tajima, T.
1975-01-01
Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied
Formation of virtual cathodes and microwave generation in relativistic electron beams
International Nuclear Information System (INIS)
Kwan, T.J.T.; Thode, L.E.
1984-01-01
Simulation of the generation of a relativistic electron beam in a foil diode configuration and the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves at two distinct frequencies. Generation of high-power microwaves with about 10% efficiency might reasonably be expected from such a virtual-cathode configuration
On the influence of electromagnetic wave and relativistic electron beam on a plasma
International Nuclear Information System (INIS)
El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.
1993-08-01
The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs
International Nuclear Information System (INIS)
Wharton, C.B.
1977-01-01
A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating
International Nuclear Information System (INIS)
Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.
1995-01-01
The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig
International Nuclear Information System (INIS)
Thode, L.E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner
Energy Technology Data Exchange (ETDEWEB)
Bobylev, Yu. V. [L.N. Tolstoy Tula State Pedagogical University (Russian Federation); Kuzelev, M. V. [Moscow State University (Russian Federation); Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)
2008-02-15
A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.
One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering
International Nuclear Information System (INIS)
Abe, T.
1986-01-01
Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1
Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport
Energy Technology Data Exchange (ETDEWEB)
Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)
2017-04-11
A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.
International Nuclear Information System (INIS)
Ganguli, G.; Palmadesso, P.
1984-01-01
Finite geometry effects on the stability properties of a charged beam propagating through an intense relativistic annular electron beam have been studied. The stability of the system under transverse oscillation has been examined in detail in a parameter domain pertinent to the collective particle accelerator, currently under development at the Naval Research Laboratory. Both the normal mode and the convective aspects of this instability have been investigated. Despite a substantial temporal growth rate as predicted by the normal mode approach, this instability does not prevent successful acceleration of a portion of the axial beam. Thus the transverse oscillation is not fatal to the collective particle accelerator operation
Energy Technology Data Exchange (ETDEWEB)
Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)
2017-03-15
The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.
Current density monitor for intense relativistic electron beams
International Nuclear Information System (INIS)
Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.
1986-01-01
We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment
Nonlinear interaction of a parallel-flow relativistic electron beam with a plasma
International Nuclear Information System (INIS)
Jungwirth, K.; Koerbel, S.; Simon, P.; Vrba, P.
1975-01-01
Nonlinear evolution of single-mode high-frequency instabilities (ω approximately ksub(parallel)vsub(b)) excited by a parallel-flow high-current relativistic electron beam in a magnetized plasma is investigated. Fairly general dimensionless equations are derived. They describe both the temporal and the spatial evolution of amplitude and phase of the fundamental wave. Numerically, the special case of excitation of the linearly most unstable mode is solved in detail assuming that the wave energy dissipation is negligible. Then the strength of interaction and the relativistic properties of the beam are fully respected by a single parameter lambda. The value of lambda ensuring the optimum efficiency of the wave excitation as well as the efficiency of the self-acceleration of some beam electrons at higher values of lambda>1 are determined in the case of a fully compensated relativistic beam. Finally, the effect of the return current dissipation is also included (phenomenologically) into the theoretical model, its role for the beam-plasma interaction being checked numerically. (J.U.)
International Nuclear Information System (INIS)
Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.
1982-01-01
The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions
Laser spectroscopy of relativistic beams of H- and H
International Nuclear Information System (INIS)
Smith, W.W.; Tang, C.Y.; Harris, P.G.; Mohagheghi, A.H.; Bryant, H.C.; Reeder, R.A.; Toutounchi, H.; Sharifian, H.
1989-01-01
Laser spectroscopy on near-light velocity H- ions and H atoms has been carried out at the Los Alamos Meson Physics Facility using a variety of fixed frequency lasers intersecting accelerated beams at variable angles. Beam energies up to 800 MeV (v/c) = 0.84 make possible an unusually wide tuning range at modestly high resolution. A dedicated beam line, the High Resolution Atomic Beam (HIRAB), also makes possible Stark effect and field ionization studies in the multi-megavolt/cm range. Preliminary results on multiphoton detachment of fast H-ions using a pulsed CO 2 laser focussed to ∼10 11 W/cm 2 over a factor 10 photon energy range (CM frame) are presented in this paper
Time-resolved tomographic images of a relativistic electron beam
International Nuclear Information System (INIS)
Koehler, H.A.; Jacoby, B.A.; Nelson, M.
1984-07-01
We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse
Overview of Phase Space Manipulations of Relativistic Electron Beams
Energy Technology Data Exchange (ETDEWEB)
Xiang, Dao; /SLAC
2012-08-31
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Multi-stage autoacceleration of an intense relativistic electron beam
Energy Technology Data Exchange (ETDEWEB)
Kamada, K; Hasegawa, D; Igarashi, H; Kusunoki, T; Lee, C Y; Koguchi, H; Ando, R; Masuzaki, M [Kanazawa Univ. (Japan). Department of Physics
1997-12-31
Two-stage autoacceleration was accomplished by using different length cavities. Two cavities were located with the distance longer than the beam duration. The electron kinetic energy increased from 500 to 700 keV at the first stage and from 700 to 900 keV at the second, while the beam duration decreased 10 to 5 ns at the first stage and 5 to 2.5 ns at the second. (author). 7 figs., 7 refs.
Overview of Phase Space Manipulations of Relativistic Electron Beams
International Nuclear Information System (INIS)
Xiang, Dao
2012-01-01
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R and D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Generation of relativistic electron beam and its anomalous stopping in the fast ignition scheme
International Nuclear Information System (INIS)
Sengupta, S.; Sandhu, A.S.; Dharmadhikari, A.K.; Kumar, G.R.; Das, A.; Kaw, P.K.
2005-01-01
We present experimental/theoretical results concerning two main physics issues related to the fast ignition scheme viz. the nonlinear mechanism of conversion of incident laser energy into a relativistic electron beam at the critical layer and its subsequent transport through an overdense plasma. Theoretical/numerical modelling of the experimental data, firstly shows that the conversion of the laser energy into an inward propagating electron beam occurs through the nonlinear mechanism of wave breaking of plasma waves excited at the critical layer and, secondly the transport of the electron beam through the overdense plasma is influenced by electrostatically induced and/or turbulence induced anomalous resistivity. (author)
Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma
International Nuclear Information System (INIS)
Gagne, R.R.J.; Shoucri, M.M.
1976-01-01
The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius
High current relativistic beam propagates stably in gas surrounded by nonconducting walls
International Nuclear Information System (INIS)
Clark, J.C.
1977-01-01
LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations
Kinetic study of the sausage mode of a resistive instability of a relativistic electron beam
International Nuclear Information System (INIS)
Gureev, K.G.; Zolotarev, V.O.; Stolbetsov, S.D.
1984-01-01
The nonlinear problem of the growth of the sausage mode of the resistive instability of a relativistic electron beam propagating without collisions through a tenuous plasma is solved. The plasma conductivity is assumed to be high, so that the wave phase velocity is low in comparison with the velocity of light. A kinetic approach is taken to the description of the beam. A numerical solution of the problem shows that this instability occurs in a cold, uniform beam. In the nonlinear stage of the instability the beam goes through states with a hollow structure. Suppression of the instability is found for a beam with a Bennett distribution function. The stabilization results from phase mixing of the beam particles
Confinement of electron beams by mesh arrays in a relativistic klystron amplifier
International Nuclear Information System (INIS)
Wang Pingshan; Gu Binlin
1998-01-01
Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system
Relativistic and nonlinear radiation interaction between laser beams and plasmas
International Nuclear Information System (INIS)
Kane, E.L.; Hora, H.
1981-01-01
Starting from a combination of Maxwell's laws for the electromagnetic field and the conservation equations for a fully ionized plasma, the appropriate equations describing electrodynamic laser propagation and plasma dynamic particle motion are developed and solved. Calculations for multiply ionized transient conditions are carried out to yield electric field amplitudes, radial electron number density distributions and the progress of formation of a self-focused beam filament as a function of the target plasma density distribution and the laser pulse power-time history, among other parameters. Separate solutions emphasizing field-induced plasma motion on the one hand and significant beam contraction on the other are illustrated
Treatment of Human Cancer Using Relativistic Hadron Beams
International Nuclear Information System (INIS)
Chu, William T.
2003-01-01
The major sections of the powerpoint presentation is are: rationale and history, including the Berkeley laboratory legacy; an overview of proton therapy facilities; and future developments in three areas: beam scanning (IMpT); pCT, pPET, etc,; and carbon-ion therapy
Bilaus, Rakan Sulaiman; Pinnau, Ingo
2016-01-01
at isomenzation conditions and producing an isomerized product comprising a higher proportion of p-xylene than in the feed mixture, wherein the catalyst comprises an acidic sulfonated catalytic membrane. Xylene isomenzation can also be coupled with a p
International Nuclear Information System (INIS)
Yasumoto, Kiyotoshi; Abe, Hiroshi
1983-01-01
The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)
A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam
International Nuclear Information System (INIS)
Uhm, H.S.
1994-01-01
A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications
Study of relativistic electron beams generated by a foilless diode
International Nuclear Information System (INIS)
Jones, M.E.; Thode, L.E.
1979-01-01
Preliminary results of a numerical and analytical study of foilless diodes are presented. The work produced an electron emission algorithm for the particle-in-cell simulation code CCUBE. Diode performance was studied as a function of applied magnetic field strength and simple geometry changes. Annular electron beams with an energy of 5 MeV appear obtainable with densities exceeding 10 14 cm -3 . 8 figures
Evidence of interaction between a relativistic electron beam and solid target
International Nuclear Information System (INIS)
Scarlat, Fl.; Scarlat, F.S.; Mitru, E.
2002-01-01
The investigation of the X ray production mechanism by the relativistic electron beams (REB) is an important keypoint for increasing the output of electron X ray conversion. This paper presents the image of a platinum target optically observed by its radiography (after irradiation by a REB of 31 MeV). The image is processed by means of a scanner and computer. The paper presents the distributions of the absorbed dose in a target volume
Relativistic Klystron Two-Beam Accelerator studies at the RTA test facility
International Nuclear Information System (INIS)
Westenskow, G.A.; Houck, T.L.; Anderson, D.
1996-01-01
A prototype rf power source based on the Relativistic Klystron Two- Beam Accelerator (RK-TBA) concept is being constructed at LBNL to study physics, engineering, and costing issues. The prototype, called RTA, is described and compared to a full scale design appropriate for driving the Next Linear Collider. Specific details of the induction core test and pulsed power system are presented. Details of the 1-MeV, 1.2-kA induction gun currently under construction are described
Fullekrug, Martin; Hanuise, C; Parrot, M
2011-01-01
Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...
All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam
Directory of Open Access Journals (Sweden)
D. Xiang
2011-11-01
Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.
International Nuclear Information System (INIS)
Serbeto, A.; Alves, M.V.
1993-01-01
Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)
International Nuclear Information System (INIS)
Nation, J.A.
1996-01-01
The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives
Relativistic treatment of Raman free-electro laser in beam frame
International Nuclear Information System (INIS)
Korbacheh, A.; Maraghechi, B.; Aghahosseni, H.
2004-01-01
A relativistic theory for Raman backscattering in the beam frame of electrons is used to find the growth rate of free- electron laser in Raman regime. The electromagnetic effects of the space-charge wave are taken into account by using the electrostatic approximation in the beam frame. The wiggler effects on the linear dispersion relations of the space- charge wave and radiation are included in the analysis. A numerical computation is conducted to compare the growth rate of the excited waves with nonrelativistic treatment
Plasma heating by relativistic electron beams: correlations between experiment and theory
International Nuclear Information System (INIS)
Thode, L.E.; Godfrey, B.B.
1975-01-01
The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory
Directory of Open Access Journals (Sweden)
R. J. England
2005-01-01
Full Text Available We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg. Through heuristic analytical arguments and examples derived from recent experimental efforts, augmented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are found to be effective in optimizing the use of such structures for beam compression or for shaping the current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal dispersion of the beam is presented. The theoretical and experimental results indicate that these manipulations can be used to create an electron bunch with a current profile having a long ramp followed by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field accelerator.
Design and performance of a Tesla transformer type relativistic electron beam generator
International Nuclear Information System (INIS)
Jain, K.K.; Chennareddy, D.; John, P.I.; Saxena, Y.C.
1986-01-01
A relativistic electron beam generator driven by an air core Tesla transformer is described. The Tesla transformer circuit analysis is outlined and computational results are presented for the case when the coaxial water line has finite resistance. The transformer has a coupling coefficient of 0.56 and a step-up ratio of 25. The Tesla transformer can provide 800 kV at the peak of the second half cycle of the secondary output voltage and has been tested up to 600 kV. A 100-200 keV, 15-20 kA electron beam having 150 ns pulse width has been obtained. The beam generator described is being used for the beam injection into a toroidal device BETA. (author). 20 refs. 9 figures
particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams
International Nuclear Information System (INIS)
Chen Deming; Wang Min
1990-01-01
The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency
Heating of a dense plasma with an intense relativistic electron beam: initial observations
International Nuclear Information System (INIS)
Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Sheffield, R.L.
1981-01-01
A dense (approx. 10 17 cm -3 ) plasma has been heated via the relativistic two-stream instability using a 3 MeV, intense (5 x 10 5 A/cm 2 ) electron beam. Evidence for heating has been obtained with diamagnetic loops, thin-foil witness plates, and a 2-channel, broad-band soft x-ray detector. Measurements of energy loss from the beam using calorimetry techniques have been attempted. The measured strong dependence of heating on beam transverse temperature and the very short interaction length ( 100 ns after the beam pulse are consistent with a plasma temperature <150 eV and line emission near 80 to 90 eV
Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju
2010-09-01
This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.
International Nuclear Information System (INIS)
Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju
2010-01-01
This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r 4 ) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.
Nonlinear dynamic of interaction of the relativistic electron beam with plasma
International Nuclear Information System (INIS)
Dorofeenko, V.G.; Krasovitskii, V.B.; Osmolovsky, S.I.
1994-01-01
Quasi-transverse instability of thin relativistic electron beam in a dense plasma is studied numerically and analytically in a broad range of the frequency of the beam modulation and external longitudinal magnetic field. It is shown that the nonlinear stage of solution depends on the increment of the instability. It is permitted to classify possible nonlinear solutions and also to determine optimal regimes of the modulation for transport of beam along magnetic field in a plasma without substantial radial divergence. Numerical calculations show, that injection of the bunches with parameters, corresponding nonlinear regime of the beam's instability, in neutrally-charged plasma permits to output on the stationary regime without loss of particles
International Nuclear Information System (INIS)
Henestroza, E.; Yu, S.S.; Li, H.
1995-04-01
An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes
Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.
1975-01-01
The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)
International Nuclear Information System (INIS)
Li, H.; Yu, S.S.; Sessler, A.M.
1994-10-01
In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the open-quotes adiabatic captureclose quotes scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the open-quotes after burnerclose quotes scheme which is implemented in their RK-TBA design for efficiency enhancement
Limitation of accelerating process in the partly neutralized relativistic electron hollow beam
International Nuclear Information System (INIS)
Chen, H.C.
1984-01-01
A fluid-Maxwell theory of the diocotron instability is developed for a relativistic electron hollow beam which is assumed in rigid-rotor and cold laminar flow equilibria. Stability analysis is performed for a sharp boundary electron density profile including the influence of positive ions which can accumulate in a long pulse device, and which form a partially neutralizing background. In the case of the strong magnetic field and tenuous electron beam (plasma frequency ω/sub p/b 1 2 ) has a stabilizing effect on the diocotron instability, R 1 and R 2 are the inner and outer radius of the annular hollow beam, respectively. However, the ions accumulating in the center of the beam (0 1 ) have a destabilizing effect on the diocotron instability. Most importantly the kink mode becomes unstable with a growth rate several tenths of the diocotron frequency ω/sub D/ equivalent ω 2 /sub p/b/2γ 2 ω/sub c/, where γ is the relativistic scaling factor
International Nuclear Information System (INIS)
Bouchez, Emmanuelle
2003-01-01
The first part of this research thesis proposes an overview of the different theoretical calculations elaborated in the region of light krypton nuclei, and of published experimental results. The second part reports the electron and gamma isomeric spectroscopy of 72,74 Kr nuclei after fragmentation of the projectile by a magnetic separator (experimental installation, experimental results, discussion). The third part reports the study of the Coulomb excitation of the 76 Kr radioactive beam (method and experimental installation, data analysis and results in terms of germanium and silicon spectra, and form of the 76 Kr)
ROBERTS, DA; BECCHETTI, FD; BROWN, JA; JANECKE, J; PHAM, K; ODONNELL, TW; WARNER, RE; RONNINGEN, RM; WILSCHUT, HW
1995-01-01
A primary O-17 beam has been used to produce a 22.3 MeV/nucleon F-18(m) isomeric secondary beam via a single nucleon transfer reaction on a carbon target. The total nuclear reaction cross sections for F-18(m) and F-18(g.s.) in silicon were measured in a stack of seven silicon solid-state detectors.
Directory of Open Access Journals (Sweden)
W. Fischer
2017-09-01
Full Text Available A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015PRLTAO0031-900710.1103/PhysRevLett.115.264801]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.
Study on intense relativistic electron beam propagation in a low density collisionless plasma
International Nuclear Information System (INIS)
Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.
1982-01-01
The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam
International Nuclear Information System (INIS)
Itskovsky, M. A.; Maniv, T.; Cohen, H.
2008-01-01
A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures
Itskovsky, M. A.; Cohen, H.; Maniv, T.
2008-07-01
A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.
Beam brightness from a relativistic, field-emission diode with a velvet covered cathode
International Nuclear Information System (INIS)
Bekefi, G.; Shefer, R.E.; Tasker, S.C.
1985-08-01
The beam emittance and brightness from a mildly relativistic (200 to 400 kV) high current density (0.5 to 3.5kA/cm 2 ) planar, field emission diode provided with a velvet covered cathode have been studied experimentally as a function of the applied electric field (100 to 600kV/cm). Transverse beam spreading has been measured using a conventional pinhole arrangement followed by a fluorescent screen and open shutter camera. Good turn-on, and a high normalized beam brightness (B/sub n/ = 300kA/cm 2 -rad 2 ) have been observed. The results are compared with those obtained with a graphite cathode. 11 refs., 6 figs
System for detecting neutrons in the harsh radiation environment of a relativistic electron beam
International Nuclear Information System (INIS)
Kruse, L.W.
1978-06-01
Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment
MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation
Energy Technology Data Exchange (ETDEWEB)
Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)
2015-12-15
There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider
Energy Technology Data Exchange (ETDEWEB)
Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2014-09-09
To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.
Transverse phase space mapping of relativistic electron beams using optical transition radiation
Directory of Open Access Journals (Sweden)
G. P. Le Sage
1999-12-01
Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.
A theory of two-stream instability in two hollow relativistic electron beams
International Nuclear Information System (INIS)
Uhm, H.S.
1993-01-01
Stability properties of two-stream instability of two hollow electron beams are investigated. The equilibrium configuration consists of two intense relativistic hollow electron beams propagating through a grounded conducting cylinder. Analysis of the longitudinal two-stream instability is carried out within the framework of the linearized Vlasov--Maxwell equations for the equilibrium distribution function, in which beam electrons have a Lorentzian distribution in the axial momentum. Dispersion relation of the longitudinal two-stream instability is derived. Stability criteria from this dispersion relation indicate that the normalized velocity difference Δβ between the beams should be within a certain range of value to be unstable. Growth rate of the instability is a substantial fraction of the real frequency, thereby indicating that the longitudinal two-stream instability is an effective means of beam current modulation. Transverse instability of hollow electron beams is also investigated. Dispersion relation of the coupled transverse oscillation of the beams is derived and numerical investigation of this dispersion relation is carried out. Growth rate of the kink instability is a substantial fraction of the diocotron frequency, which may pose a serious threat to the two-stream klystron
Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam
International Nuclear Information System (INIS)
Galvez, M.; Gisler, G.R.
1988-01-01
A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current
International Nuclear Information System (INIS)
Popa, Alexandru
2009-01-01
In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.
Calculation of high power relativistic beams with consideration of collision effects
International Nuclear Information System (INIS)
Sveshnikov, V.M.
1986-01-01
This paper considers the numerical calculation of relativistic charged particle beams moving in axisymmetric systems in which the presence of a residual neutral gas is possible. It is essential to consider phenomena related to collisions between charged particles and neutrals. Algorithms are constructed for numerical modeling of ionization processes within the framework of the ERA program complex. Solutions of model and practical problems are presented as examples. Such problems were studied where ionization processes were considered by a more complex method requiring a greater volume of calculations but valid at lower pressures
Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam
International Nuclear Information System (INIS)
Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go
2011-01-01
The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)
Longitudinal waves and a beam instability in a relativistic anisotropic plasma
International Nuclear Information System (INIS)
Onishchenko, O.G.
1981-01-01
Dispersion relations are derived for longitudinal waves in a relativistic plasma with an arbitrary anisotropic particle distribution function. Longitudinal waves with phase velocity lower than the speed of light are shown to exist in such a plasma. The damping rate of longitudinal waves due to the Cerenkov interaction with plasma particles is derived for such a plasma. The instability of a beam of high-energy particles in such a plasma is studied. As the anisotropy of an ultrarelativistic plasma becomes less pronounced, the maximum hydrodynamic growth rate decreases
Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR
Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.
2018-04-01
The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.
Double-wall IFR cell for conditioning intense relativistic electron beams
International Nuclear Information System (INIS)
Myers, M.C.; Meger, R.A.; Murphy, D.P.; Fernsler, R.F.; Hubbard, R.F.; Slinker, S.P.; Weidman, D.J.
1994-01-01
An intense relativistic electron beam (IREB) injected into neutral gas in the high pressure regime characteristically propagates in a self-pinched mode but is susceptible to the resistive hose instability. Typically, beam are conditioned for propagation experiments by reducing the perturbations that may excite resistive hose and by adjusting the emittance profile of the beam such that the convective growth of the instability is decreased. The former has been achieved by applying an anharmonic focusing force as the beam is transported through a conducting tube or cell. The latter has been effectively demonstrated by passing the beam through an ion focus regime (IFR) cell which imposes a head to tail beam emittance variations. However, since the physical parameters of the two types of cells are different, conflicts arise when the cells are coupled sequentially. The double-wall IFR cell described here eliminates these interface difficulties by providing the necessary conditions properties in a single cell. The physics and design of the cell will be introduced and parameter variations explored. The conditioning and propagation measurements will be presented and the results of the experiment will be discussed in relation to theory and simulation
The theory and simulation of relativistic electron beam transport in the ion-focused regime
International Nuclear Information System (INIS)
Swanekamp, S.B.; Holloway, J.P.; Kammash, T.; Gilgenbach, R.M.
1992-01-01
Several recent experiments involving relativistic electron beam (REB) transport in plasma channels show two density regimes for efficient transport; a low-density regime known as the ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use three separate models to explain the dependency of REB transport efficiency on the plasma density in the IFR. Conditions for efficient beam transport are determined by examining equilibrium solutions of the Vlasov--Maxwell equations under conditions relevant to IFR transport. The dynamic force balance required for efficient IFR transport is studied using the particle-in-cell (PIC) method. These simulations provide new insight into the transient beam front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the beam envelope are constructed to explain oscillations in the beam envelope observed in the PIC simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only provides further insight into the transport mechanism but also illustrates the connections between the three theories used to describe IFR transport. Separately these models provide valuable information about transverse beam confinement; together they provide a clear physical understanding of REB transport in the IFR
Long-range beam-beam experiments in the relativistic heavy ion collider
International Nuclear Information System (INIS)
Calaga, R; Fischer, W; Milas, N; Robert-Demolaize, G
2014-01-01
Long-range beam-beam effects are a potential limit to the LHC performance with the nominal design parameters, and certain upgrade scenarios under discussion. To mitigate long-range effects, current carrying wires parallel to the beam were proposed and space is reserved in the LHC for such wires. Two current carrying wires were installed in RHIC to study the effect of strong long-range beam-beam effects in a collider, as well as test the compensation of a single long-range interaction. The experimental data were used to benchmark simulations. We summarize this work
Transfer and focusing of high current relativistic electron beams on a target
International Nuclear Information System (INIS)
Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Penkina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.; Bakshaeev, Yu.L.
Research is being conducted at the I. V. Kurchatov Atomic Energy Institute to investigate possibilities of creating a pulsed thermonuclear reactor based on REBs; this work involves the creation of a multimodel system using vacuum lines for transferring energy and an acute angled external magnetic field for transferring electron beams to the target. A field of this configuration can be used at the same time for accumulating a ''cloud'' of relativistic protons around the target for purposes of irradiating them. This alternative solution of the problem of target irradiation, instead of focusing beams directly on it, may prove to be highly promising. Experiments are described which were conducted recently on high current electron accelerators ''URAL'', ''MS'' and others and which were directed at investigating possibilities of transferring and focusing high current REBs, as well as effective transmission of electromagnetic energy using vacuum lines at considerable distances
RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC
International Nuclear Information System (INIS)
Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.
1998-01-01
The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency
Interaction of an intense relativistic electron beam with full density air
International Nuclear Information System (INIS)
Murphy, D.P.; Pechacek, R.E.; Raleigh, M.; Oliphant, W.F.; Meger, R.A.
1987-01-01
The authors report on a study of plasma generation by direct deposition of energy from an intense relativistic electron beam (REB) into full density air. It has been postulated that a sufficiently intense REB can fully ionize the air and produce a 2 eV plasma with Spitzer conductivity. The REB is produced from a field emission diode driven by either the Gamble I or Gamble II generator. Gamble I can produce a 0.60 MV, 300 kA, 50 ns REB and Gamble II can produce a 2.0 MV, 1.0 MA, 50 ns REB. The REB was injected into a short diagnostic cell containing full density air and up to a 14 kG solenoidal magnetic field. The diagnostics include beam and net current measurements, x-ray and visible photography and visible light spectroscopy
RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC
International Nuclear Information System (INIS)
Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.
1998-01-01
The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency
Generation of an intense ion beam by a pinched relativistic electron beam
International Nuclear Information System (INIS)
Gilad, P.; Zinamon, Z.
1976-01-01
The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)
Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.
1975-01-01
The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of
International Nuclear Information System (INIS)
Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.
1994-11-01
A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA
Relativistic-Klystron two-beam accelerator as a power source for future linear colliders
International Nuclear Information System (INIS)
Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.
1999-01-01
The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented
Biophysical characterization of a relativistic proton beam for image-guided radiosurgery.
Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco
2012-07-01
We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery.
Biophysical characterization of a relativistic proton beam for image-guided radiosurgery
International Nuclear Information System (INIS)
Yu, Z.; Vanstalle, M.; La Tessa, C.; Durante, M.; Jiang Guoliang
2012-01-01
We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. (author)
Novel probe for determining the size and position of a relativistic electron beam
International Nuclear Information System (INIS)
Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.
1984-01-01
In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik
2018-02-01
When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.
Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.
2018-05-01
When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.
Energy Technology Data Exchange (ETDEWEB)
Patil, S. D., E-mail: sdpatilphy@gmail.com [Department of Physics, Devchand College, Arjunnagar, Dist.: Kolhapur 591 237 (India); Takale, M. V. [Department of Physics, Shivaji University, Kolhapur 416 004 (India)
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Bilaus, Rakan Sulaiman
2016-06-23
A process for producing xylenes, in particular para-xylene that is less energy intensive than conventional processes is provided. In an embodiment the process comprises contacting a feed mixture in an isomenzation zone with a catalyst at isomenzation conditions and producing an isomerized product comprising a higher proportion of p-xylene than in the feed mixture, wherein the catalyst comprises an acidic sulfonated catalytic membrane. Xylene isomenzation can also be coupled with a p-xylene extraction process, where the raffinate (p-xylene deprived stream) from the extraction process is fed to an isomenzation reactor to produce p-xylene. In an embodiment, the process can comprise: a) providing a feed stream comprising a mixture of xylene isomers including p-xylene; b) extracting p-xylene from the feed stream using a separator to separate the feed stream into a p-xylene rich stream and a p-xylene deprived stream; and c) delivering the p-xylene deprived stream to an isomenzation unit, the isomenzation unit including an acidic sulfonated catalytic membrane, and using the isomenzation unit to produce an isomerized product comprising a higher proportion of p-xylene than in the p-xylene deprived stream delivered to the isomenzation unit. In any one or more aspects, the isomenzation unit can be operated at a temperature in the range of less than 350°, for example about 20°C to about 200°C.
Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection
Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.
2017-12-01
Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing
Itskovsky, M. A.; Cohen, H.; Maniv, T.
2008-01-01
A quantum mechanical scattering theory for relativistic, highly focused electron beams near nanoscopic platelets is presented, revealing a new excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic scattering process. Calculated for metallic (silver and gold) and insulating (SiO2 and MgO) nanoplatelets...
SHORT-RANGE WAKEFIELD IN A FLAT PILLBOX CAVITY GENERATED BY A SUB-RELATIVISTIC BEAM BUNCH
International Nuclear Information System (INIS)
WANG, H.; PALMER, R.B.; GALLARDO, J.
2001-01-01
The short-range wakefield between two parallel conducting plates generated by a sub-relativistic beam bunch has been solved analytically by the image charge method in time domain. Comparing with the traditional modal analysis in frequency domain, this algorithm simplifies the mathematics and reveals in greater details the physics of electromagnetic field generation, propagation, reflection and causality. The calculated results have an excellent agreement with MAFIA and ABC1 simulations in all range of beam velocities
International Nuclear Information System (INIS)
Geissel, H.
1997-03-01
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de
International Nuclear Information System (INIS)
Schaefer, Sascha; Mehring, Max; Schaefer, Rolf; Schwerdtfeger, Peter
2007-01-01
The dielectric response to an inhomogeneous electric field has been investigated for Ba and Ba 2 within a molecular beam experiment. The ratio of the polarizabilities per atom of Ba 2 and Ba is determined to be 1.30±0.13. The experimental result is compared to a high level ab initio quantum chemical coupled cluster calculation with an energy-consistent scalar relativistic small-core pseudopotential for Ba. For the barium atom a polarizability of 40.82 A 3 is obtained and the isotropic value of the polarizability calculated for Ba 2 is 97.88 A 3 , which is in good agreement with the experimental results, demonstrating that a quantitative understanding of the interaction between two closed-shell heavy element metal atoms has been achieved
The e+, e- background at Relativistic Heavy Ion Collider (RHIC) generated by beam crossing
International Nuclear Information System (INIS)
Rhoades-Brown, M.J.; Ludlam, T.; Wu, J.; Bottcher, C.; Strayer, M.
1990-01-01
At the Brookhaven Relativistic Heavy Ion Collider (RHIC), fully stripped heavy ions will circulate in each of two rings up to beam energies of 250 (Z/A) GeV/u. During the beam crossing, the peripheral electromagnetic interaction between the heavy ions is sufficient to induce copious production of di-lepton pairs. These pairs are a potential source of background for the detectors at RHIC. In this paper we discuss the expected number of e + ,e - pairs, given the accepted initial luminosity value L of the collider. More importantly, we also calculate the differential cross sections for the angle, energy, rapidity and momentum distribution of the leptons. Using the luminosity L of the collider, these differential cross sections are normalized to the expected number of leptons per second. We restrict ourselves to e + ,e - production, a discussion of μ + ,μ - and τ + τ - distributions will be published later. The results are presented for the expected worst case, namely 197 Au 79+ ions at a beam kinetic energy of 100 GeV/u. This is forseen to be the heaviest ion for high luminosity experiments at RHIC. We note for a given energy, the cross section for e + ,e - production scales as Z 4 , where Z is the atomic number of the ions
Transport and interaction of a relativistic electron beam in low pressure neutral gases
International Nuclear Information System (INIS)
Iyyengar, S.K.; Rohatgi, V.K.
1989-01-01
A numerical study of the transport of a 0.27-MeV, 6.6-kA, 40-ns relativistic electron beam in argon and hydrogen in the pressure range of 0.01--1.0 Torr taking into account charge and current neutralization effects is presented. Ionization by avalanching and by beam and plasma electrons is included in the calculation of plasma density buildup. Plasma heating resulting from return current heating and two-stream instability is taken into account. The computed results of charge transport, net current, and breakdown time are compared with experimental results obtained in this laboratory. The results are in reasonable agreement with the experiment and show a maximum charge transport of 75% at the optimum pressure of 0.1 and 0.6 Torr in argon and hydrogen, respectively. The calculations indicate beam-generated plasma parameters of 10 19 --10 20 m -3 density and 1--5 eV electron temperature
International Nuclear Information System (INIS)
Thode, L.E.
1978-09-01
A 36-month program to study the linear relativistic electron beam-plasma interaction is proposed. This program is part of a joint proposal between the Physics International Company (PI) and Los Alamos Scientific Laboratory (LASL) that combines the advanced electron beam generator technology at PI with the highly developed computer simulation technology at LASL. The proposed LASL program includes direct support for 1- and 3-m beam-plasma interaction experiments planned at PI and development of theory relevant for design of a 10-m proof-of-principle electron beam-driven linear solenoidal reactor
International Nuclear Information System (INIS)
Newberger, B.S.; Thode, L.E.
1979-05-01
Experiments on the two-stream instability of a relativistic electron beam propagating through a neutral gas, carried out with the Lawrence Livermore Laboratory Astron beam, have been analyzed using a nonlinear saturation model for a cold beam. The behavior of the observed microwave emission due to the instability is in good agreement with that of the beam energy loss. Collisions on the plasma electrons weaken the nonlinear state of the instability but do not stabilize the mode. The beam essentially acts as if it were cold, a result substantiated by linear theory for waves propagating along the beam. In order to predict the effect of both beam momentum scatter and plasma electron collisions on the stability of the mode in future experiments a full two-dimensional linear theory must be developed
Energy Technology Data Exchange (ETDEWEB)
Ivanov, S.T.; Nikolov, N.A.
1979-01-01
The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.
International Nuclear Information System (INIS)
Zahran, M.A.; El-Shewy, E.K.
2008-01-01
The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained
International Nuclear Information System (INIS)
Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.
1992-07-01
This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ''coupling impedance'' for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs
International Nuclear Information System (INIS)
Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.
1981-01-01
Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division
Relativistic electron beam interaction and $K_{\\alpha}$-generation in solid targets
Fill, E; Eder, D; Eidmann, K; Saemann, A
1999-01-01
When fs laser pulses interact with solid surfaces at intensities I lambda /sup 2/ >10/sup 18/ W/cm/sup 2/ mu m/sup 2/, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K/sub alpha /) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fur Quantenoptik, we investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 mu m. By varying the position of the focus, we measure the copper K/sub alpha /-yield as a function of intensity in a range from 10/sup 15/ to 2 x 10/sup 18/ W/cm/sup 2/ while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10/s...
International Nuclear Information System (INIS)
Nation, J.A.
1992-01-01
This report describes work carried out on DOE contract number DE-AC02-80ER10569 during the period December 15, 1979 to May 31, 1992. The original purpose of this research was to investigate the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three major objectives: development of a suitable ion injector, growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components into a suitable proof-of-principle demonstration of the wave accelerator. Work focused on the first two of these objectives. Control of the space charge waves' phase velocity was not obtained to the degree required for a working accelerator, so the project was duly terminated in favor of a program which focused on generating ultra high power microwave signals suitable for use in the next linear collider. Work done to develop suitable efficient, inexpensive, phase-stable microwave sources, with peak powers of up to 1 GW in the X band in pulses shorter than 1 ns, is described. Included are lists of the journal and conference papers resulting from this work, as well as a list of graduate students who completed their Ph.D. studies on the projects described in this report
Directory of Open Access Journals (Sweden)
Agostino Marinelli
2010-11-01
Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.
Shin, Young-Min; Figora, Michael
2017-10-01
A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within quasi-relativistic UED system.
Propagation of a laser-driven relativistic electron beam inside a solid dielectric.
Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B
2012-09-01
Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.
International Nuclear Information System (INIS)
El-Shorbagy, K.H.
2000-07-01
The influence effect of a strong HF electrical field on the excitation of surface waves by an electron beam under the development of instability of low-density electron beam passing through plane relativistic plasma is investigated. Starting from the two fluid plasma model we separate the problem into two parts. The 'temporal' (dynamical) part enables us to find the frequencies and growth rates of unstable waves. This part within the redefinition of natural (eigen) frequencies coincide with the system describing HF suppression of the Buneman instability in a uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are obtained by solving a boundary value problem ('spatial' part) considering a specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a relativistic plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to nonrelativistic plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)
Nonlinear bound on unstable field energy in relativistic electron beams and plasmas
International Nuclear Information System (INIS)
Davidson, R.C.; Yoon, P.H.
1989-01-01
This paper makes use of Fowler's method [J. Math Phys. 4, 559 (1963)] to determine the nonlinear thermodynamic bound on field energy in unstable plasmas or electron beams in which the electrons are relativistic. Treating the electrons as the only active plasma component, the nonlinear Vlasov--Maxwell equations and the associated global conservation constraints are used to calculate the lowest upper bound on the field energy [ΔE-script/sub F/]/sub max/ that can evolve for the general initial electron distribution function f/sub b//sub / 0 equivalentf/sub b/(x,p,0). The results are applied to three choices of the initial distribution function f/sub b//sub / 0 . Two of the distribution functions have an inverted population in momentum p/sub perpendicular/ perpendicular to the magnetic field B 0 e/sub z/, and the third distribution function reduces to a bi-Maxwellian in the nonrelativistic limit. The lowest upper bound on the efficiency of radiation generation, eta/sub max/ = [ΔE-script/sub F/]/sub max//[V -1 ∫ d 3 x∫ d 3 p(γ-1)mc 2 f/sub b//sub / 0 ], is calculated numerically over a wide range of system parameters for varying degrees of initial anisotropy
Detection system for forward emitted XUV photons from relativistic ion beams at the ESR
Energy Technology Data Exchange (ETDEWEB)
Egelkamp, C.; Hannen, V.; Ortjohann, H.W.; Vollbrecht, J.; Weinheimer, C.; Winzen, D. [Institut fuer Kernphysik, Uni Muenster (Germany); Kuehl, T. [Institut fuer Kernchemie, Uni Mainz (Germany); GSI, Darmstadt (Germany); Helmholtz Institut Jena (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Uni Mainz (Germany); GSI, Darmstadt (Germany); Sanchez, R.; Winters, D. [GSI, Darmstadt (Germany); Stoehlker, T. [GSI, Darmstadt (Germany); Helmholtz Institut Jena (Germany); Uni Jena (Germany)
2016-07-01
Highly charged heavy ions stored at relativistic velocities provide a unique possibility to test atomic structure calculations. A possibility to investigate electron-electron correlations is the study of the {sup 3}P{sub 0} → {sup 3}P{sub 1} fine structure transition in Be-like Krypton ({sup 84}Kr{sup 32+}) in laser spectroscopy experiments. For this purpose Be-like krypton ions are stored in the experimental storage ring (ESR) at GSI at a velocity of β = 0.69. Through an anticollinear arrangement of the excitation laser and the ions the wavelength in the rest frame of the ions can be matched. After the excitation to the {sup 3}P{sub 1} level the ions immediately decay to the ground state, emitting λ ∼ 17 nm photons. Due to the Lorentz boost, the photons are emitted mainly in the forward direction and experience a Doppler shift to wavelengths < 10 nm. To collect these photons a moveable cathode plate with a central slit is brought into the beam line. The XUV photons mostly produce low energy secondary electrons on the plate which are electromagnetically guided onto a MCP detector. The design and working principle, as well as simulations and test measurements of the detector are presented.
Generation of attosecond electron beams in relativistic ionization by short laser pulses
Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.
2018-03-01
Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.
International Nuclear Information System (INIS)
Vijayan, T.; Raychowdhury, P.; Iyengar, S.K.
1992-01-01
A program of collective ion acceleration using intense relativistic electron beam (IREB) of 0.25-1MeV, 6-80kA, 60ns on the Kilo Ampere Linear Injector (KALI) systems to accelerate light and heavy ions to high energies approaching GeV with currents over tens of amperes, is envisaged in this report. The accelerator will make use of the intense space-charge field of electron beam in vacuum for accelerating ions which are injected into it. For ion injection, various alternatives, such as, localized gas puff, dielectric insert, laser plasma, etc. have been considered as present and long-term objectives. Among the variety of diagnostic methods chosen for characterizing the accelerated ions include range-energy in foil, CR-39 track detector, nuclear activation technique and time-of-flight for energy and species determination; ion Faraday cup for current measurement; and Thomson parabola analyzer for determining the post-acceleration charge-state. In the proposed MAHAKALI collective accelerator, protons of energy over 10 MeV and higher charge state metal ions around a GeV are predicted using a REB of 1MeV, 30kA, 60ns from KALI-5000. In present experiments using KALI-200 with REB parameters of 250keV, 60kA, 80ns, protons over a MeV and carbon and fluorine ions respectively for 12MeV and 16MeV in significant currents have been accelerated. (author). 35 refs., figs., tabs
International Nuclear Information System (INIS)
Kato, K.G.; Benford, G.; Tzach, D.
1983-01-01
Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions
International Nuclear Information System (INIS)
Chen, C.
1994-01-01
A Pierce-type dispersion relation is derived for the interaction of an intense relativistic electron beam with a cylindrical slow-wave structure of arbitrary corrugation depth. It is shown that near a resonance, the Pierce parameter can be expressed in terms of the vacuum dispersion function and the beam current. The dispersion relation is valid in both the low-current (Compton) regime and the high-current (Raman) regime. The dispersion characteristics of the interaction, such as the linear instability growth rate and bandwidth, are analyzed for both regimes
Energy Technology Data Exchange (ETDEWEB)
Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)
2016-01-15
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
International Nuclear Information System (INIS)
Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.
2015-01-01
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate
Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design
Energy Technology Data Exchange (ETDEWEB)
Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
On the kinetic collisional theory of beam-plasma system (relativistic dielectric tensor). Vol. 2.
Energy Technology Data Exchange (ETDEWEB)
Khalil, Sh M; Sayed, Y A; Zaki, N G [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)
1996-03-01
Calculation of the dielectric tensor is useful for calculating and oscillations the stability of an inhomogeneous plasma. If the dielectric tensor is known, the problem of oscillations is reduced the derivation of the Maxwellian equations. In this case, there is no need to derive the equations of the motion of charged particles every time. The properties of the plasma, especially those connected to its instability, may be equally well specified through permittivity as through conductivity. The features of plasma instabilities and the plasma dielectric tensor are essentially affected by the presence of collision. Coloumb collisions (C.C.) are very important in the process of no linear saturation of some plasma instabilities (e.g., ion cyclotron instability, electron-ion two stream instability). For C.C., two basic properties are considered; (i) the cross section decreases rapidly as the particle velocity increases, (ii) the dominate contribution arises from a commutative effect of small-angle scattering or small-momentum transfer processes. If allowance is made for C.C. to derive the kinetic wave equations in a homogeneous plasma, it will remove the divergance in the matrix elements describing nonlinear interactions. In this paper, the collisional kinetic wave equation in cylindrical hot plasma is studied. The dielectric and polarizing tensor elements which describes the kinetic relativistic electron beam (REB) interaction with magnetized plasma into consideration the effect of pair C.C. is derived. Most research carried out in this direction has neglected the effect of C.C. In the absence of collisions, a `plauste` is formed on the distribution function, and the adsorption of the energy by the plasma stops. 1 fig.
Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II
International Nuclear Information System (INIS)
Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.
1998-01-01
Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse
Energy Technology Data Exchange (ETDEWEB)
Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan
2017-07-12
The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.
International Nuclear Information System (INIS)
Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan
2017-01-01
The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.
International Nuclear Information System (INIS)
Singh, Kh.I.; Das, G.C.
1993-01-01
Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs
International Nuclear Information System (INIS)
Nanda, Vikas; Kant, Niti
2014-01-01
Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc
Energy Technology Data Exchange (ETDEWEB)
Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)
2014-04-15
Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.
International Nuclear Information System (INIS)
Blank, B.
1991-06-01
In the framework of this thesis the method of the 'momentum-loss achromate' was for the first time tested at relativistic energies. This experiment is presented in chapter 2 of the thesis. In a second experiment the method was then used, in order to make secondary beams of 8,9,11 Li available. With these secondary beams cross section measurements were performed, from which beside information on the nuclear radii of these nuclei also further information on the internal structure of the lithium isotopes can be derived. This experiment is described in chapter 3 of the thesis. In the framework of these two experiments for the applied heavy ions energy-loss measurements were performed. The results of these measurements are presented in chapter 4. (orig.) [de
International Nuclear Information System (INIS)
Miller, J.D.
1989-01-01
Experiments have been performed demonstrating efficient transport of long-pulse (380 ns), high-current (200 A), relativistic electron beams (REBs) in preformed plasma channels in the ion focus regime (IFR). Plasma channels were created by low-energy ( e , and channel ion mass, in agreement with theoretical values predicted for the ion hose instability. Microwave emission has also been observed indicative of REB-plasma electron two-stream instability. Plasma channel density measurements indicate that the two-stream instability can become dominant for measured f e values slightly above unity. The author has introduced a theoretical analysis for high-current REB transport and modulation in axially periodic IFR plasma channels. Analytic expression for the electric field are found for the case of a cosine modulation of the channel ion density. Two different types of channels are considered: (i) periodic beam-induced ionization channels, and (ii) periodic plasma slab channels created by an external source. Analytical conditions are derived for the matched radius of the electron beam and for approximate beam envelope motion using a 'smooth' approximation. Numerical solutions to the envelope equation show that by changing the wavelength or the amplitude of the space-charge neutralization fraction of the ion channel density modulation, the beam can be made to focus and diverge, or to undergo stable, modulated transport
International Nuclear Information System (INIS)
Shokair, I.R.
1991-01-01
Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs
Design study of a microwave driver for a Relativistic Klystron Two-Beam Accelerator
International Nuclear Information System (INIS)
Houck, T.L.
1993-05-01
In two-beam accelerators, the reacceleration of a modulated drive beam can enable high conversion efficiency of electron beam energy to rf energy. However, the stability issues involved with the transport of high current electron beams through rf extraction structures and induction accelerator cells are critical. The author reports on theoretical studies and computer simulations of a two-beam accelerator design using traveling-wave extraction structures. Specific issues addressed include regenerative and cumulative transverse instabilities
Energy Technology Data Exchange (ETDEWEB)
Gevorgyan, L A; Shamamian, A N
1992-12-31
The problem of relativistic electron beam-laser beat waves interaction is considered. Due to interaction the electron density is changed as opposed to the case, when it interacts with still electron plasma, the change of density gets less. But it is interesting to research the coherent spontaneous radiation of the electron beam interacting with. It is shown that this interaction brings to an increase of the partial coherent effect. The radiation efficiency depends essentially on the beam parameters, i.e. on the radio of the distinctive longitudinal dimension density. The maximum amplification takes place when the beam length makes room for an odd number of wave length quarters. Since the gain factor decreases with the radiation wave length, we offer to use high-current relativistic electron beams to generate micro radio waves. 4 refs.
Beam-based measurements of persistent current decay in the Relativistic Heavy Ion Collider
Directory of Open Access Journals (Sweden)
W. Fischer
2001-04-01
Full Text Available The two rings of the Relativistic Heavy Ion Collider are equipped with superconducting dipole magnets. At injection, induced persistent currents in these magnets lead to a sextupole component. As the persistent currents decay with time, the horizontal and vertical chromaticities change. From magnet measurements of persistent current decays, chromaticity changes in the machine are estimated and compared with chromaticity measurements.
International Nuclear Information System (INIS)
Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander
2008-01-01
In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields
Self magnetic field effects on energy deposition by intense relativistic electron beams
International Nuclear Information System (INIS)
Nardi, E.; Peleg, E.; Zinamon, Z.
1977-01-01
The effect of the penetration of the self magnetic field of an intense relativsistic electron beam on the process of beam-target interaction is calculated. The diffusion of the magnetic field and the hydrodynamic expansion of the target are dynamically taken into account. It is found that at beam intensities of interest for pellet fusion considerable range shortening occurs by magnetic stopping. (author)
Directory of Open Access Journals (Sweden)
M. Füllekrug
2011-01-01
Full Text Available Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14 and high (L > 2.14 geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36 in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from
Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations
Directory of Open Access Journals (Sweden)
M. Verschl
2007-02-01
Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.
Formation of a compact torus by a rotating relativistic electron beam
International Nuclear Information System (INIS)
Jain, K.K.; John, P.I.
1986-01-01
A closed field-reversed configuration has been produced by a long pulse duration (roughly-equal 500 nsec) intense electron beam injected into hydrogen gas. The field reversal is created by the beam current during the duration of beam propagation, but is sustained by the beam-induced plasma currents after the exit of the beam. Reconnection of the antiparallel field lines has been observed, which results in formation of a prolate spheroid. The axial extent of the spheroid is 80.0 cm. It contracts immediately after its formation with the supersonic velocity. Attempts were made to close axial currents along the closed poloidal field lines
International Nuclear Information System (INIS)
Badziak, J.; Jablonski, S.; Glowacz, S.
2006-01-01
Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser
International Nuclear Information System (INIS)
Ibnouzahir, M.
1995-03-01
The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)
International Nuclear Information System (INIS)
Tanaka, M.; Sato, T.
1985-01-01
A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper
Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Zelensky, A. G.
2018-05-01
The resistive sausage instability of the relativistic electron beam in dense gas-plasma medium in the case of the generation of equilibrium return plasma current is investigated. In this situation the eigenvalue equation of this instability is obtained. The stabilizing and destabilizing effects of the phase mixing and generation of the return plasma current respectively have been shown.
International Nuclear Information System (INIS)
Balakirev, V.A.; Buts, V.A.
1982-01-01
The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2#betta# 2 times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found
International Nuclear Information System (INIS)
Yu, S.; Goffeney, N.; Deadrick, F.
1994-10-01
A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ''bottom-up'' cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%
Controlling hollow relativistic electron beam orbits with an inductive current divider
Energy Technology Data Exchange (ETDEWEB)
Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2015-02-15
A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2017-10-01
We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.
International Nuclear Information System (INIS)
Stover, G.; Nyman, M.; Halliwell, J.; Lutz, I.; Dwinell, R.
1987-03-01
A power supply system is currently being designed and constructed to sweep an 8.0 Tesla-meter relativistic heavy ion beam in a raster scanning mode for radiotherapy use. Two colinear dipole magnets with orthogonally oriented magnetic fields are driven by the system to produce a rectangular field (40 x 40 cm max.) with a uniform dose (+-2.5%) to a target volume 6 meters away. The ''fast'' horizontal scanning magnet is driven by a single power supply which in conjunction with a triac bridge network and a current regulated linear actuator will produce a 1200 cm/sec max. sweep rate. The ''slow'' (40 cm/sec) vertical scanning magnet will be controlled by dual current regulated linear actuators in a push-pull configuration. The scanner system can provide off-axis treatment profiles with large aspect ratios and unusual dimensions
International Nuclear Information System (INIS)
Kato, K.G.; Benford, G.; Tzach, D.
1983-01-01
Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists
International Nuclear Information System (INIS)
Urry, C.M.; Padovani, P.
1991-01-01
In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs
International Nuclear Information System (INIS)
Allen, M.A.; Azuma, O.; Callin, R.S.
1989-03-01
Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs
The two-beam accelerator and the relativistic klystron power source
International Nuclear Information System (INIS)
Sessler, A.M.
1988-04-01
This paper discusses the concept of a two-beam accelerator. Two versions are discussed; one employing a free electron laser, the second employing a branched beam sent through ''transfer cavities'' as in a klystron. 14 refs., 26 figs., 1 tab
OCCURRENCE OF ACCELERATING FIELD, FORMATION AND DYNAMICS OF RELATIVISTIC ELECTRON BEAM NEAR JUPITER
Directory of Open Access Journals (Sweden)
V. I. Maslov
2018-06-01
Full Text Available The possible dynamics of the electron beam, formed in the vicinity of Io, the natural satellite of Jupiter, and injected toward Jupiter, has been investigated analytically. When a beam penetrates the Jupiter plasma to a certain depth, the beam-plasma instability can be developed. In this case, the distribution function of electrons is expanded additionally by excited oscillations. These electrons, when their energy is of order of a required certain value, cause UV polar light. For closing of a current, the formation of a double electric layer is necessary. The necessary parameters and conditions for the formation of a double layer with a large jump of an electric potential at a certain height have been formulated, its properties, stability, behavior over time and beam reflection in its field for closing of a current have been described. Reflection of the beam can lead to its vortex dynamics.
Laser cooling and ion beam diagnosis of relativistic ions in a storage ring
International Nuclear Information System (INIS)
Schroeder, S.
1990-08-01
Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de
International Nuclear Information System (INIS)
Marks, R.
1985-09-01
Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs
International Nuclear Information System (INIS)
Weidman, D.J.; Murphy, D.P.; Myers, M.C.; Meger, R.A.
1994-01-01
The expansion of the radius of a 5 MeV, 20 kA, 40 ns electron beam from SuperIBEX during propagation through gas is being measured. The beam is generated, conditions, equilibrated, and then passed through a thin foil that produces Cherenkov light, which is recorded by a streak camera. At a second location, the beam hits another Cherenkov emitter, which is viewed by a framing camera. Measurements at these two locations can provide a time-resolved measure of the beam expansion. The two measurements, however, must be synchronized with each other, because the beam radius is not constant throughout the pulse due to variations in beam current and energy. To correlate the timing of the two diagnostics, several shots have been taken with both diagnostics viewing Cherenkov light from the same foil. Experimental measurements of the Cherenkov light from one foil viewed by both diagnostics will be presented to demonstrate the feasibility of correlating the diagnostics with each other. Streak camera data showing the optical fiducial, as well as the final correlation of the two diagnostics, will also be presented. Preliminary beam radius measurements from Cherenkov light measured at two locations will be shown
Computationally efficient description of relativistic electron beam transport in dense plasma
Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady
2006-10-01
A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.
Visualization of the microwave beam generated by a plasma relativistic microwave amplifier
Energy Technology Data Exchange (ETDEWEB)
Alekseev, I. S.; Ivanov, I. E.; Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation); Tarakanov, V. P., E-mail: karat@msk.su [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Ulyanov, D. K. [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation)
2017-03-15
A method based on the detection of emission of a dielectric screen with metal microinclusions in open air is applied to visualize the transverse structure of a high-power microwave beam. In contrast to other visualization techniques, the results obtained in this work provide qualitative information not only on the electric field strength, but also on the structure of electric field lines in the microwave beam cross section. The interpretation of the results obtained with this method is confirmed by numerical simulations of the structure of electric field lines in the microwave beam cross section by means of the CARAT code.
History of development of acceleration weapons with relativistic electron beam in USA
International Nuclear Information System (INIS)
Pavlov, A.V.
1996-01-01
Technological aspects of creating in the USA the accelerating weapon (AW) on the intensive electron beams is discussed. The analysis of the works process on the accelerating topics with priority studies on creating the means for destruction of intercontinental ballistic missiles at 500 km distance is given. Projects on creating perspective board electron high-gradient purposeful accelerators are elucidated and data on the accomplished cosmic experiments with electron beams in the USA are presented
International Nuclear Information System (INIS)
Sellem, F.
1997-01-01
This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.)
Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj
2017-12-01
A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.
Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam
International Nuclear Information System (INIS)
Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Wu, Jennifer W.
2008-01-01
Computer simulations using the 2D code 'POSINST' were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam
Transverse instabilities of relativistic particle beams in accelerators and storage rings. I
International Nuclear Information System (INIS)
Zotter, B.
1977-01-01
This paper deals with transverse instabilities in coasting beams. A short description is given of the mechanism which leads to transverse instabilities, due essentially to the reaction of the electromagnetic fields caused by an oscillating beam on the particle motion. The methods used to calculate the electromagnetic fields are described and one of them is used to calculate the dispersion relation coefficients as well as the transverse coupling impedance, of a cylindrical beam in a concentric vacuum chamber with finite wall resistivity. In the last sections the dispersion relation is derived from the equation of motion of a single particle. The concept of the stability diagram is introduced and the stability criterion is discussed from several points of view. (Auth.)
Effective code for numerical simulation of the helical relativistic electron beams
International Nuclear Information System (INIS)
Lygin, V.K.; Manuilov, V.N.; Tsimring, Sh.E.
1996-01-01
A method was developed to calculate the beam space charge electric field, based on the integral equations method and introduction of three additional meshes. The method reduces the calculation time substantially. A new approach to the space charge limited current regime simulation is presented. The current density distribution j(R) is calculated directly from the zero condition for the normal component of the electric field on the emitter. This also leads to the reduction of j(R) as a source of error in the calculation of the beam properties. (author). 6 refs
Generation of a cold, intense relativistic electron beam using a magnetized foilless diode
International Nuclear Information System (INIS)
Sheffield, R.L.; Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Singer, S.
1982-01-01
An annular electron beam with less than 30 mrad of angular velocity spread, a radius of 1 cm, and a current density exceeding 0.4 MA/cm 2 has been generated with a magnetized foilless diode. The diode current loss is limited to less than a few percent by careful design of the tapered transition region connecting a self-magnetically insulated vacuum transmission line to the externally magnetized foilless diode. Details of the transition section design and operating characteristics of the electron beam generator are given
Effective code for numerical simulation of the helical relativistic electron beams
Energy Technology Data Exchange (ETDEWEB)
Lygin, V K; Manuilov, V N; Tsimring, Sh E [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Institute of Applied Physics
1997-12-31
A method was developed to calculate the beam space charge electric field, based on the integral equations method and introduction of three additional meshes. The method reduces the calculation time substantially. A new approach to the space charge limited current regime simulation is presented. The current density distribution j(R) is calculated directly from the zero condition for the normal component of the electric field on the emitter. This also leads to the reduction of j(R) as a source of error in the calculation of the beam properties. (author). 6 refs.
Directory of Open Access Journals (Sweden)
Zhen Wang
2014-09-01
Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.
Slow cyclotron waves in a waveguide with a relativistic electron beam
International Nuclear Information System (INIS)
Korenev, I.L.; Yudin, L.A.; Mustafin, Kh.Kh.
1979-01-01
Using the analytical methods the problem about propagation of waves of a small amplitude in an electron beam (without ions), moving along the axis of a smooth waveguide in the longitudinal magnetic field is considered. The main attention is paid to dispersion.characteristics and the slow cyclotron waves intended for ion acceleration. The problems connected with utilization of these waves for ion acceleration are discussed. The estimation shows that when a system of excitation of an accelerating wave has a wide range, i.e. excited is a great set of slow cyclotron modes, the accelerating field structure significantly changes at a distance of several dozens beam radii, and synchronism supply between the wave and accelerating ions becomes an impracticable task. So it is necessary to have a narrow-band excitation system to excite only a single mode. It is noted that the model used of a uniform beam density along the cross section is an idealization permitting to simplify analytical consideration. The presence of the radial density change in an undisturbed beam will lead to some other cyclotron wave field structure. However, such a change will not give any qualitative differences in comparison with the results obtained
On quantum effects in spontaneous emission by a relativistic electron beam in an undulator
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-02-15
Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-known results consistent with a continuous diffusive process. The additional pedagogical purpose of this paper is to review how quantum diffusion of electron energy in an undulator with small undulator parameter can be simply analyzed using the Thomson cross-section expression, unlike the conventional treatment based on the expression for the Lienard-Wiechert fields. (orig.)
International Nuclear Information System (INIS)
Budker, G.I.; Gaponov, V.A.; Gorniker, Eh.I.
1982-01-01
A gyrocon, SHF-generator, is described in which the energy of debunched relativistic electron beam is converted to the energy of electromagnetic oscillations. The gyrocon is intended for supplying the VEPP-4 accelerating resonators. A high-voltage accelerator is used as an electron source. An electron beam is scanned by a rotating magnetic field of the resonator and in different points of the orbit circumscribed by the beam and is injected into the outlet resonator. The resonator represents a ring-form waveguide with slots for the beam passage. A travelling wave, whose field decelerates electrons, is excited in the resonator tuned in to the scanning frequency, converting the beam power to RF-power which is taken off through the energy outlets. The design parameters of the gyrocon are as follows: electron efficiency > 95%, the general efficiency > 80%, amplification factor 23 dB, output power = 5 MW. Results of preliminary tests of the gyrocon are presented
International Nuclear Information System (INIS)
Yin, L.; Albright, B. J.; Bowers, K. J.; Shah, R. C.; Palaniyappan, S.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.
2011-01-01
In recent experiments at the Trident laser facility, quasi-monoenergetic ion beams have been obtained from the interaction of an ultraintense, circularly polarized laser with a diamond-like carbon target of nm-scale thickness under conditions of ultrahigh laser pulse contrast. Kinetic simulations of this experiment under realistic laser and plasma conditions show that relativistic transparency occurs before significant radiation pressure acceleration and that the main ion acceleration occurs after the onset of relativistic transparency. Associated with this transition are a period of intense ion acceleration and the generation of a new class of ion solitons that naturally give rise to quasi-monoenergetic ion beams. An analytic theory has been derived for the properties of these solitons that reproduces the behavior observed in kinetic simulations and the experiments.
X-ray streak camera for observation of tightly pinched relativistic electron beams
International Nuclear Information System (INIS)
Johnson, D.J.
1977-01-01
A pinhole camera is coupled with a Pilot-B scintillator and image-intensified TRW streak camera to study pinched electron beam profiles via observation of anode target bremsstrahlung. Streak intensification is achieved with an EMI image intensifier operated at a gain of up to 10 6 which allows optimizing the pinhole configuration so that resolution is simultaneously limited by photon-counting statistics and pinhole geometry. The pinhole used is one-dimensional and is fabricated by inserting uranium shims with hyperbolic curved edges between two 5-cm-thick lead blocks. The loss of spatial resolution due to the x-ray transmission through the perimeter of the pinhole is calculated and a streak photograph of a Gamble I pinched beam interacting with a brass anode is presented
Zirak, H.; Jafari, S.
2015-06-01
In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.
Magnetically insulated transmission line used for relativistic electron beam injection into SPAC-VI
International Nuclear Information System (INIS)
Tsuzuki, Tetsuya; Narihara, Kazumichi; Tomita, Yukihiro; Mohri, Akihiro.
1980-10-01
For the purpose to inject the electron beam with energy of about 1.5 MeV and current of about 100 kA into the SPAC-6 (torus device), a magnetically insulated transmission line was designed and constructed. The motion of electrons in the line was theoretically analyzed. The requirements for the design of the transmission line were as follows-: (a) condition of magnetic insulation, (b) suppression against reverse gas flow from the beam source to the torus, (c) care to minimize the influence of strong torus magnetic field, (d) reduction of inductance and (e) safety engineering measures, e.g., separation valve in the MITL between the beam source and the SPAC-6. The transmission line of 2.4 m long was designed and constructed. The wave forms of electric potential and current were measured. The transmission efficiency of current along the axis and the efficiency as a function of current at the end of the line were also measured. The reason of the loss of current is discussed. (J.P.N.)
A time-of-flight system for precise measurements of a relativistic charged particle beam momentum
International Nuclear Information System (INIS)
Avramenko, S.A.; Belikov, Yu.A.; Golokhvastov, A.I.; Lukstin'sh, Yu.; Man'yakov, P.K.; Rukoyatkin, P.A.; Khorozov, S.A.
1996-01-01
A time-of-flight system with a time resolution (σ) about 100 ps is described. The methods for the calibration, stability verification and the method for the time resolution evaluation in conditions of a nonmonochromatic beam are discussed especially. The system was applied in charge exchange ( 3 H, 3 He) experiments with the GIBS spectrometer for a measurement of 3 H-nuclei momenta at 2 GeV/c per nucleon with a precision about 0.2%. (author). 4 refs., 7 figs., 1 tab
Wear resistance increase of the modified coatings, deposited in the beam of relativistic electrons
International Nuclear Information System (INIS)
Poletika, I.M.; Perovskaya, M.V.; Balushkina, M.A.
2015-01-01
The 1.5-3 mm thickness coatings have been obtained by vacuum - free electron beam cladding of tungsten carbide on low - carbon steel sub state. The coatings have an increased hardness but low wear resistance. Adding both nickel and titanium carbide to the tungsten carbide results in essentially improving the wear resistance of the coatings due to austenite-promoting effect of nickel and precipitation of fine Tic particles resulting in the formation of the final and nano grain structure. In the layer of weld one can find 30-100 nm grain - size structures. (authors)
International Nuclear Information System (INIS)
Rukhadze, A.A.
1981-01-01
Pulsed high-current electron beams with characteristic parameters: electron energy 10 5 -10 7 eV, electron current 10 3 -10 6 A, pulse duration 10 -8 -10 -6 s, beam energy 10 2 -10 6 J and power 10 8 -10 13 W, are widely used in different branches of science and technology such as controlled thermonuclear fusion, relativistic microwave electronics, powerful semiconductors, chemical and gaseous lasers, new principles of heavy-ion acceleration, and long-distance energy transmission. The paper discusses a new branch of science - pulsed high-current electronics, which has its own experimental technique and methods of theoretical analysis. Parts I and II determine what is meant by ''high current'' in an electron beam and calculate the maximum obtainable current values; these calculations are made for the simplest geometrical configurations realizable in practice. Current methods for theoretical analysis of high-current electron beam physics are described, together with classification of current experimental devices for generating such beams according to high-current parameters. The stability of electron beams is discussed and the concept of critical currents is introduced. Part III gives a detailed account of plasma-beam instability which occurs on the interaction of a high-current electron beam with high-density space-limited plasma. The linear and non-linear stages of beam instability are considered. The given theory is used for calculations for amplifiers and microwave generators of electromagnetic radiation. Finally, the experimental achievements in high-current relativistic microwave electronics are reviewed. (author)
Finite-element 3D simulation tools for high-current relativistic electron beams
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
International Nuclear Information System (INIS)
Efthimion, P.C.; Schlesinger, S.P.
1977-01-01
For the first time, the parametric coupling of the negative-energy cyclotron and space-charge modes to a fast coaxial waveguide structure is observed. The coaxial waveguide smooth center conductor is internally loaded to maintain a 5% ripple of 1.4-, 1.6-, or 2.0-cm periods on the background axial magnetic field throughout the interaction region of 70 cm. The parametric coupling may be considered a stimulated scattering process with the rippled magnetic field of zero frequency in the lab frame appearing as an electromagnetic pump wave in the beam frame, with 30-MW/cm 2 power density imparting to the electrons a quiver velocity V/sub os/ approx. = 0.1c. As predicted by theory, the frequency of the microwave radiation generated by the negative-energy cyclotron mode decreases with increasing magnetic field while remaining constant for the negative-energy space-charge mode. Power levels from 1 to 5 MW have been measured at mm and cm wavelengths. Radiation at frequencies of 2γ 2 V/L, where V and L are the beam velocity and ripple period, respectively, has been observed at high magnetic fields with an exponential-growth rate consistent with parametric coupling theory. This mechanism could be employed as a tunable generator of millimeter and submillimeter wavelength radiation
International Nuclear Information System (INIS)
Efthimion, P.C.
1977-01-01
For the first time, the parametric coupling of the negative energy cyclotron and space-charge modes to a fast coaxial waveguide structure is observed. The coaxial waveguide smooth center conductor is internally loaded to maintain a 5% ripple of 1.4, 1.6, or 2.0 cm periods on the background axial magnetic field throughout the interaction region of 70 cm. The parametric coupling may be considered a stimulated scattering process with the rippled magnetic field of zero frequency in the laboratory frame appearing as an electromagnetic pump wave in the beam frame, with 30 MW/cm 2 power density imparting to the electrons a quiver velocity V/sub os/ = 0.1 c. As predicted by theory, the frequency of the microwave radiation generated by the negative energy cyclotron mode decreases with increasing magnetic field while remaining constant for the negative energy space-charge mode. Power levels from 1 to 5 MW have been measured at mm and cm wavelengths. Radiation at frequencies 2γ 2 V/L, where V and L are the beam velocity and ripple period respectively, has been observed at high magnetic fields with an exponential growth rate consistent with parametric coupling theory. This mechanism could be employed as a tunable generator of submillimeter and infrared wavelength radiation
International Nuclear Information System (INIS)
Habibi, M.; Ghamari, F.
2014-01-01
The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam
International Nuclear Information System (INIS)
Habibi, M.; Ghamari, F.
2014-01-01
Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)
International Nuclear Information System (INIS)
Yu, S.; Goffeney, N.; Henestroza, E.
1995-01-01
A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported
International Nuclear Information System (INIS)
Yu, S.; Goffeney, N.; Deadrick, F.
1994-11-01
A systems study, including physics, engineering and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars
International Nuclear Information System (INIS)
Kelly, J.G.; Schuch, R.L.
1976-02-01
The complete results of the experiments with the converging annular diode within return current fedback through the cathode (Triax) are reported herein. The diode was designed to focus a relativistic high-current electron beam to a small focus. It did confirm the Triaxial theory detailed in Part I, and it did achieve a factor of 10 areal compression with 50% efficiency (which was below expectations). There were two principal reasons for this shortfall. First, the rapid diode plasma motion of 10 cm/μsec that was discovered necessitated the use of larger A-K gaps than expected and led to thicker beam sheets than are needed for good focusing. Second, the intrinsic angular spread of the electrons, even from the best cathode surfaces, introduced excessive angular momentum into the beam so that only a minor portion of the electrons could reach the axis. However, the yield of useful information about diode physics in general and about the influence of prepulse, the role of diode plasmas, the motion of energetic beams within conducting boundaries, diode emission properties, and diode diagnostic techniques in particle has had a significant and useful impact on the electron beam program at Sandia
International Nuclear Information System (INIS)
Ouyang, Zhengbiao; Zhang, Shi-Chang
2014-01-01
In a free-electron laser the ‘natural focusing’ effect of a three-dimensional wiggler is too weak to confine the transport of a relativistic electron beam when the beam has a high current and consequently an external focusing system is often needed. In this paper we study the focusing peculiarities of an ion-channel guide field on an electron beam. Nonlinear simulations of an electron beam transport show that, compared to an axial guide magnetic field, the ion-channel guide field results in smaller velocity–space and configuration–space spreads. The intrinsic mechanism of this physical phenomenon is that the ion-channel guide field confines the trajectory of the electron motion resulting in a smaller instantaneous curvature radius and a slighter curvature-center excursion than an axial guide magnetic field does. It is also found that, unlike with an axial guide magnetic field, over-focusing may occur if the ion-channel guide field is too strong. (paper)
Plasma relativistic microwave electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.
2001-01-01
One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru
Energy Technology Data Exchange (ETDEWEB)
Beck, Tobias
2015-02-15
Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
International Nuclear Information System (INIS)
Chultehm, D.; Damdinsurehn, Ts.; D'yachenko, V.M.; Ehnkhzhin, L.; Lomova, L.A.; Perelygin, V.P.; Tolstov, K.D.
1994-01-01
The present paper describes a method of determining the total number of neutrons generated in an extended lead target by relativistic nuclei and protons. It is shown that 101±20 neutrons per proton are produced in the target with the volume of 50x50x80 cm 3 at 3.65 GeV energy of protons. 11 refs., 14 figs., 1 tab
International Nuclear Information System (INIS)
Westenskow, G.A.; Houck, T.L.
1993-05-01
High conversion efficiency of electro beam energy to rf energy can be achieved in two-beam accelerators using reacceleration of the bunched drive beam. To study issues with these designs we are planning a demonstration in which a modulated beam's energy is boosted as it passes through induction accelerator cells. For this experiment we will use the front end of the Choppertron to modulate a 5 MeV electron beam at 11.4 GHz. We have now tested the 5-MeV Choppertron and are reporting on the results. For the reacceleration experiment we plan to use three stages of rf power extraction interspersed with two stages of reacceleration
International Nuclear Information System (INIS)
Deibele, C.E.
1996-01-01
The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
International Nuclear Information System (INIS)
Thode, L.E.
1978-04-01
Based upon recent theoretical and experimental advances, the potential for using a 10 to 30 MeV electron beam to heat a 10 17 to 10 20 cm -3 density plasma has been investigated. Taking into account anode foil scattering, external magnetic field strength, electron-ion collision rate, beam self-magnetic field discontinuity, and plasma temperature, a coupling efficiency of 15 to 50% is achievable for such a plasma. Moreover, the beam generator requirements seem to be within present pulse power technology
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-08-01
Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.
International Nuclear Information System (INIS)
Bystritskij, V.M.; Podkatov, V.I.; Chistyakov, S.A.; Yalovets, A.P.
1982-01-01
Results of numerical calculations and experimental investigations into different parameters of radial fluxes of deuterium ions and electrons performed in the region of virtual cathode formation when injecting a relativistic electron beam in low-pressure deuterium (10-100 μm Hg) are given. The calculations were carried out by the Monte-Carlo method within the framework of three models: Rostocker (Vsub(w) approximately equal to epsilonsub(e)/e), Olson (Vsub(w) approximately equal to (2-3)epsilonsub(e)/e) and Byistritcky (Vsub(w) approximately equal to 1.5 epsilonsub(e)/e) (where Vsub(w) - depth of a forming potential well, epsilonsub(e) - energy of beam electrons, e - electron charge). It is concluded on the basis of the comparative analysis of numerical and experimental results that there is no a deep stationary well with Vsub(w) approximately equal to (2-3)epsilonsub(e)/e, how this is postulated in the Olson model [ru
Directory of Open Access Journals (Sweden)
S. Zare
2015-04-01
Full Text Available Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.
Sahai, Aakash A.
2013-10-01
Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 RITA). Desired proton or light-ion energies can be achieved by controlling the velocity of the snowplow, which is shown to scale inversely with the rise-time of the laser (higher energies for shorter pulses) and directly with the scale-length of the plasma density gradient. Similar acceleration can be produced by controlling the increase of the laser frequency (Chirp Induced Transparency Acceleration, ChITA). Work supported by the National Science Foundation under NSF- PHY-0936278. Also, NSF-PHY-0936266 and NSF-PHY-0903039; the US Department of Energy under DEFC02-07ER41500, DE- FG02-92ER40727 and DE-FG52-09NA29552.
Dynamics of a relativistic electron beam in a high-current diode with a knife-edge cathode
International Nuclear Information System (INIS)
Babykin, V.M.; Gordeev, A.V.; Golovin, G.T.; Korolev, V.D.; Kopchikov, A.V.; Tulupov, M.V.; Chernenko, A.S.; Shuvaev, V.Yu.
1991-01-01
For a number of practical applications, e.g., producing discharges in large volumes in order to pump gas lasers and for short x-ray pulses, it is necessary to generate electron beams in megamp range with electron energies from hundreds of kilovolts to several megavolts. It has been possible to obtain high currents (I ± 1 MA) by using diodes with knife-edge cathodes. Knife-edge diodes have an important advantage over the parapotential type because the ion current in them comprises a relatively small fraction of the total current. This is because the electron path in the accelerating gap of knife-edge diodes is quite short in comparison with that in high-current parapotential diodes. From the point of view of applying ribbon-shaped or narrow electron beams, the important problems are in measuring the current-voltage characteristics of the diodes and determining the dynamics of the energy spectrum and the angular spread of the electrons. The generation of an electron beam with a current ∼130 kA and pulse length ∼60 ns is studied. The current-voltage characteristics of knife-edge diodes with various geometries, the dynamics of the angular spread, and the beam structure are studied. As a result of the study of the REB dynamics it is found that the operation of the diode with these experiments can be approximated by a proposed formula which includes the finite thickness of the knife-edge cathode and the motion of the plasma and ions in the discharge gap. Breaking up of the beam into individual current-carrying channels is observed with the characteristic scale ∼1-2 mm. It is noted that for the diode geometry with a knife-edge cathode, when the magnetic field changes sign and passes through zero, an instability can exist which is analogous to the dissipative tearing instability
Detector issues for relativistic heavy ion experimentation
International Nuclear Information System (INIS)
Gordon, H.
1986-04-01
Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs
1981-02-01
UNIVERSITY OF MARYLAND DEPARTMENT OF PHYSICS 4WJD ASTRONOMY COLLG PAM A 2 3i 81 4 30) 235. RADIATION FROM A .ELATIVISTIC_§LECTRON BEAM IN AZOLECULAR...A MOLECULAR MEDIUM DUE TO PARAMETRIC PUMPING BY A STRONG ELECTROMAGNETIC WAVE L. Stenflo Department of Plasma Physics Umel University S-90187 Umel...GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81
International Nuclear Information System (INIS)
Siegrist, M.R.; Soumagne, G.; Tran, M.Q.
1992-11-01
The feasibility of Thomson scattering to determine the beam velocity in a gyrotron has been analyzed and preliminary experiments to implement such a system on our 100 GHz quasi-optical gyrotron are reported. Although the project had to be abandoned due to technical problems, the conclusions are that for the 90 o scattering arrangement discussed it should be possible to determine at least one velocity component with an acceptable signal-to-noise ratio. (author) 11 figs., 10 refs
Czech Academy of Sciences Publication Activity Database
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.
2017-01-01
Roč. 96, č. 4 (2017), č. článku 044904. ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * RHIC * Beam Energy Scan Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.820, year: 2016
International Nuclear Information System (INIS)
Roberts, L.E.
1988-01-01
For colliding beams of several species of ions we compare thermal to perturbative quantum chromodynamic contributions for inclusive large mass muon pair production by using a hydrodynamic model to estimate the temperatures of the quark-gluon plasma produced by each species. The production of high energy dimuons with M ≅-4 GeV, will be favored energetically by the quark-gluon plasma. 10 refs., 4 figs., 2 tabs
International Nuclear Information System (INIS)
Mueller, C.; Gruen, N.; Voitkiv, A.B.
2004-01-01
We study the nonlinear process of e - e + pair creation by a nucleus which moves at a relativistic energy in the laboratory frame and collides with an intense x-ray laser beam. The collision system under consideration is chosen in such a way that the simultaneous absorption of at least two photons from the laser wave is required in order to exceed the energy threshold of the reaction. We calculate total and differential rates for both free-free and bound-free pair production. In the case of free-free pair creation we demonstrate the effect of the laser polarization on the spectra of the produced particles, and we show that at very high intensities the total rate exhibits features analogous to those well known from above-threshold ionization rates for atoms. In the case of bound-free pair creation a singularity is found in the laboratory frame angular distribution of the produced positron. This singularity represents a distinct characteristic of the bound-free pair production and allows one to separate this process from free-free pair creation even without detecting a bound state of the captured electron. For both types of pair creation we consider the dependences of the total rates on the collision parameters, give the corresponding scaling laws, and discuss the possibility to observe these nonlinear processes in a future experiment
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie
2018-03-01
An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.
International Nuclear Information System (INIS)
Doornenbal, P.
2007-01-01
A two-step fragmentation experiment has been performed at GSI with the RISING setup. It combines the fragment separator FRS, which allows for the production of radioactive heavy ions at relativistic energies, with a high resolution γ-spectrometer. This combination offers unique possibilities for nuclear structure investigations like the test of shell model predictions far from stability. Within the present work the question if the N=14(16) shell stabilisation in Z=8 oxygen isotopes and the N=20 shell quenching in 32 Mg are symmetric with respect to the isospin projection quantum number Tz has been addressed. New γ-ray decays were found in the neutron deficient 36 Ca and 36 K by impinging a radioactive ion beam of 37 Ca on a secondary 9 Be target. The fragmentation products were selected with the calorimeter telescope CATE and the emitted γ-rays were measured with Ge Cluster, MINIBALL, and BaF 2 HECTOR detectors. For 36 Ca the 2 1 + →0 g.s. + transition energy was determined to be 3015(16) keV, which is the heaviest T=2 nucleus from which γ-spectroscopic information has been obtained so far. A comparison between the experimental 2 1 + energies of 36 Ca and its mirror nucleus 36 S yielded a mirror energy difference of ΔE M =-276(16) keV. In order to understand the large ΔE M value, the experimental single-particle energies from the A=17, T=1/2 mirror nuclei were taken and applied onto modified isospin symmetric USD interactions in shell model calculations. These calculations were in agreement with the experimental result and showed that the experimental single-particle energies may account empirically for the one body part of Thomas-Ehrman and/or Coulomb effects. A method to extract the lifetime of excited states in fragmentation reactions was investigated. Therefore, the dependence between the lifetime of an excited state and the average de-excitation velocity and trajectory of the nuclei in relativistic fragmentation experiments has been studied. Known
Energy Technology Data Exchange (ETDEWEB)
Doornenbal, P.
2007-10-23
A two-step fragmentation experiment has been performed at GSI with the RISING setup. It combines the fragment separator FRS, which allows for the production of radioactive heavy ions at relativistic energies, with a high resolution {gamma}-spectrometer. This combination offers unique possibilities for nuclear structure investigations like the test of shell model predictions far from stability. Within the present work the question if the N=14(16) shell stabilisation in Z=8 oxygen isotopes and the N=20 shell quenching in {sup 32}Mg are symmetric with respect to the isospin projection quantum number Tz has been addressed. New {gamma}-ray decays were found in the neutron deficient {sup 36}Ca and {sup 36}K by impinging a radioactive ion beam of {sup 37}Ca on a secondary {sup 9}Be target. The fragmentation products were selected with the calorimeter telescope CATE and the emitted {gamma}-rays were measured with Ge Cluster, MINIBALL, and BaF{sub 2} HECTOR detectors. For {sup 36}Ca the 2{sub 1}{sup +}{yields}0{sub g.s.}{sup +} transition energy was determined to be 3015(16) keV, which is the heaviest T=2 nucleus from which {gamma}-spectroscopic information has been obtained so far. A comparison between the experimental 2{sub 1}{sup +} energies of {sup 36}Ca and its mirror nucleus {sup 36}S yielded a mirror energy difference of {delta}E{sub M}=-276(16) keV. In order to understand the large {delta}E{sub M} value, the experimental single-particle energies from the A=17, T=1/2 mirror nuclei were taken and applied onto modified isospin symmetric USD interactions in shell model calculations. These calculations were in agreement with the experimental result and showed that the experimental single-particle energies may account empirically for the one body part of Thomas-Ehrman and/or Coulomb effects. A method to extract the lifetime of excited states in fragmentation reactions was investigated. Therefore, the dependence between the lifetime of an excited state and the average de
Development of a 2 MW relativistic backward wave oscillator
Indian Academy of Sciences (India)
In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...
Isomers chart; Table des isomeres
Energy Technology Data Exchange (ETDEWEB)
Dupont-Gautier, P; Chantelot, S; Moisson, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)
Isomers chart; Table des isomeres
Energy Technology Data Exchange (ETDEWEB)
Dupont-Gautier, P.; Chantelot, S.; Moisson, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)
International Nuclear Information System (INIS)
Vysotskij, V.I.; Vorontsov, V.I.; Kuz'min, R.N.
1987-01-01
Physical predictions and quantitative estimations of a new physical effect - the phenomenon of quantum bremsstrahlung induced selfmodulation of a fast beam channeling in the crystals are considered and carried out. The occurrence of induced self-modulation results from nonstationary interference of proper waves of a channeled particle in the range of mutual coherence and with account of difference of selective bremsstrahlung losses of these waves. The modulation frequency for superrelativistic particles is shown to lie within the range from soft X-ray to hard gamma range. It proceeds from the estimations that modulation at these frequencies is preserved within the limits of macroscopically large ranges after the crystal attaining several meters. The maximum frequency of modulation for nonrelativistic heavy particles (protons) corresponds to the optical range
Study of the isomeric states of 66As
International Nuclear Information System (INIS)
Czajkowski, S.; Blank, B.; Andriamonje, S.; Attallah, F.; Boue, F.; Davi, F.; Del Moral, R.; Fleury, A.; Musquere, A.; Pravikoff, M.S.; Dufour, J-P; Grzywacz, R.; Janas, Z.; Karny, M.; Pfuetzner, M.; Donzaud, C.; Grewe, A.; Heinz, A.; Junghans, A.; Lewitowicz, M.; Sauvestre, J-E.
1997-01-01
The most neutron-deficient isotopes in the N = Z region are an important source of information on the neutron-proton interaction far off stability. The isotopes in this region are characterized by an extreme sensitivity of the deformation to the isospin variations. Here the structure of deformed shells are favoring the high spin states the lifetime of which being sufficient long to be observed after flight time of the order of the microsecond. The study of the decay of this isomeric states permits to approach the structure of the first excited levels of this isotopes. Recent experiments at GANIL with the SISSI - LISE 3 spectrometer were performed to study the neutron deficient nucleus 66 As. This nucleus was produced in the fragmentation of 70 MeV/u 78 Kr primary beam in a nickel target. Two new isomeric states have been observed. From the observed γ transitions a decay scheme is proposed
Experimental grounds for nuclear shape isomerism
International Nuclear Information System (INIS)
Makarenko, V.E.
1995-11-01
Experimental data on fission isomeric states of actinide nuclei - half lives, energies, quantum numbers, decay branches and spectroscopic properties - are discussed. Quite a few results find their explanation in the framework of nuclear shape isomerism hypothesis being the in-thing for about thirty years. Others seem to be the hints to the quasiparticle nature of fission isomers. The problem could be solved by direct measurement of nuclear spin for isomeric states. (author). 44 refs, 1 tab
Energy Technology Data Exchange (ETDEWEB)
Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Carpenter, M. P.; Chen, J.; Deibel, C. M.; Hood, A. A.; Hoffman, C. R.; Janssens, R. V. F.; Jiang, C. L.; Kay, B. P.; Kuvin, S. A.; Lauer, A.; Schiffer, J. P.; Sethi, J.; Talwar, R.; Wiedenhöver, I.; Winkelbauer, J.; Zhu, S.
2018-03-01
A beam containing a substantial component of both the J(pi) = 5(+), T-1/2 = 162 ns isomeric state of F-18 and its 1(+), 109.77-min ground state is utilized to study members of the ground-state rotational band in F-19 through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2(+) band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.
Quantum optimal control of ozone isomerization
International Nuclear Information System (INIS)
Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2004-01-01
We present a feasibility study of ozone isomerization based on a recent ab initio potential energy surface and a model Hamiltonian constructed by holding the bond lengths constant and using the valence angle as the isomerization coordinate. Optimal control theory is used to find an electric field that drives isomerization with a yield of 95% to the symmetric metastable triangular form of ozone. A frequency filter is applied as an additional spectral constraint limiting the field bandwidth. A post-facto analysis is performed showing a degree of inherent robustness of the isomerization yield to field noise
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
International Nuclear Information System (INIS)
Gosteva, T.S.; Zablotskaya, G.R.; Ivanov, B.A.; Kolyubakin, S.A.; Chernobrovin, V.I.
1975-01-01
Specific features of a magnetic spectrograph with a semicircular focusing are described; the spectrograph has been designed to study, using the REP-5 pulsed accelerator, the energy spectra of electrons with a current of 50 kA, pulse duration of 20 ns in the energy range 0.2 to 3 MeV. The beam has been transported in a drift chamber where the air pressure varies from 10 -3 to 40 torr. The chamber is 50 cm long and 12 cm in diameter. The spectrograph vacuum chamber is made in the form of a plane rectangular box with a degassing fitting. The uniform magnetic field in the spectrograph gap is provided with permanent magnets (ferrite-barium plates). The collimator and the chamber walls on which the magnets are located, are made of low-carbon electrotechnical steel. The diameters of the collimator entrance and exit windows are 2 and 0.2 mm, respectively. To screen the photofilm in the spectrograph chamber from x-radiation, there are three disks on the spectrograph flange on the part of the drift chamber, they are made of lead, steel, and aluminium. The steel disk, besides, screens the space in front of the collimator entrance window from the scattered magnetic field. During the experiments the pressure in the spectrograph chamber has varied from 7x10 -3 to 10 -1 torr. Electrons are registered using the RT-1 and RT-5 x-ray films 1x18 cm in size. The spectrograph described makes it possible to have well-resolved electron spectrum during a pulse. The electron spectra obtained by means of the spectrograph at a pressure of 4.10 -1 torr in the drift chamber and a charge voltage of 3.2 MV in the line, are shown [ru
Energy Technology Data Exchange (ETDEWEB)
Geissel, H
1997-03-01
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.
Price, R H
1993-01-01
Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two speciﬁc areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
International Nuclear Information System (INIS)
Font, J. A.
2015-01-01
The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Zhang, Bing; Li, Kunyang
2018-02-01
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Diffraction radiation from relativistic particles
Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Diffraction radiation from relativistic particles
International Nuclear Information System (INIS)
Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ibnouzahir, M
1995-03-01
The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1992-01-01
In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1993-01-01
This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given
Energy Technology Data Exchange (ETDEWEB)
Scoby, Cheyne M., E-mail: scoby@physics.ucla.edu [UCLA Department of Physics, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Li, R.K.; Musumeci, P. [UCLA Department of Physics, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)
2013-04-15
In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ∼1ps precision.
International Nuclear Information System (INIS)
Scoby, Cheyne M.; Li, R.K.; Musumeci, P.
2013-01-01
In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ∼1ps precision
A new fundamental type of conformational isomerism
Canfield, Peter J.; Blake, Iain M.; Cai, Zheng-Li; Luck, Ian J.; Krausz, Elmars; Kobayashi, Rika; Reimers, Jeffrey R.; Crossley, Maxwell J.
2018-06-01
Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term `akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.
Directory of Open Access Journals (Sweden)
Richard Anantua
2018-03-01
Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.
Easy Synthesis of Two Positional Isomeric Tetrazole Libraries
Wang, Yuanze; Patil, Pravin; Dömling, Alexander
2016-01-01
A fast and efficient synthesis of libraries of positional isomeric 1H-tetrazoles and 5H-tetrazoles, for the purpose of testing binding hypothesis of isomeric tetrazoles in fragment-based drug discovery, is described.
International Nuclear Information System (INIS)
Morel, P.
1992-02-01
Relativistic heavy ion collisions present the opportunity of creating in laboratory small volumes of hot, dense nuclear matter. On the experimental point of view, the collision events are characterized by a great number of fragments, especially in the direction of the projectile. The first part is devoted to a survey of relativistic heavy ion physics. Then, we present two experimental set-ups which permit, in particular, the analyse of light fragment production at small angles. We present experimental results concerning light projectiles on Ca, Nb, Pb targets, with energies from 200 A.MeV up to 600 A.MeV. Different aspects of the collision are put in evidence. Momentum and charge differential cross section are extrapolated to other projectile/target systems; that is used in a transport calculation of Ne ions in a target of biological interest (water), with a collimator. We show that nuclear fragmentation produces a dispersion in the spatial and energy distributions, and that one light fragments have a range greater than the projectile range. That last point causes a distortion of the Bragg curve, and that distortion must be taken into account for the application of heavy ions to radiotherapy problems. 95 figs., 8 tabs
β-γ and isomeric decay spectroscopy of 168Dy
Directory of Open Access Journals (Sweden)
Zhang G.X.
2018-01-01
Full Text Available This contribution will report on the experimental work on the level structure of 168Dy. The experimental data have been taken as part of the EURICA decay spectroscopy campaign at RIBF, RIKEN in November 2014. In the experiment, a 238U primary beam is accelerated up to 345 MeV/u with an average intensity of 12 pnA. The nuclei of interest are produced by in-flight fission of 238U impinging on Be target with a thickness of 5 mm. The excited states of 168Dy have been populated through the decay from a newly identified isomeric state and via the β decay from 168Tb. In this contribution, scientific motivations, experimental procedure and some preliminary results for this study are presented.
β-γ and isomeric decay spectroscopy of 168Dy
Zhang, G. X.; Watanabe, H.; Kondev, F. G.; Lane, G. J.; Regan, P. H.; Söderström, P.-A.; Walker, P. M.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Liu, J. J.; Nishimura, S.; Wu, J.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2018-05-01
This contribution will report on the experimental work on the level structure of 168Dy. The experimental data have been taken as part of the EURICA decay spectroscopy campaign at RIBF, RIKEN in November 2014. In the experiment, a 238U primary beam is accelerated up to 345 MeV/u with an average intensity of 12 pnA. The nuclei of interest are produced by in-flight fission of 238U impinging on Be target with a thickness of 5 mm. The excited states of 168Dy have been populated through the decay from a newly identified isomeric state and via the β decay from 168Tb. In this contribution, scientific motivations, experimental procedure and some preliminary results for this study are presented.
Energy Technology Data Exchange (ETDEWEB)
Sellem, F
1997-10-21
This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.) 139 refs.
The relativistic virial theorem
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1989-11-01
The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)
Formation, isomerization, and derivatization of keggin tungstoaluminates.
Jennifer J. Cowan; Alan J. Bailey; Robert A. Heintz; Bao T. Do; Kenneth I. Hardcastle; Craig L. Hill; Ira A. Weinstock
2001-01-01
Trends in the stability of Â¥Ã¡ and Â©Â¬-Keggin heteropolytungstates of the second-row main-group heteroatoms Al(III), Si(IV), and P(V) are elaborated by data that establish the roles of kinetic and thermodynamic control in the formation and isomerization of Keggin tungstoaluminates. Slow, room-temperature co-...
Isomeric periodic mesoporous organosilicas with controllable properties
Vercaemst, C.; Ide, I.; Friedrich, H.; de Jong, K.P.; Verpoort, F.; van der Voort, P.
2009-01-01
The synthesis procedure for isomeric periodic mesoporous organosilicas with E-configured ethenylene bridges was investigated using the homemade pure E-isomer of 1,2-bis(triethoxysilyl)ethene. The pH, aging temperature and the presence of cosolvents played a key role in obtaining well-ordered
Trimethylphosphide isomerization in lanthanum ions presence
International Nuclear Information System (INIS)
Zacharias, M.A.; Massabni, A.M.G.
1984-01-01
The integration between the trimethilphosphide and the lanthanum ions carry to the formation of solid complexes in a relation of 6:1 where the ligand is the phosphonate what is resultant of the isomerization of trimetylphosphite. By the RMN -1 H and infra-red spectra the products were characterized. (L.M.J.) [pt
Iodine-Catalyzed Isomerization of Dimethyl Muconate
Energy Technology Data Exchange (ETDEWEB)
Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-04-12
cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.
Crystal structure of isomeric boron difluoride acetylnaphtholates
International Nuclear Information System (INIS)
Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.
2006-01-01
Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru
Scoby, Cheyne M; Li, R K; Musumeci, P
2013-04-01
In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.
High spin states in 63Cu. 17/2+ isomeric yrast state
International Nuclear Information System (INIS)
Tsan Ung Chan; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.
1979-01-01
The 63 Cu nucleus has been studied via the reaction 61 Ni(α, pnγ), using different in beam γ spectroscopy techniques. An isomeric high-spin Yrast state 17/2 + (tau = 6.1 +- 0.6ns) is located at 4498 keV. The gsub(9/2) shell must be involved to explain positive high-spin states established in this work [fr
Cat's claw oxindole alkaloid isomerization induced by common extraction methods
Directory of Open Access Journals (Sweden)
Samuel Kaiser
2013-01-01
Full Text Available Cat's claw oxindole alkaloids are prone to isomerization in aqueous solution. However, studies on their behavior in extraction processes are scarce. This paper addressed the issue by considering five commonly used extraction processes. Unlike dynamic maceration (DM and ultrasound-assisted extraction, substantial isomerization was induced by static maceration, turbo-extraction and reflux extraction. After heating under reflux in DM, the kinetic order of isomerization was established and equations were fitted successfully using a four-parameter Weibull model (R² > 0.999. Different isomerization rates and equilibrium constants were verified, revealing a possible matrix effect on alkaloid isomerization.
Is isomerism a risk factor for intestinal volvulus?
Landisch, Rachel M; Loomba, Rohit S; Salazar, Jose H; Buelow, Matthew W; Frommelt, Michele; Anderson, Robert H; Wagner, Amy J
2018-03-06
Isomerism, or heterotaxy syndrome, affects many organ systems anatomically and functionally. Intestinal malrotation is common in patients with isomerism. Despite a low reported risk of volvulus, some physicians perform routine screening and prophylactic Ladd procedures on asymptomatic patients with isomerism who are found to have intestinal malrotation. The primary aim of this study was to determine if isomerism is an independent risk factor for volvulus. Kid's Inpatient Database data from 1997 to 2012 was utilized for this study. Characteristics of admissions with and without isomerism were compared with a particular focus on intestinal malrotation, volvulus, and Ladd procedure. A logistic regression was conducted to determine independent risk factors for volvulus with respect to isomerism. 15,962,403 inpatient admissions were included in the analysis, of which 7970 (0.05%) patients had isomerism, and 6 patients (0.1%) developed volvulus. Isomerism was associated with a 52-fold increase in the odds of intestinal malrotation by univariate analysis. Of 251 with isomerism and intestinal malrotation, only 2.4% experienced volvulus. Logistic regression demonstrated that isomerism was not an independent risk factor for volvulus. Isomerism is associated with an increased risk of intestinal malrotation but is not an independent risk factor for volvulus. Prognosis study. Level III. Copyright © 2018 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)
2017-06-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
International Nuclear Information System (INIS)
Kipping, David
2017-01-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
Relativistic atomic physics at the SSC
International Nuclear Information System (INIS)
1990-01-01
This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance
Status of the Relativistic Heavy Ion Collider
International Nuclear Information System (INIS)
Lee, S.Y.
1990-01-01
Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs
Characterizing gamma fields using isomeric activation ratios
Venkataraman, Ramkumar; Fleming, Ronald F.
1994-12-01
Isomeric activities were induced in indium by gamma irradiation in three different gamma fields, through the reactions 115In(γ, γ') 115mIn and 113In(γ, γ') 113mIn. The irradiation fields were (i) the 15 kCi 60Co source available in the University, (ii) the spent fuel gamma irradiator in the pool of the University's Ford Nuclear Reactor (FNR) and (iii) south face of the core of the FNR during routine shut downs. Isomeric activation ratios can serve to characterize gamma fields, provided the response functions of the two (γ, γ') reactions sample different energy regimes of the gamma spectrum present in the irradiation fields. The response of an isomeric activation detector, in turn, depends on the number of activation energy levels of the nuclide and the probabilities with which the activation levels de-populate to the isomeric level. The reaction rate ratio RIn115m/ RIn113m was measured in the three gamma fields. The measured ratios were (i) 1.210 ± 0.011 in the 60Co source, (ii) 1.314 ± 0.060 in the spent fuel gamma irradiator and (iii) 1.298 ± 0.039 in a location alongside the FNR core during routine shut downs. The measured reaction rate ratios are not only close to each other, but close to unity as well. This indicates that the excitation functions for the reactions 115In(γ, γ') 115mIn and 113In(γ, γ') 113mIn have similar shapes and that for the nuclides 115In and 113In, the number of activation energy levels and the probabilities with which they populate the isomeric levels are very similar to each other. Thus, the ratio RIn115m/ RIn113m will not yield any information regarding the shape of gamma spectrum in the field of measurement. However by choosing (γ, γ') reactions with different shapes for the excitation functions one can measure a set of isomeric activation ratios that characterize a given gamma field.
International Nuclear Information System (INIS)
Lefevre, Thibaut
2000-01-01
The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr
Observation of relativistic antihydrogen atoms
International Nuclear Information System (INIS)
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure
Isomerization of C[sub 4] alkenes
Smith, L.A. Jr.
1984-11-13
A method is described for isomerizing isobutene or n-butene to produce a mixture of isobutene and normal butene, and polymerizing at least a portion thereof to produce isobutene/n-butene co-dimer, which comprises feeding at least 80 weight % of either the isobutene or n-butene to a catalytic distillation reactor containing a fixed bed acidic cation exchange resin catalyst packing which provides both the catalyst sites and distillation sites for the reaction products, isomerizing a portion of the isobutene or n-butene to produce a mixture of isobutene and n-butene and reacting at least a portion of the isobutene and n-butene to form co-dimer of isobutene and n-butene, whereby an overhead fraction containing any unreacted isobutene and n-butene and a bottoms fraction containing co-dimer is produced. The result of the reaction is substantially the same regardless whether the feed is isobutene or n-butene. Other aspects of the invention, include combinations of procedures to produce high purity isobutene and n-butene. Either isobutene or n-butene product (depending on the desired product) can be recycled as feed, thus substantially carrying out the isomerization to extinction and total conversion to the desired product. 1 fig.
International Nuclear Information System (INIS)
Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.
2013-01-01
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass
The study of a new short-life isomeric state in 38K
International Nuclear Information System (INIS)
Iordachescu, A.
1976-01-01
The 38 K nucleus having a protone and neutron hole coupled with a 40 Ca inert core has a structure analysed easily by the shell model. A new short life, high spin and highly excited isomeric state of the 38 K nucleus has been studied in detail using this model. Theoretical aspects connected with static and dynamic electromagnetic moments of the nucleus state, with the magnetic moment of the nucleus and the selection rules according to the isotopic spin are presented in the case of gamma transitions. Experimentallz/ presented in the case of gamma transitions. Experimentally, it has been used a combination between a natural pulsation of the cyclotron beam and an external pulsation by electrostatic deflexion, thus obtaining a pulsation beam of 12-26 MeV alpha particles. As targets, a series of chemical chlorine combinations have been utilized, the isomeric state being obtained by the reaction 35 Cl(α,n) 38 K, having the isomeric level (1fsub(7/2))sub(7+)sup(2). (author)
2002-01-01
% WA100 \\\\ \\\\ Solid state nuclear track detectors which formed part of the Dublin-ESTEC ultra heavy~cosmic~ray experiment aboard LDEF (Long Duration Exposure Facility) and which was deployed in Earth orbit for sixty-nine months, will be exposed to relativistic Pb ions. The experiment was the largest of its kind ever undertaken in space and has successfully accumulated more than fifteen times the world sample of cosmic ray nuclei in the region above Z~=~70. The data include the first significant sample of cosmic ray actinide elements and is of major astrophysical importance. The total number of ultra heavy nuclei (Z~$>$~70) in the Dublin-ESTEC sample is $\\sim$~2800. \\\\ \\\\The exposure will be very simple. A stack of detectors (20.5~cm~x~26~cm x~3~cm in size) will be irradiated with a low density beam of Pb ions (a few hundred per cm$^2$ would be ideal, but a wide range of densities and areas could be tolerated). The response of the detectors to these ions of known charge and velocity will be measured and the da...
Measurement of millisecond half-lives of isomeric levels in some nuclei
Energy Technology Data Exchange (ETDEWEB)
Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Nuclear Science Labs.
1976-09-01
Half-lives of 2.7, 14.5, 17, 20, 20.4, 44 and 2230 msec, of isomeric levels in /sup 208/Bi, /sup 88/Y, /sup 75/As, /sup 24/Na, /sup 71/Ge, /sup 114/In and /sup 167/Er respectively have been measured, employing on-line irradiation system. These millisecond isomeric levels are produced by 14.7 MeV neutrons through (n,p), (n,..cap alpha..), (n,n') and (n,2n) reactions on natural target samples. A ..gamma..-ray scintillation detector coupled with NTA-512B, 1024 channel analyzer has been used to follow the decay of the millisecond activities. Deflected deuteron beam bursts have been used to reduce the long-time background to initial count ratios in the decay curves to achieve a better accuracy of measurements.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Thermal E/ Z Isomerization in First Generation Molecular Motors.
Kuwahara, Shunsuke; Suzuki, Yuri; Sugita, Naoya; Ikeda, Mari; Nagatsugi, Fumi; Harada, Nobuyuki; Habata, Yoichi
2018-04-20
Determination of a thermal E/ Z isomerization barrier of first generation molecular motors is reported. Stable ( E)-1a directly converts to stable ( Z)-1c without photochemical E/ Z isomerization. The activation Gibbs energy of the isomerization was determined to be 123 kJ mol -1 by circular dichroism spectral changes. Density functional theory calculations show that ( Z)-1c is ∼11.4 kJ mol -1 more stable than ( E)-1a.
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Wang, H. B.; Wen, W. Q.; Huang, Z. K.; Zhang, D. C.; Hai, B.; Zhu, X. L.; Zhao, D. M.; Yang, J.; Li, J.; Li, X. N.; Mao, L. J.; Mao, R. S.; Wu, J. X.; Yang, J. C.; Yuan, Y. J.; Eidam, L.; Winters, D.; Beck, T.; Kiefer, D.; Rein, B.; Walther, Th.; Loeser, M.; Schramm, U.; Siebold, M.; Bussmann, M.; Ma, X.
2017-10-01
We report on an experiment that was conducted in preparation of laser cooling experiments at the heavy-ion storage ring CSRe. The lifetimes of ion beams made up of 12C3+ and 16O4+ ions stored at an energy of 122 MeV/u in the CSRe were determined by two independent methods, firstly via a DC current transformer (DCCT) and secondly via a Schottky resonator. Using electron-cooling, the signals of the 12C3+ and 16O4+ ions could be separated and clearly observed in the Schottky spectrum. The obtained individual lifetimes of the 12C3+ and 16O4+ components were 23.6 s and 17.8 s, respectively. The proportion of 12C3+ ions in the stored ion beam was measured to be more than 70% at the beginning of the injection and increasing as a function of time. In addition to these measurements, the operation and remote control of a pulsed laser system placed directly next to the storage ring was tested in a setup similar to the one envisaged for future laser experiments.
K isomerism and collectivity in neutron-rich rare-earth isotopes
Patel, Zena
Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated and identified. The excited states of nuclei are studied by delayed isomeric or beta-delayed gamma-ray spectroscopy. New K isomers were found in Sm (Z=62), Eu (Z=63), and Gd (Z=64) isotopes. The key results are discussed here. Excited states in the N=102 isotones 166Gd and 164Sm have been observed following isomeric decay for the first time. The K-isomeric states in 166Gd and 164Sm are due to 2-quasiparticle configurations. Based on the decay patterns and potential energy surface calculations, including beta6 deformation, both isomers are assigned a (6-) spin-parity. The half-lives of the isomeric states have been measured to be 950(60)ns and 600(140)ns for 166Gd and 164Sm respectively. Collective observables are discussed in light of the systematics of the region, giving insight into nuclear shape evolution. The decrease in the ground state band energies of 166Gd and 164Sm (N=102) compared to 164Gd and 162Sm (N=100) respectively, presents evidence for the predicted deformed shell closure at N=100. A 4-quasiparticle isomeric state has been discovered in 160Sm: the lightest deformed nucleus with a 4-quasiparticle isomer to date. The isomeric state is assigned an (11+) spin-parity with a measured half-life of 1.8(4)us. The (11+) isomeric state decays into a rotational band structure, based on a (6-) v5/2-[523] ⊗ v7/2+[633] bandhead, determined from the extracted gK-gR values. Potential energy surface and blocked BCS calculations were performed in the deformed midshell region
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Energy Technology Data Exchange (ETDEWEB)
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
Designing bifunctional alkene isomerization catalysts using predictive modelling
Landman, I.R.; Paulson, E.R.; Rheingold, A.L.; Grotjahn, D.B.; Rothenberg, G.
2017-01-01
Controlling the isomerization of alkenes is important for the manufacturing of fuel additives, fine-chemicals and pharmaceuticals. But even if isomerization seems to be a simple unimolecular process, the factors that govern catalyst performance are far from clear. Here we present a set of models
Concurrent Mass Measurement and Laser Spectroscopy for Unambiguous Isomeric State Assignment
Lascar, Daniel; Babcock, Carla; Henderson, Jack; Pearson, Matt
2017-09-01
Recent work by the TITAN group at TRIUMF on isomeric state mass measurements of odd-A, neutron-rich cadmium nuclei has shown a disconnect between experiment and theory in 127 g , mCd. The spin and parity assignments of the ground and isomeric states are assigned as 3/2+ and 11/2-, respectively, primarily via systematic arguments. Conversely, state of the art shell model and ab initio calculations show a reversal of the states, predicting a ground state of 11/2- and a 3/2+ isomer. Penning Trap Mass Spectrometry (PTMS) can measure the energy separation between the ground state and the isomer without ambiguity but cannot, on its own, comment on the spin and parity. Collinear Laser Spectroscopy (CLS) experiments have been performed on 127Cd and have elegantly demonstrated the existence of both 3/2+ and 11/2- states. What CLS cannot do, on its own, is assign an ordering to those states. If, however, a PTMS and CLS experiment could be performed concurrently using identical beams from the same facility then there exists sufficient information shared between both experiments that a definitive assignment can be made. We present a concept for a new slate of measurements using existing experimental facilities simultaneously, with shared resources, to definitively assign spin and parity for ground and isomeric states in short-lived nuclei.
Relativistic laser channeling in plasmas for fast ignition
Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.
2007-12-01
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
Magnetic dipole moments of High-K isomeric states in Hf isotopes
Walters, W; Nishimura, K; Bingham, C R
2007-01-01
It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.
g-factor of the 7- isomeric state in 128Ba
International Nuclear Information System (INIS)
Kaur, J.; Bansal, N.; Bhati, A.K.; Sharma, V.R.; Kumar, H.; Kumar, R.; Bhowmik, R.K.; Kumar, V.
2014-01-01
The time differential perturbed angular distribution technique (TDPAD) has been used to measure the g-factor of the 2396 keV, 7 - isomeric state in 128 Ba. The measured value of g(7 - ) is 1.21 ± 0.01. This value is about 80% higher than the value for the expected configuration of the state and also different in sign. This clearly shows that the configuration of the state does not correspond to the pure two quasineutron configuration that was assigned to it through previous results of in-beam γ-ray spectroscopy
Multiple electromagnetic excitations of relativistic projectiles
International Nuclear Information System (INIS)
Llope, W.J.; Braun-Munzinger, P.
1992-01-01
Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data
Energy Technology Data Exchange (ETDEWEB)
Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration
2016-07-01
At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.
Isomeric Detergent Comparison for Membrane Protein Stability
DEFF Research Database (Denmark)
Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.
2016-01-01
and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta...... and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility....../stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane...
Energy Technology Data Exchange (ETDEWEB)
Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)
2009-05-15
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
International Nuclear Information System (INIS)
Strange, P.
2010-01-01
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
Present status of the theoretical relativistic plasma SHF electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Rukhadze, A.A.
2000-01-01
Paper presents a review of theoretical investigations into powerful sources of SHF waves grounded on the forced emission of relativistic electron beams in plasma wave guides and resonator. Emission sources operating under amplification of a certain inlet signal and under generation mode were studied. Two mechanisms of forced emission: resonance Cherenkov radiation of relativistic electron beams in plasma and nonresonance Pierce emission resulting from evolution of high-frequency Pierce instability, were studied. Paper discusses theoretical problems only, all evaluations and calculations are made for the parameters of the exact experiments, the theoretical results are compared with the available experimental data. Factors affecting formation of spectrum of waves excited by relativistic electron beam in plasma systems are discussed [ru
Bmad: A relativistic charged particle simulation library
International Nuclear Information System (INIS)
Sagan, D.
2006-01-01
Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual
Graphene oxide catalyzed cis-trans isomerization of azobenzene
Directory of Open Access Journals (Sweden)
Dongha Shin
2014-09-01
Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.
International Nuclear Information System (INIS)
Caporaso, G.J.
1987-01-01
Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented
Directory of Open Access Journals (Sweden)
Lucas Le Goanvic
2018-04-01
Full Text Available The tandem isomerization-hydroformylation of 10-undecenitrile (1 into the corresponding linear aldehyde (2 with a Rh-biphephos system was studied and the formation of internal olefin isomers (1-int-x was monitored over time. The existence of an “isomerization phenomenon” was evidenced, where fast isomerization of 1 into up to 70% of 1-int-x followed by fast back-isomerization of 1-int-x into 1 and, in turn, into 2 occurs. This fast dynamic isomerization regime is favored at high syngas pressure (40 bar and low biphephos-to-Rh ratio (5–10, and it is best observed at relatively high catalyst loadings ([1]0/[Rh] ≤ 3000. The latter regime is indeed evanescent, and gives place to a second stage in which isomerization of internal olefins (and eventual conversion into 2 proceeds much more slowly. The results are tentatively rationalized by the formation of an unstable species that promotes dynamic isomerization and which slowly vanishes or collapses into a Rh-biphephos species which is the one responsible for hydroformylation.
Synthesis and Characterisation of Eight Isomeric Bis(2-pyridyloxynaphthalenes
Directory of Open Access Journals (Sweden)
Peter J. Steel
2006-09-01
Full Text Available Eight isomeric bis(2-pyridyloxynaphthalenes have been prepared from reactions of 2-bromopyridine with the appropriate dihydroxynaphthalene and the products fully characterised by 1- and 2-D NMR spectroscopy.
A recycling molecular beam reactor
International Nuclear Information System (INIS)
Prada-Silva, G.; Haller, G.L.; Fenn, J.B.
1974-01-01
In a Recycling Molecular Beam Reactor, RMBR, a beam of reactant gas molecules is formed from a supersonic free jet. After collision with a target the molecules pass through the vacuum pumps and are returned to the nozzle source. Continuous recycling permits the integration of very small reaction probabilities into measurable conversions which can be analyzed by gas chromatography. Some preliminary experiments have been carried out on the isomerization of cyclopropane
Isomerizations of the Nitromethane Radical Cation in the Gas Phase
DEFF Research Database (Denmark)
Egsgaard, Helge; Carlsen, Lars; Elbel, Susanne
1986-01-01
The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane/aci-nitromethane tauto......The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane...
Relativistic and non-relativistic studies of nuclear matter
Banerjee, MK; Tjon, JA
2002-01-01
We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Relativistic solitons and pulsars
Energy Technology Data Exchange (ETDEWEB)
Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N
1975-05-01
A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Handbook of relativistic quantum chemistry
International Nuclear Information System (INIS)
Liu, Wenjian
2017-01-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Strong-field relativistic processes in highly charged ions
Energy Technology Data Exchange (ETDEWEB)
Postavaru, Octavian
2010-12-08
In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)
Study of the photochemical isomerization of ergosterol
International Nuclear Information System (INIS)
Mermet-Bouvier, Rene
1972-01-01
The photochemical reaction scheme of Ergosterol-Vitamin D 2 was studied. The schemes proposed in published literature are described together with earlier methods used for the analysis and determination. The method used is then discussed. In the first part, the factors concerning the changes occurring in molecular systems exposed to radiation, and the formalism used, are examined. Investigations of linear molecular systems and their applications to the reaction scheme of Ergosterol-Vitamin D 2 are discussed. The properties which enable the last three reaction schemes proposed in the literature to be distinguished are described. In the second part, the experimental analytical methods and the determinations made of the different isomers formed are presented. Chromatographic techniques (thin films, columns, gaseous phase) suitable for separating the various isomeric species are used. The existence of 8 isomers was established as well as a transformation occurring in one of them. The ultraviolet and infrared spectra were obtained. A reaction scheme is proposed (in which all the quantum yield values are given) from comparisons between the calculated and experimental values of the eigenvalue of the absolute minimum value λ m and the eigenvector corresponding to V m . (author) [fr
Biquaternions and relativistic kinematics
International Nuclear Information System (INIS)
Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.
1979-01-01
The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles
Relativistic heavy ion collisions
International Nuclear Information System (INIS)
Barz, H.W.; Kaempfer, B.; Schulz, H.
1984-12-01
An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)
Relativistic particle in a box
Alberto, P.; Fiolhais, Carlos; Gil, Victor
1996-01-01
The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case
Relativistic klystrons for high-gradient accelerators
International Nuclear Information System (INIS)
Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S.; Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.
1991-01-01
Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. The authors have learned how to overcome their previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power
Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu
Luo, Junhua; Jiang, Li; Li, Suyuan
2017-10-01
The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
Ultra-relativistic heavy-ion physics with AFTER@LHC
DEFF Research Database (Denmark)
Rakotozafindrabe, A.; Arnaldi, R.; Brodsky, Stanley
2013-01-01
We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.......We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal....
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Non-relativistic supersymmetry
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1984-01-01
The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)
International Nuclear Information System (INIS)
Contopoulos, G.
1983-01-01
In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)
Directory of Open Access Journals (Sweden)
Bialynicki-Birula Iwo
2014-01-01
Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic few body calculations
International Nuclear Information System (INIS)
Gross, F.
1988-01-01
A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs
Relativistic Polarizable Embedding
DEFF Research Database (Denmark)
Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob
2017-01-01
Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Relativistic Coulomb excitation
International Nuclear Information System (INIS)
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Fundamental Relativistic Rotator
International Nuclear Information System (INIS)
Staruszkiewicz, A.
2008-01-01
Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Status of the relativistic heavy ion collider
International Nuclear Information System (INIS)
Karl, F.
1999-01-01
At the present time, commissioning of the 3.8 kilometer Relativistic Heavy Ion Collider (RHIC) is in full swing. On July 16, 1999, the commissioners were successful in circulating a Gold Ion Beam for the first time, in the Blue Ring, as power supplies were being checked out for beam into the Yellow Ring. The commissioning schedule is to accelerate beam in the Blue Ring, then spiral and accelerate beam in the Yellow Ring, then if all goes well, obtain some collisions, all before a fast approaching shutdown in mid-August. The four experimental regions, Star, Phenix, Brahms and Phobos are gearing up for their maiden beam runs and much effort is being spent to make the thirst glimpse of the beam an exciting one. Our Alignment Group has been working closely with the experimenters in these areas, mostly with MANCAT type component pre-surveys and in the near future installing and locating these various components relative to the RHIC Beam Line. (author)
Beam Techniques - Beam Control and Manipulation
International Nuclear Information System (INIS)
Minty, Michiko G
2003-01-01
We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization
Beam Techniques - Beam Control and Manipulation
Energy Technology Data Exchange (ETDEWEB)
Minty, Michiko G
2003-04-24
We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.
Two-dimensional ion effects in relativistic diodes
International Nuclear Information System (INIS)
Poukey, J.W.
1975-01-01
In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)
Modular TPCs for relativistic heavy-ion experiments
International Nuclear Information System (INIS)
Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J.; Chan, C.S.; Kramer, M.A.; Hallman, T.J.; Madansky, L.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Krishna, N.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.
1989-01-01
A description is given of a TPC system that operates in a relativistic heavy-ion beam and yields good track reconstruction efficiency in very-high-multiplicity events. The mechanical construction of the chamber is discussed. A set of custom hybrid circuits are used to build a very compact, cost-effective electronics system mounted directly on the chamber. Results from running in test beams and from preliminary experimental runs are given. (orig.)
Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments
International Nuclear Information System (INIS)
Goodman, D.L.; Birx, D.L.; Danly, B.G.
1991-01-01
In this paper design and experimental results are presented from two high power microwave generation experiments utilizing a high repetition rate induction linac generated electron beam. A relativistic klystron has generated more than 100 MW microwave pulses in X-band for 50 ns without pulse shortening or breakdown. design studies for the first cyclotron autoresonance maser (CARM) amplifier using an induction linac electron beam are also presented
Nowak, Jeremy A; Weber, Robert J; Goldstein, Allen H
2018-03-12
The ability to structurally characterize and isomerically quantify crude oil hydrocarbons relevant to refined fuels such as motor oil, diesel, and gasoline represents an extreme challenge for chromatographic and mass spectrometric techniques. This work incorporates two-dimensional gas chromatography coupled to a tunable vacuum ultraviolet soft photoionization source, the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source at the Lawrence Berkeley National Laboratory, with a time-of-flight mass spectrometer (GC × GC-VUV-TOF) to directly characterize and isomerically sum the contributions of aromatic and aliphatic species to hydrocarbon classes of four crude oils. When the VUV beam is tuned to 10.5 ± 0.2 eV, both aromatic and aliphatic crude oil hydrocarbons are ionized to reveal the complete chemical abundance of C 9 -C 30 hydrocarbons. When the VUV beam is tuned to 9.0 ± 0.2 eV only aromatic hydrocarbons are ionized, allowing separation of the aliphatic and aromatic fractions of the crude oil hydrocarbon chemical classes in an efficient manner while maintaining isomeric quantification. This technique provides an effective tool to determine the isomerically summed aromatic and aliphatic hydrocarbon compositions of crude oil, providing information that goes beyond typical GC × GC separations of the most dominant hydrocarbon isomers.
Improving gasoline quality produced from MIDOR light naphtha isomerization unit
Directory of Open Access Journals (Sweden)
M.F. Mohamed
2017-03-01
Full Text Available Isomerization process became one of the best gasoline production sources, as it gives a high octane product while saving environment from pollution impacts. This paper presents a practical study that aims to improve the gasoline quality and economic income of an existing light naphtha isomerization unit used for octane improvement. The study included selecting the optimum combination of isomerization unit equipment that gives better product specifications for a specified feed. Eight scenarios were studied and simulated to predict the product specs. The original studied unit is MIDOR light naphtha isomerization unit at Alexandria-Egypt that recycles the unconverted hexane (C6. The other studied scenarios were adding fractionators for separating feed iso-pentanes, and recycling unconverted pentanes, hexanes and/or combinations of these fractionators. The results show a change in octane number of gasoline product for a specific feed. Once through process with no extra fractionators has lower octane number of 81 while that with de-iso-pentanizer–de-pentanizer and de-hexanizer produces gasoline with 92.3 octane number. Detailed economic study was done to calculate the return on investment “ROI” for each process option based on equipment, utilities, feed and product prices. Once through simple isomerization unit had the lowest ROI of 14.3% per year while the combination of De-iso-pentanizer with the De-hexanizer had the best ROI of 26.6% per year.
Fourier optics treatment of classical relativistic electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2006-08-15
In this paper we couple Synchrotron Radiation (SR) theory with a branch of physical optics, namely laser beam optics. We show that the theory of laser beams is successful in characterizing radiation fields associated with any SR source. Both radiation beam generated by an ultra-relativistic electron in a magnetic device and laser beam are solutions of the wave equation based on paraxial approximation. It follows that they are similar in all aspects. In the space-frequency domain SR beams appear as laser beams whose transverse extents are large compared with the wavelength. In practical solutions (e.g. undulator, bending magnet sources), radiation beams exhibit a virtual ''waist'' where the wavefront is often plane. Remarkably, the field distribution of a SR beam across the waist turns out to be strictly related with the inverse Fourier transform of the far-field angle distribution. Then, we take advantage of standard Fourier Optics techniques and apply the Fresnel propagation formula to characterize the SR beam. Altogether, we show that it is possible to reconstruct the near-field distribution of the SR beam outside the magnetic setup from the knowledge of the far-field pattern. The general theory of SR in the near-zone developed in this paper is illustrated for the special cases of undulator radiation, edge radiation and transition undulator radiation. Using known analytical formulas for the far-field pattern and its inverse Fourier transform we find analytical expressions for near-field distributions in terms of far-field distributions. Finally, we compare these expressions with incorrect or incomplete literature. (orig.)
Radiochemical study of isomerization of free butyl cations
International Nuclear Information System (INIS)
Sinotova, E.N.; Nefedov, V.D.; Skorokhodov, S.S.; Arkhipov, Yu.M.
1987-01-01
Ion-molecular reactions of free butyl cations, generated by nuclear chemical method, with carbon monoxide containing small quantities of ethanol vapors are studied. Carbon monoxide was used to fix instable butyl cations in the form of corresponding acyl ions. Ester of α-methyl-butyric acid appears to be the only product of free butyl cation interaction with carbon monoxide in the presence of ethanol vapors. That means, that up to the moment of butyl cation reaction with carbon monoxide, the primary butyl cations are almost completely isomerized into secondary in agreement with results of previous investigations. This allows one to study free butyl cation isomerization process according to ion-molecular reaction product isomeric composition
Isomeric states in 253No and 253Fm
International Nuclear Information System (INIS)
Antalic, S.; Kalaninova, Z.; Saro, S.; Venhart, M.; Hessberger, F.P.; Ackermann, D.; Heinz, S.; Kindler, B.; Khuyagbaatar, J.; Kojouharov, I.; Kuusiniemi, P.; Lommel, B.; Mann, R.; Sulignano, B.; Hofmann, S.; Leino, M.; Nishio, K.; Streicher, B.
2011-01-01
Nuclear structure and decay of isomeric states in 253 No were investigated. The isotope was produced by the reaction 48 Ca + 207 Pb. The excitation energy of the known single-particle isomeric state (5/2 + [622]) was measured by delayed coincidences between γ-rays and implanted evaporation residues and was placed into the level scheme. In addition, decay of a high-lying multi-quasiparticle isomer in 253 No was studied using e - -γ coincidence measurements. A rotational band populated by its de-excitation was identified in 253 No. A new isomeric state in 253 Fm was observed and a partial-level scheme for this isotope is suggested. In addition γ transitions from excited levels are reported for 253 Md. (orig.)
Modular TPC's for relativistic heavy ion experiments
International Nuclear Information System (INIS)
Etkin, A.; Eiseman, S.E.; Foley, K.J.
1989-01-01
We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs
Next generation of relativistic heavy ion accelerators
International Nuclear Information System (INIS)
Grunder, H.; Leemann, C.; Selph, F.
1978-06-01
Results are presented of exploratory and preliminary studies of a next generation of heavy ion accelerators. The conclusion is reached that useful luminosities are feasible in a colliding beam facility for relativistic heavy ions. Such an accelerator complex may be laid out in such a way as to provide extractebeams for fixed target operation, therefore allowing experimentation in an energy region overlapping with that presently available. These dual goals seem achievable without undue complications, or penalties with respect to cost and/or performance
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Relativistic studies in actinides
International Nuclear Information System (INIS)
Weinberger, P.; Gonis, A.
1987-01-01
In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs
International Nuclear Information System (INIS)
Hines, D.F.; Frankel, N.E.
1979-01-01
The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed
Relativistic heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Brink, D M
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Bratek, Łukasz
2015-01-01
Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...
Relativistic heavy ion reactions
International Nuclear Information System (INIS)
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs
Isomerization Intermediates In Solution Phase Photochemistry Of Stilbenes
Doany, F. E.; Hochstrasser, R. M.; Greene, B. I.
1985-04-01
Picosecond and subpicosecond spectroscopic studies have revealed evidence for an isomerization intermediate between cis and trans in the photoinduced isomerism of both stilbene and biindanyledene ("stiff" stilbene). In stiff stilbene, a transient absorption at 351 nm displays time evolution and viscosity dependence consistent with absorption by a twisted intermediate ("phantom" state) with a lOps lifetime. An analagous bottleneck state with a life-time of 4ps is also consistent with the ground state recovery dynamics of t-stilbene following excitation of c-stilbene when monitored with 0.1ps resolution.
Evaluation of isomeric excitation functions in neutron induced reactions
International Nuclear Information System (INIS)
Grudzevich, O.; Ignatyuk, A.; Zolotarev, K.
1992-01-01
The possibilities of isomer levels experimental excitation functions description with theoretical models are discussed. It is shown that the experimental data in many cases can be described by theoretical models quite well without parameter fitting. However, large discrepancies are observed for some reactions. In our opinion, these discrepancies are due to uncertainties of discrete level schemes, schemes of gamma-transitions between levels and spin dependence of level density. Small values of isomeric ratios (< 0.1) have been described with the largest errors. The simple formulae for energy dependence of isomeric ratio for (n,g) reaction has been proposed. (author). 53 refs, 10 figs, 8 tabs
cis–trans Isomerization of silybins A and B
Directory of Open Access Journals (Sweden)
Michaela Novotná
2014-05-01
Full Text Available Methods were developed and optimized for the preparation of the 2,3-cis- and the 10,11-cis-isomers of silybin by the Lewis acid catalyzed (BF3∙OEt2 isomerization of silybins A (1a and B (1b (trans-isomers. The absolute configuration of all optically pure compounds was determined by using NMR and comparing their electronic circular dichroism data with model compounds of known absolute configurations. Mechanisms for cis–trans-isomerization of silybin are proposed and supported by quantum mechanical calculations.
International Nuclear Information System (INIS)
Reiser, M.
1982-01-01
An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed
Cooling rates and intensity limitations for laser-cooled ions at relativistic energies
Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal
2018-04-01
The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING
International Nuclear Information System (INIS)
POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL
2001-01-01
The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam
RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT
Energy Technology Data Exchange (ETDEWEB)
Friedlander, Erwin M.; Heckman, Harry H.
1982-04-01
Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.
Mode control in a high-gain relativistic klystron amplifier
Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang
2010-05-01
Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.
New developments in relativistic klystron amplifiers
Energy Technology Data Exchange (ETDEWEB)
Friedman, M; Colombant, D; Fernsler, R; Hubbard, R; Lampe, M; Serlin, V; Slinker, S [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.
1997-12-31
A relativistic klystron amplifier that employed cavities with inductively loaded wide gaps and a novel converter has achieved 50% energy efficiency, a significant advance over the previous state of the art of 20%. The new device was immersed in a 3 kG magnetic field and contained two innovations: (1) Wide gaps which include an inductively loaded return current structure that was opaque to the unmodulated beam space charge but transparent to the RF field. (2) A novel converter that was made of a `leaky` cavity with a radially-converging inductively-loaded structure that was inserted in the output wide-gap. This structure reduced the potential energy residing in the electron beam and maximized RF output energy. (author). 4 figs., 13 refs.
Evaluation of excitation functions for isomeric levels in neutron reactions
International Nuclear Information System (INIS)
Grudzevich, O.T.; Zelenetskij, A.V.; Zolotarev, K.I.; Kornilov, N.V.; Pashchenko, A.B.
1993-07-01
The authors consider the use of theoretical models to describe experimental excitation functions for isomeric levels in neutron reactions and to predict the cross-sections when no experimental data are available. It is shown that, in many cases, experimental data can be described quite satisfactorily by calculations without adjustment of parameters. For threshold reactions at a neutron energy of ∼ 14 MeV the agreement between calculated and experimental isomeric ratios is ∼ 20%, and is determined mainly by errors in the experimental ratios. However, for some reactions there are considerable differences between experimental and calculated data, which are due, in the authors' opinion, to uncertainties in the schemes of the low-lying levels and of gamma transitions between levels and to the spin dependence of level density. The small isomeric ratio values R<0.1 are described with the lowest accuracy. A formula is suggested for the energy dependence of the isomeric ratio in the (n,γ) reaction. (author)
cis-trans Isomerization of silybins A and B
Czech Academy of Sciences Publication Activity Database
Novotná, Michaela; Gažák, Radek; Biedermann, David; Di Meo, F.; Marhol, Petr; Kuzma, Marek; Bednárová, Lucie; Fuksová, Kateřina; Trouillas, P.; Křen, Vladimír
-, č. 10 (2014), s. 1047-1063 ISSN 1860-5397 R&D Projects: GA ČR GAP207/10/0288; GA MŠk LH13097; GA MŠk(CZ) LD13041 Institutional support: RVO:61388971 ; RVO:61388963 Keywords : isomerization * silibinin * silybin Subject RIV: CC - Organic Chemistry Impact factor: 2.762, year: 2014
Isomerization of β-carotene by titanium tetrachloride catalyst
Indian Academy of Sciences (India)
TECS
2007-05-04
May 4, 2007 ... antioxidant because of the presence of a long chain of conjugated carbon-carbon double bonds. ... such as extraction, chromatography etc. It has been reported that the chlorinated solvents can promote isomerization of trans conjugated polyenes such as β-carotene during extraction.5. Also, the isomeriza-.
Isomerization of 2-phospha-4-silabicyclo[1.10]butane
Slootweg, J.C.; Ehlers, A.W.; Lammertsma, K.
2004-01-01
In analogy with the valence isomerism of the hydrocarbons bicyclobutane, 1,3-butadiene and cyclobutene, the rearrangements for 2-phospha-4-sila- bicyclo[1.1.0]butane were studied at the B3LYP/6-311+G** level of theory. The monocyclic 1,2-dihydro-1,2-phosphasilete is shown to be the thermodynamically
IFR channel-guiding of spinning beams
International Nuclear Information System (INIS)
O'Brien, K.J.
1986-06-01
A simple model is adopted to study the Ion Focussed Regime (IFR) laser channel-guiding of a spinning relativistic electron beam. It is discovered that spinning beams precess about the IFR axis as they damp; whereas, nonspinning beams remain planarly polarized
Experiments with stored relativistic exotic nuclei
International Nuclear Information System (INIS)
Klepper, O.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Hellstroem, M.; Herfurth, F.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Quint, W.; Tradon, T.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Steck, M.; Suemmerer, K.; Vermeeren, L.; Winkler, M.; Winkler, Th.; Falch, M.; Kerscher, Th.; Loebner, K.E.G.; Fujita, Y.; Novikov, Yu.; Patyk, Z.; Stadlmann, J.; Wollnik, H.
1999-01-01
Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: 1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10 -6 . The achieved mass resolving power of m/Δm = 6.5·10 5 (FWHM) in recent measurements represents an improvement by a factor of two compared to authors' previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54≤Z≤84. The results are compared with mass models and estimated values based on extrapolations of experimental values. 2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5·10 5 (FWHM) was achieved in this mode of operation. 3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability
Relativistic Outflows from ADAFs
Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes
2001-04-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Relativistic twins or sextuplets?
International Nuclear Information System (INIS)
Sheldon, Eric
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic quantum cryptography
Kaniewski, Jedrzej
Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).
Relativistic distances, sizes, lengths
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs
Localization of relativistic particles
International Nuclear Information System (INIS)
Omnes, R.
1997-01-01
In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Relativistic quarkonium dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1985-06-01
We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters
International Nuclear Information System (INIS)
Araujo, Wilson Roberto Barbosa de
1995-01-01
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)
Relativistic nuclear collisions: theory
International Nuclear Information System (INIS)
Gyulassy, M.
1980-07-01
Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1991-01-01
The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described
Relativistic approach to nuclear structure
International Nuclear Information System (INIS)
Nguyen Van Giai; Bouyssy, A.
1987-03-01
Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined
Relativistic dynamics without conservation laws
Rothenstein, Bernhard; Popescu, Stefan
2006-01-01
We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.
Relativistic non-Hamiltonian mechanics
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Successful Beam-Beam Tuneshift Compensation
Energy Technology Data Exchange (ETDEWEB)
Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)
2005-01-01
The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (T_{E}L) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the T_{E}L are presented and analyzed. It is shown that the T_{E}L provides a way to shatter the previously inescapable beam-beam limit.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
Relativistic centrifugal instability
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
Spectral characteristics of a relativistic plasma microwave generator
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Ponomarev, A.V.; Rukhadze, A.A.; Strelkov, P.S.; Ul'yanov, D.K.; Shkvarunets, A.G.
1996-01-01
The radiation spectrum of a broad-band relativistic plasma microwave generator, in which a hollow relativistic electron beam is injected into a plasma waveguide consisting of a hollow plasma within a round metallic waveguide is measured experimentally. The radiation spectrum is measured using a wide-aperture calorimetric spectrometer in the frequency range 3-32 GHz. The influence of the plasma density and the beam-plasma gap on the radiation spectrum is investigated. The amplification of the noise electromagnetic radiation when a relativistic electron beam is injected into the plasma waveguide is calculated on the basis of the nonlinear theory. The theory predicts passage from a one-particle generation regime to a collective regime and narrowing of the radiation spectrum as the plasma density and the gap between the hollow beam and the plasma increases. A comparison of the measurement results with the nonlinear theory accounts for several features of the measured spectrum. However, the predicted change in the generation regimes is not observed experimentally. Qualitative arguments are advanced, which explain the observed phenomena and call for further theoretical and experimental research, are advanced
Consideration of Relativistic Dynamics in High-Energy Electron Coolers
Bruhwiler, David L
2005-01-01
A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions treating the model problem of ...
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
Left cardiac isomerism in the Sonic hedgehog null mouse.
Hildreth, Victoria; Webb, Sandra; Chaudhry, Bill; Peat, Jonathan D; Phillips, Helen M; Brown, Nigel; Anderson, Robert H; Henderson, Deborah J
2009-06-01
Sonic hedgehog (Shh) is a secreted morphogen necessary for the production of sidedness in the developing embryo. In this study, we describe the morphology of the atrial chambers and atrioventricular junctions of the Shh null mouse heart. We demonstrate that the essential phenotypic feature is isomerism of the left atrial appendages, in combination with an atrioventricular septal defect and a common atrioventricular junction. These malformations are known to be frequent in humans with left isomerism. To confirm the presence of left isomerism, we show that Pitx2c, a recognized determinant of morphological leftness, is expressed in the Shh null mutants on both the right and left sides of the inflow region, and on both sides of the solitary arterial trunk exiting from the heart. It has been established that derivatives of the second heart field expressing Isl1 are asymmetrically distributed in the developing normal heart. We now show that this population is reduced in the hearts from the Shh null mutants, likely contributing to the defects. To distinguish the consequences of reduced contributions from the second heart field from those of left-right patterning disturbance, we disrupted the movement of second heart field cells into the heart by expressing dominant-negative Rho kinase in the population of cells expressing Isl1. This resulted in absence of the vestibular spine, and presence of atrioventricular septal defects closely resembling those seen in the hearts from the Shh null mutants. The primary atrial septum, however, was well formed, and there was no evidence of isomerism of the atrial appendages, suggesting that these features do not relate to disruption of the contributions made by the second heart field. We demonstrate, therefore, that the Shh null mouse is a model of isomerism of the left atrial appendages, and show that the recognized associated malformations found at the venous pole of the heart in the setting of left isomerism are likely to arise from
Prospects for development of powerful, highly efficient, relativistic gyrodevices
International Nuclear Information System (INIS)
Nusinovich, G.S.; Granatstein, V.L.
1992-01-01
For various applications the required parameters of sources of powerful microwave radiation lie far beyond the capabilities of existing tubes. This provokes an interest in reconsidering basic principles of relevant microwave sources in order to search for alternative concepts in their development. One of the most promising devices in the short-wavelength region of microwaves is the cyclotron resonance maser (CRM). During the last decade, two important varieties of CRMs have been distinguished, namely, gyrotrons, which operate at frequencies close to cut-off, and cyclotron autoresonance masers (CARMs), which operate at frequencies far from cut-off. When the axial phase velocity of the wave in properly adjusted to the beam voltage and electron pitch-ratio, the efficiency of relativistic CRMs may be high (≥50%). The method of optimizing efficiency based on a partial compensation of the shift in the relativistic electron cyclotron frequency by the change in the Doppler term can be, in principle, accompanied by a corresponding profiling of the external magnetic field and/or the wave phase velocity in a slightly irregular waveguide. These methods can be used in such relativistic CRMs as relativistic gyrotrons, gyroklystrons, gyro-traveling-wave-tubes and gyrotwistrons. The most important point is their sensitivity to a spread in electron parameters. As the beam voltage grows, the operation becomes more sensitive. However, at relatively low voltages such devices are quite tolerant to electron velocity spread
An optical trap for relativistic plasma
International Nuclear Information System (INIS)
Zhang Ping; Saleh, Ned; Chen Shouyuan; Sheng Zhengming; Umstadter, Donald
2003-01-01
The first optical trap capable of confining relativistic electrons, with kinetic energy ≤350 keV was created by the interference of spatially and temporally overlapping terawatt power, 400 fs duration laser pulses (≤2.4x10 18 W/cm 2 ) in plasma. Analysis and computer simulation predicted that the plasma density was greatly modulated, reaching a peak density up to 10 times the background density (n e /n 0 ∼10) at the interference minima. Associated with this charge displacement, a direct-current electrostatic field of strength of ∼2x10 11 eV/m was excited. These predictions were confirmed experimentally by Thomson and Raman scattering diagnostics. Also confirmed were predictions that the electron density grating acted as a multi-layer mirror to transfer energy between the crossed laser beams, resulting in the power of the weaker laser beam being nearly 50% increased. Furthermore, it was predicted that the optical trap acted to heat electrons, increasing their temperature by two orders of magnitude. The experimental results showed that the number of high energy electrons accelerated along the direction of one of the laser beams was enhanced by a factor of 3 and electron temperature was increased ∼100 keV as compared with single-beam illumination
International Nuclear Information System (INIS)
Nemenov, L.
2001-01-01
The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state
Photoionization at relativistic energies
International Nuclear Information System (INIS)
Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.
2000-11-01
At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
Relativistic plasma dispersion functions
International Nuclear Information System (INIS)
Robinson, P.A.
1986-01-01
The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived
Isomeric rations study for the α + 70 Ge
International Nuclear Information System (INIS)
Hora Villano, M.H. da.
1984-12-01
Isomeric ratios for 73 Se F,I produced in the reaction α + 70 Ge with incidence laboratory energy ranging from 8 to 28 MeV, have been measured using off-line γ-ray spectroscopy. Relative formation cross-section for isomeric and ground states were obtained with NAT Ge targets. Compound nucleus statistical analyses were performed using computer codes Alice and Julian. Unlike to Alice code, the Julian code predictions agreed quite well with the experimental results. This agreement may be explained by the inclusion of the γ competition in the deexcitation channels of the compound nucleus and by the correct level density calculation of the emission probabilities in the Julian code. Finally angular momentum populations for isomers formations in the reaction 70 Ge(α, n) 73 have been determined. (author)
Determination of the production rate of low intensity isomeric transitions
International Nuclear Information System (INIS)
Lakosi, L.; Veres, A.; Tam, N.C.; Pavlicsek, I.
1992-01-01
Flat 2π and cylindrical 4π multiwire proportional counters were built for counting for low energy internal conversion electrons from the nuclear isomers 83m Kr, 103m Rh and 189m Os, induced by irradiation with high intensity 60 Co and 4 MeV bremsstrahlung sources. The β-decay of 176m Lu was recorded by a plastic scintillator. In this way higher sensitivities were attained than by detecting γ-rays or characteristic X-rays associated with the isomeric transitions, and the excitation of 189m Os by low energy 137 Cs and 300 kV X-ray sources also became detectable. Comparatively large isomeric activities produced by linac irradiation were standardizing by a Ge spectrometer for calibrating proportional and scintillation counting. (orig.)
Rotating relativistic neutron stars
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Glendenning, N.K.
1991-07-21
Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.
Broadband lasercooling of relativistic ions at the ESR
Energy Technology Data Exchange (ETDEWEB)
Winters, Danyal; Ullmann, Johannes; Clark, Colin; Dimopoulou, Christina; Nolden, Fritz; Steck, Markus [GSI Darmstadt (Germany); Bussmann, Michael; Siebold, Mathias; Seltmann, Michael; Schramm, Ulrich [HZDR Dresden (Germany); Wen, Weiqiang [GSI Darmstadt (Germany); IMP CAS Lanzhou (China); Sanchez, Rodolfo; Lochmann, Matthias [GSI Darmstadt (Germany); Uni Mainz (Germany); Beck, Tobias; Rein, Benjamin; Tichelmann, Sascha; Birkl, Gerhard; Walther, Thomas [TU Darmstadt (Germany); Zhang, Dacheng; Yang, Jie; Ma, Xinwen [IMP CAS Lanzhou (China); Noertershaeuser, Wilfried [GSI Darmstadt (Germany); Uni Mainz (Germany); TU Darmstadt (Germany); Kuehl, Thomas [GSI Darmstadt (Germany); Uni Mainz (Germany); HI Jena (Germany); Stoehlker, Thomas [GSI Darmstadt (Germany); Uni Jena (Germany); HI Jena (Germany)
2013-07-01
We present new results on broadband laser cooling of stored relativistic C{sup 3+} ion beams at the ESR in Darmstadt. For the first time we could show laser cooling of bunched relativistic ion beams using a UV-laser which could scan over a very large range and thus cool all the ions in the 'bucket'. This scheme is much more versatile than a previous scheme, where the bunching frequency was scanned relative to a fixed laser frequency. We have also demonstrated that this cooling scheme works without pre-electron cooling, which is a prerequisite for its general application to future storage rings and synchrotrons, such as the HESR and the SIS100 at FAIR. We also present results from in vacuo VUV-fluorescence detectors, which have proven to be very effective.
Relativistic runaway breakdown in low-frequency radio
DEFF Research Database (Denmark)
Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.
2011-01-01
at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...... electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.......The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which...
Some problems in relativistic thermodynamics
International Nuclear Information System (INIS)
Veitsman, E. V.
2007-01-01
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived
Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes
International Nuclear Information System (INIS)
Royo, F.M.; Villares, A.; Martin, S.; Giner, B.; Lafuente, C.
2007-01-01
Experimental surface tensions and the corresponding surface tensions deviations for the mixtures containing 1,3-dioxolane or 1,4-dioxane and 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane or 2-chloro-2-methylpropane, measured with a drop volume tensiometer, are reported at the temperatures of 298.15 K and 313.15 K. The excess surface concentrations of isomeric chlorobutanes are also evaluated using a monolayer model
Deconstructing field-induced ketene isomerization through Lagrangian descriptors.
Craven, Galen T; Hernandez, Rigoberto
2016-02-07
The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.
Polarization transfer in relativistic magnetized plasmas
Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme
2013-04-01
The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a
Nanosecond radar system based on repetitive pulsed relativistic BWO
International Nuclear Information System (INIS)
Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.
1993-01-01
The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported
Conductivity of a relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.
Relativistic description of atomic nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters
Conductivity of a relativistic plasma
International Nuclear Information System (INIS)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab
International Nuclear Information System (INIS)
Herr, W; Pieloni, T
2014-01-01
One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities
Relativistic theory of the falling retroreflector gravimeter
Ashby, Neil
2018-02-01
We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.
Relativistic heavy-ion physics
Herrera Corral, G
2010-01-01
The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.
An introduction to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-11-15
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Radiation dominated relativistic current sheets
International Nuclear Information System (INIS)
Jaroschek, C.H.
2008-01-01
Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)
Beam position monitor sensitivity for low-β beams
International Nuclear Information System (INIS)
Shafer, R.E.
1993-01-01
At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams
The Crab Pulsar and Relativistic Wind
Coroniti, F. V.
2017-12-01
The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Experimental investigation of focusing and transport of heavy-current electron beams
International Nuclear Information System (INIS)
Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Pen'kina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.
The results of an experimental and theoretical study of beam transfer through transverse magnetic fields are outlined. The injection and transport of an annular relativistic electron beam due to a magnetic trap of acute-angle geometry are experimentally studied
Electron beam fusion (a bibliography with abstracts). Report for 1964--Oct 1975
International Nuclear Information System (INIS)
Grooms, D.W.
1975-10-01
The bibliography cites research on using electron beams to initiate fusion. Theoretical and experimental research concerned with the generation and dynamics of relativistic electron beams and their interaction with high atomic number materials is included
Experimental status of the AGS Relativistic Heavy Ion Program
International Nuclear Information System (INIS)
Sangster, T.C.
1994-10-01
The universal motivation for colliding large nuclei at relativistic energies is the expectation that a small volume of the primordial quark soup, generally referred to as the Quark-Gluon Plasma (QGP), can be created and studied. The QGP is formed via a phase transition caused by either the extreme baryon densities and/or the extreme temperatures achieved in the overlap zone of the two colliding nuclei. Experiments at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) using a beam of Si nuclei at 14.6 GeV per nucleon on various nuclear targets have been completed. These same experiments are now actively searching for signatures of QGP formation using a beam of Au nuclei at 11.7 GeV per nucleon. This paper briefly summarizes some of the key results from the Si beam program and the current status of the experimental Au beam program at the AGS
Relativistic fluid model of the resistive hose instability
International Nuclear Information System (INIS)
Siambis, J.G.
1992-01-01
A systematic analysis of the hose instability using the relativistic fluid formulation is reported. In its basic nature, the hose instability is a macroscopic, low-frequency instability, hence a fluid model should, in principle, give an accurate account of the hose instability. It has been found that for zeroth-order beam displacements, giving rise to rigid beam displacements, the fluid wave equation and resulting dispersion relation are identical to the spread-mass model and the energy-group model results. When first-order fluid displacements are included as well, giving rise to compressible, nonfrozen displacements in the axial direction and beam cross-section distortion in the radial direction, then there is obtained a wave equation similar, but not identical to the multicomponent model. The dispersion relation is solved for numerically. The hose instability growth rate is found to be similar to the multicomponent model result, over part of the beam frame, real hose frequency range
Space charge effect in an accelerated beam
Directory of Open Access Journals (Sweden)
G. Stupakov
2008-01-01
Full Text Available It is usually assumed that the space charge effects in relativistic beams scale with the energy of the beam as γ^{-2}, where γ is the relativistic factor. We show that for a beam accelerated in the longitudinal direction there is an additional space charge effect in free space that scales as E/γ, where E is the accelerating field. This field has the same origin as the “electromagnetic mass of the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic energy of the beam and the energy of the electromagnetic field of the beam. We then consider the effect of this field on a beam generated in an rf gun and calculate the energy spread produced by this field in the beam.
Energy Technology Data Exchange (ETDEWEB)
Dermietzel, J; Roesseler, M; Jockisch, W; Wienhold, C [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung; Franke, H; Klempin, J; Barz, H J [VEB Petrolchemisches Kombinat Schwedt (German Democratic Republic)
1978-01-01
The mechanism of ethylbenzene isomerization on Pt/Al/sub 2/O/sub 3/ catalysts by means of /sup 14/C labelled compounds has been investigated, measuring the isotope distribution between ring and alkyl carbon atoms. The results suggest that ethylbenzene isomerizes via structure rearrangement involving ring carbon atoms. A similar mechanism takes place in xylene isomerization under increased hydrogen partial pressure, while under normal pressure 1,2-methyl group shifting is dominating. All three xylenes are formed from ethylbenzene by parallel reactions.
Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory
Energy Technology Data Exchange (ETDEWEB)
Musumeci, P. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)], E-mail: musumeci@physics.ucla.edu; Moody, J.T.; Scoby, C.M. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)
2008-10-15
Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10{sup 7}-10{sup 8} electrons packed in bunches of {approx}100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.
Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory
International Nuclear Information System (INIS)
Musumeci, P.; Moody, J.T.; Scoby, C.M.
2008-01-01
Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10 7 -10 8 electrons packed in bunches of ∼100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics
Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.
Musumeci, P; Moody, J T; Scoby, C M
2008-10-01
Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.
Relativistic positioning systems: perspectives and prospects
Coll Bartolomé
2013-11-01
Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).
DEFF Research Database (Denmark)
Shunmugavel, Saravanamurugan; Riisager, Anders; Taarning, Esben
2016-01-01
Glucose conversion via fructose to useful chemicals and fuels has attracted considerable attention. Isomerization of glucose to fructose can proceed along several different reaction pathways involving different sugar intermediates and isomeric forms. Presently, the roles of the substrate isomeric...