WorldWideScience

Sample records for relativistic fluid thermodynamics

  1. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  2. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  3. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  4. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  6. Speeds of Propagation in Classical and Relativistic Extended Thermodynamics

    Directory of Open Access Journals (Sweden)

    Müller Ingo

    1999-01-01

    Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

  7. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  8. Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?

    Energy Technology Data Exchange (ETDEWEB)

    Guemez, J.

    2010-07-01

    A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.

  9. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  10. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  11. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  12. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  13. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    International Nuclear Information System (INIS)

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  14. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  15. Hyperbolic theory of relativistic conformal dissipative fluids

    Science.gov (United States)

    Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.

    2018-01-01

    We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.

  16. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  17. Relativistic charged fluids: hydrodynamic and kinetic approaches

    International Nuclear Information System (INIS)

    Debbasch, F.; Bonnaud, G.

    1991-10-01

    This report gives a rigorous and consistent hydrodynamic and kinetic description of a charged fluid and the basis equations, in a relativistic context. This study should lead to a reliable model, as much analytical as numerical, of relativistic plasmas which will appear in the interaction of a strong laser field with a plasma. For simplicity, we limited our study to a perfect fluid or, in other words, we disregarded the energy dissipation processes inside the fluid [fr

  18. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  19. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  20. A new cross-effect in local relativistic thermodynamics of irreversible processes

    International Nuclear Information System (INIS)

    Gariel, J.

    1981-01-01

    It is shown that the supplementary term qsup(α)usub(α) which appears in the caloric conducting fluid Eckart's theory (where qsup(α) is the derivative by the curvilinear absciss of the calorific conduction density and usub(α) the local unitary speed) states a thermodynamics construction problem. We can solve this one by admitting the existence of a new relativistic 'thermokinetic' cross-effect, which leads to the relativistic Fourier's hypothesis of Pham Mau Quan [fr

  1. Thermodynamics of geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  2. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  3. New interior solution describing relativistic fluid sphere

    Indian Academy of Sciences (India)

    Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...

  4. Instabilities in a Relativistic Viscous Fluid

    Science.gov (United States)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  5. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  6. Relativistic fluid theories - Self organization

    International Nuclear Information System (INIS)

    Mahajan, S.M.; Hazeltine, R.D.; Yoshida, Z.

    2003-01-01

    Developments in two distinct but related subjects are reviewed: 1) Formulation and investigation of closed fluid theories which transcend the limitations of standard magnetohydrodynamics (MHD), in particular, theories which are valid in the long mean free path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently, and 2) Exploitation of the two-fluid theories to derive new plasma configurations in which the flow-field is a co-determinant of the overall dynamics; some of these states belong to the category of self-organized relaxed states. Physical processes which may provide a route to self-organization and complexity are also explored. (author)

  7. Relativistic fluid dynamics with spin

    Science.gov (United States)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  8. An Undergraduate Exercise in the First Law of Relativistic Thermodynamics

    Science.gov (United States)

    Guemez, J.

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…

  9. Relativistic elasticity of stationary fluid branes

    DEFF Research Database (Denmark)

    Armas, J.; Obers, N.A.

    2013-01-01

    under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...

  10. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  11. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    International Nuclear Information System (INIS)

    Visser, Matt; Molina-ParIs, Carmen

    2010-01-01

    'Acoustic spacetimes', in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this paper, we provide a pedagogical and simple derivation of the general relativistic 'acoustic spacetime' in an arbitrary (d+1)-dimensional curved-space background.

  12. An undergraduate exercise in the first law of relativistic thermodynamics

    International Nuclear Information System (INIS)

    Gueemez, J

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 Nuovo Cimento 42 722-54), which is similar to the formalism developed by van Kampen (1968 Phys. Rev. 173 295-301) and Hamity (1969 Phys. Rev. 187 1745-52). In this 4-vector Minkowski formalism mechanical and thermodynamical processes are described by the first law of thermodynamics expressed as ΔU μ = W μ + Q μ , in a Lorentz covariant way. This exercise is considered useful for undergraduate physics students interested in foundations of physics, with the only prerequisites in first courses in thermodynamics and special relativity.

  13. Relativistic elasticity of stationary fluid branes

    Science.gov (United States)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  14. Statistical thermodynamics of a two-dimensional relativistic gas.

    Science.gov (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  15. Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid

    International Nuclear Information System (INIS)

    Ignat, M.

    1980-01-01

    Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)

  16. Thermodynamical stability for a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)

    2017-12-15

    According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)

  17. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  18. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    Science.gov (United States)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  19. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.; Patzek, Tadeusz; Sun, Alexander Y.

    2015-01-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  20. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.

    2015-07-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  1. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  2. Thermodynamic Fluid Equations-of-State

    Directory of Open Access Journals (Sweden)

    Leslie V. Woodcock

    2018-01-01

    Full Text Available As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc and pressure (pc and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB, critical temperature (Tc, critical pressure (pc and coexisting densities of gas (ρcG and liquid (ρcL along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρT to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region.

  3. International thermodynamic tables of the fluid state propylene (propene)

    CERN Document Server

    Angus, S; De Reuck, K M

    2013-01-01

    International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove

  4. Singular limits in thermodynamics of viscous fluids

    CERN Document Server

    Feireisl, Eduard

    2017-01-01

    This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...

  5. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  6. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  7. The ideal relativistic rotating gas as a perfect fluid with spin

    International Nuclear Information System (INIS)

    Becattini, F.; Tinti, L.

    2010-01-01

    We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f(x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet-Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term -(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.

  8. Relativistic fluid model of the resistive hose instability

    International Nuclear Information System (INIS)

    Siambis, J.G.

    1992-01-01

    A systematic analysis of the hose instability using the relativistic fluid formulation is reported. In its basic nature, the hose instability is a macroscopic, low-frequency instability, hence a fluid model should, in principle, give an accurate account of the hose instability. It has been found that for zeroth-order beam displacements, giving rise to rigid beam displacements, the fluid wave equation and resulting dispersion relation are identical to the spread-mass model and the energy-group model results. When first-order fluid displacements are included as well, giving rise to compressible, nonfrozen displacements in the axial direction and beam cross-section distortion in the radial direction, then there is obtained a wave equation similar, but not identical to the multicomponent model. The dispersion relation is solved for numerically. The hose instability growth rate is found to be similar to the multicomponent model result, over part of the beam frame, real hose frequency range

  9. New family of simple solutions of relativistic perfect fluid hydrodynamics

    International Nuclear Information System (INIS)

    Csoergo, T.; Nagy, M.I.; Csanad, M.

    2008-01-01

    A new class of accelerating, exact and explicit solutions of relativistic hydrodynamics is found-more than 50 years after the previous similar result, the Landau-Khalatnikov solution. Surprisingly, the new solutions have a simple form, that generalizes the renowned, but accelerationless, Hwa-Bjorken solution. These new solutions take into account the work done by the fluid elements on each other, and work not only in one temporal and one spatial dimensions, but also in arbitrary number of spatial dimensions. They are applied here for an advanced estimation of initial energy density and life-time of the reaction in ultra-relativistic heavy ion collisions. New formulas are also conjectured, that yield further important increase of the initial energy density estimate and the measured life-time of the reaction if the value of the speed of sound is in the realistic range

  10. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in

  11. Linear waves in two-fluid relativistic gasdynamics

    International Nuclear Information System (INIS)

    Gavrikov, M.B.; Solov'ev, L.S.

    1988-01-01

    This paper is devoted to the development of a theory of waves propagating in a two-component gaseous medium. In all cases considered the authors use only the method of two-fluid relativistic electromagnetic gasdynamics in the framework of the special relativity theory. They pay special attention to the problem of the interaction in a mixture of both neutral and charged gases when they move relative to one another. This interaction is for charged gases responsible for the appearance of ohmic resistance to an electrical current

  12. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    de Reuck, K M; McCarty, R D

    2013-01-01

    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  13. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Mani; Gammie, Charles F. [Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL, 61801 (United States); Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  14. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  15. Kubo formulas for relativistic fluids in strong magnetic fields

    International Nuclear Information System (INIS)

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-01-01

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: → Strong magnetic fields can make charged fluids behave anisotropically. → Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. → We derive Kubo formulas for these transport coefficients.

  16. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  17. Transport properties of the fluid produced at Relativistic Heavy-Ion ...

    Indian Academy of Sciences (India)

    relativistic fluid dynamics, the kinematic viscosity (ν) is defined as ν = ... because the momentum transport mechanisms are different in the two cases (see, ..... of the widths of giant resonances within the hydrodynamic model (ii) the process.

  18. Thermodynamic curvature of soft-sphere fluids and solids

    Science.gov (United States)

    Brańka, A. C.; Pieprzyk, S.; Heyes, D. M.

    2018-02-01

    The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r-n) potential, where r is the pair separation and 1 /n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n ) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.

  19. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  20. Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma

    International Nuclear Information System (INIS)

    Nejoh, Yasunori

    1994-07-01

    Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)

  1. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  2. PREDICTION OF THERMODYNAMIC PROPERTIES OF COMPLEX FLUIDS

    International Nuclear Information System (INIS)

    Marc Donohue

    2006-01-01

    The goal of this research has been to generalize Density Functional Theory (DFT) for complex molecules, i.e. molecules whose size, shape, and interaction energies cause them to show significant deviations from mean-field behavior. We considered free energy functionals and minimized them for systems with different geometries and dimensionalities including confined fluids (such as molecular layers on surfaces and molecules in nano-scale pores), systems with directional interactions and order-disorder transitions, amphiphilic dimers, block copolymers, and self-assembled nano-structures. The results of this procedure include equations of equilibrium for these systems and the development of computational tools for predicting phase transitions and self-assembly in complex fluids. DFT was developed for confined fluids. A new phenomenon, surface compression of confined fluids, was predicted theoretically and confirmed by existing experimental data and by simulations. The strong attraction to a surface causes adsorbate molecules to attain much higher densities than that of a normal liquid. Under these conditions, adsorbate molecules are so compressed that they repel each other. This phenomenon is discussed in terms of experimental data, results of Monte Carlo simulations, and theoretical models. Lattice version of DFT was developed for modeling phase transitions in adsorbed phase including wetting, capillary condensation, and ordering. Phase behavior of amphiphilic dimers on surfaces and in solutions was modeled using lattice DFT and Monte Carlo simulations. This study resulted in predictive models for adsorption isotherms and for local density distributions in solutions. We have observed a wide variety of phase behavior for amphiphilic dimers, including formation of lamellae and micelles. Block copolymers were modeled in terms of configurational probabilities and in the approximation of random mixing entropy. Probabilities of different orientations for the segments were

  3. CIME Summer School on Mathematical Thermodynamics of Complex Fluids

    CERN Document Server

    Rocca, Elisabetta

    2017-01-01

    The main goal of this book is to provide an overview of the state of the art in the mathematical modeling of complex fluids, with particular emphasis on its thermodynamical aspects. The central topics of the text, the modeling, analysis and numerical simulation of complex fluids, are of great interest and importance both for the understanding of various aspects of fluid dynamics and for its applications to special real-world problems.  New emerging trends in the subject are highlighted with the intent to inspire and motivate young researchers and PhD students.

  4. Predicting structural properties of fluids by thermodynamic extrapolation

    Science.gov (United States)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  5. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  6. Thermodynamic properties of diamond and wurtzite model fluids from computer simulation and thermodynamic perturbation theory

    Science.gov (United States)

    Zhou, S.; Solana, J. R.

    2018-03-01

    Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.

  7. Chlorine international thermodynamic tables of the fluid state

    CERN Document Server

    Angus, S; de Reuck, K M

    1985-01-01

    Chlorine: International Thermodynamic Tables of the Fluid State-8 is a four-chapter book that covers available and estimated data on chlorine; estimation of the element's properties; the correlating equations for the element; and how the tabulated properties are calculated from chosen equation. The tables in this book give the volume, entropy, enthalpy, isobaric heat capacity, compression factor, fugacity/pressure ratio, Joule-Thomson coefficient, ratio of the heat capacities, and speed of sound as a function of pressure and temperature. Given in the tables as well are the pressure, entropy, i

  8. Thermodynamic properties of fluids from Fluctuation Solution Theory

    International Nuclear Information System (INIS)

    O'Connell, J.P.

    1990-01-01

    Fluctuation Theory develops exact relations between integrals of molecular correlation functions and concentration derivatives of pressure and chemical potential. These quantities can be usefully correlated, particularly for mechanical and thermal properties of pure and mixed dense fluids and for activities of strongly nonideal liquid solutions. The expressions yield unique formulae for the desirable thermodynamic properties of activity and density. The molecular theory origins of the flucuation properties, their behavior for systems of technical interest and some of their successful correlations will be described. Suggestions for fruitful directions will be suggested

  9. On relativistic generalization of Perelman's W-entropy and thermodynamic description of gravitational fields and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Olivia [National College of Iasi (Romania); Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al.I. Cuza' ' Iasi, Project IDEI, Iasi (Romania); Werner-Heisenberg-Institute, Max-Planck-Institute for Physics, Munich (Germany); Leibniz University of Hannover, Institute for Theoretical Physics (Germany); Ruchin, Vyacheslav

    2017-03-15

    Using double 2 + 2 and 3 + 1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3 + 1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2 + 2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach. (orig.)

  10. The Hamiltonian structure of general relativistic perfect fluids

    International Nuclear Information System (INIS)

    Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.

    1985-01-01

    We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)

  11. Thermodynamics and elastic moduli of fluids with steeply repulsive potentials

    Science.gov (United States)

    Heyes, D. M.

    1997-08-01

    Analytic expressions for the thermodynamic properties and elastic moduli of molecular fluids interacting with steeply repulsive potentials are derived using Rowlinson's hard-sphere perturbation treatment which employs a softness parameter, λ specifying the deviation from the hard-sphere potential. Generic potentials of this form might be used to represent the interactions between near-hard-sphere stabilized colloids. Analytic expressions for the equivalent hard-sphere diameter of inverse power [ɛ(σ/r)n where ɛ sets the energy scale and σ the distance scale] exponential and logarithmic potential forms are derived using the Barker-Henderson formula. The internal energies in the hard-sphere limit are predicted essentially exactly by the perturbation approach when compared against molecular dynamics simulation data using the same potentials. The elastic moduli are similarly accurately predicted in the hard-sphere limit, as they are trivially related to the internal energy. The compressibility factors from the perturbation expansion do not compare as favorably with simulation data, and in this case the Carnahan-Starling equation of state prediction using the analytic effective hard-sphere diameter would appear to be a preferable route for this thermodynamic property. A more refined state point dependent definition for the effective hard-sphere diameter is probably required for this property.

  12. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  13. Lorentz-like covariant equations of non-relativistic fluids

    International Nuclear Information System (INIS)

    Montigny, M de; Khanna, F C; Santana, A E

    2003-01-01

    We use a geometrical formalism of Galilean invariance to build various hydrodynamics models. It consists in embedding the Newtonian spacetime into a non-Euclidean 4 + 1 space and provides thereby a procedure that unifies models otherwise apparently unrelated. After expressing the Navier-Stokes equation within this framework, we show that slight modifications of its Lagrangian allow us to recover the Chaplygin equation of state as well as models of superfluids for liquid helium (with both its irrotational and rotational components). Other fluid equations are also expressed in a covariant form

  14. The onset of fluid-dynamical behavior in relativistic kinetic theory

    Science.gov (United States)

    Noronha, Jorge; Denicol, Gabriel S.

    2017-11-01

    In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.

  15. A SECOND-ORDER DIVERGENCE-CONSTRAINED MULTIDIMENSIONAL NUMERICAL SCHEME FOR RELATIVISTIC TWO-FLUID ELECTRODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, 113-0033 (Japan)

    2016-11-01

    A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.

  16. Fluid thermodynamics control thermal weakening during earthquake rupture.

    Science.gov (United States)

    Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.

    2017-12-01

    Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault

  17. A parametric model for the global thermodynamic behavior of fluids in the critical region

    International Nuclear Information System (INIS)

    Luettmer-Strathmann, J.; Tang, S.; Sengers, J.V.

    1992-01-01

    The asymptotic thermodynamic behavior of fluids near the critical point is described by scaling laws with universal scaling functions that can be represented by parametric equations. In this paper, we derive a more general parametric model that incorporates the crossover from singular thermodynamic behavior near the critical point to regular classical thermodynamic behavior far away from the critical point. Using ethane as an example, we show that such a parametric crossover model yields an accurate representation of the thermodynamic properties of fluids in a large region around the critical point

  18. Thermodynamic Property Model of Wide-Fluid Phase Propane

    Directory of Open Access Journals (Sweden)

    I Made Astina

    2007-05-01

    Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.

  19. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  20. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  1. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  2. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  3. Stability, causality, and hyperbolicity in Carter's ''regular'' theory of relativistic heat-conducting fluids

    International Nuclear Information System (INIS)

    Olson, T.S.; Hiscock, W.A.

    1990-01-01

    Stability and causality are studied for linear perturbations about equilibrium in Carter's ''regular'' theory of relativistic heat-conducting fluids. The ''regular'' theory, when linearized around an equilibrium state having vanishing expansion and shear, is shown to be equivalent to the inviscid limit of the linearized Israel-Stewart theory of relativistic dissipative fluids for a particular choice of the second-order coefficients β 1 and γ 2 . A set of stability conditions is determined for linear perturbations of a general inviscid Israel-Stewart fluid using a monotonically decreasing energy functional. It is shown that, as in the viscous case, stability implies that the characteristic velocities are subluminal and that perturbations obey hyperbolic equations. The converse theorem is also true. We then apply this analysis to a nonrelativistic Boltzmann gas and to a strongly degenerate free Fermi gas in the ''regular'' theory. Carter's ''regular'' theory is shown to be incapable of correctly describing the nonrelativistic Boltzmann gas and the degenerate Fermi gas (at all temperatures)

  4. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  5. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  6. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  7. Some universal trends of the Mie(n,m) fluid thermodynamics

    International Nuclear Information System (INIS)

    Orea, Pedro; Reyes-Mercado, Yuri; Duda, Yurko

    2008-01-01

    By using canonical Monte Carlo simulation, the liquid-vapor phase diagram, surface tension, interface width, and pressure for the Mie(n,m) model fluids are calculated for six pairs of parameters m and n. It is shown that after certain re-scaling of fluid density the corresponding states rule can be applied for the calculations of the thermodynamic properties of the Mie model fluids, and for some real substances

  8. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  9. Energy effects on the structure and thermodynamic properties of nanoconfined fluids (a density functional theory study).

    Science.gov (United States)

    Keshavarzi, Ezat; Kamalvand, Mohammad

    2009-04-23

    The structure and properties of fluids confined in nanopores may show a dramatic departure from macroscopic bulk fluids. The main reason for this difference lies in the influence of system walls. In addition to the entropic wall effect, system walls can significantly change the energy of the confined fluid compared to macroscopic bulk fluids. The energy effect of the walls on a nanoconfined fluid appears in two forms. The first effect is the cutting off of the intermolecular interactions by the walls, which appears for example in the integrals for calculation of the thermodynamic properties. The second wall effect involves the wall-molecule interactions. In such confined fluids, the introduction of wall forces and the competition between fluid-wall and fluid-fluid forces could lead to interesting thermodynamic properties, including new kinds of phase transitions not observed in the macroscopic fluid systems. In this article, we use the perturbative fundamental measure density functional theory to study energy effects on the structure and properties of a hard core two-Yukawa fluid confined in a nanoslit. Our results show the changes undergone by the structure and phase transition of the nanoconfined fluids as a result of energy effects.

  10. A thermodynamically consistent constitutive theory for a rigid solid-stokesian fluid mixture

    International Nuclear Information System (INIS)

    Mattos, H.C.; Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1992-01-01

    This work is concerned with the modelling for the flow of a stokesian fluid through a rigid porous medium, using a Theory of Mixtures viewpoint. A systematic procedure to obtain constitutive relations that verify automatically the principle of objectivity and a local version of the second law of Thermodynamics is proposed. The prescription of two thermodynamic potentials for each constituent is sufficient to define a complete set of constitutive relations. (author)

  11. Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models

    International Nuclear Information System (INIS)

    Diver, D A; Laing, E W

    2015-01-01

    The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)

  12. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)

    2018-01-15

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)

  13. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Science.gov (United States)

    Mitra, Sukanya

    2018-01-01

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.

  14. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Garcia-Perciante, A. L.; Garcia-Colin, L. S.; Sandoval-Villalbazo, A.

    2009-01-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  15. Fluid phases of hydrogen-bound states and thermodynamical properties

    International Nuclear Information System (INIS)

    Ebeling, W.; Kraeft, W.D.

    1985-08-01

    The fluid phases of hydrogen and especially the existence of two critical points, the density dependence of the two - particle states and the effective interactions are discussed. An effective Schroedinger equation and a Saha equation are given. (author)

  16. A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids

    Science.gov (United States)

    Anders, Denis; Weinberg, Kerstin

    2018-04-01

    The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.

  17. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid

    International Nuclear Information System (INIS)

    Lai, S.K.; Akinlade, O.; Tosi, M.P.

    1989-12-01

    The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs

  18. Is the thermodynamic behavior of the noble fluids consistent with the principle of corresponding states?

    NARCIS (Netherlands)

    Kulinskii, V.L.; Malomuzh, N.P.; Matvejchuk, O.I.

    2009-01-01

    The applicability of the Principle of Corresponding States (PCS) for the noble fluids is discussed. We give the thermodynamic evidence for the dimerization of the liquid phase in heavy noble gases like argon, krypton etc. which manifests itself in deviations from the PCS. The behavior of the

  19. Study of Mururoa's basaltic massif alteration (French Polynesia): solid and fluid phases analysis and thermodynamical modeling

    International Nuclear Information System (INIS)

    Destrigneville, Christine

    1991-01-01

    The alteration processes occurring in the volcanics of Mururoa have been studied using petrological data on secondary minerals, chemical analyses of the interstitial fluids and isotopic analyses on both minerals and fluids. Chemical and isotopic exchanges were first modelled, then thermodynamical modeling characterized the chemical evolution during the alteration of the secondary assemblage and of the fluid. The main secondary sequences which have been observed in Mururoa volcanics result from the alteration occurring during the lavas setting. Two different processes have been evidenced. The first one is the deuteric alteration with the CO_2-rich magmatic fluid exsolved from the magma and trapped in the vesicles and the olivine microcracks of the lava intrusions. This alteration in a closed system is dominated by the solid phases when the CO_2 molar fraction in the fluid is higher than 0.25. The second process is the alteration of the lavas by seawater or a meteoric fluid. The basaltic flows present alteration assemblages composed of clay minerals and zeolites whose chemical composition has been forced by the fluid composition. Shallowness emissions of lavas result in completely argillized levels. The present interstitial fluids chemistry result from the percolation of seawater in the volcano. In the argillized levels the fluids have interacted with the clay minerals and their chemical compositions have been modified. The important chemical changes in the present interstitial fluids show that the present alteration in the volcano is higher than the fluids circulation. (author) [fr

  20. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    Science.gov (United States)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  1. Property Uncertainty Analysis and Methods for Optimal Working Fluids of Thermodynamic Cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome

    in the context of an industrial organic Rankine cycle, used for the recovery of waste heat from an engine of a marine container ship. The study illustrates that the model structure is vital for the uncertainties of equations of state and suggests that uncertainty becomes a criterion (along with e.g. goodness......-of-fit or ease of use) for the selection of an equation of state for a specific application. Furthermore, two studies on the identification of suitable working fluids for thermodynamic cycles are presented. The first one selects and assesses working fluid candidates for an organic Rankine cycle system to recover......There is an increasing interest in recovering industrial waste heat at low tempera-tures (70-250◦C). Thermodynamic cycles, such as heat pumps or organic Rankine cycles, can recover this heat and transfer it to other process streams or convert it into electricity. The working fluid, circulating...

  2. Dependence of cycle optimal configuration for closed gas turbines on thermodynamic properties of working fluids

    International Nuclear Information System (INIS)

    Andryushchenko, A.I.; Dubinin, A.B.; Krylov, E.E.

    1988-01-01

    The problem of choice of working fluids for NPP closed gas turbines (CGT) is discussed. Thermostable in the working temperature range, chemically inert relatively to structural materials, fire- and explosion - proof substances, radiation-resistant and having satisfactory neutron-physical characteristics are used as the working fluids. Final choice of a gas as a working fluid is exercised based on technical and economic comparison of different variants at optimum thermodynamic cycle and parameters for each gas. The character and degree of the effect of thermodynamic properties of gases on configuration of reference cycles of regenerative CGT are determined. It is established that efficiency and optimum parameters in nodal points of the reference cycle are specified by the degree of removing the compression processes from the critical point. Practical importance of the obtained results presupposes the possibility of rapid estimation of the efficiency of using a gas without multiparametric optimization

  3. Thermodynamic study of fluid in terms of equation of state containing physical parameters

    International Nuclear Information System (INIS)

    Khasare, S. B.

    2015-01-01

    We introduce a simple condition for one mole fluid by considering the thermodynamics of molecules pointing towards the effective potential for the cluster. Efforts are made to estimate new physical parameter f in liquid state using the equation of state containing only two physical parameters such as the hard sphere diameter and binding energy. The temperature dependence of the structural properties and the thermodynamic behavior of the clusters are studied. Computations based on f predict the variation of numbers of particles at the contact point of the molecular cavity (radial distribution function). From the thermodynamic profile of the fluid, the model results are discussed in terms of the cavity due to the closed surface along with suitable energy. The present calculation is based upon the sample thermodynamic data for n-hexanol, such as the ultrasonic wave, density, volume expansion coefficient, and ratio of specific heat in the liquid state, and it is consistent with the thermodynamic relations containing physical parameters such as size and energy. Since the data is restricted to n-hexanol, we avoid giving the physical meaning of f, which is the key parameter studied in the present work. (paper)

  4. Thermodynamic properties of short-range square well fluid

    Science.gov (United States)

    López-Rendón, R.; Reyes, Y.; Orea, P.

    2006-08-01

    The interfacial properties of short-range square well fluid with λ =1.15, 1.25, and 1.375 were determined by using single canonical Monte Carlo simulations. Simulations were carried out in the vapor-liquid region. The coexistence curves of these models were calculated and compared to those previously reported in the literature and good agreement was found among them. We found that the surface tension curves for any potential model of short range form a single master curve when we plot γ* vs T /Tc. It is demonstrated that the critical reduced second virial coefficient B2* as a function of interaction range or Tc* is not constant.

  5. On the thermodynamics of one-fluid Szekeres'like cosmologies

    International Nuclear Information System (INIS)

    Lima, J.A.S.; Tiomno, J.

    1989-01-01

    The thermodynamic behavior of the inhomogeneous Szekeres type cosmologies with a perfect fluids as source of gravitation is examined. Since the matter motion is geodetic, the absence of heat flow implies that the temperature is a function of time alone. For a subclass approaching homogeneity and isotropy at large cosmological times an expression for the temperature is derived. It does not coincide with the law of temperature satisfied by the FRW universes, even asymptotically. However, by assuming an equation of state explicitly dependent of the space coordinates, it is shown that the FRW thermodynamics may be recovered. In all cases the Euler and Gibbs-Duhem relations are no longer valid. (author) [pt

  6. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    Science.gov (United States)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  7. Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids

    International Nuclear Information System (INIS)

    Zhou, Y.; Hall, C.K.; Stell, G.

    1995-01-01

    We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics

  8. Effect of phase transition on QGP fluid in ultra-relativistic heavy ion collision

    International Nuclear Information System (INIS)

    Nonaka, Chiho; Miyamura, Osamu; Muroya, Shin

    2001-01-01

    A full (3+1)-dimensional calculation using the Lagrangian hydrodynamics is proposed for relativistic nuclear collisions. The calculation enables us to evaluate anisotropic flow of hot and dense matter which appears in non-central and/or asymmetrical relativistic nuclear collisions. The relativistic hydrodynamical model is related to the equation of the state and the useful for the verification of quark-gluon plasma state. By virtue of the Lagrangian hydrodynamics we can easily trace the trajectory which corresponds to the adiabatic paths in the T-μ plane. We evaluate the directly of the influence of the phase transition to physical phenomena in the ultra-relativistic nuclear collisions. Using our relativistic hydrodynamical model, we discuss the effect of the phase transition on the collective flow. (author)

  9. Thermodynamic properties and static structure factor for a Yukawa fluid in the mean spherical approximation.

    Science.gov (United States)

    Montes-Perez, J; Cruz-Vera, A; Herrera, J N

    2011-12-01

    This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.

  10. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  11. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    Science.gov (United States)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  12. Simulations of intermediate-energy heavy-ion collisions within relativistic mean-field two-fluid model

    International Nuclear Information System (INIS)

    Ivanov, Y.B.; Russkikh, V.N.; Pokrovsky, Y.E. Kurchatov; Ivanov, Y.B.; Russkikh, V.N.; Polrovsky, Y.E.; Henning, P.A.; Henning, P.A.

    1995-01-01

    A three-dimensional realization of the relativistic mean-field 2-fluid model is described. The first results of analyzing the inclusive data on the yield of nuclear fragments and pions, as well as the Plastic-Ball rapidity distributions of nuclear fragments are presented. For comparison, the calculations within the conventional relativistic hydrodynamical model with the same mean fields are also performed. It is found that all the analysed observables, except the pion spectra, appeared to be fairly insensitive to the nuclear EOS. The sensitivity to the nuclear stopping power is slightly higher. The original sensitivity of the rapidity distributions to the stopping power is smeared out by the Plastic-Ball filter and selection criterion. Nevertheless, one can conclude that the stopping power induced by the Cugnon cross-sections is not quite sufficient for a more adequate reproduction of the experimental data. (authors)

  13. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    Science.gov (United States)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  14. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery

    International Nuclear Information System (INIS)

    Xi, Huan; Li, Ming-Jia; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    In the present study, we proposed a graphical criterion called CE diagram by achieving the Pareto optimal solutions of the annual cash flow and exergy efficiency. This new graphical criterion enables both working fluid selection and thermodynamic system comparison for waste heat recovery. It's better than the existing criterion based on single objective optimization because it is graphical and intuitionistic in the form of diagram. The features of CE diagram were illustrated by studying 5 examples with different heat-source temperatures (ranging between 100 °C to 260 °C), 26 chlorine-free working fluids and two typical ORC systems including basic organic Rankine cycle(BORC) and recuperative organic Rankine cycle (RORC). It is found that the proposed graphical criterion is feasible and can be applied to any closed loop waste heat recovery thermodynamic systems and working fluids. - Highlights: • A graphical method for ORC system comparison/working fluid selection was proposed. • Multi-objectives genetic algorithm (MOGA) was applied for optimizing ORC systems. • Application cases were performed to demonstrate the usage of the proposed method.

  15. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    Science.gov (United States)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  16. A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Donev, A; Alder, B J; Garcia, A L

    2009-08-03

    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.

  17. Entropy production in a fluid-solid system far from thermodynamic equilibrium.

    Science.gov (United States)

    Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin

    2017-11-24

    The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

  18. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-28

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  19. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  20. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  1. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    International Nuclear Information System (INIS)

    Sai Venkata Ramana, A.

    2014-01-01

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids

  2. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  3. Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-01-01

    Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table

  4. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  5. Fluids confined in wedges and by edges: From cluster integrals to thermodynamic properties referred to different regions

    International Nuclear Information System (INIS)

    Urrutia, Ignacio

    2015-01-01

    Recently, new insights into the relation between the geometry of the vessel that confines a fluid and its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by edges, emphasizing on the question of the region to which these properties refer. In this context, the relations between the line-thermodynamic properties referred to different regions are derived as analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both edges and wedges. As a simple application of these results, I analyze the properties of the confined gas in the low-density regime. Finally, using recent analytic results for the second cluster integral of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference regions

  6. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  7. Advanced working fluids: Thermodynamic properties. Final report, 1 December 1987-30 November 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.L.; Gering, K.L.

    1990-09-01

    Electrolytes are used as working fluids in gas-fired heat pump-chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory, the EXP-MSA correlation, is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. The outcomes are: (1) an accurate correlation is developed to evaluate properties for concentrated electrolyte solutions (e.g., for aqueous LiBr to 19 molal); (2) sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in a strongly colligative cosolvent; (3) the abilities of correlation on single-effect and double-effect engine cycles are demonstrated; (4) the operating windows are determined for a number of absorption fluids of industrial importance.

  8. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  9. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  10. Relativistic Archimedes law for fast moving bodies and the general-relativistic resolution of the 'submarine paradox'

    International Nuclear Information System (INIS)

    Matsas, George E. A.

    2003-01-01

    We investigate and solve in the context of general relativity the apparent paradox which appears when bodies floating in a background fluid are set in relativistic motion. Suppose some macroscopic body, say, a submarine designed to lie just in equilibrium when it rests (totally) immersed in a certain background fluid. The puzzle arises when different observers are asked to describe what is expected to happen when the submarine is given some high velocity parallel to the direction of the fluid surface. On the one hand, according to observers at rest with the fluid, the submarine would contract and, thus, sink as a consequence of the density increase. On the other hand, mariners at rest with the submarine using an analogous reasoning for the fluid elements would reach the opposite conclusion. The general relativistic extension of the Archimedes law for moving bodies shows that the submarine sinks. As an extra bonus, this problem suggests a new gedankenexperiment for the generalized second law of thermodynamics

  11. Derivation of transient relativistic fluid dynamics from the Boltzmann equation for a multi-component system

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, G.S. [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Niemi, H. [Department of Physics, P.O. Box 35, FI-40014 University of Jyväskylä (Finland)

    2013-05-02

    We derive the non-equilibrium single-particle momentum distribution function of a hadron resonance gas. We then study the effects that this newly derived expression can have in the freeze-out description of fluid-dynamical models of heavy ion collisions and compare it with the method traditionally employed, the 14-moment approximation.

  12. Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm

    Science.gov (United States)

    Dong, S.

    2018-05-01

    We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.

  13. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    Science.gov (United States)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from

  14. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  15. Reverse engineering of fluid selection for thermodynamic cycles with cubic equations of state, using a compression heat pump as example

    International Nuclear Information System (INIS)

    Roskosch, Dennis; Atakan, Burak

    2015-01-01

    Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds. The considered model-process works between the temperature levels of 273.15 and 333.15 K and can be used as heat pump for supplying buildings with heat, typically. The objective functions are the COP (coefficient of performance) and the VHC (volumetric heating capacity) as a function of critical pressure, critical temperature, acentric factor and two coefficients for the temperature-dependent isobaric ideal gas heat capacity. Also, the steam quality at the compressor entrance has to be regarded as a problem variable. The results give clear hints regarding optimal fluid parameters of the analyzed process and deepen

  16. A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples

    International Nuclear Information System (INIS)

    Sencan, Arzu; Kalogirou, Soteris A.

    2005-01-01

    This paper presents a new approach using artificial neural networks (ANN) to determine the thermodynamic properties of two alternative refrigerant/absorbent couples (LiCl-H 2 O and LiBr + LiNO 3 + LiI + LiCl-H 2 O). These pairs can be used in absorption heat pump systems, and their main advantage is that they do not cause ozone depletion. In order to train the network, limited experimental measurements were used as training and test data. Two feedforward ANNs were trained, one for each pair, using the Levenberg-Marquardt algorithm. The training and validation were performed with good accuracy. The correlation coefficient obtained when unknown data were applied to the networks was 0.9997 and 0.9987 for the two pairs, respectively, which is very satisfactory. The present methodology proved to be much better than linear multiple regression analysis. Using the weights obtained from the trained network, a new formulation is presented for determination of the vapor pressures of the two refrigerant/absorbent couples. The use of this new formulation, which can be employed with any programming language or spreadsheet program for estimation of the vapor pressures of fluid couples, as described in this paper, may make the use of dedicated ANN software unnecessary

  17. Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes

    Directory of Open Access Journals (Sweden)

    SERGIO COLLE

    Full Text Available Abstract The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the pressure and the energy density flux or as a function of the pressure and the linear momentum density flux. A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959.

  18. Lanthanides in geological fluids: experimental study of standard thermodynamic properties and of solubilities

    International Nuclear Information System (INIS)

    Pourtier, E.

    2006-11-01

    Standard thermodynamic properties (STP) of lanthanides (Ln 3+ ) are necessary to predict their transport in hydrothermal fluids. New STP (apparent molal volumes and heat capacities) of Ln 3+ are determined with dilute (La 3+ , Nd 3+ , Gd 3+ , Yb 3+ ) triflates solutions, up to 300 deg. C and 300 bars, using a vibrating tube flow densimeter and a differential heat flow calorimeter. The triflate anion (CF 3 SO 3 ), stable at high temperature, does not form complexes with Ln 3+ . The STP of HCF 3 SO 3 and NaCF 3 SO 3 are measured in order to get the STP of CF 3 SO 3 . The solubility of the Nd-pure pole of monazite (NdPO 4 ) studied between 300 and 800 deg. C at 2 kbars in H 2 O and H 2 O+NaCl using weight loss and isotope dilution methods, is prograde for neutral pH. The study of Nd 3+ speciation at 650 deg. C and 300 deg. C, 2 kbars, shows that only hydroxylated species are present. These data allow the revision of Ln 3+ parameters in the HKF model. (author)

  19. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    Science.gov (United States)

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-03-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of state and (ii) Holographic dark energy. In both the cases, the validity of generalized second law of thermodynamics (GSLT) which states that the total entropy of the fluid as well as that of the horizon should not decrease with the evolution of the universe, has been examined graphically for universe bounded by the event horizon. It is found that GSLT holds in both the cases with some restrictions on the interacting coupling parameter.

  20. Estimation and Uncertainty Analysis of Flammability Properties for Computer-aided molecular design of working fluids for thermodynamic cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety......, there is no information about the reliability of the data. Furthermore, the global optimality of the GC parameters estimation is often not ensured....

  1. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    OpenAIRE

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-01-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of...

  2. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  3. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  4. On modifications of fluid inclusions in quartz : re-equilibration experiments and thermodynamical calculations on fluids in natural quartz

    NARCIS (Netherlands)

    Bakker, R.J.

    1992-01-01

    Fluids in rocks can be traced to great depths, and are found in crustal rocks as well as in mantle rocks. Information about the deep fluid which is obtained from fluid inclusions must be handled with care, for the way up after entrapment in a crystal is long and full of interferences at different

  5. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  7. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  8. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  9. Exergetic and thermodynamic comparison of R12 and R134a as vapour compression refrigeration working fluids

    Energy Technology Data Exchange (ETDEWEB)

    De Rossi, Filippo; Mastrullo, Rita; Mazzei, Pietro [Naples Univ. (Italy)

    1993-05-01

    A software package for both the computation of thermodynamic properties and the analysis of the usual vapour compression plant schemes is a useful tool for air conditioning and refrigeration researchers and manufacturers. At present, it could make an important contribution to the search for CFC substitutes; in fact, comparisons between two or more working fluids could be accomplished more easily. A program created by the authors is presented by means of some demonstrative diagrams referring to a comparison between the ''ozone killer'' R12 and its substitute R134a. An R134a exergy-enthalpy chart is also provided. (Author)

  10. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    International Nuclear Information System (INIS)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-01-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is

  11. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)

    2016-08-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is

  12. Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography

    Czech Academy of Sciences Publication Activity Database

    Feistel, R.; Wright, D.G.; Miyagawa, K.; Harvey, A.H.; Hrubý, Jan; Jackett, D.R.; McDougall, T.J.; Wagner, W.

    2008-01-01

    Roč. 4, č. 4 (2008), s. 275-291 ISSN 1812-0784 Institutional research plan: CEZ:AV0Z20760514 Keywords : seawater * equation of state * metastable states Subject RIV: BJ - Thermodynamics www.ocean-sci.net/4/275/2008

  13. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  14. Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients

    Directory of Open Access Journals (Sweden)

    Dominique Brun-Battistini

    2017-10-01

    Full Text Available Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman’s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by explicitly describing the single particle orbits as geodesics in Boltzmann’s equation, that a gravitational field drives a heat flux in this type of system. The calculation is devoted solely to the gravitational field contribution to this heat flux in which a Newtonian limit to the Schwarzschild metric is assumed. The corresponding transport coefficient, which is obtained within a relaxation approximation, corresponds to the dilute fluid in a weak gravitational field. The effect is negligible in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.

  15. Fluidos supercríticos em química analítica. I. Cromatografia com fluido supercrítico: conceitos termodinâmicos Supercritical fluid in analytical chemistry. I. Supercritical fluid chromatography: thermodynamic definitions

    OpenAIRE

    Emanuel Carrilho; Maria Cecília H. Tavares; Fernando M. Lanças

    2001-01-01

    Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in B...

  16. An analytical formulation of thermodynamic properties of dry and metastable steam suitable for computational fluid dynamics modelling of steam turbine flows

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Jan; Pátek, Jaroslav; Duška, Michal

    2014-01-01

    Roč. 228, č. 2 (2014), s. 120-128 ISSN 0957-6509 R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GAP101/11/1593; GA MŠk LG13056 Institutional support: RVO:61388998 Keywords : metastable steam * thermodynamic properties * computational fluid dynamics Subject RIV: BJ - Thermodynamics Impact factor: 0.645, year: 2014 http://pia.sagepub.com/content/228/2.toc

  17. Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Prieto, M.M.; Suarez, I.

    2011-01-01

    A recent novel adjustment of the Span-Wagner equation of state for siloxanes, used as working fluids in high-temperature organic Rankine cycles, is applied in a mathematical model to solve cycles under several working conditions. The proposed scheme includes a thermo-oil intermediate heat circuit between the heat source and the organic Rankine cycle. Linear and cyclic siloxanes are assayed in saturated, superheated and supercritical cycles. The cycle includes an internal heat exchanger (regenerative cycle), although a non-regenerative scheme is also solved. In the first part of the study, a current of combustion gases cooled to close to their dew point temperature is taken as the reference heat source. In the second part, the outlet temperature of the heat source is varied over a wide range, determining appropriate fluids and schemes for each thermal level. Simple linear (MM, MDM) siloxanes in saturated regenerative schemes show good efficiencies and ensure thermal stability of the working fluid. -- Highlights: → Organic Rankine cycles with polymethylsiloxanes as working fluids were modelled. → The cycle scheme is regenerative and includes an intermediate heat transfer fluid. → The fluid properties were calculated by means of the Span-Wagner equation of state. → Vapour conditions to the expander and source thermal level were analysed. → Siloxanes MM, MDM and D 4 under saturated conditions were the best options.

  18. Nonlinear Waveforms for Ion-Acoustic Waves in Weakly Relativistic Plasma of Warm Ion-Fluid and Isothermal Electrons

    Directory of Open Access Journals (Sweden)

    S. A. El-Wakil

    2012-01-01

    Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.

  19. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  20. Thermodynamic properties of fluid n-D2 in the 75 to 300 K and 2- to 20-kbar range

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1978-03-01

    The hydrogen isotope deuterium is an important material for use in various energy technologies. This report is a summary of new pressure, volume, temperature, and sound velocity measurements of fluid n-D 2 in the 75 to 300 K and 2- to 20-kbar range. An equation of state (EOS) was fit to these data. The thermodynamic quantities, volume V, sound velocity v/sub s/, thermal expansivity α/sub p/, heat capacity at constant pressure C/sub p/, isothermal compressibility chi/sub T/, and molar entropy S, are given at 25 0 K and 0.5-kbar increments over the range of measurements. Computer-drawn graphs of the isothermal pressure variation of these quantities are shown. Characteristics of the EOS at high temperature and pressure are determined and compared with theoretical and phenomenological equations of state

  1. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    Science.gov (United States)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  2. Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid

    International Nuclear Information System (INIS)

    Zhao Zongchang; Zhang Xiaodong; Ma Xuehu

    2005-01-01

    Trifluoroethanol(TFE)-tetraethylenglycol dimethylether (TEGDME or E181) is a new organic working-pair which is non-corrosive, completely miscible and thermally stable up to 250 deg C. It is suitable for upgrading low-temperature level industrial waste-heat to a higher temperature level for reuse. In this paper, the thermodynamic performance of the double-effect absorption heat-transformer (DEAHT) using TFE/E181 as the working fluid is simulated, based on the thermodynamic properties of TFE/E181 solution. The results show that, when the temperature in the high-pressure generator exceeds 100 deg C and the gross temperature lift is 30 deg C, the coefficient of performance (COP) of the DEAHT is about 0.58, which is larger than the 0.48 of the single-stage absorption heat-transformer (SAHT), the increase of COP is about 20%. But it is still less than 0.64 of the DEAHT using LiBr-H 2 O as the working fluid. Meanwhile, the COP of the DEAHT decreases more rapidly with increases of the absorption temperature than that for the SAHT. The range of available gross temperature-lift for the DEAHT is narrower than that of the SAHT. The higher the temperature in the high-pressure generator, the larger the gross temperature-lift could be. So the double-effect absorption heat-transformer is more suitable for being applied in those circumstances of having a higher-temperature heat-resource and when a higher temperature-lift is not needed

  3. The structural and thermodynamical properties of binary ellipsoidal fluid mixture Gay-Berne interaction

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2007-06-01

    Full Text Available  In this paper, a uniform classical fluid mixture comprising ellipsoidal molecules is studied. This mixture is composed of two types of ellipsoidal molecules interacting through the Gay-Berne potential with different sizes at temperature T. For this system, the Ornstein-Zernike equation using the Percus-Yevick closure relation is solved. Then the direct correlation function, pair correlation function and the pressure of the fluid at temperature T are calculated. The obtained results are in agreement with the previous theories and the results of molecular dynamic computer simulation.

  4. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    Science.gov (United States)

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  6. Call for Nominations The Nusselt Reynolds Prize Sponsored by Assembly of World Conferences on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics

    Science.gov (United States)

    Kasagi, Nobuhide

    2000-01-01

    The Nusselt Reynolds Prize has been established by the Assembly of World Conferences to commemorate outstanding contributions by Wilhelm Nusselt and Osborne Reynolds as experimentalists, researchers, educators, and authors. As many as three prizes may be bestowed at every World Conference, one in each of the areas of heat transfer, fluid mechanics, thermodynamics, or any combination of these.

  7. Juan H. Vera and Grazyna Wilczek-Vera: Classical Thermodynamics of Fluid Systems: Principles and Applications. CRC Press, Taylor & Francis Group

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios

    2017-01-01

    The book Classical Thermodynamics of Fluid Systems: Principles and Applications written by professor Juan H. Vera and Dr. Grazyna Wilczek-Vera is undoubtably a book written in a most personal style by the two distinguished authors.The book contains four sections and a fifth one with appendices...

  8. Comment on Tailleux, R. Neutrality versus Materiality: A Thermodynamic Theory of Neutral Surfaces. Fluids 2016, 1, 32

    Directory of Open Access Journals (Sweden)

    Trevor J. McDougall

    2017-04-01

    Full Text Available Tailleux has written about the concept of epineutral mixing and has attempted to justify it from an energetic viewpoint. However, Tailleux’s approach is incorrect because it ignores the unsteady nature of the density field during baroclinic motions, which in turn leads to incorrect conclusions. Tailleux also asserts that “adiabatic and isohaline parcel exchanges can only be meaningfully defined on material surfaces” that are functions of only Absolute Salinity and Conservative Temperature and are not separately a function of pressure. We disagree with this assertion because there is no physical reason why the ocean should care about a globally-defined function of Absolute Salinity and Conservative Temperature that we construct. Rather, in order to understand and justify the concept of epineutral mixing, we consider the known physical processes that occur at the in situ pressure of the mixing. The Tailleux paper begins with two incorrect equations that ignore the transience of the ocean. These errors echo throughout Tailleux, leading to sixteen conclusions, most of which we show are incorrect. (Comment on Tailleux, R. Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces. Fluids 2016, 1, 32, doi:10.3390/fluids1040032.

  9. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  10. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  11. Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2008-12-01

    Full Text Available A new seawater standard for oceanographic and engineering applications has been developed that consists of three independent thermodynamic potential functions, derived from extensive distinct sets of very accurate experimental data. The results have been formulated as Releases of the International Association for the Properties of Water and Steam, IAPWS (1996, 2006, 2008 and are expected to be adopted internationally by other organizations in subsequent years. In order to successfully perform computations such as phase equilibria from combinations of these potential functions, mutual compatibility and consistency of these independent mathematical functions must be ensured. In this article, a brief review of their separate development and ranges of validity is given. We analyse background details on the conditions specified at their reference states, the triple point and the standard ocean state, to ensure the mutual consistency of the different formulations, and the necessity and possibility of numerically evaluating metastable states of liquid water. Computed from this formulation in quadruple precision (128-bit floating point numbers, tables of numerical reference values are provided as anchor points for the consistent incorporation of additional potential functions in the future, and as unambiguous benchmarks to be used in the determination of numerical uncertainty estimates of double-precision implementations on different platforms that may be customized for special purposes.

  12. Governing Influence of Thermodynamic and Chemical Equilibria on the Interfacial Properties in Complex Fluids.

    Science.gov (United States)

    Harikrishnan, A R; Dhar, Purbarun; Gedupudi, Sateesh; Das, Sarit K

    2018-04-12

    We propose a comprehensive analysis and a quasi-analytical mathematical formalism to predict the surface tension and contact angles of complex surfactant-infused nanocolloids. The model rests on the foundations of the interaction potentials for the interfacial adsorption-desorption dynamics in complex multicomponent colloids. Surfactant-infused nanoparticle-laden interface problems are difficult to deal with because of the many-body interactions and interfaces involved at the meso-nanoscales. The model is based on the governing role of thermodynamic and chemical equilibrium parameters in modulating the interfacial energies. The influence of parameters such as the presence of surfactants, nanoparticles, and surfactant-capped nanoparticles on interfacial dynamics is revealed by the analysis. Solely based on the knowledge of interfacial properties of independent surfactant solutions and nanocolloids, the same can be deduced for complex surfactant-based nanocolloids through the proposed approach. The model accurately predicts the equilibrium surface tension and contact angle of complex nanocolloids available in the existing literature and present experimental findings.

  13. Evolution system study of a generalized scheme of relativistic magnetohydrodynamic

    International Nuclear Information System (INIS)

    Mahjoub, Bechir.

    1977-01-01

    A generalized scheme of relativistic magnetohydrodynamics is studied with a thermodynamical differential relation proposed by Fokker; this scheme takes account of interaction between the fluid and the magnetic field. Taking account of an integrability condition of this relation, the evolution system corresponding to this scheme is identical to the one corresponding to the usual scheme; it has the same characteristics; it is non-strictly hyperbolic with the same hypothesis of compressibility and it has, with respect to the Cauchy problem, an unique solution in a Gevrey class of index α=3/2 [fr

  14. Lanthanides in geological fluids: experimental study of standard thermodynamic properties and of solubilities; Les lanthanides dans les fluides geologiques: etude experimentale des proprietes thermodynamiques standard et des solubilites

    Energy Technology Data Exchange (ETDEWEB)

    Pourtier, E

    2006-11-15

    Standard thermodynamic properties (STP) of lanthanides (Ln{sup 3+}) are necessary to predict their transport in hydrothermal fluids. New STP (apparent molal volumes and heat capacities) of Ln{sup 3+} are determined with dilute (La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Yb{sup 3+}) triflates solutions, up to 300 deg. C and 300 bars, using a vibrating tube flow densimeter and a differential heat flow calorimeter. The triflate anion (CF{sub 3}SO{sub 3}), stable at high temperature, does not form complexes with Ln{sup 3+}. The STP of HCF{sub 3}SO{sub 3} and NaCF{sub 3}SO{sub 3} are measured in order to get the STP of CF{sub 3}SO{sub 3}. The solubility of the Nd-pure pole of monazite (NdPO{sub 4}) studied between 300 and 800 deg. C at 2 kbars in H{sub 2}O and H{sub 2}O+NaCl using weight loss and isotope dilution methods, is prograde for neutral pH. The study of Nd{sup 3+} speciation at 650 deg. C and 300 deg. C, 2 kbars, shows that only hydroxylated species are present. These data allow the revision of Ln{sup 3+} parameters in the HKF model. (author)

  15. Thermodynamic perturbation theory for associating fluids confined in a one-dimensional pore

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Bennett D. [ExxonMobil Research and Engineering, 22777 Springwoods Village Parkway, Spring, Texas 77389 (United States)

    2015-06-21

    In this paper, a new theory is developed for the self-assembly of associating molecules confined to a single spatial dimension, but allowed to explore all orientation angles. The interplay of the anisotropy of the pair potential and the low dimensional space results in orientationally ordered associated clusters. This local order enhances association due to a decrease in orientational entropy. Unlike bulk 3D fluids which are orientationally homogeneous, association in 1D necessitates the self-consistent calculation of the orientational distribution function. To test the new theory, Monte Carlo simulations are performed and the theory is found to be accurate. It is also shown that the traditional treatment in first order perturbation theory fails to accurately describe this system. The theory developed in this paper may be used as a tool to study hydrogen bonding of molecules in 1D zeolites as well as the hydrogen bonding of molecules in carbon nanotubes.

  16. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  17. Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2014-01-01

    Experimental and calculated partial molar volumes (V ¯ m,1 ) of MIK with (♦) 2-PrOH, (♢) 2-BuOH, (●) 2-PenOH at T = 298.15 K. (—) PC-SAFT model. - Highlights: • Densities and viscosities of the mixtures (MIK + 2-alkanols) were measured. • PC-SAFT model was applied to correlate the volumetric properties of binary mixtures. • Agreement between experimental data and calculated values by PC-SAFT model is good. - Abstract: Densities and viscosities of binary mixtures of methyl isobutyl ketone (MIK) with polar solvents namely, 2-propanol, 2-butanol and 2-pentanol, were measured at 7 temperatures (293.15–323.15 K) over the entire range of composition. Using the experimental data, excess molar volumes V m E , isobaric thermal expansivity α p , partial molar volumes V ¯ m,i and viscosity deviations Δη, have been calculated due to their importance in the study of specific molecular interactions. The observed negative and positive values of deviation/excess parameters were explained on the basis of the intermolecular interactions occur in these mixtures. The Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) has been used to correlate the volumetric behavior of the mixtures

  18. Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Mohammad, E-mail: m.almasi@khouzestan.srbiau.ac.ir

    2014-09-10

    Experimental and calculated partial molar volumes (V{sup ¯}{sub m,1}) of MIK with (♦) 2-PrOH, (♢) 2-BuOH, (●) 2-PenOH at T = 298.15 K. (—) PC-SAFT model. - Highlights: • Densities and viscosities of the mixtures (MIK + 2-alkanols) were measured. • PC-SAFT model was applied to correlate the volumetric properties of binary mixtures. • Agreement between experimental data and calculated values by PC-SAFT model is good. - Abstract: Densities and viscosities of binary mixtures of methyl isobutyl ketone (MIK) with polar solvents namely, 2-propanol, 2-butanol and 2-pentanol, were measured at 7 temperatures (293.15–323.15 K) over the entire range of composition. Using the experimental data, excess molar volumes V{sub m}{sup E}, isobaric thermal expansivity α{sub p}, partial molar volumes V{sup ¯}{sub m,i} and viscosity deviations Δη, have been calculated due to their importance in the study of specific molecular interactions. The observed negative and positive values of deviation/excess parameters were explained on the basis of the intermolecular interactions occur in these mixtures. The Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) has been used to correlate the volumetric behavior of the mixtures.

  19. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  20. Kaluza-Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity

    Science.gov (United States)

    Samanta, Gauranga Charan; Myrzakulov, Ratbay; Shah, Parth

    2017-04-01

    The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza-Klein space time. The bulk viscous coefficient (ξ) expressed as ξ = {ξ_0} + {ξ_1}{{\\dot a} \\over a} + {ξ_2}{{\\ddot a} \\over {\\dot a}}, where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ-1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to {ξ _2}{{\\ddot a} \\over {\\dot a}}, hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to ξ = {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}} and ξ = {ξ _0} + {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}}, so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.

  1. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    International Nuclear Information System (INIS)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-01-01

    Highlights: ► We investigate sulphur during MSW gasification within a fluid bed-plasma process. ► We review the literature on the feed, sulphur and process principles therein. ► The need for research in this area was identified. ► We perform thermodynamic modelling of the fluid bed stage. ► Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H 2 S) – Na and K based species in particular. Work is underway to further investigate and validate this.

  2. Thermodynamics and statistical mechanics

    CERN Document Server

    Landsberg, Peter T

    1990-01-01

    Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.

  3. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  4. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid

    International Nuclear Information System (INIS)

    Le, Van Long; Kheiri, Abdelhamid; Feidt, Michel; Pelloux-Prayer, Sandrine

    2014-01-01

    This paper carried out the thermodynamic and economic optimizations of a subcritical ORC (Organic Rankine Cycle) using a pure or a zeotropic mixture working fluid. Two pure organic compounds, i.e. n-pentane and R245fa, and their mixtures with various concentrations were used as ORC working fluid for this study. Two optimizations, i.e. exergy efficiency maximization and LCOE (Levelized Cost of Electricity) minimization, were performed to find out the optimum operating conditions of the system and to determine the best working fluid from the studied media. Hot water at temperature of 150 °C and pressure of 5 bars was used to simulate the heat source medium. Whereas, cooling water at temperature of 20 °C was considered to be the heat sink medium. The mass flow rate of heat source is fixed at 50 kg/s for the optimizations. According to the results, the n-pentane-based ORC showed the highest maximized exergy efficiency (53.2%) and the lowest minimized LCOE (0.0863 $/kWh). Regarding ORCs using zeotropic working fluids, 0.05 and 0.1 R245fa mass fraction mixtures present the comparable economic features and thermodynamic performances to the system using n-pentane at minimum LCOE. The ORC using R245fa represents the least profitable system. - Highlights: • Thermoeconomic optimization is carried out for a subcritical ORC. • Exergy efficiency and Levelized Cost of Electricity are optimized. • R245fa, n-Pentane and their mixtures are used as ORC working fluid. • CO 2 emissions can be substantially reduced by waste heat recovery using an ORC

  5. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  6. Thermodynamics of mixtures of patchy and spherical colloids of different sizes: A multi-body association theory with complete reference fluid information

    Science.gov (United States)

    Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.

    2017-04-01

    We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.

  7. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  8. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  9. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  10. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  11. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  12. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables......Today, some established working fluids are being phased out due to new international regulations on theuse of environmentally harmful substances. With an ever-increasing cost to resources, industry wants toconverge on improved sustainability through resource recovery, and in particular waste heat...

  13. Overview of the use of refrigerating fluids in thermodynamical machines; Panorama de l`utilisation des fluides frigorigenes dans les machines thermodynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, J. [Syrec SA (France)

    1996-12-31

    The R-22 refrigerant has been used as a substitute of chlorofluorocarbons in refrigerating machineries but its use will become prohibited very soon. This paper raises the problem of its replacement by other HFC or natural fluids. The problem of natural fluids like ammonia or propane concerns their toxicity, flammability and explosion risk. If a regulation about the greenhouse effect is defined, the performance of the installation will be the decisive parameter for the choice of a refrigerant. R-22 fluid has multiple applications from air-conditioning systems to freezing tunnels and the most suitable substitutes will be different from one application to the other. The different criteria that influence the choice of a refrigerating fluid are: the condensation pressure, the delivery temperature, the compressor volume efficiency, the volume refrigerating power, the coefficient of performance, the variation of vaporization temperature, the global greenhouse effect, the toxicity, flammability and explosive character. A comparison between several fluids has been performed with a single-stage airtight compressor of 10 m{sup 3}/h, at a 40 deg. C constant condensation temperature, a 5 deg. C overheating and a 3 deg. C under-cooling. (J.S.) 6 refs.

  14. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  15. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  16. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  17. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  18. Behaviour of charged collapsing fluids after hydrostatic equilibrium in R^n gravity

    Science.gov (United States)

    Kausar, Hafiza Rizwana

    2017-06-01

    The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R^n gravity. Using Müller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star.

  19. The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to 700 °C, 60 kbar) by ab initio molecular dynamics simulations

    Science.gov (United States)

    Mei, Yuan; Liu, Weihua; Brugger, Joël; Sherman, David M.; Gale, Julian D.

    2018-04-01

    HCl is one of the most significant volatiles in the Earth's crust. It is well established that chloride activity and acidity (pH) play important roles in controlling the solubility of metals in aqueous hydrothermal fluids. Thus, quantifying the dissociation of HCl in aqueous solutions over a wide range of temperature and pressure is crucial for the understanding and numerical modeling of element mobility in hydrothermal fluids. Here we have conducted ab initio molecular dynamics (MD) simulations to investigate the mechanism of HCl(aq) dissociation and to calculate the thermodynamic properties for the dissociation reaction at 25-700 °C, 1 bar to 60 kbar, i.e. including high temperature and pressure conditions that are geologically important, but difficult to investigate via experiments. Our results predict that HCl(aq) tends to associate with increasing temperature, and dissociate with increasing pressure. In particular, HCl(aq) is highly dissociated at extremely high pressures, even at high temperatures (e.g., 60 kbar, 600-700 °C). At 25 °C, the calculated logKd values (6.79 ± 0.81) are close to the value (7.0) recommended by IUPAC (International Union of Pure and Applied Chemistry) and some previous experimental and theoretical studies (Simonson et al.., 1990; Sulpizi and Sprik, 2008, 2010). The MD simulations indicate full dissociation of HCl at low temperature; in contrast, some experiments were interpreted assuming significant association at high HCl concentrations (≥1 m HCltot) even at room T (logKd ∼0.7; e.g., Ruaya and Seward, 1987; Sretenskaya, 1992; review in Tagirov et al., 1997). This discrepancy is most likely the result of difficulties in the experimental determination of minor (if any) concentration of associated HCl(aq) under ambient conditions, and thus reflects differences in the activity models used for the interpretation of the experiments. With increasing temperature, the discrepancy between our MD results and previous experimental

  20. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  1. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  2. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  3. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  4. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  5. Relativistic Astrophysics and Cosmology: A Primer

    International Nuclear Information System (INIS)

    Abramowicz, Marek A

    2007-01-01

    'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as the text. Their students will be in the author

  6. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  7. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  8. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    Science.gov (United States)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  9. A novel application of Recursive Equation Method for determining thermodynamic properties of single phase fluids from density and speed-of-sound measurements

    International Nuclear Information System (INIS)

    Lago, S.; Giuliano Albo, P.A.

    2013-01-01

    Highlights: ► A novel method for calculating the isobaric specific heat capacity is presented. ► Heat capacity (C p ) was determined only by speed-of-sound and density measurements. ► (C p ) temperature dependence has been related to speed-of-sound by a new expression. ► Heat capacity for water, nonane, undecane, and rapeseed oil methyl ester are obtained. -- Abstract: The determination of thermal quantities from mechanical properties is still a challenge in the thermodynamic field. In this work, the authors suggest a preliminary numerical calculation which allows to determine the constant pressure specific heat capacity, starting from density and speed-of-sound experimental values, as input data. This method is a variant of the well characterized Recursive Equation Method (REM) [1] and permits to develop empirical equations of state for single phase fluids. In particular, the isobaric specific heat capacity has been obtained, in a wide range of temperatures and pressures, for pure water, n-nonane, n-undecane, and rapeseed oil methyl ester. The results have been compared with those available in the literature, when it was possible. Moreover, the typical uncertainty of heat capacity has been estimated to be in the order of 1.5%; however it has been shown that it can be improved when proper distributions of the experimental points are available

  10. Relativistic dissipative hydrodynamics and the nuclear equation of state

    International Nuclear Information System (INIS)

    Olson, T.S.; Hiscock, W.A.

    1989-01-01

    The theory of dissipative, relativistic fluids due to Israel and Stewart is used to constrain the form of the nuclear equation of state. In the Israel-Stewart theory, there are conditions on the equation of state and other thermodynamic properties (the ''second-order'' coefficients) of a fluid which, if satisfied, guarantee that equilibria are stable and that fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the Israel-Stewart theory, which are relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation, are derived for a free, degenerate Fermi gas. It is shown rigorously that the free, degenerate Fermi gas is stable (and hence causal) at all temperatures in this theory. These values for the second-order coefficients are then used in the stability conditions to constrain various proposed expressions for the nuclear ground-state energy. The stability conditions are found to provide significantly more stringent constraints on the proposed equations of state than the usual simple restriction that the adiabatic sound speed be less than the speed of light

  11. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  12. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  13. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  14. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  15. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  16. Transport theory for relativistic ionized gases

    International Nuclear Information System (INIS)

    Georgiou, A.

    1985-01-01

    The phenomenological non-equilibrium thermodynamics is adapted to the description of relativistic multicomponent plasmas. The general and special forms of matter energy-momentum tensor are given and the physical meaning of the different terms are discussed. A delicate problem of such theories, the contribution of ionized components of plasmas to the electromagnetic energy-momentum tensor is analyzed and illustrated by special examples. The relativistic form of Gibbs equation leads to the balance equation of entropy density. The theory is compared to the nonrelativistic one. The linear transport equations are derived by assuming the linear dependence of currents on deviations. The thermodynamical fluxes and forces are identified and the interference of cross phenomena is discussed. (D.Gy.)

  17. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  18. Relativistic continuum physics for the description of heavy ion collisions

    International Nuclear Information System (INIS)

    Lukacs, Bela

    1986-01-01

    The application of relativistic continuum physics to the description of the nuclear fireball evolution from the start of expansion to the breaking is discussed. The basic formalism and basic assumptions of relativistic hydrodynamics and thermodynamics are analyzed in detail. The four basic assumptions are not valid in the case of nuclear fireball produced in heavy ion collisions, but thermodynamics can be extended in different ways to incorporate anisotropy, fluctuations, gradients and the lack of the local equilibrium. The extended continuum formalism is applicable to the description of the nuclear fireball dynamics, including the nuclear - quark matter phase transition. (D.Gy.)

  19. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  20. Relativistic density matrix in the diagonal momentum representation. Bose-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed

  1. Relativistic phenomenological equations and transformation laws of relative coefficients

    Directory of Open Access Journals (Sweden)

    Patrizia Rogolino

    2017-06-01

    Full Text Available The aim of this paper is to derive the phenomenological equations in the context of special relativistic non-equilibrium thermodynamics with internal variables. In particular, after introducing some results developed in our previous paper, by means of classical non-equilibrium thermodynamic procedure and under suitable assumptions on the entropy density production, the phenomenological equations and transformation laws of phenomenological coefficients are derived. Finally, some symmetries of aforementioned coefficients are obtained.

  2. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  3. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  4. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  5. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  6. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  7. BOOK REVIEW: Relativistic Figures of Equilibrium

    Science.gov (United States)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  8. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  9. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  10. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  11. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  12. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  13. Behaviour of charged collapsing fluids after hydrostatic equilibrium in R{sup n} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kausar, Hafiza Rizwana [University of Central Punjab, Faculty of Management Studies, Centre for Applicable Mathematics and Statistics, UCP Business School, Lahore (Pakistan)

    2017-06-15

    The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R{sup n} gravity. Using Mueller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star. (orig.)

  14. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  15. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  16. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  17. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  18. Calculation of relativistic model stars using Regge calculus

    International Nuclear Information System (INIS)

    Porter, J.

    1987-01-01

    A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)

  19. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  20. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  1. Hydrodynamics of ultra-relativistic bubble walls

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2016-04-15

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  2. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  3. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  4. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  5. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  6. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  7. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  8. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  9. Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and/or the working fluid

    Science.gov (United States)

    Abolghasemi, Mehran; Keshavarz, Ali; Mehrabian, Mozaffar Ali

    2012-11-01

    The thermal storage unit consists of two concentric cylinders where the working fluid flows through the internal cylinder and the annulus is filled with a phase change material. The system carries out a cyclic operation; each cycle consists of two processes. In the charging process the hot working fluid enters the internal cylinder and transfers heat to the phase change material. In the discharging process the cold working fluid enters the internal cylinder and absorbs heat from the phase change material. The differential equations governing the heat transfer between the two media are solved numerically. The numerical results are compared with the experimental results available in the literature. The performance of an energy storage unit is directly related to the thermal conductivity of nano-particles. The energy consumption of a residential unit whose energy is supplied by a thermal storage system can be reduced by 43 % when using nano-particles.

  10. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    International Nuclear Information System (INIS)

    Stiegler, Thomas; Sadus, Richard J.

    2015-01-01

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form

  11. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G., E-mail: wgchap@rice.edu [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251 (United States)

    2016-08-21

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.

  12. Relativistic quantum vorticity of the quadratic form of the Dirac equation

    International Nuclear Information System (INIS)

    Asenjo, Felipe A; Mahajan, Swadesh M

    2015-01-01

    We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman–Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system. (paper)

  13. A Design-Oriented Approach to the Integration of Thermodynamics, Fluid Mechanics, and Heat Transfer in the Undergraduate Mechanical Engineering Curriculum.

    Science.gov (United States)

    Whale, MacMurray D.; Cravalho, Ernest G.

    This paper describes two parallel efforts that attempt to implement a new approach to the teaching of thermal fluids engineering. In one setting, at the Massachusetts Institute of Technology (MIT), the subject matter is integrated into a single year-long subject at the introductory level. In the second setting, at Victoria (British Columbia,…

  14. The 4th Thermodynamic Principle?

    International Nuclear Information System (INIS)

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-01-01

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible

  15. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  16. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  17. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  18. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  19. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  20. Thermodynamic calculations of AuxAg1−x – Fluid equilibria and their applications for ore-forming conditions

    International Nuclear Information System (INIS)

    Liang, Y.; Hoshino, K.

    2015-01-01

    Highlights: • Solubilities of Au–Ag solid solutions are calculated at wide conditions. • Ratios of dissolved Au and Ag depend only on pH at intermediate pH. • Fluid conditions for high gold finenesses have been examined. - Abstract: Concentrations of dissolved gold and silver species in hydrothermal fluids equilibrated with Au–Ag solid solutions have been calculated at wide conditions on the well known fO 2 –pH spaces. Ratios of the total concentrations of dissolved gold and silver species (∑Au/∑Ag) are higher as pH higher and fO 2 lower. The ratios are constant at very low and high pH conditions where major dissolved species of both gold and silver are chloride complexes and thio complexes, respectively, while the ratios practically depend only on pH at intermediate pH conditions where Au(HS) 2 − and AgCl 2 − are major. The calculated results indicate that the solid solutions of high gold finenesses may precipitate from the fluids of low ratios of the total concentrations of dissolved gold and silver species when the conditions are (1) low pH’s and/or (2) high concentration ratios of dissolved chlorine and sulfur and/or (3) high temperatures

  1. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  2. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  3. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  4. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  5. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  6. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  7. Causal dissipation for the relativistic dynamics of ideal gases.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  8. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  9. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  10. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  11. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  12. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  13. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  14. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  15. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  16. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  17. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  18. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  19. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  20. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  1. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  2. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  3. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  4. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  5. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  6. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  7. Thermal Fluid Engineering

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1984-01-01

    This book is made up of 5 chapters. They are fluid mechanics, fluid machines, Industrial thermodynamics, steam boiler and steam turbine. It introduces hydrostatics, basic theory of fluid movement and law of momentum. It also deals with centrifugal pump, axial flow pump, general hydraulic turbine, and all phenomena happening in the pump. It covers the law of thermodynamics, perfect gas, properties of steam, and flow of gas and steam and water tube boiler. Lastly it explains basic format, theory, loss and performance as well as principle part of steam turbine.

  8. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  9. On the thermodynamic stability of the generalized Chaplygin gas

    International Nuclear Information System (INIS)

    Santos, F.C.; Bedran, M.L.; Soares, V.

    2006-01-01

    The main purpose of this Letter is to discuss the temperature behavior and the thermodynamic stability of an exotic fluid known as generalized Chaplygin gas considering only general thermodynamics. This fluid is considered a perfect fluid which obeys an adiabatic equation of state like P=-A/ρ α , where P and ρ are respectively the pressure and energy density; the parameter A is a positive universal constant and α>0. It is remarked that if the energy density of the fluid is a function of volume only, the temperature of the fluid remains zero at any pressure or volume, violating the third law of thermodynamics. We have determined a scenario where its thermal equation of state depends on temperature only and the fluid presents thermodynamic stability during any expansion process. Such a scenario also reveals that the fluid cools down through the expansion without facing any critical point or phase transition

  10. Thermodynamic Modeling of Several Aqueous Alkanol Solutions Containing Amino Acids with the Perturbed-Chain Statistical Associated Fluid Theory Equation of State

    DEFF Research Database (Denmark)

    Ferreira, Luisa; Breil, Martin Peter; Pinho, S. P.

    2009-01-01

    parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid...... and a fluid phase. The hypothetical melting properties of each amino acid were fitted, to accurately correlate the solubilities in pure water. Only one temperature independent binary parameter is required for each amino acid/solvent pair. The model can accurately describe the solubility of the amino acids...... in water, but the correlation for the solubility in pure alcohols was not so satisfactory. The solubility in mixed solvents (ternary systems) was predicted on the basis of the modeling of the solubility in pure solvents, without any additional fitting of the parameters, and the results achieved were...

  11. Relativistic Processes and the Internal Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  12. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  13. Virial theorem and Gibbs thermodynamic potential for Coulomb systems

    International Nuclear Information System (INIS)

    Bobrov, V. B.; Trigger, S. A.

    2014-01-01

    Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction

  14. Virial theorem and Gibbs thermodynamic potential for Coulomb systems

    OpenAIRE

    Bobrov, V. B.; Trigger, S. A.

    2013-01-01

    Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction.

  15. Local thermodynamics of a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-01-01

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  16. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  17. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  18. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  19. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  20. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  1. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  2. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  3. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  4. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  5. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  6. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  7. Thermodynamics a complete undergraduate course

    CERN Document Server

    Steane, Andrew M

    2016-01-01

    This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...

  8. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  9. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  10. Relativistic hydrodynamics, heavy ion reactions and antiproton annihilation

    International Nuclear Information System (INIS)

    Strottman, D.

    1985-01-01

    The application of relativistic hydrodynamics to relativistic heavy ions and antiproton annihilation is summarized. Conditions for validity of hydrodynamics are presented. Theoretical results for inclusive particle spectra, pion production and flow analysis are given for medium energy heavy ions. The two-fluid model is introduced and results presented for reactions from 800 MeV per nucleon to 15 GeV on 15 GeV per nucleon. Temperatures and densities attained in antiproton annihilation are given. Finally, signals which might indicate the presence of a quark-gluon plasma are briefly surveyed

  11. The Poisson equation at second order in relativistic cosmology

    International Nuclear Information System (INIS)

    Hidalgo, J.C.; Christopherson, Adam J.; Malik, Karim A.

    2013-01-01

    We calculate the relativistic constraint equation which relates the curvature perturbation to the matter density contrast at second order in cosmological perturbation theory. This relativistic ''second order Poisson equation'' is presented in a gauge where the hydrodynamical inhomogeneities coincide with their Newtonian counterparts exactly for a perfect fluid with constant equation of state. We use this constraint to introduce primordial non-Gaussianity in the density contrast in the framework of General Relativity. We then derive expressions that can be used as the initial conditions of N-body codes for structure formation which probe the observable signature of primordial non-Gaussianity in the statistics of the evolved matter density field

  12. Light-cone reduction vs. TsT transformations: a fluid dynamics perspective

    Science.gov (United States)

    Dutta, Suvankar; Krishna, Hare

    2018-05-01

    We compute constitutive relations for a charged (2+1) dimensional Schrödinger fluid up to first order in derivative expansion, using holographic techniques. Starting with a locally boosted, asymptotically AdS, 4 + 1 dimensional charged black brane geometry, we uplift that to ten dimensions and perform TsT transformations to obtain an effective five dimensional local black brane solution with asymptotically Schrödinger isometries. By suitably implementing the holographic techniques, we compute the constitutive relations for the effective fluid living on the boundary of this space-time and extract first order transport coefficients from these relations. Schrödinger fluid can also be obtained by reducing a charged relativistic conformal fluid over light-cone. It turns out that both the approaches result the same system at the end. Fluid obtained by light-cone reduction satisfies a restricted class of thermodynamics. Here, we see that the charged fluid obtained holographically also belongs to the same restricted class.

  13. Improved Estimates of Thermodynamic Parameters

    Science.gov (United States)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  14. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  15. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  16. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  17. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  18. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  19. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  20. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  1. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  2. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  3. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  4. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  5. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  6. Analysis of production data and fluid thermodynamic conditions in wells of Los Humeros, Pue; Analisis de datos de produccion y condiciones termodinamicas del fluido de alimentacion de pozos de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Arellano Gomez, Victor Manuel; Aragon Aguilar, Alfonso; Barragan Reyes, Rosa Maria [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Flores Armenta, Magaly; Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Tovar Aguado, Rigoberto [Comision Federal de Electricidad (Mexico)]. E-mail: vag@iie.org.mx

    2008-07-15

    Production data from 22 wells of the Los Humeros geothermal field in Puebla, Mexico, were analyzed to estimate the thermodynamic conditions (pressure and enthalpy) of the bottom-hole fluids entering the wells and the changes to the fluids after exploitation. The bottom-well conditions were obtained by simulating the production histories of the wells, using the WELLSIM numerical simulator. The reservoir temperature was estimated by the FT-HSH2 gas-equilibrium method, which provided values matching very well the measured-well temperatures under static conditions. To estimate the rates of change of the well-bottom thermodynamic variables-pressure and enthalpy-the linear and the harmonic methods were used. According to these models, overall results indicated pressure-decline rates of between 0.92 (linear method) and 1.03 bar/year (harmonic method), average enthalpy increases of between 9.4 (linear) and 10.3 (harmonic) kJ/kg/year, and a temperature increase of about 1.2 degrees Celsius/year (linear method). These rates of parameter change were considered moderate, likely due to recharge from the deeper reservoir. The wells showing higher-pressure declines were H-35, H-1, and H-1D; and the wells showing higher-enthalpy increases were H-1D, H-3D, and H-19D. Most wells showed temperature increases, although a temperature decrease was noticed in wells H-16R and H-36, probably due to mechanical damage in the wells or weak communication with the deeper reservoir. [Spanish] Se realizo un analisis de los datos de produccion de 22 pozos del campo geotermico de Los Humeros, Pue., Mexico, con objeto de estimar las condiciones termodinamicas (presion y entalpia) de sus fluidos de alimentacion y su evolucion en el tiempo como respuesta a la explotacion. Las condiciones a fondo de pozo se obtuvieron al simular las historias de produccion de los pozos mediante el simulador numerico WELLSIM. La temperatura de fondo se estimo mediante el metodo de equilibrio gaseoso FT-HSH2 ya que fue

  7. Thermodynamic power stations at low temperatures

    Science.gov (United States)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  8. Generating perfect fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  9. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  10. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  11. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  12. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  13. Thermodynamic state updated of the volcanic caldera and geothermal reservoir of Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Reyes, Jose; Gonzalez Partida, Eduardo; Jorge, A [Centro de Geociencias, Universidad National Autonoma de Mexico Campo de Juriquilla, Qro., Mexico, apartado postal 76230 (Mexico); Perez, Renee J [Department of Chemical and Petroleum Engineering, University of Calgary, 500 University Drive, Calgary Alberta, T2N 1N4 (Canada); Tinoco, Michel

    2008-10-01

    Based on information of enthalpies of the fluids of wells from the geothermal reservoir of Los Humeros, Puebla, Mexico, we determined the thermodynamic conditions of the reservoir comparing the values of enthalpies of the fluids of discharge of the wells with the values published in the literature for different thermodynamic state of fluids.

  14. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  15. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  16. Non-equilibrium thermodynamics in cells.

    Science.gov (United States)

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  17. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  18. 10th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    International Nuclear Information System (INIS)

    2017-01-01

    thermodynamics with relevance for the dark matter and dark energy problems, for example, in the context of Wheeler’s quantum foam and its associated thermodynamics. There are also studies of the dynamics of a perfect fluid of point particles, a treatment of surface tension analog in spacetime, and advances in conformal gravity, as well as the possibility of dark matter phenomena emerging from metric modifications which change dynamically the relation between inertial and gravitational masses. The dynamics of deformed neutron stars and the effects of acceleration, expressed in a modified metric relation is studied. Work is also reported on a fundamental development of a generalization of Newtonian mechanics, and a study is made of relativistic Coulomb systems in velocity space, providing new insight into the relativistic Kepler problem. A fundamental study of the structure of spacetime is reported which provides an interpretation of time in the presence of matter, and results in an estimate for the size of the observable universe. Discussions of electromagnetism, including a “skewon” modification (a covariant tensor quadratic term in field strengths) of the standard electrodynamics, and a study of the field equations for moving media in covariant form, a continuum dynamics in the scalar ether theory of gravitation, as well a wave equations of massless particles of any spin. There are discussions of Pizzella’s experiment apparently demonstrating instantaneous Coulomb interaction. Quantum and particle physics are discussed in a proposed spin-charge family theory as a successor to the standard model, and a study of branes and quantized fields. A geometrical model for electro-gravity, the quantum dynamics of bound states with spacetime fluctuations, and quantum models as classical cellular automata are also reported. Integrability of geodesics with the use of action angle variables is studied, and a study of the Feynman-Dyson theory, with a justification of the Feynman

  19. Non-adiabatic radiative collapse of a relativistic star under different ...

    Indian Academy of Sciences (India)

    ditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with ... We have examined the collapse of a relativistic star with matter density and fluid pressure decreasing ..... are invoked to extract information about the change in the equation of state of the interior matter of a ...

  20. Introduction to thermo-fluids systems design

    CERN Document Server

    Garcia McDonald, André

    2012-01-01

    A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone i

  1. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  2. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  3. Fluid mechanics and thermodynamics of turbomachinery

    CERN Document Server

    Dixon, S Larry

    2005-01-01

    The new edition will continue to be of use to engineers in industry and technological establishments, especially as brief reviews are included on many important aspects of Turbomachinery, giving pointers towards more advanced sources of information. For readers looking towards the wider reaches of the subject area, very useful additional reading is referenced in the bibliography. The subject of Turbomachinery is in continual review, and while the basics do not change, research can lead to refinements in popular methods, and new data can emerge. This book has applications for professiona

  4. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  5. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  6. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  7. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  8. Black hole chemistry: thermodynamics with Lambda

    International Nuclear Information System (INIS)

    Kubizňák, David; Mann, Robert B; Teo, Mae

    2017-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)

  9. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  10. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  11. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  12. Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations

    International Nuclear Information System (INIS)

    Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias

    2010-01-01

    Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)

  13. Beyond ideal magnetohydrodynamics: resistive, reactive and relativistic plasmas

    International Nuclear Information System (INIS)

    Andersson, N; Dionysopoulou, K; Hawke, I; Comer, G L

    2017-01-01

    We develop a new framework for the modelling of charged fluid dynamics in general relativity. The model, which builds on a recently developed variational multi-fluid framework for dissipative fluids, accounts for relevant effects like the inertia of both charge currents and heat and, for mature systems, the decoupling of superfluid components. We discuss how the model compares to standard relativistic magnetohydronamics and consider the connection between the fluid dynamics, the microphysics and the underlying equation of state. As illustrations of the formalism, we consider three distinct two-fluid models describing (i) an Ohm’s law for resistive charged flows, (ii) a relativistic heat equation, and (iii) an equation representing the momentum of a decoupled superfluid component. As a more complex example, we also formulate a three-fluid model which demonstrates the thermo-electric effect. The new framework allows us to model neutron stars (and related systems) at a hierarchy of increasingly complex levels, and should enable us to make progress on a range of exciting problems in astrophysics and cosmology. (paper)

  14. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  15. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  16. Dynamical evolution of hadronic matter in relativistic collisions

    International Nuclear Information System (INIS)

    Dean, D.J.; Umar, A.S.; Strayer, M.R.

    1993-01-01

    We use the (3+1)-dimensional string-parton model to study relativistic collisions of heavy ions at CERN energies. Various inclusive hadronic observables, such as transverse energy, dE T /dη, and rapidity distributions, are calculated and compared with WA80 and NA35 data. We study secondary interactions that occur during the dynamical evolution, and show that these interactions tend to fill the midrapidity region. The dynamical evolution of the energy density of produced mesons and their thermodynamic properties are also studied

  17. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  18. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  19. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  20. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  1. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  2. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  3. DERIVED THERMODYNAMIC PROPERTIES OF [o-XYLENE OR p ...

    African Journals Online (AJOL)

    Preferred Customer

    This paper is a continuation of our earlier work related to the study of thermodynamic properties of binary and ternary mixtures [1-6]. Reliable data on phase behavior and thermodynamic excess properties of multi component fluid mixtures are necessary for the proper design of synthesis and separation processes of the ...

  4. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  5. Relativistic hydrodynamic evolutions with black hole excision

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Shapiro, Stuart L.; Yo, H.-J.

    2004-01-01

    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M 2 on the final outcome of gravitational collapse of rapidly rotating n=1 polytropes. We find that a black hole forms only if J/M 2 2 >1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable 'splash' gravitational radiation

  6. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  7. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  8. General-relativistic pulsar magnetospheric emission

    Science.gov (United States)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  9. Instability of extremal relativistic charged spheres

    International Nuclear Information System (INIS)

    Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood

  10. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  11. Association theories for complex thermodynamics

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Rafiqul Gani

    2013-01-01

    of this review is two-fold: first to illustrate some of the significant capabilities of these association theories and why indeed they have already been extensively used and are expected to find even more applications in the future. The second and most important aspect of this review is to outline many...... applications. While specialized models can handle different cases, even complex ones, with the advent of powerful theories and computers there is the hope that a single or a few models could be suitable for a general modeling of complex thermodynamics. After more than 100 years with active use of thermodynamic...... models, we have now come to the understanding that simple one-fluid theories like the cubic equations of state or the various forms of local composition models will never be able to model a wide range of complex systems with sufficient accuracy. While various modern approaches have appeared, one very...

  12. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  13. Relativistic theory of surficial Love numbers

    Science.gov (United States)

    Landry, Philippe; Poisson, Eric

    2014-06-01

    A relativistic theory of surficial Love numbers, which characterize the surface deformation of a body subjected to tidal forces, was initiated by Damour and Nagar. We revisit this effort in order to extend it, clarify some of its aspects, and simplify its computational implementation. First, we refine the definition of surficial Love numbers proposed by Damour and Nagar and formulate it directly in terms of the deformed curvature of the body's surface, a meaningful geometrical quantity. Second, we develop a unified theory of surficial Love numbers that applies equally well to material bodies and black holes. Third, we derive a compactness-dependent relation between the surficial and (electric-type) gravitational Love numbers of a perfect-fluid body and show that it reduces to the familiar Newtonian relation when the compactness is small. And fourth, we simplify the tasks associated with the practical computation of the surficial and gravitational Love numbers for a material body.

  14. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  15. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  16. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  17. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  18. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  19. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  20. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  1. Spin and Madelung fluid

    International Nuclear Information System (INIS)

    Salesi, G.

    1995-07-01

    Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung

  2. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  3. Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics

    International Nuclear Information System (INIS)

    Cissoko, Mahdy

    1975-01-01

    This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr

  4. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  5. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  6. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  7. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  8. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  9. Non-relativistic holography and singular black hole

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2009-01-01

    We provide a framework for non-relativistic holography so that a covariant action principle ensuring the Galilean symmetry for dual conformal field theory is given. This framework is based on the Bargmann lift of the Newton-Cartan gravity to the one-dimensional higher Einstein gravity, or reversely, the null-like Kaluza-Klein reduction. We reproduce the previous zero temperature results, and our framework provides a natural explanation about why the holography is co-dimension 2. We then construct the black hole solution dual to the thermal CFT, and find the horizon is curvature singular. However, we are able to derive the sensible thermodynamics for the dual non-relativistic CFT with correct thermodynamical relations. Besides, our construction admits a null Killing vector in the bulk such that the Galilean symmetry is preserved under the holographic RG flow. Finally, we evaluate the viscosity and find it zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero.

  10. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  11. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  12. Thermodynamic modeling of complex systems

    DEFF Research Database (Denmark)

    Liang, Xiaodong

    after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... is successfully applied to model the phase behaviour of water, chemical and hydrocarbon (oil) containing systems with newly developed pure component parameters for water and chemicals and characterization procedures for petroleum fluids. The performance of the PCSAFT EOS on liquid-liquid equilibria of water...... with hydrocarbons has been under debate for some vii years. An interactive step-wise procedure is proposed to fit the model parameters for small associating fluids by taking the liquid-liquid equilibrium data into account. It is still far away from a simple task to apply PC-SAFT in routine PVT simulations and phase...

  13. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  14. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  15. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  16. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  17. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  18. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  19. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  20. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  1. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  2. Anomalous dynamics triggered by a non-convex equation of state in relativistic flows

    Science.gov (United States)

    Ibáñez, J. M.; Marquina, A.; Serna, S.; Aloy, M. A.

    2018-05-01

    The non-monotonicity of the local speed of sound in dense matter at baryon number densities much higher than the nuclear saturation density (n0 ≈ 0.16 fm-3) suggests the possible existence of a non-convex thermodynamics which will lead to a non-convex dynamics. Here, we explore the rich and complex dynamics that an equation of state (EoS) with non-convex regions in the pressure-density plane may develop as a result of genuinely relativistic effects, without a classical counterpart. To this end, we have introduced a phenomenological EoS, the parameters of which can be restricted owing to causality and thermodynamic stability constraints. This EoS can be regarded as a toy model with which we may mimic realistic (and far more complex) EoSs of practical use in the realm of relativistic hydrodynamics.

  3. Post-Newtonian reference ellipsoid for relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  4. Closed power cycles thermodynamic fundamentals and applications

    CERN Document Server

    Invernizzi, Costante Mario

    2013-01-01

    With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op

  5. Transition in the equilibrium distribution function of relativistic particles.

    Science.gov (United States)

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  6. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  7. Relativistic density matrix in the diagonal momentum representation. Fermi-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistically invariant theory of ideal Fermi-gas is built in the framework of the quantum field theory. The average occupation numbers and correlation functions of statistical systems are found on the equal-time surfaces of arbitrary inertial frames. The effects of anisotropy in their behaviour are pointed out. The partition function method is developed to calculate the thermodynamic quantities of Fermi-gases moving as a whole

  8. Relativistic quantum kinetic analysis of a pion--nucleon system

    International Nuclear Information System (INIS)

    Alonso, J.D.

    1985-01-01

    A relativistic plasma of nucleons interacting through pions via the usual isospin-invariant Yukawa coupling is analyzed in the framework of the covariant Wigner function technique. The method is manifestly covariant and the temperature effects are considered. The relativistic quantum BBGKY hierarchy for the pion--nucleon system is derived. By generalizing the Bogolioubov analysis of the classical BBGKY hierarchy a non-perturbative renormalizable method is elaborated which allows the solution of the kinetic problem in form of power series of two cluster parameters which measure the importance of correlations. In the lowest order of the cluster expansion (Hartree approximation of zero-order approximation) the quasi-nucleon Fock space is introduced, the fermion Wigner function in the thermodynamic equilibrium is obtained and the vacuum effects are renormalized. In this approximation the plasma behaves as a perfect Fermi gas of nucleons and antinucleons, but there exists an abnormal configuration with a uniform pion condensate which is unstable. In the next approximation (quadratic in the small parameters) the quasi-pion dispersion relation is obtained and the vacuum polarization tensor is renormalized. The quasi-pion rest-mass spectra (''plasma frequency'') and the effective-coupling behaviour as functions of the thermodynamic state are given. By estimating the size of the cluster parameters the self-consistency of the approximation scheme is proved. The quasi-pion Fock space is introduced and the quasi-pion equilibrium Wigner function is obtained. From these results the problem of the higher-order corrections to the Hartree thermodynamics is outlined

  9. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  10. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  11. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  12. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  13. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  14. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  15. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  16. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  17. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  18. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  19. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  20. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  1. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  2. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  3. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 1. Relativistic flows-plane boundary layer in vortex sheet approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica)

    1980-11-01

    In this paper some unsolved problems of the linear MHD Kelvin-Helmholtz instability are re-examined, starting from the analysis of relativistic (and non-relativistic) flows in the approximation of a plane vortex sheet, for the contact layer between the fluids in relative motion. Results are discussed for a range of physical parameters in specific connection with application to models of jets in extragalactic radio sources. Other physical aspects of the instability will be considered in forthcoming papers.

  4. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  5. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  6. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  7. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  8. An overview of relativistic hydrodynamics as applied to heavy ion reactions

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1989-01-01

    The application of relativistic hydrodynamics as applied to heavy ions is reviewed. Constraints on the nuclear equation of state, as well as the form of the hydrodynamic equations imposed by causality are discussed. Successes (flow, side-splash, scaling) and shortcomings of one-fluid hydrodynamics are reviewed. Models for pion production within hydrodynamics and reasons for disagreement with experiment are assessed. Finally, the motivations for and the implementations of multi-fluid models are presented. 74 refs., 11 figs

  9. Application d'une équation d'état à la simulation du comportement thermodynamique des fluides dans les gisements et dans les installations de surface Application of an Equation of State to Simulating the Thermodynamic Behaviour of Fluids in Reservoirs and Surface Installations

    Directory of Open Access Journals (Sweden)

    Jain C.

    2006-11-01

    Full Text Available La connaissance des propriétés thermodynamiques des fluides pétroliers, en particulier des masses volumiques et des coefficients d'équilibre liquide-vapeur, intervient à divers stades de la production : primaire, secondaire par in-jection de gaz (C02 ou hydrocarbures miscibles, vapeur d'eau, séparation, réseau de collecte et de transport. L'ampleur du domaine de pression et de température à l'intérieur duquel on a besoin de connaître les propriétés des huiles et des gaz à condensat, et le fait que la compo-sition d'ensemble des mélanges diphasiques ne cesse de varier au cours de leur déplacement soit dans les gisements, soit dans les installations d'exploitation, rendent mani-feste l'intérêt de pouvoir calculer ces propriétés, en évi-tant d'avoir recours à des travaux de laboratoire beaucoup trop importants. Pour résoudre ces problèmes, une nouvelle équation d'état appelée Redlich-Kwong Développée (RKD a été mise au point. Au cours de cet exposé, nous verrons que cette équation restitue les enveloppes diphasiques de l'équilibre liquide-vapeur avec une qualité au moins égale à celles des méthodes de Soave et de Peng-Robinson qui jouissent actuellement d'une grande notoriété. L'avantage de ce modèle sur ces dernières méthodes est l'évaluation simultanée des propriétés volumétriques des phases en présence avec une bonne précision, ce qui est d'une grande utilité pour l'application de ce modèle aux problèmes industriels. Knowing the thermodynamic properties of petroleum fluids, and in particular the density and liquid-vapor equilibrium coefficients, is important at different stages of production, i. e. primary production, secondary production by gas flooding (CO2 or miscible hydrocarbons, steam, separation, gathering network and transportation. The pressure and temperature range within which the oil and gas-condensate properties must be known coupled with the fact that the overall composition of

  10. The Thermodynamics of General and Local Anesthesia

    Science.gov (United States)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  11. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    given by a Newtonian theory of gravity. This prediction has been confirmed with a relative precision about 0.01%. Measurements of light bending by major planets of the solar system allow us to test the dynamical characteristics of spacetime and draw conclusions about the ultimate speed of gravity as well as to explore the so-called gravitomagnetic phenomena. Chapter 8 deals with the theoretical principles and methods of the high-precision gravimetry and geodesy, based on the framework of general relativity. A gravitational field and the properties of geocentric and topocentric reference frames are described by the metric tensor obtained from the Einstein equations with the help of post-Newtonian iterations. Bymatching the asymptotic, post-Newtonian expansions of the metric tensor in geocentric and topocentric coordinates, we derive the relationship between the reference frames, and relativistic corrections to the Earth's force of gravity and its gradient. Two definitions of a relativistic geoid are discussed, and we prove that these geoids coincide under the condition of a constant rigid-body rotation of the Earth.We consider, as a model of the Earth's matter, the notion of the relativistic level surface of a self-gravitating perfect fluid. We discover that, under conditions of constant rigid rotation of the fluid and hydrostatic behavior of tides, the post-Newtonian equation of the level surface is the same as that of the relativistic geoid. In the conclusion of this chapter, a relativistic generaisation of the Clairaut's equation is obtained. Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with enough background information to place these resolutions into the context of the late twentieth century positional astronomy. These resolutions involve the definitions of reference systems, time scales, and Earth rotationmodels; and some of the resolutions are quite detailed. Although the recommended Earth rotation models have not been developed ab

  12. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  13. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  14. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  15. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2011-01-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  16. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  17. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  18. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  19. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  20. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    International Nuclear Information System (INIS)

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  1. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  2. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  3. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  4. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  5. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  6. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  7. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  8. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  9. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  10. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  11. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  12. Analytic approaches to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka

    2016-12-15

    I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.

  13. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  14. Characteristic manifolds in relativistic hypoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S [Messina Univ. (Italy). Istituto di Matematica

    1978-10-02

    The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.

  15. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  16. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  17. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  18. Theory of a relativistic peniotron

    International Nuclear Information System (INIS)

    Zhurakhovskii, V.A.

    1986-01-01

    A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented

  19. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  20. Hawking radiation and thermodynamics of a Vaidya-Bonner black hole

    International Nuclear Information System (INIS)

    Niu Zhenfeng; Liu Wenbiao

    2010-01-01

    Using Parikh's tunneling method, the Hawking radiation on the apparent horizon of a Vaidya-Bonner black hole is calculated. When the back-reaction of particles is neglected, the thermal spectrum can be precisely obtained. Then, the black hole thermodynamics can be calculated successfully on the apparent horizon. When a relativistic perturbation is applied to the apparent horizon, a similar calculation can also lead to a purely thermal spectrum. The first law of thermodynamics can also be derived successfully at the new supersurface near the apparent horizon. When the event horizon is thought of as a deviation from the apparent horizon, the expressions of the characteristic position and temperature are consistent with the previous viewpoint which asserts that the thermodynamics should be based on the event horizon. It is concluded that the thermodynamics should be constructed exactly on the apparent horizon while the event horizon thermodynamics is just one of the perturbations near the apparent horizon.

  1. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  2. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  3. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  4. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  5. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  6. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  7. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  8. New methods of thermodynamics; Nouvelles methodes en thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This day, organized by the SFT French Society of Thermology, took stock on the new methods in the domain of the thermodynamics. Eight papers have been presented during this day: new developments of the thermodynamics in finite time; the optimal efficiency of energy converters; a version of non-equilibrium thermodynamics with entropy and information as positive and negative thermal change; the role of thermodynamics in process integration; application of the thermodynamics to critical nuclear accidents; the entropic analysis help in the case of charge and discharge state of an energy storage process; fluid flow threw a stable state in the urban hydraulic; a computer code for phase diagram prediction. (A.L.B.)

  9. Essential Fluid Dynamics for Scientists

    Science.gov (United States)

    Braithwaite, Jonathan

    2017-12-01

    The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.

  10. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  11. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  12. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  13. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  14. Relativistic electrodynamics of dissipative elastic media

    International Nuclear Information System (INIS)

    Kranys, M.

    1980-01-01

    A phenomenological general relativistic electrodynamics is proposed for a dissipative elastic solid which is polarizable and magnetizable and whose governing equations form a hyperbolic system. Non-stationary transport equations are proposed for dissipative fluxes (and constitutive equations of electrodynamics) containing new cross-effect terms, as required for compatibility with an entropy principle expressed by a new balance equation (including a new Gibbs equation). The dynamic equations are deduced from the unified Minkowski-Abraham-Eckart energy-momentum tensor. The theory, formed by a set of 29 (reducible to 23) partial differential equations (in special relativity) governing the material behaviour of the system characterized by generalizing the constitutive equations of quasineutral media, together with Maxwell's equations, may be referred to as the electrodynamics of dissipative elastic media (or fluid). The proposed transport laws for polarization and magnetization generalize the well-known Debye law for relaxation and show the influence of shear and bulk viscosity on polarization and magentization. Besides the form of the entropy function, the free energy function in the non-stationary regime is also formulated. (auth)

  15. Classical and relativistic dynamics of supersolids: variational principle

    International Nuclear Information System (INIS)

    Peletminskii, A S

    2009-01-01

    We present a phenomenological Lagrangian and Poisson brackets for obtaining nondissipative hydrodynamic theory of supersolids. A Lagrangian is constructed on the basis of unification of the principles of non-equilibrium thermodynamics and classical field theory. The Poisson brackets, governing the dynamics of supersolids, are uniquely determined by the invariance requirement of the kinematic part of the found Lagrangian. The generalization of Lagrangian is discussed to include the dynamics of vortices. The obtained equations of motion do not account for any dynamic symmetry associated with Galilean or Lorentz invariance. They can be reduced to the original Andreev-Lifshitz equations to require Galilean invariance. We also present a relativistic-invariant supersolid hydrodynamics, which might be useful in astrophysical applications

  16. Simulating the dynamics of relativistic stars via a light-cone approach

    International Nuclear Information System (INIS)

    Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos

    2002-01-01

    We present new numerical algorithms for the coupled Einstein-perfect-fluid system in axisymmetry. Our framework uses a foliation based on a family of light cones, emanating from a regular center, and terminating at future null infinity. This coordinate system is well adapted to the study of the dynamical spacetimes associated with isolated relativistic compact objects such as neutron stars. In particular, the approach allows the unambiguous extraction of gravitational waves at future null infinity and avoids spurious outer boundary reflections. The code can accurately maintain long-term stability of polytropic equilibrium models of relativistic stars. We demonstrate global energy conservation in a strongly perturbed neutron star spacetime, for which the total energy radiated away by gravitational waves corresponds to a significant fraction of the Bondi mass. As a first application we present results in the study of pulsations of axisymmetric relativistic stars, extracting the frequencies of the different fluid modes in fully relativistic evolutions of the Einstein-perfect-fluid system and making a first comparison between the gravitational news function and the predicted wave using the approximations of the quadrupole formula

  17. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  18. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  19. A Study of Universal Thermodynamics in Brane World Scenario

    International Nuclear Information System (INIS)

    Mitra, Saugata; Saha, Subhajit; Chakraborty, Subenoy

    2015-01-01

    A study of Universal thermodynamics is done in the framework of RSII brane model and DGP brane scenario. The Universe is chosen as FRW model bounded by apparent or event horizon. Assuming extended Hawking temperature on the horizon, the unified first law is examined for perfect fluid (with constant equation of state) and Modified Chaplygin Gas model. As a result there is a modification of Bekenstein entropy on the horizons. Further the validity of the generalized second law of thermodynamics and thermodynamical equilibrium are also investigated

  20. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  1. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  2. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  3. Supercritical fluids technology. Pt. 1 General topics

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    Supercritical fluids technology is among the emerging 'clean' technologies, that allows the minimization in the use of chemical and thermic treatments and products irradiation, diminishing the quantity of liquid wastes to be treated. In this first article phase equilibria thermodynamics and fluid mechanics of transport phenomena are reviewed [it

  4. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Durmayaz, A. [Istanbul Technical University (Turkey). Department of Mechanical Engineering; Sogut, O.S. [Istanbul Technical University, Maslak (Turkey). Department of Naval Architecture and Ocean Engineering; Sahin, B. [Yildiz Technical University, Besiktas, Istanbul (Turkey). Department of Naval Architecture; Yavuz, H. [Istanbul Technical University, Maslak (Turkey). Institute of Energy

    2004-07-01

    The irreversibilities originating from finite-time and finite-size constraints are important in the real thermal system optimization. Since classical thermodynamic analysis based on thermodynamic equilibrium do not consider these constraints directly, it is necessary to consider the energy transfer between the system and its surroundings in the rate form. Finite-time thermodynamics provides a fundamental starting point for the optimization of real thermal systems including the fundamental concepts of heat transfer and fluid mechanics to classical thermodynamics. In this study, optimization studies of thermal systems, that consider various objective functions, based on finite-time thermodynamics and thermoeconomics are reviewed. (author)

  5. Thermodynamical inequivalence of quantum stress-energy and spin tensors

    International Nuclear Information System (INIS)

    Becattini, F.; Tinti, L.

    2011-01-01

    It is shown that different couples of stress-energy and spin tensors of quantum-relativistic fields, which would be otherwise equivalent, are in fact inequivalent if the second law of thermodynamics is taken into account. The proof of the inequivalence is based on the analysis of a macroscopic system at full thermodynamical equilibrium with a macroscopic total angular momentum and a specific instance is given for the free Dirac field, for which we show that the canonical and Belinfante stress-energy tensors are not equivalent. For this particular case, we show that the difference between the predicted angular momentum densities for a rotating system at full thermodynamical equilibrium is a quantum effect, persisting in the nonrelativistic limit, corresponding to a polarization of particles of the order of (ℎ/2π)ω/KT (ω being the angular velocity) and could in principle be measured experimentally. This result implies that specific stress-energy and spin tensors are physically meaningful even in the absence of gravitational coupling and raises the issue of finding the thermodynamically right (or the right class of) tensors. We argue that the maximization of the thermodynamic potential theoretically allows us to discriminate between two different couples, yet for the present we are unable to provide a theoretical method to single out the best couple of tensors in a given quantum field theory. The existence of a nonvanishing spin tensor would have major consequences in hydrodynamics, gravity and cosmology.

  6. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  7. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  8. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  9. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  10. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  11. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  12. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  13. Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions

    International Nuclear Information System (INIS)

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-01-01

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly ''perfect.'' It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty

  14. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  15. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  16. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  17. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  18. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  19. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  20. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected