WorldWideScience

Sample records for relativistic flare electrons

  1. Fast electrons in small solar flares

    International Nuclear Information System (INIS)

    Lin, R.P.

    1975-01-01

    Because approximately 5-100 keV electrons are frequently accelerated and emitted by the Sun in small flares, it is possible to define a detailed characteristic physical picture of these events. The review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on the basic astrophysical process of particle acceleration in tenuous plasmas. It is found that in many small solar flares the approximately 5-100 keV electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. These electrons may produce the other flare electromagnetic emissions through their interactions with the solar atmosphere. In large proton flares these electrons may provide the energy to eject material from the Sun and to create a shock wave which could then accelerate nuclei and electrons to much higher energies. (Auth.)

  2. Acceleration of runaway electrons in solar flares

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  3. Simulation studies of electron acceleration by ion ring distributions in solar flares

    International Nuclear Information System (INIS)

    McClements, K.G.; Bingham, R.; Su, J.J.; Dawson, J.M.; Spicer, D.S.

    1990-07-01

    Using a 21/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvenic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can therefore resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to bump-in-tail instability of the electron distribution. (author)

  4. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  5. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard x-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona. This problem is discussed

  6. Radio imaging of solar flares using the very large array - New insights into flare process

    Science.gov (United States)

    Kundu, M. R.; Schmahl, E. J.; Vlahos, L.; Velusamy, T.

    1982-01-01

    An interpretation of VLA observations of microwave bursts is presented in an attempt to distinguish between certain models of flares. The VLA observations provide information about the pre-flare magnetic field topology and the existence of mildly relativistic electrons accelerated during flares. Examples are shown of changes in magnetic field topology in the hour before flares. In one case, new bipolar loops appear to emerge, which is an essential component of the model developed by Heyvaerts et al. (1977). In another case, a quadrupole structure, suggestive of two juxtaposed bipolar loops, appears to trigger the flare. Because of the observed diversity of magnetic field topologies in microwave bursts, it is believed that the magnetic energy must be dissipated in more than one way. The VLA observations are clearly providing means for sorting out the diverse flare models.

  7. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  8. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  9. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  10. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  11. Cloud Ablation by a Relativistic Jet and the Extended Flare in CTA 102 in 2016 and 2017

    Science.gov (United States)

    Zacharias, M.; Böttcher, M.; Jankowsky, F.; Lenain, J.-P.; Wagner, S. J.; Wierzcholska, A.

    2017-12-01

    In late 2016 and early 2017, the flat spectrum radio quasar CTA 102 exhibited a very strong and long-lasting outburst. The event can be described by a roughly two-month long increase of the baseline flux in the monitored energy bands (optical to γ-rays) by a factor 8, and a subsequent decrease over another two months back to pre-flare levels. The long-term trend was superseded by short but very strong flares, resulting in a peak flux that was a factor 50 above pre-flare levels in the γ-ray domain and almost a factor 100 above pre-flare levels in the optical domain. In this paper, we explain the long-term evolution of the outburst by the ablation of a gas cloud penetrating the relativistic jet. The slice-by-slice ablation results in a gradual increase of the particle injection until the center of the cloud is reached, after which the injected number of particles decreases again. With reasonable cloud parameters, we obtain excellent fits of the long-term trend.

  12. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  13. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  14. MAGNETIC ENERGY BUILDUP FOR RELATIVISTIC MAGNETAR GIANT FLARES

    International Nuclear Information System (INIS)

    Yu Cong

    2011-01-01

    Motivated by coronal mass ejection studies, we construct general relativistic models of a magnetar magnetosphere endowed with strong magnetic fields. The equilibrium states of the stationary, axisymmetric magnetic fields in the magnetar magnetosphere are obtained as solutions of the Grad-Shafranov equation in a Schwarzschild spacetime. To understand the magnetic energy buildup in the magnetar magnetosphere, a generalized magnetic virial theorem in the Schwarzschild metric is newly derived. We carefully address the question whether the magnetar magnetospheric magnetic field can build up sufficient magnetic energy to account for the work required to open up the magnetic field during magnetar giant flares. We point out the importance of the Aly-Sturrock constraint, which has been widely studied in solar corona mass ejections, as a reference state in understanding magnetar energy storage processes. We examine how the magnetic field can possess enough energy to overcome the Aly-Sturrock energy constraint and open up. In particular, general relativistic (GR) effects on the Aly-Sturrock energy constraint in the Schwarzschild spacetime are carefully investigated. It is found that, for magnetar outbursts, the Aly-Sturrock constraint is more stringent, i.e., the Aly-Sturrock energy threshold is enhanced due to the GR effects. In addition, neutron stars with greater mass have a higher Aly-Sturrock energy threshold and are more difficult to erupt. This indicates that magnetars are probably not neutron stars with extreme mass. For a typical neutron star with mass of 1-2 M sun , we further explore the cross-field current effects, caused by the mass loading, on the possibility of stored magnetic field energy exceeding the Aly-Sturrock threshold.

  15. Electron cyclotron wave acceleration outside a flaring loop

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.

  16. Electron cyclotron wave acceleration outside a flaring loop

    International Nuclear Information System (INIS)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    We propose a model for the secondary acceleration of electrons outside a flaring loop. Our results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. We show that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations

  17. Beam heating in solar flares - Electrons or protons?

    International Nuclear Information System (INIS)

    Brown, J.C.; Karlicky, M.; Mackinnon, A.L.; Van Den Oord, G.H.J.

    1990-01-01

    The current status of electron and proton beam models as candidates for the impulsive phase heating of solar flares is discussed in relation to observational constants and theoretical difficulties. It is concluded that, while the electron beam model for flare heating still faces theoretical and observational problems, the problems faced by low and high energy proton beam models are no less serious, and there are facets of proton models which have not yet been studied. At the present, the electron beam model remains the most viable and best developed of heating model candidates. 58 refs

  18. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  19. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  20. ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I. [University of Michigan, Department of Climate and Space Sciences and Engineering, 2455 Hayward Street, Ann Arbor, MI 48104-2143 (United States); Guidoni, S. E. [The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064 (United States); DeVore, C. R.; Karpen, J. T.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-20

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  1. Relativistic electron precipitation in the auroral zone

    International Nuclear Information System (INIS)

    Simons, D.J.

    1975-01-01

    The energy spectra and pitch angle distributions of electrons in the energy range 50 keV to 2 MeV have been determined by a solid state electron energy spectrometer during the Relativistic Electron Precipitation (REP) event of 31 May 1972. The experiment was carried aboard a Nike-Cajun sounding rocket as the University of Maryland component of a joint American-Norwegian (NASA-NDRE) ionospheric investigation. The difficulty of determining the expected electron flux prior to the experiment required an instrument with a large dynamic range. The design and theoretical modeling of this instrument is described in great detail. The electron pitch angle distributions are determined from a knowledge of the rocket aspect and the direction in space of the Earth's magnetic field. The electron fluxes during the REP event were highly variable demonstrating correlated energy, flux and pitch angle pulsations with time periods less than one second. Increases in flux were accompanied by marked filling of the loss cone at lower energies (near 50 keV). Drawing upon the quasilinear equations of plasma wave-electron interactions, a theoretical model for the production of relativistic electrons is proposed. A self consistent set of fully relativistic equations for the evolution of the electron distribution function due to the interaction of the electrons with parallel propagating whistler waves is derived in the Appendix. An examination of these equations leads to the conclusion that at comparatively low background electron densities, the anomalous Doppler resonance leads to the acceleration of near relativistic particles. The results of a computer solution of the five coupled integrodifferential quasilinear equations confirms this conclusion

  2. PARTICLE ACCELERATION AND THE ORIGIN OF X-RAY FLARES IN GRMHD SIMULATIONS OF SGR A*

    Energy Technology Data Exchange (ETDEWEB)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-kwan [Steward Observatory and Department of Astronomy, University of Arizona (United States)

    2016-07-20

    Significant X-ray variability and flaring has been observed from Sgr A* but is poorly understood from a theoretical standpoint. We perform general relativistic magnetohydrodynamic simulations that take into account a population of non-thermal electrons with energy distributions and injection rates that are motivated by PIC simulations of magnetic reconnection. We explore the effects of including these non-thermal electrons on the predicted broadband variability of Sgr A* and find that X-ray variability is a generic result of localizing non-thermal electrons to highly magnetized regions, where particles are likely to be accelerated via magnetic reconnection. The proximity of these high-field regions to the event horizon forms a natural connection between IR and X-ray variability and accounts for the rapid timescales associated with the X-ray flares. The qualitative nature of this variability is consistent with observations, producing X-ray flares that are always coincident with IR flares, but not vice versa, i.e., there are a number of IR flares without X-ray counterparts.

  3. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  4. Discovery of powerful gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F

    2011-02-11

    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  5. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  6. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  7. Relativistic theory of electron-impact ionization

    International Nuclear Information System (INIS)

    Rosenberg, Leonard

    2010-01-01

    A relativistic version of an earlier, non-relativistic, formulation of the theory of ionization of an atomic system by electron impact is presented. With a time-independent resolvent operator taken as the basis for the dynamics, a wave equation is derived for a system with open channels consisting of two positive-energy electrons in an external field generated by the residual ion. Virtual intermediate states can be accounted for by the effective Hamiltonian that appears in the wave equation and which in principle may be constructed perturbatively. The asymptotic form of the wavefunction, modified by the effects of the long-range Coulomb interactions of the two electrons in the external field, is derived. These electrons are constrained, by projection operators which appear naturally in the theory, to propagate in positive-energy states only. The long-range Coulomb effects take the form of phase factors similar to those that are found in the non-relativistic version of the theory. With the boundary conditions established, an integral identity for the ionization amplitude is derived, and used to set up a distorted-wave Born expansion for the transition amplitude involving Coulomb-modified propagating waves.

  8. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating

    International Nuclear Information System (INIS)

    Guest, G.E.; Miller, R.L.

    1988-01-01

    A one-dimensional, steady-state, relativistic Fokker-Planck model of electron cyclotron heating (ECH) is used to analyse the heating kinetics underlying the formation of the two-component hot-electron plasmas characteristic of ECH in magnetic mirror configurations. The model is first applied to the well diagnosed plasmas obtained in SM-1 and is then used to simulate the effective generation of relativistic electrons by upper off-resonant heating (UORH), as demonstrated empirically in ELMO. The characteristics of unstable whistler modes and cyclotron maser modes are then determined for two-component hot-electron plasmas sustained by UORH. Cyclotron maser modes are shown to be strongly suppressed by the colder background electron species, while the growth rates of whistler modes are reduced by relativistic effects to levels that may render them unobservable, provided the hot-electron pressure anisotropy is below an energy dependent threshold. (author). 29 refs, 10 figs, 1 tab

  9. Relativistic effects in elastic scattering of electrons in TEM

    International Nuclear Information System (INIS)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  10. Spatially inhomogeneous acceleration of electrons in solar flares

    Science.gov (United States)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  11. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  12. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  13. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  14. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Attaourti, Y.; Taj, S.

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime

  15. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  16. Present status of the theoretical relativistic plasma SHF electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Rukhadze, A.A.

    2000-01-01

    Paper presents a review of theoretical investigations into powerful sources of SHF waves grounded on the forced emission of relativistic electron beams in plasma wave guides and resonator. Emission sources operating under amplification of a certain inlet signal and under generation mode were studied. Two mechanisms of forced emission: resonance Cherenkov radiation of relativistic electron beams in plasma and nonresonance Pierce emission resulting from evolution of high-frequency Pierce instability, were studied. Paper discusses theoretical problems only, all evaluations and calculations are made for the parameters of the exact experiments, the theoretical results are compared with the available experimental data. Factors affecting formation of spectrum of waves excited by relativistic electron beam in plasma systems are discussed [ru

  17. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  18. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    International Nuclear Information System (INIS)

    Voitkiv, A.B

    2007-01-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schroedinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Z a ∼ a is the atomic nuclear charge

  19. “Orphan” γ-Ray Flares and Stationary Sheaths of Blazar Jets

    Science.gov (United States)

    MacDonald, Nicholas R.; Jorstad, Svetlana G.; Marscher, Alan P.

    2017-11-01

    Blazars exhibit flares across the entire electromagnetic spectrum. Many γ-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These “orphan” γ-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. MacDonald et al. have developed the Ring of Fire model to explain the origin of orphan γ-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan γ-ray flare. This model was successfully applied to modeling a prominent orphan γ-ray flare observed in the blazar PKS 1510-089. To further support the plausibility of this model, MacDonald et al. presented a stacked radio map of PKS 1510-089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71.01, 3C 279, 1055+018, CTA 102, and 3C 345, the majority of which have exhibited orphan γ-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.

  20. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, Benoit; Uzdensky, Dmitri A. [CIPS, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, Mitchell C., E-mail: benoit.cerutti@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2012-02-20

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  1. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    International Nuclear Information System (INIS)

    Cerutti, Benoît; Uzdensky, Dmitri A.; Begelman, Mitchell C.

    2012-01-01

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  2. Non-Local Diffusion of Energetic Electrons during Solar Flares

    Science.gov (United States)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  3. Laser vacuum acceleration of a relativistic electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Bychenkov, V Yu [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)

  4. Compression-amplified EMIC waves and their effects on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B. [School of Space and Environment, Beihang University, Beijing (China); Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China)

    2016-06-15

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  5. Compression-amplified EMIC waves and their effects on relativistic electrons

    International Nuclear Information System (INIS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-01-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R E ). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT 2 /Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT 2 /Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  6. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  7. Electron-cyclotron maser emission during solar and stellar flares

    International Nuclear Information System (INIS)

    Winglee, R.M.

    1985-01-01

    Radio bursts, with high brightness temperature 10 to the 10th power K and high degree of polarization, and the heating of the solar and stellar coronae during flares have been attributed to emission from the semirelativistic maser instability. In plasmas where the electron-plasma frequency, p, omega sub p, and the electron-cyclotron frequency, Omega sub e, are such that omega sup 2 sub p/Omega sup 2 sub e 1, x-mode growth dominates while z-mode growth dominates if omega sup 2 sub p/Omega sup 2 sub e is of order unity. The actual value of omega sup 2 sub p/Omega sup 2 sub e at which x-mode growth dominates is shown to be dependent on the plasma temperature with x-mode growth dominating at higher omega sub p/Omega sub e as the plasma temperature increases. Observations from a set of 20 impulsive flares indicate that the derived conditions for the dominance of x-mode growth are satisfied in about 75 percent of the flares

  8. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    International Nuclear Information System (INIS)

    Jordanova, Vania K.; Miyoshi, Y.; Sakaguchi, K.; Shiokawa, K.; Evans, D.S.; Albert, Jay; Connors, M

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's

  9. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  10. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    Science.gov (United States)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  11. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  12. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  13. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  14. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  15. Radio wave heating of the corona and electron precipitation during flares

    Science.gov (United States)

    Melrose, D. B.; Dulk, G. A.

    1982-01-01

    Electron-cyclotron masers, excited while energy release is occurring in a flaring magnetic loop, are likely to generate extremely intense radiation at decimeter wavelengths. The energy in the radiation can be comparable with that in the electrons associated with hard X-ray bursts, i.e., a significant fraction of the total energy in the flare. Essentially all of the radio energy is likely to be reabsorbed by gyroresonance absorption, either near the emitting region or at some distance away in neighboring loops. Enhanced diffusion of fast electrons caused by the maser can lead to precipitation at the maximum possible rate, and hence account for hard X-ray emission from the footpoints of the magnetic loops.

  16. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  17. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Guidoni, S. E. [NASA Goddard Space Flight Center/CUA, Code 674, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); McKenzie, D. E.; Longcope, D. W.; Yoshimura, K. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Plowman, J. E., E-mail: silvina.e.guidoni@nasa.gov [High Altitude Observatory, National Center for Atmospheric Research P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  18. Laser-pulsed relativistic electron gun

    International Nuclear Information System (INIS)

    Sherman, N.K.

    1986-01-01

    A relativistic (β ≅ 0.8) electron gun with good emittance and subnanosecond pulse duration which can be synchronized to picosecond laser pulses is being developed at NRC for use in studies of particle acceleration by lasers. Bursts of electron pulses exceeding 280 keV in energy have been extracted into air form a laser-driven vacuum photodiode. Trains of 5 ps pulses of ultraviolet UV light illuminate a magnesium cathode. Photoelectrons emitted from the cathode are accelerated in a graded electrostatic potential set up by a 360 kV Marx-generator. The UV pulses are obtained by doubling the frequency of a 606 nm dye laser modelocked at 160 MHz. Electron energies were measured by residual range in an echelon of Al foils. Total charge per burst was measured by picoammeter. Time structure of the bursts has been examined with plastic scintillator and a fast photomultiplier. Tests on a low voltage photodiode achieved a current density of 180 A/cm/sup 2/ from an Mg cathode, with quantum efficiency of 2.4 x 10/sup -6/ electron per UV photon. The brevity and intensity of the laser pulses cause the electric charge collected per pulse to increase linearly with bias voltage rather than according to the Langmuir-Child law. Gun emittance is about 150 mm-msr and beam brightness is about 1A/cm/sup 2/-sr. Estimated duration of individual electron pulses of a burst is about 400 ps with instantaneous current of about 0.1 mA. Energy spread within one pulse is expected to be about 15%. This gun has the potential to be a useful source of relativistic electrons for laser acceleration studies

  19. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  20. Energetic electron propagation in the decay phase of non-thermal flare emission

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Tsap, Yuri T., E-mail: huangj@nao.cas.cn [Crimean Astrophysical Observatory of Kyiv National Taras Shevchenko University, 98409 Crimea, Nauchny (Ukraine)

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  1. Electron precipitation in solar flares - Collisionless effects

    Science.gov (United States)

    Vlahos, L.; Rowland, H. L.

    1984-01-01

    A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.

  2. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  3. Electron Acceleration In Impulsive Solar Flares : extract of a thesis

    CERN Document Server

    Lenters, G T

    1999-01-01

    Impulsive solar flares generate a wide range of photon and particle emissions and hence provide an excellent backyard laboratory for studying particle acceleration processes in astrophysical plasmas. The source of the acceleration remains unidentified, but the basic observations are clear: (1) Hard X-ray and gamma-ray line emission occur simultaneously, indicating that electron and ion acceleration must occur simultaneously; (2) the electron and ion precipitation rates at the foot-points of the flare must be extremely large to account for the photon emission (∼1037 electrons s −1 and ∼1035 protons s−1, respectively), which means that replenishment of the acceleration region (which contains ≈1037 fully ionized hydrogen atoms) is a crucial issue; and (3) there are enhancements of the heavy ion abundances relative to normal coronal values. The basic model proposed assumes the generation of extremely low levels of magnetohydrodynamic (MHD) turb...

  4. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  5. Focusing of relativistic electron bunch, moving in cylindrical plasma waveguide

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Ehlbakyan, S.S.; Sekhpossyan, E.V.

    1994-01-01

    The problem on the focusing of electron bunches moving with the relativistic velocity along the axis of cylindrical overdense plasma waveguide with the conducting internal surface is considered. The existence of periodic and nonperiodic components of the fields, generated in the plasma is shown. The conditions of electron bunch self-focusing by transverse electrical field and azimuthal magnetic field are derived. The possibility of the acceleration and focusing of electron or positron bunches by driving electron bunch wake field is discussed. The conditions, when the bunch in plasma waveguide moves without wake fields generating are obtained, which could be of the interest for the transport of relativistic electron (positron) bunches. 5 refs

  6. On non-relativistic electron theory

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, R G

    1975-01-01

    A discussion of non-relativistic electron theory, which makes use of the electromagnetic field potentials only as useful working variables in the intermediate stages, is presented. The separation of the (transverse) radiation field from the longitudinal electric field due to the sources is automatic, and as a result, this formalism is often more convenient than the usual Coulomb gauge theory used in molecular physics.

  7. Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons

    Science.gov (United States)

    Hudson, M. K.; Qin, M.; Millan, R. M.; Woodger, L. A.; Shekhar, S.

    2017-12-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed as an effective way to scatter relativistic electrons into the atmospheric loss cone. In our study, however, among the total 399 coincidence events when NOAA satellites goes through the region of EMIC wave activity, only 103 are associated with Relativistic Electron Precipitation (REP) events, which indicates that the link between EMIC waves and relativistic electrons is much weaker than expected. Most of the studies so far have been focused on the He+ band EMIC waves, and H+ band EMIC waves have been regarded as less important to the precipitation of electrons. In our study, we demonstrate that among the 103 EMIC wave events detected by Van Allen Probes that are in close conjunction with relativistic electron precipitation observed by POES satellites, the occurrence rate of H+ and He+ band EMIC waves coincident with REP is comparable, suggesting closer examination of the range of ΔL and ΔMLT used to determine coincidence between Van Allen Probes EMIC waves and POES precipitation observation.

  8. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  9. Stopping power of K electrons at extreme relativistic energies

    International Nuclear Information System (INIS)

    Leung, P.T.; Rustgi, M.L.

    1983-01-01

    The recent work of Anholt on K-vacancy production by relativistic projectiles has been applied to calculate the stopping power of the K electrons. The results show that for protons of energy approx.10 3 GeV and heavy target elements, the relativistic contributions to the stopping power amount to several times the resuls due to the longitudinal terms obtained from Walske's work

  10. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  11. Giant Radio Flare of Cygnus X-3 in September 2016

    Science.gov (United States)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2017-06-01

    In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.

  12. Study of the O-mode in a relativistic degenerate electron plasma

    Science.gov (United States)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  13. Examining Relativistic Electron Loss in the Outer Radiation Belt

    Science.gov (United States)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and

  14. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  15. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  16. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.

    Science.gov (United States)

    Rinkevicius, Zilvinas; de Almeida, Katia Julia; Oprea, Cornel I; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2008-11-11

    A new approach for the evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state is presented. The methodology is based on degenerate perturbation theory and includes all relevant contributions to the g tensor shift up to order O(α(4)) originating from the one-electron part of the Breit-Pauli Hamiltonian-that is, it allows for the treatment of scalar relativistic, spin-orbit, and mixed corrections to the spin and orbital Zeeman effects. This approach has been implemented in the framework of spin-restricted density functional theory and is in the present paper, as a first illustration of the theory, applied to study relativistic effects on electronic g tensors of dihalogen anion radicals X2(-) (X = F, Cl, Br, I). The results indicate that the spin-orbit interaction is responsible for the large parallel component of the g tensor shift of Br2(-) and I2(-), and furthermore that both the leading-order scalar relativistic and spin-orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. In addition to investigating the g tensors of dihalogen anion radicals, we also critically examine the importance of various relativistic corrections to the electronic g tensor of linear molecules with Σ-type ground states and present a two-state model suitable for an approximate estimation of the g tensor in such molecules.

  17. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    Science.gov (United States)

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  18. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  19. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  20. Radiative electron capture studied in relativistic heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1994-08-01

    The process of Radiative Electron Capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed X-ray spectra are analysed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well-reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a non-relativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the non-relativistic approach for practical purposes. (orig.)

  1. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  2. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  3. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  4. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  5. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)], E-mail: musumeci@physics.ucla.edu; Moody, J.T.; Scoby, C.M. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2008-10-15

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10{sup 7}-10{sup 8} electrons packed in bunches of {approx}100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.

  6. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J.T.; Scoby, C.M.

    2008-01-01

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10 7 -10 8 electrons packed in bunches of ∼100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics

  7. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M

    2008-10-01

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.

  8. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  9. L-shell ionization by relativistic electrons

    International Nuclear Information System (INIS)

    Johnston, P.N.; Spicer, B.M.; Helstroom, R.

    1980-01-01

    Measurements of the relative x-ray production cross-sections Lsub(α)/Lsub(l), Lsub(β)/Lsub(α) and Lsub (γ)/Lsub(α) by relativistic electrons for the heavy elements Gd, Tm, Ta, Au, Pb, Bi and Th have been carried out. The ratios Lsub(β)/Lsub(α) and Lsub(α)/Lsub (l), are compared with previous experimental and theoretical work

  10. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  11. Self-focusing relativistic electron streams in plasmas

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1975-01-01

    A relativistic electron stream propagating through a dense plasma induces current and charge densities which determine how the stream can self-focus. Magnetic self-focusing is possible because stream-current neutralization, although extensive, is not complete. Electric self-focusing can occur because the stream charge becomes overneutralized when the net current is smaller than a critical value. Under some circumstances, the latter process can cause the stream to focus into a series of electron bunches

  12. Coherent-phase or random-phase acceleration of electron beams in solar flares

    Science.gov (United States)

    Aschwanden, Markus J.; Benz, Arnold O.; Montello, Maria L.

    1994-01-01

    Time structures of electron beam signatures at radio wavelengths are investigated to probe correlated versus random behavior in solar flares. In particular we address the issue whether acceleration and injection of electron beams is coherently modulated by a single source, or whether the injection is driven by a stochastic (possibly spatially fragmented) process. We analyze a total of approximately = 6000 type III bursts observed by Ikarus (Zurich) in the frequency range of 100-500 MHz, during 359 solar flares with simultaneous greater than or = 25 keV hard X-ray emission, in the years 1890-1983. In 155 flares we find a total of 260 continuous type III groups, with an average number of 13 +/- 9 bursts per group, a mean duration of D = 12 +/- 14 s, a mean period of P = 2.0 +/- 1.2 s, with the highest burst rate at a frequency of nu = 310 +/- 120 MHz. Pulse periods have been measured between 0.5 and 10 s, and can be described by an exponential distribution, i.e., N(P) varies as e (exp -P/1.0s). The period shows a frequency dependence of P(nu)=46(exp-0.6)(sub MHz)s for different flares, but is invariant during a particular flare. We measure the mean period P and its standard deviation sigma (sub p) in each type III group, and quantify the degree of periodicity (or phase-coherence) by the dimensionless parameter sigma (sub p)P. The representative sample of 260 type III burst groups shows a mean periodicity of sigma (sub p/P) = 0.37 +/- 0.12, while Monte Carlo simulations of an equivalent set of truly random time series show a distinctly different value of sigma (sub p)P = 0.93 +/- 0.26. This result indicates that the injection of electron beams is coherently modulated by a particle acceleration source which is either compact or has a global organization on a timescale of seconds, in contrast to an incoherent acceleration source, which is stochastic either in time or space. We discuss the constraints on the size of the acceleration region resulting from electron beam

  13. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  14. Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas

    Science.gov (United States)

    Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.

    2018-01-01

    We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.

  15. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  16. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  17. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  18. Relativistic electron drift in overdense plasma produced by a superintense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Rastunkov, V.S.; Krainov, V.P.

    2004-01-01

    The general peculiarities of electron motion in the skin layer at the irradiation of overdense plasma by a superintense linearly polarized laser pulse of femtosecond duration are considered. The quiver electron energy is assumed to be a relativistic quantity. Relativistic electron drift along the propagation of laser radiation produced by a magnetic part of a laser field remains after the end of the laser pulse, unlike the relativistic drift of a free electron in underdense plasma. As a result, the penetration depth is much larger than the classical skin depth. The conclusion has been made that the drift velocity is a nonrelativistic quantity even at the peak laser intensity of 10 21 W/cm 2 . The time at which an electron penetrates into field-free matter from the skin layer is much less than the pulse duration

  19. The Giant Flares of the Microquasar Cygnus X-3: X-Rays States and Jets

    Directory of Open Access Journals (Sweden)

    Sergei Trushkin

    2017-11-01

    Full Text Available We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e. hard fluxes (Swift/BAT 15–50 keV data dropped to zero, the soft X-ray fluxes (MAXI 2–10 keV data staying high, and then later, the binary came back to a hard state. Both similar giant flares indicated the unchanged mechanism of the jets’ formation in Cyg X-3, probably in conditions of strong stellar wind and powerful accretion onto a black hole.

  20. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  1. Matrix elements of the relativistic electron-transition operators

    International Nuclear Information System (INIS)

    Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.

    1976-01-01

    The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given

  2. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  3. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  4. Run-away electrons in relativistic spin (1) /(2) quantum electrodynamics

    International Nuclear Information System (INIS)

    Low, F.E.

    1998-01-01

    The existence of run-away solutions in classical and non-relativistic quantum electrodynamics is reviewed. It is shown that the less singular high energy behavior of relativistic spin (1) /(2) quantum electrodynamics precludes an analogous behavior in that theory. However, a Landau-like anomalous pole in the photon propagation function or in the electron-massive photon forward scattering amplitude would generate a new run-away, characterized by an energy scale ω∼m e thinspexp(1/α). This contrasts with the energy scale ω∼m e /α associated with the classical and non-relativistic quantum run-aways. copyright 1998 Academic Press, Inc

  5. Electron density diagnostics in the 10-100 A interval for a solar flare

    Science.gov (United States)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.

  6. Relativistic effects on inner-shell electron properties

    International Nuclear Information System (INIS)

    Desclaux, J.P.

    1976-01-01

    The influence of relativistic effects on hydrogen-like systems is first reviewed. After having considered one-electron systems, the influence of the other electrons is to be taken into account when considering inner ionization energy and ionization cross sections. Two-hole states in inner shells being then dealt with, the problem of angular momentum coupling among electrons can no longer be neglected. In an other way, this implies that wave functions are to be built on a jj basis instead of a ls one. Ksub(α)sup(h) hypersatellite spectra and KLL Auger transition energies are successively discussed

  7. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  8. Quasistationary model of high current relativistic electron beam. 2. The own magnetic field of relativistic electron beam in cylindrical Drift space

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandul', E.M.; Podkopaev, A.P.

    1995-01-01

    This paper is devoted to obtaining the components of own magnetic field of high current relativistic electron beam passing through the cylindrical drift space superconducting walls: the peculiarities of applied numerical scheme have been also described briefly. (author). 6 refs

  9. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest

  10. Wave functions for a relativistic electron in superstrong magnetic fields

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.

    2003-01-01

    In the past decade few authors attempted to search interesting features of the radiation of a specific neutron star, the magnetar. In this paper we investigate some features of the motion of an electron in a strong magnetic field as it occurs in a magnetar atmosphere. We have applied the conditions of the super relativistic electrons in super-strong magnetic fields proposed by Gonthier et al. to express two specific spin operators and their eigenfunctions. We have done this in order to investigate into a further paper an estimation of the cross section in Compton process in strong and superstrong magnetic fields in relativistic regime. (author)

  11. A relativistic solitary wave in electron positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Skarka, V.; Mahajan, S.

    1993-09-01

    The relativistic solitary wave propagation is studied in cold electron-positron plasma embedded in an external arbitrary strong magnetic field. The exact, analytical soliton-like solution corresponding to a localized, purely electromagnetic pulse with arbitrary big amplitude is found. (author). 7 refs, 1 fig

  12. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  13. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  14. The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2017-02-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  15. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  16. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  17. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    International Nuclear Information System (INIS)

    Yu, J.

    2015-01-01

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.

  18. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  19. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-01

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  20. Molecular type channeling of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Vyatkin, E.G.; Filimonov, Yu.M.; Taratin, A.M.; Vorobiev, S.A.

    1983-01-01

    Channeling of relativistic electrons in direction in a diamond crystal and the channeling radiation spectra are investigated using computer simulation by the binary collision model and using the model of a continuum potential of the atomic rows. In a computer experiment the atomic- and molecular-type states of channeled elcetrons are revealed, and the orientational dependence of the electron trapping probability in these states is obtained. The peculiarities revealed of the angular distributions and radiation spectra of electrons in the molecular-type states allow to discover these states in the experiment. (author)

  1. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  2. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  3. Generation of relativistic electron bunches in plasma synchrotron Gyrac-x for hard x-ray production

    International Nuclear Information System (INIS)

    Andreev, V.V.; Umnov, A.M.

    2000-01-01

    Experiment performed on plasma synchrotron Gyrac-X operating on synchrotron gyromagnetic autoresonance (SGA) is described. Gyrac-X is a compact plasma x-ray source in which kinetic energy of relativistic electrons obtained under SGA converts into x-ray by falling e-bunches on to a heavy metal target. The plasma synchrotron acts in a regime of a magnetic field pulse packet under constant level of microwave power. Experiments and numerical modeling of the process showed that such a regime allowed obtaining dense short lived relativistic electron bunches with average electron energy of 500 keV - 4.5 MeV. Parameters of the relativistic electron bunch (energy, density and volume) and dynamics of the electron bunches can be controlled by varying the parameters of the SGA process. Possibilities of x-ray intensity increase are also discussed

  4. Quantum electrodynamics and the relativistic theory of many-electron atoms

    International Nuclear Information System (INIS)

    Sucher, J.

    1981-01-01

    The development of relativistic theories of many-electron atoms is reviewed, with emphasis on the fact that the Dirac-Coulomb Hamiltonian H/sub DC/ has no bound states. This fact implies that neither the Dirac-Hartree-Fock (DHF) equations nor the DHF wavefunction chi have a simple theoretical interpretation. A no-pair hamiltonian H/sub +/ is defined which does not have the fatal flaw of H/sub DC/ and hence can serve as a starting point for a systematic study of relativistic effects in many-electron atoms which can go beyond central-field approximations. H/sub +/ differs from H/sub DC/ by the presence of external-field positive-energy projection operators in the electron-electron interaction terms. Unlike H/sub DC/, H/sub +/ and its eigenfunctions psi have a clear-cut field-theoretic meaning, which is described. Similar remarks hold for a simpler no-pair Hamiltonian h/sub +/, which involves free positive-energy projection operators and for related Hamiltonians H/sub +/' and h/sup +/' which include the Breit operator. Relativistic Hartree-Fock equations are obtained from H/sub +/ and the relation between their solutions psi and the DHF solutions chi is discussed. The DHF equations may be reinterpreted as approximations to the new HF-type equations; this provides a rationale for their success in applications. It is argued that the Breit operator ought to be included even in the original DHF equations

  5. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  6. Gamma rays from relativistic electrons undergoing Compton losses in isotropic photon fields

    International Nuclear Information System (INIS)

    Zdziarski, A.A.

    1989-01-01

    The kinetic equation describing Compton losses of relativistic electrons in an isotropic field of soft background photons is solved exactly including both continuous energy losses in the classical Thomson regime and catastrophic losses in the quantum Klein-Nishina regime. This extends the previous treatments of this problem, which assumed the validity of either one of these regimes alone. The problem is relevant to astrophysical sources containing relativistic electrons. Analytical solutions for the steady state electron and gamma-ray spectra in the case of power-law soft photons and monoenergetic and power-law electron injections are obtained. Numerical solutions are presented for monoenergetic, blackbody, and power-law soft photons. A comparison between the numerical and the available analytic solutions is made. 15 refs

  7. Using natural language processing and machine learning to identify gout flares from electronic clinical notes.

    Science.gov (United States)

    Zheng, Chengyi; Rashid, Nazia; Wu, Yi-Lin; Koblick, River; Lin, Antony T; Levy, Gerald D; Cheetham, T Craig

    2014-11-01

    Gout flares are not well documented by diagnosis codes, making it difficult to conduct accurate database studies. We implemented a computer-based method to automatically identify gout flares using natural language processing (NLP) and machine learning (ML) from electronic clinical notes. Of 16,519 patients, 1,264 and 1,192 clinical notes from 2 separate sets of 100 patients were selected as the training and evaluation data sets, respectively, which were reviewed by rheumatologists. We created separate NLP searches to capture different aspects of gout flares. For each note, the NLP search outputs became the ML system inputs, which provided the final classification decisions. The note-level classifications were grouped into patient-level gout flares. Our NLP+ML results were validated using a gold standard data set and compared with the claims-based method used by prior literatures. For 16,519 patients with a diagnosis of gout and a prescription for a urate-lowering therapy, we identified 18,869 clinical notes as gout flare positive (sensitivity 82.1%, specificity 91.5%): 1,402 patients with ≥3 flares (sensitivity 93.5%, specificity 84.6%), 5,954 with 1 or 2 flares, and 9,163 with no flare (sensitivity 98.5%, specificity 96.4%). Our method identified more flare cases (18,869 versus 7,861) and patients with ≥3 flares (1,402 versus 516) when compared to the claims-based method. We developed a computer-based method (NLP and ML) to identify gout flares from the clinical notes. Our method was validated as an accurate tool for identifying gout flares with higher sensitivity and specificity compared to previous studies. Copyright © 2014 by the American College of Rheumatology.

  8. Radiative electron capture studied in relativistic heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Ichihara, A.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1995-01-01

    The process of radiative electron capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed x-ray spectra are analyzed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a nonrelativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the nonrelativistic approach for practical purposes

  9. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-06-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence for two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  10. Relativistic electron beam interaction with a thin target

    International Nuclear Information System (INIS)

    Gazaix, M.

    1981-03-01

    This study is concerned with the increasing possibilities of electron energy deposition in thin targets. The thesis theoretical part studies the relativistic electron beam-plasma instability; the Buneman-Pierce instability in limited medium is also studied. In the experimental part, several questions are tentatively answered: - what is the spatial and temporal evolution of the anode material, in temperature and in density. - What sort of interaction is the beam-target interaction; more particularly questions about focusing and energy deposition are studied [fr

  11. The Diagnostics of the Shape of the Electron Distribution Function during the Solar Flares

    Science.gov (United States)

    Dzifčáková, E.; Kulinová, A.; Kašparová, J.

    2011-12-01

    The non-thermal electrons accelerated during the flares interact with surrounding plasma and the electron distribution of the flaring plasma becomes non-Maxwellian. X-ray spectrometers RESIK and RHESSI with high energy resolution give an opportunity to diagnose the presence of the non-thermal electron distribution. RESIK X-line spectra with high fluxes of satellite lines can be explained by presence of the non-thermal n-distribution in a plasma bulk in the 2-2.5 keV range. The RHESSI spectrometer enables us to diagnose the non-thermal high-energy tail of the electron distribution in deka-keV energy range. This high-energy tail can be described by a power-law distribution. We have analyzed three solar flares to get non-thermal characteristics of both non-thermal parts of the electron distribution. The ratios of the intensities of allowed to satellite lines have been used to estimate the parameters of the n-distribution. RHESSI data has been used to obtain the temporal changes of the parameters of Maxwellian and power-law distributions and also for determination of the parameters of n-distribution in two specific cases. The parameters of n-distribution obtained from RHESSI analysis agree within the errors with those derived from RESIK observations. Finally, the synthetic soft X-ray line spectra has been computed for diagnosed parameters of distributions and have been compared with RESIK X-ray observations.

  12. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Lin-Liu Y.R.

    2012-09-01

    Full Text Available A fully relativistic model of electron cyclotron current drive (ECCD efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed has generalized that of Marushchenko’s (N.B . Marushchenko, et al. Fusion Sci. & Tech., 2009, which is extended for arbitrary temperatures and covers exactly the asymptotic for u ≫ 1 when Z → ∞, and suitable for ray-tracing calculations.

  13. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  14. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  15. FLARE RIBBON ENERGETICS IN THE EARLY PHASE OF AN SDO FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L.; Hannah, I. G.; Hudson, H. S. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Innes, D. E. [Max Planck Institute for Solar System Research, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)

    2013-07-10

    The sites of chromospheric excitation during solar flares are marked by extended extreme ultraviolet ribbons and hard X-ray (HXR) footpoints. The standard interpretation is that these are the result of heating and bremsstrahlung emission from non-thermal electrons precipitating from the corona. We examine this picture using multi-wavelength observations of the early phase of an M-class flare SOL2010-08-07T18:24. We aim to determine the properties of the heated plasma in the flare ribbons, and to understand the partition of the power input into radiative and conductive losses. Using GOES, SDO/EVE, SDO/AIA, and RHESSI, we measure the temperature, emission measure (EM), and differential emission measure of the flare ribbons, and deduce approximate density values. The non-thermal EM, and the collisional thick target energy input to the ribbons are obtained from RHESSI using standard methods. We deduce the existence of a substantial amount of plasma at 10 MK in the flare ribbons, during the pre-impulsive and early-impulsive phase of the flare. The average column EM of this hot component is a few times 10{sup 28} cm{sup -5}, and we can calculate that its predicted conductive losses dominate its measured radiative losses. If the power input to the hot ribbon plasma is due to collisional energy deposition by an electron beam from the corona then a low-energy cutoff of {approx}5 keV is necessary to balance the conductive losses, implying a very large electron energy content. Independent of the standard collisional thick-target electron beam interpretation, the observed non-thermal X-rays can be provided if one electron in 10{sup 3}-10{sup 4} in the 10 MK (1 keV) ribbon plasma has an energy above 10 keV. We speculate that this could arise if a non-thermal tail is generated in the ribbon plasma which is being heated by other means, for example, by waves or turbulence.

  16. Joule heating and runaway electron acceleration in a solar flare

    Science.gov (United States)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  17. Electron-cyclotron maser emission during flares: emission in various modes and temporal variations

    International Nuclear Information System (INIS)

    Winglee, R.M.; Dulk, G.A.

    1986-01-01

    Absorption of radiation at the electron-cyclotron frequency, OMEGA sub e, generated by the electron-cyclotron maser instability was proposed as a possible mechanism for transporting energy and heating of the corona during flares. Radiation from the same instability but at harmonics of OMEGA sub e is believed to be the source of solar microwave spike bursts. The actual mode and frequency of the dominant emission from the maser instability is shown to be dependent on: (1) the plasma temperature, (2) the form of the energetic electron distribution, and (3) on the ratio of the plasma frequency omega sub p to OMEGA sub e. As a result, the emission along a flux tube can vary, with emission at harmonics being favored in regions where omega sub p/OMEGA sub e approx. equal to or greater than 1. Changes in the plasma density and temperature in the source region associated with the flare can also cause the characteristics of the emission to change in time

  18. A giant radio flare from Cygnus X-3 with associated γ-ray emission: The 2011 radio and γ-ray flare of Cyg X-3

    International Nuclear Information System (INIS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  19. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  20. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  1. Relativistic convergent close-coupling method applied to electron scattering from mercury

    International Nuclear Information System (INIS)

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    We report on the extension of the recently formulated relativistic convergent close-coupling (RCCC) method to accommodate two-electron and quasi-two-electron targets. We apply the theory to electron scattering from mercury and obtain differential and integrated cross sections for elastic and inelastic scattering. We compared with previous nonrelativistic convergent close-coupling (CCC) calculations and for a number of transitions obtained significantly better agreement with the experiment. The RCCC method is able to resolve structure in the integrated cross sections for the energy regime in the vicinity of the excitation thresholds for the (6s6p) 3 P 0,1,2 states. These cross sections are associated with the formation of negative ion (Hg - ) resonances that could not be resolved with the nonrelativistic CCC method. The RCCC results are compared with the experiment and other relativistic theories.

  2. Anomalous property of coherent bremsstrahlung linear polarization of relativistic electrons in a crystal

    International Nuclear Information System (INIS)

    Lapko, V.P.; Nasonov, N.N.; Truten', V.I.

    1993-01-01

    Polarization and spectral-and-angular properties of γ-radiation of the relativistic electron flux moving in a crystal under uncorrelated collisions with crystal atomic chains, are studied theoretically. Direction of linear polarization of radiation is shown to vary with energy of emitted photon. Reasons of occurrence of this effect are discussed. The results of numerical calculations demonstrating the possibility to form an intensive source of polarized γ-quanta on the basis of coherent radiation of relativistic electrons during low-angular scattering at crystal atom chains, are given

  3. Explosive Chromospheric Evaporation Driven by Nonthermal Electrons around One Footpoint of a Solar Flare Loop

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Ning, Z. J.; Huang, Y.; Zhang, Q. M., E-mail: lidong@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2017-05-20

    We explore the temporal relationship between microwave/hard X-ray (HXR) emission and Doppler velocity during the impulsive phase of a solar flare on 2014 October 27 (SOL2014-10-27) that displays a pulse on the light curves in the microwave (34 GHz) and HXR (25–50 keV) bands before the flare maximum. Imaging observation shows that this pulse mainly comes from one footpoint of a solar flare loop. The slit of the Interface Region Imaging Spectrograph ( IRIS ) stays at this footpoint during this solar flare. The Doppler velocities of Fe xxi 1354.09 Å and Si iv 1402.77 Å are extracted from the Gaussian fitting method. We find that the hot line of Fe xxi 1354.09 Å (log T ∼ 7.05) in the corona exhibits blueshift, while the cool line of Si iv 1402.77 Å (log T ∼ 4.8) in the transition region exhibits redshift, indicating explosive chromospheric evaporation. Evaporative upflows along the flare loop are also observed in the AIA 131 Å image. To our knowledge, this is the first report of chromospheric evaporation evidence from both spectral and imaging observations in the same flare. Both microwave and HXR pulses are well correlated with the Doppler velocities, suggesting that the chromospheric evaporation is driven by nonthermal electrons around this footpoint of a solar flare loop.

  4. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  5. Nonlinear interaction of a parallel-flow relativistic electron beam with a plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.; Koerbel, S.; Simon, P.; Vrba, P.

    1975-01-01

    Nonlinear evolution of single-mode high-frequency instabilities (ω approximately ksub(parallel)vsub(b)) excited by a parallel-flow high-current relativistic electron beam in a magnetized plasma is investigated. Fairly general dimensionless equations are derived. They describe both the temporal and the spatial evolution of amplitude and phase of the fundamental wave. Numerically, the special case of excitation of the linearly most unstable mode is solved in detail assuming that the wave energy dissipation is negligible. Then the strength of interaction and the relativistic properties of the beam are fully respected by a single parameter lambda. The value of lambda ensuring the optimum efficiency of the wave excitation as well as the efficiency of the self-acceleration of some beam electrons at higher values of lambda>1 are determined in the case of a fully compensated relativistic beam. Finally, the effect of the return current dissipation is also included (phenomenologically) into the theoretical model, its role for the beam-plasma interaction being checked numerically. (J.U.)

  6. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma

    International Nuclear Information System (INIS)

    Heidari, E; Aslaninejad, M; Eshraghi, H

    2010-01-01

    Using a set of relativistic equations for plasmas with warm electrons and cold ions, we have investigated the effects of trapped electrons in the propagation of an electrosound wave and discussed the possibility of the formation of electromagnetic solitons in a plasma. The effective potential energy and deviations of the electron and ion number densities in this relativistic model have been found. We have obtained the governing equations for the amplitude of the HF field with relativistic corrections. In order to show the destructive impact of the trapped electrons on the solitary wave, a relativistic effective potential and the governing equation have been found. It is shown that for certain values of the parameters the condition of localization of the HF amplitude is violated. In addition, it is shown that as the flow velocity of the plasma changes, the shape of the solitary wave shows two opposing behaviours, depending on whether the solitary wave velocity is larger than the flow velocity or smaller. Also, the existence of stationary solitary waves which are prohibited for nonrelativistic plasma has been predicted. Finally, we have obtained the Korteweg-de Vries equation showing the relativistic, trapping and nonlinearity effects.

  7. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Science.gov (United States)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  8. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  9. Relativistic electrons of the outer radiation belt and methods of their forecast (review

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2017-03-01

    Full Text Available The paper reviews studies of the dynamics of relativistic electrons in the geosynchronous region. It lists the physical processes that lead to the acceleration of electrons filling the outer radiation belt. As one of the space weather factors, high-energy electron fluxes pose a serious threat to the operation of satellite equipment in one of the most populated orbital regions. Necessity is emphasized for efforts to develop methods for forecasting the situation in this part of the magnetosphere, possible predictors are listed, and their classification is given. An example of a predictive model for forecasting relativistic electron flux with a 1–2-day lead time is proposed. Some questions of practical organization of prediction are discussed; the main objectives of short-term, medium-term, and long-term forecasts are listed.

  10. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  11. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  12. Energy transport by energetic electrons released during solar flares. I - Thermal versus nonthermal processes

    Science.gov (United States)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    The propagation of energetic electrons through a flaring flux tube is studied in an attempt to determine how the energy of the electrons is deposited in the flux tube. One-dimensional electrostatic particle simulations are used in the present investigation. As the energetic electrons propagate into the system, a return current of ambient plasma electrons and some of the energetic electrons is drawn into the energetic electron source. It is found that, as the ambient temperature relative to the ion temperature increases above about 3, the heated return-current electrons can excite ion-sound waves.

  13. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostics (Corrigendum)

    Science.gov (United States)

    Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.

    2010-06-01

    Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.

  14. A New Paradigm for Flare Particle Acceleration

    Science.gov (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  15. Investigation of the surface current excitation by a relativistic electron electromagnetic field

    International Nuclear Information System (INIS)

    Naumenko, G; Shevelev, M; Potylitsyn, A; Popov, Yu; Sukhikh, L

    2010-01-01

    Surface current method and pseudo-photon ones are widely used in the problems of diffraction and transition radiation of relativistic electron in conductive targets. The simple analysis disclosed the contradiction between these methods in respect to the surface current excitation on target surfaces. This contradiction was resolved experimentally by the measurement of a surface current on the upstream and downstream target surfaces in diffraction radiation geometry. The experimental test showed, that no surface current is induced on the target downstream surface under the influence of a relativistic electron electromagnetic field in contrast to the upstream surface. This is important for the understanding of a forward transition and diffraction radiation nature and electromagnetic field evolution in interaction processes.

  16. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  17. Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M

    2009-08-01

    Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.

  18. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  19. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  20. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  1. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  2. Fluorescence excited in a thunderstorm atmosphere by relativistic runaway electron avalanches

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.

    2017-05-01

    The spectrum and spatiotemporal evolution of the fluorescence of an atmospheric discharge developing in the regime of relativistic runaway electron avalanche (RREA) generation have been calculated without involving the relativistic feedback. The discharges generating narrow bipolar pulses, along with the discharges responsible for terrestrial gamma-ray flashes, are shown to be relatively dark. Nevertheless, the fluorescence excited by a discharge involving RREAs can be recorded with cameras used to record high-altitude optical phenomena. A possible connection between a certain class of optical phenomena observed at the tops of thunderclouds and RREA emission is pointed out.

  3. Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013

    Science.gov (United States)

    Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.

    2017-12-01

    Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.

  4. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  5. Flare Observations

    Directory of Open Access Journals (Sweden)

    Benz Arnold O.

    2008-02-01

    Full Text Available Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  6. Flare Observations

    Science.gov (United States)

    Benz, Arnold O.

    2017-12-01

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  7. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Ave, Boulder, CO 80305 (United States); Allred, Joel C.; Daw, Adrian [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Cauzzi, Gianna [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Carlsson, Mats, E-mail: Adam.Kowalski@lasp.colorado.edu [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  8. Flare particle acceleration in the interaction of twisted coronal flux ropes

    Science.gov (United States)

    Threlfall, J.; Hood, A. W.; Browning, P. K.

    2018-03-01

    Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.

  9. Evidence for Field-parallel Electron Acceleration in Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Haerendel, G. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)

    2017-10-01

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.

  10. Limitation of accelerating process in the partly neutralized relativistic electron hollow beam

    International Nuclear Information System (INIS)

    Chen, H.C.

    1984-01-01

    A fluid-Maxwell theory of the diocotron instability is developed for a relativistic electron hollow beam which is assumed in rigid-rotor and cold laminar flow equilibria. Stability analysis is performed for a sharp boundary electron density profile including the influence of positive ions which can accumulate in a long pulse device, and which form a partially neutralizing background. In the case of the strong magnetic field and tenuous electron beam (plasma frequency ω/sub p/b 1 2 ) has a stabilizing effect on the diocotron instability, R 1 and R 2 are the inner and outer radius of the annular hollow beam, respectively. However, the ions accumulating in the center of the beam (0 1 ) have a destabilizing effect on the diocotron instability. Most importantly the kink mode becomes unstable with a growth rate several tenths of the diocotron frequency ω/sub D/ equivalent ω 2 /sub p/b/2γ 2 ω/sub c/, where γ is the relativistic scaling factor

  11. Quasilinear analysis of loss-cone driven weakly relativistic electron cyclotron maser instability

    International Nuclear Information System (INIS)

    Ziebell, L.F.; Yoon, P.H.

    1995-01-01

    This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability. Two electron populations are assumed: a low-temperature background component and a more energetic loss-cone population. The dispersion relation is valid for any ratio of the energetic to cold populations, and includes thermal and relativistic effects. The quasilinear analysis is based upon an efficient kinetic moment method, in which various moment equations are derived from the particle kinetic equation. A model time-dependent loss-cone electron distribution function is assumed, which allows one to evaluate the instantaneous linear growth rate as well as the moment kinetic equations. These moment equations along with the wave kinetic equation form a fully self-consistent set of equations which governs the evolution of the particles as well as unstable waves. This set of equations is solved with physical parameters typical of the earth's auroral zone plasma. copyright 1995 American Institute of Physics

  12. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  13. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  14. Relativistic electron planar channeling and diffraction in thin monocrystals

    International Nuclear Information System (INIS)

    Vorob'ev, S.A.; Nurmagambetov, S.B.; Kaplin, V.V.; Rozum, E.I.

    1985-01-01

    The interaction of relativistic electrons with thin monocrystals was investigated in approximation of continuous potential of crystal plane system. Numerical technique for solution of one-dimensional Schroedinger equation with a periodic potential was developed. Numerical solutions conducted according to the technique were used to determine the forms of ngular distributions of electrons located in various zones of lteral motion. Calculation results were applied for analyzing experimentally obtained data on agular distribution of 5.1 MeV electrons projected at small angles onto the (110) planar system of a Si monocrystal. The conducted complex experimental and theoretical: investigations demonstrated the possibility of prevalen occupation of certain states of lateral motion and enabled to determine angular reg in directions of the electron beam projection on a crystal where either channeling effects or those of electron diffraction are important

  15. The fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.

    The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,

  16. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  17. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    Science.gov (United States)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  18. Through the Ring of Fire: A Study of the Origin of Orphan Gamma-ray Flares in Blazars

    Science.gov (United States)

    MacDonald, Nicholas R.; Marscher, Alan P.; Jorstad, Svetlana G.; Joshi, Manasvita

    2014-06-01

    Blazars exhibit flares across the electromagnetic spectrum. Many gamma-ray flares are highly correlated with flares detected at optical wavelengths; however, a small subset appear to occur in isolation, with no counterpart in the other wave bands. These "orphan" gamma-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. We present numerical calculations of the time variable emission of a blazar based on a proposal by Marscher et al. (2010) to explain such events. In this model, a plasmoid ("blob") consisting of a power-law distribution of electrons propagates relativistically along the spine of a blazar jet and passes through a synchrotron emitting ring of electrons representing a shocked portion of the jet sheath. This ring supplies a source of seed photons that are inverse-Compton scattered by the electrons in the moving blob. As the blob approaches the ring, the photon density in the co-moving frame of the plasma increases, resulting in an orphan gamma-ray flare that then dissipates as the blob passes through and then moves away from the ring. The model includes the effects of radiative cooling and a spatially varying magnetic field. Support for the plausibility of this model is provided by observations by Marscher et al.(2010) of an isolated gamma-ray flare that was correlated with the passage of a superluminal knot through the inner jet of quasar PKS 1510-089. Synthetic light-curves produced by this new model are compared to the observed light-curves from this event. In addition, we present polarimetric observations that point to the existence of a jet sheath in the quasar 3C 273. A rough estimate of the bolometric luminosity of the sheath results in a value of ~10^45 erg s^-1 10% of the jet luminosity). This inferred sheath luminosity indicates that the jet sheath in 3C 273 can provide a significant source of seed photons that need to be taken into account when modeling the non

  19. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    Science.gov (United States)

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  20. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  1. Solar Flares and Their Prediction

    Science.gov (United States)

    Adams, Mitzi L.

    1999-01-01

    Solar flares and coronal mass ejection's (CMES) can strongly affect the local environment at the Earth. A major challenge for solar physics is to understand the physical mechanisms responsible for the onset of solar flares. Flares, characterized by a sudden release of energy (approx. 10(exp 32) ergs for the largest events) within the solar atmosphere, result in the acceleration of electrons, protons, and heavier ions as well as the production of electromagnetic radiation from hard X-rays to km radio waves (wavelengths approx. = 10(exp -9) cm to 10(exp 6) cm). Observations suggest that solar flares and sunspots are strongly linked. For example, a study of data from 1956-1969, reveals that approx. 93 percent of major flares originate in active regions with spots. Furthermore, the global structure of the sunspot magnetic field can be correlated with flare activity. This talk will review what we know about flare causes and effects and will discuss techniques for quantifying parameters, which may lead to a prediction of solar flares.

  2. Recent big flare

    International Nuclear Information System (INIS)

    Moriyama, Fumio; Miyazawa, Masahide; Yamaguchi, Yoshisuke

    1978-01-01

    The features of three big solar flares observed at Tokyo Observatory are described in this paper. The active region, McMath 14943, caused a big flare on September 16, 1977. The flare appeared on both sides of a long dark line which runs along the boundary of the magnetic field. Two-ribbon structure was seen. The electron density of the flare observed at Norikura Corona Observatory was 3 x 10 12 /cc. Several arc lines which connect both bright regions of different magnetic polarity were seen in H-α monochrome image. The active region, McMath 15056, caused a big flare on December 10, 1977. At the beginning, several bright spots were observed in the region between two main solar spots. Then, the area and the brightness increased, and the bright spots became two ribbon-shaped bands. A solar flare was observed on April 8, 1978. At first, several bright spots were seen around the solar spot in the active region, McMath 15221. Then, these bright spots developed to a large bright region. On both sides of a dark line along the magnetic neutral line, bright regions were generated. These developed to a two-ribbon flare. The time required for growth was more than one hour. A bright arc which connects two ribbons was seen, and this arc may be a loop prominence system. (Kato, T.)

  3. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    Science.gov (United States)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  4. A giant radio flare from Cygnus X-3 with associated γ-ray emission

    Science.gov (United States)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-04-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (˜20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No γ-rays are observed during the ˜1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  5. Decontamination of drug vegetative raw material by relativistic electron beam

    International Nuclear Information System (INIS)

    Gorbanyuk, A.G.; Dikiy, I.L.; Yegorov, A.M.; Linnik, A.F.; Uskov, V.V.

    2004-01-01

    The new technology of decontamination of drug vegetative raw material and medical products is proposed. Advantages of use of relativistic beams in a range of electron energies from 0.5 MeV to 5 MeV for these purposes are shown in comparison with X-radiation of energy from 80 keV to 1 MeV

  6. Diagnosis of mildly relativistic electron velocity distributions by electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Kato, K.

    1986-09-01

    Mildly relativistic electron velocity distributions are diagnosed from measurements of the first few electron cyclotron emission harmonics in the Alcator C tokamak. The approach employs a vertical viewing chord through the center of the tokamak plasma terminating at a compact, high-performance viewing dump. The cyclotron emission spectra obtained in this way are dominated by frequency downshifts due to the relativistic mass increase, which discriminates the electrons by their total energy. In this way a one-to-one correspondence between the energy and the emission frequency is accomplished in the absence of harmonic superpositions. The distribution, described by f/sub p/, the line-averaged phase space density, and Λ, the anisotropy factor, is determined from the ratio of the optically thin harmonics or polarizations. Diagnosis of spectra in the second and the third harmonic range of frequencies obtained during lower hybrid heating, current drive, and low density ohmic discharges are carried out, using different methods depending on the degree of harmonic superposition present in the spectrum and the availability of more than one ratio measurement. Discussions of transient phenomena, the radiation temperature measurement from the optically thick first harmonic, and the measurements compared to the angular hard x-ray diagnostic results illuminate the capabilities of the vertically viewing electron cyclotron emission diagnostic

  7. Formation of virtual cathodes and microwave generation in relativistic electron beams

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Thode, L.E.

    1984-01-01

    Simulation of the generation of a relativistic electron beam in a foil diode configuration and the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves at two distinct frequencies. Generation of high-power microwaves with about 10% efficiency might reasonably be expected from such a virtual-cathode configuration

  8. Evidence of interaction between a relativistic electron beam and solid target

    International Nuclear Information System (INIS)

    Scarlat, Fl.; Scarlat, F.S.; Mitru, E.

    2002-01-01

    The investigation of the X ray production mechanism by the relativistic electron beams (REB) is an important keypoint for increasing the output of electron X ray conversion. This paper presents the image of a platinum target optically observed by its radiography (after irradiation by a REB of 31 MeV). The image is processed by means of a scanner and computer. The paper presents the distributions of the absorbed dose in a target volume

  9. Relativistic reconnection in near critical Schwinger field

    Science.gov (United States)

    Schoeffler, Kevin; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis; Uzdensky, Dmitri

    2017-10-01

    Magnetic reconnection in relativistic pair plasma with QED radiation and pair-creation effects in the presence of strong magnetic fields is investigated using 2D particle-in-cell simulations. The simulations are performed with the QED module of the OSIRIS framework that includes photon emission by electrons and positrons and single photon decay into pairs (non-linear Breit-Wheeler). We investigate the effectiveness of reconnection as a pair- and gamma-ray production mechanism across a broad range of reconnecting magnetic fields, including those approaching the critical quantum (Schwinger) field, and we also explore how the radiative cooling and pair-production processes affect reconnection. We find that in the extreme field regime, the magnetic energy is mostly converted into radiation rather than into particle kinetic energy. This study is a first concrete step towards better understanding of magnetic reconnection as a possible mechanism powering gamma-ray flares in magnetar magnetospheres.

  10. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  11. Extended quasiparticle approximation for relativistic electrons in plasmas

    Directory of Open Access Journals (Sweden)

    V.G.Morozov

    2006-01-01

    Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.

  12. Far-field interaction of focused relativistic electron beams in electron energy loss spectroscopy of nanoscopic platelets

    OpenAIRE

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-01-01

    A quantum mechanical scattering theory for relativistic, highly focused electron beams near nanoscopic platelets is presented, revealing a new excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic scattering process. Calculated for metallic (silver and gold) and insulating (SiO2 and MgO) nanoplatelets...

  13. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective

  14. Persistent current of relativistic electrons on a Dirac ring in presence of impurities

    KAUST Repository

    Ghosh, Sumit; Saha, Arijit

    2014-01-01

    We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  15. Persistent current of relativistic electrons on a Dirac ring in presence of impurities

    KAUST Repository

    Ghosh, Sumit

    2014-08-01

    We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  16. WDM production with intense relativistic electrons

    Science.gov (United States)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to 1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  17. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    Fullekrug, Martin; Hanuise, C; Parrot, M

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...

  18. Final-state interactions and superscaling in the semi-relativistic approach to quasielastic electron and neutrino scattering

    International Nuclear Information System (INIS)

    Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udias, J. M.

    2007-01-01

    The semi-relativistic approach to electron and neutrino quasielastic scattering from nuclei is extended to include final-state interactions. Starting with the usual nonrelativistic continuum shell model, the problem is relativized by using the semi-relativistic expansion of the current in powers of the initial nucleon momentum and relativistic kinematics. Two different approaches are considered for the final-state interactions: the Smith-Wambach 2p-2h damping model and the Dirac-equation-based potential extracted from a relativistic mean-field plus the Darwin factor. Using the latter, the scaling properties of (e,e ' ) and (ν μ ,μ - ) cross sections for intermediate momentum transfers are investigated

  19. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1996-01-01

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives

  20. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  1. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  2. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  3. Compact toroidal energy storage device with relativistically densified electrons through the use of travelling magnetic waves

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.

    1983-01-01

    A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed

  4. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  5. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  6. X-ray and γ-ray emission from channeled relativistic electrons and positrons

    International Nuclear Information System (INIS)

    Terhune, R.W.; Pantell, R.H.

    1977-01-01

    The characteristics of the radiation from channeled relativistic electrons and positrons are discussed and model calculations carried out. Radiation near 2.5 keV associated with transitions etween the 2 p→1s eigenstates of 2-MeV electrons channeled along the axis of MgO is predicted with 50 times the usual bremsstrahlung intensity in a 10% bandwidth. Recent low-energy bremsstrahlung measurements made with 28-MeV electrons propagating along an axis in silicon are interpreted in terms of this model

  7. The relativistic electron response at geosynchronous orbit during the January 1997 magnetic storm

    International Nuclear Information System (INIS)

    Reeves, G.D.; Friedel, R.H.; Belian, R.D.; Meier, M.M.; Henderson, M.G.; Onsager, T.; Singer, H.J.; Baker, D.N.; Li, X.

    1998-01-01

    The first geomagnetic storm of 1997 began on January 10. It is of particular interest because it was exceptionally well observed by the full complement of International Solar Terrestrial Physics (ISTP) satellites and because of its possible association with the catastrophic failure of the Telstar 401 telecommunications satellite. Here we report on the energetic electron environment observed by five geosynchronous satellites. In part one of this paper we examine the magnetospheric response to the magnetic cloud. The interval of southward IMF drove strong substorm activity while the interval of northward IMF and high solar wind density strongly compressed the magnetosphere. At energies above a few hundred keV, two distinct electron enhancements were observed at geosynchronous orbit. The first enhancement began and ended suddenly, lasted for approximately 1 day, and is associated with the strong compression of the magnetosphere. The second enhancement showed a more characteristic time delay, peaking on January 15. Both enhancements may be due to transport of electrons from the same initial acceleration event at a location inside geosynchronous orbit but the first enhancement was due to a temporary, quasi-adiabatic transport associated with the compression of the magnetosphere while the second enhancement was due to slower diffusive processes. In the second part of the paper we compare the relativistic electron fluxes measured simultaneously at different local times. We find that the >2-MeV electron fluxes increased first at noon followed by dusk and then dawn and that there can be difference of two orders of magnitude in the fluxes observed at different local times. Finally, we discuss the development of data-driven models of the relativistic electron belts for space weather applications. By interpolating fluxes between satellites we produced a model that gives the >2-MeV electron fluxes at all local times as a function of universal time. In a first application of

  8. Relativistic electron beam source with an air-core step-up transformer

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Masuzaki, Masaru; Tsuzuki, Tetsuya; Fujiwaka, Setsuya.

    1975-04-01

    An air-core step-up transformer with a high coupling factor has been developed to generate a high voltage pulse for charging the pulse forming line of a relativistic electron beam source. A beam source using the transformer was constructed and well operated for the beam injection into a toroidal system. (auth.)

  9. The formation of kappa-distribution accelerated electron populations in solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Stackhouse, Duncan J.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: d.stackhouse.1@research.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2014-12-01

    Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a kappa distribution. We show that the evolution toward this kappa distribution involves a 'wave front' propagating forward in velocity space, so that electrons of higher energy are accelerated later; the acceleration timescales with energy according to τ{sub acc} ∼ E {sup 3/2}. At sufficiently high energies escape from the finite-length acceleration region will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a time-dependent Fokker-Planck equation in the 'leaky-box' approximation. Solutions are obtained in the limit of a small escape rate from an acceleration region that can effectively be considered a thick target.

  10. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  11. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  12. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  13. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    Science.gov (United States)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  14. Geant4 simulations on Compton scattering of laser photons on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2015-02-24

    Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.

  15. Detection of the Acceleration Site in a Solar Flare

    Science.gov (United States)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  16. On the influence of electromagnetic wave and relativistic electron beam on a plasma

    International Nuclear Information System (INIS)

    El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.

    1993-08-01

    The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs

  17. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-23

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  18. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  19. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  20. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  1. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  2. Study on the intense relativistic electron beam propagation in a collisionless plasma of small density

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions

  3. STATISTICAL STUDY ON THE DECAY PHASE OF SOLAR NEAR-RELATIVISTIC ELECTRON EVENTS

    International Nuclear Information System (INIS)

    Lario, D.

    2010-01-01

    We study the decay phase of solar near-relativistic (53-315 keV) electron events as observed by the Advanced Composition Explorer (ACE) and the Ulysses spacecraft during solar cycle 23. By fitting an exponential function (exp - t/τ) to the time-intensity profile in the late phase of selected solar near-relativistic electron events, we examine the dependence of τ on electron energy, electron intensity spectra, event peak intensity, event fluence, and solar wind velocity, as well as heliocentric radial distance, heliolatitude, and heliolongitude of the spacecraft with respect to the parent solar event. The decay rates are found to be either independent or slightly decrease with the electron energy. No clear dependence is found between τ and the heliolongitude of the parent solar event, with the exception of well-connected events for which low values of τ are more commonly observed than for poorly-connected events. For those events concurrently observed by ACE and Ulysses, decay rates increase at distances >3 AU. Events with similar decay rates at ACE and Ulysses were observed mainly when Ulysses was at high heliographic latitudes. We discuss the basic physical mechanisms that control the decay phase of the electron events and conclude that both solar wind convection and adiabatic deceleration effects influence the final shape of the decay phase of solar energetic particle events, but not as expressed by the models based on diffusive transport acting on an isotropic particle population.

  4. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Wood, C.J.; Olson, R.E.

    1997-08-01

    The complete momentum spectra for single and double ionization of He by 1GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. (orig.)

  5. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  6. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  7. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    Science.gov (United States)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  8. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  9. Time Variations of Observed H α Line Profiles and Precipitation Depths of Nonthermal Electrons in a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Falewicz, Robert; Radziszewski, Krzysztof; Rudawy, Paweł; Berlicki, Arkadiusz, E-mail: falewicz@astro.uni.wroc.pl, E-mail: radziszewski@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: berlicki@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11 (Poland)

    2017-10-01

    We compare time variations of the H α and X-ray emissions observed during the pre-impulsive and impulsive phases of the C1.1-class solar flare on 2013 June 21 with those of plasma parameters and synthesized X-ray emission from a 1D hydrodynamic numerical model of the flare. The numerical model was calculated assuming that the external energy is delivered to the flaring loop by nonthermal electrons (NTEs). The H α spectra and images were obtained using the Multi-channel Subtractive Double Pass spectrograph with a time resolution of 50 ms. The X-ray fluxes and spectra were recorded by RHESSI . Pre-flare geometric and thermodynamic parameters of the model and the delivered energy were estimated using RHESSI data. The time variations of the X-ray light curves in various energy bands and those of the H α intensities and line profiles were well correlated. The timescales of the observed variations agree with the calculated variations of the plasma parameters in the flaring loop footpoints, reflecting the time variations of the vertical extent of the energy deposition layer. Our result shows that the fast time variations of the H α emission of the flaring kernels can be explained by momentary changes of the deposited energy flux and the variations of the penetration depths of the NTEs.

  10. QUASI-PERIODIC ACCELERATION OF ELECTRONS IN THE FLARE ON 2012 JULY 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Nakariakov, Valery M. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Gao, Guannan, E-mail: huangj@bao.ac.cn [Yunnan Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2016-11-10

    Quasi-periodic pulsations (QPPs) of nonthermal emission in an M7.7 class flare on 2012 July 19 are investigated with spatially resolved observations at microwave and HXR bands and with spectral observations at decimetric, metric waves. Microwave emission at 17 GHz of two footpoints, HXR emission at 20–50 keV of the north footpoint and loop top, and type III bursts at 0.7–3 GHz show prominent in-phase oscillations at 270 s. The microwave emission of the loop leg has less pulsation but stronger emission. Through the estimation of plasma density around the loop top from EUV observations, we find that the local plasma frequency would be 1.5 GHz or even higher. Thus, type III bursts at 700 MHz originate above the loop top. Quasi-periodic acceleration or injection of energetic electrons is proposed to dominate these in-phase QPPs of nonthermal emission from footpoints, loop top, and above. In the overlying region, drifting pulsations (DPS) at 200–600 MHz oscillate at a distinct period (200 s). Its global structure drifts toward lower frequency, which is closely related to upward plasmoids observed simultaneously from EUV emission. Hence, nonthermal emission from overlying plasmoids and underlying flaring loops show different oscillating periods. Two individual systems of quasi-periodic acceleration of electrons are proposed to coincide in the bi-direction outflows from the reconnection region.

  11. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    International Nuclear Information System (INIS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-01-01

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He + , He ++ ) and hydrogen (H + ) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas

  12. Proposal for the study of laminar relativistic electron beam generation by a foilless diode

    International Nuclear Information System (INIS)

    Jones, M.E.; Thode, L.E.

    1979-02-01

    The continuation of an analytical and numerical study of intense relativistic electron beam generation by foilless diodes is proposed. The investigation is aimed at optimizing the diode design to produce a laminar flow

  13. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  14. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere?

    International Nuclear Information System (INIS)

    Baker, D.N.; Blake, J.B.; Gorney, D.J.; Higbie, P.R.; Klebesadel, R.W.; King, J.H.

    1987-01-01

    Long-term (1979-present) observations of relativistic electrons (2--15 MeV) at geostationary orbit show a strong solar cycle dependence. Such electrons were largely absent near the last solar maximum (1979--80), while they were prominent during the approach to solar minimum (1983--85). This population now is dwindling as solar minimum has been reached. The strong magnetospheric presence of high-speed solar wind streams which results from solar coronal hole structures during the approach to solar activity (sunspot) minimum. We clearly observe 27-day periodic enhancements of the relativistic electrons in association with concurrently measured solar wind streams (V/sub S//sub W/approx. >600 km/s). We have used a numerical transport code to study the coupling of these high-energy electrons to earth's upper and middle atmosphere. We calculate using the observed energy spectra of the electrons that, when precipitated, these electrons show a large (maximum of ∼100 keV/cm 3 -s) energy deposition at 40--60 km altitude, which is 3--4 orders of magnitude greater than the galactic cosmic ray or solar EUV energy deposition at these altitudes. We also find that the global energy deposition in the mid-latitudes totals nearly 10 21 ergs for a typical 2--3 day event period. We conclude that this previously unrecognized electron population could play an important role in coupling solar wind and magnetospheric variability (on 27--day and 11--year cycles) to the middle atmosphere through a modulating effect on lower D-region ionization and, possibly, on upper level ozone chemistry. These electrons also may contribute to the recent Antarctic polar ozone depletion phenomenon. copyright American Geophysical Union 1987

  15. An essay on sunspots and solar flares

    International Nuclear Information System (INIS)

    Akasofu, S.-I.

    1984-01-01

    The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy. In this paper, attention is paid to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh. A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these large-scale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the large-scale fields. This dynamo process generates also some of the familiar ''force-free'' fields or the ''sheared'' magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that ''low temperature flares'' are directly driven by the photospheric dynamo process. (author)

  16. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  17. A COLD FLARE WITH DELAYED HEATING

    International Nuclear Information System (INIS)

    Fleishman, Gregory D.; Pal'shin, Valentin D.; Lysenko, Alexandra L.; Meshalkina, Natalia; Kashapova, Larisa K.; Altyntsev, Alexander T.

    2016-01-01

    Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus- Wind , microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found to involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.

  18. Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms

    Directory of Open Access Journals (Sweden)

    M. Fukata

    2002-07-01

    Full Text Available During the recovery phase of geomagnetic storms, the flux of relativistic (>2 MeV electrons at geosynchronous orbits is enhanced. This enhancement reaches a level that can cause devastating damage to instruments on satellites. To predict these temporal variations, we have developed neural network models that predict the flux for the period 1–12 h ahead. The electron-flux data obtained during storms, from the Space Environment Monitor on board a Geostationary Meteorological Satellite, were used to construct the model. Various combinations of the input parameters AL, SAL, Dst and SDst were tested (where S denotes the summation from the time of the minimum Dst. It was found that the model, including SAL as one of the input parameters, can provide some measure of relativistic electron-flux prediction at geosynchronous orbit during the recovery phase. We suggest from this result that the relativistic electron-flux enhancement during the recovery phase is associated with recurring substorms after Dst minimum and their accumulation effect.Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storms and substorms

  19. GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL

    International Nuclear Information System (INIS)

    Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W.; Scargle, J. D.; Baldini, L.; Baring, M. G.; Belfiore, A.; Saz Parkinson, P. M.; D'Ammando, F.; Dermer, C. D.; Grove, J. E.; Harding, A. K.; Hays, E.; Mazziotta, M. N.; Tennant, A. F.

    2012-01-01

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of ≈11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 ± 6) × 10 –7 cm –2 s –1 above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 ± 26) MeV at flare maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  20. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. copyright 1997 The American Physical Society

  1. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    International Nuclear Information System (INIS)

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; Panessa, F.

    2012-01-01

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominated by the high-energy hump peaked at 10 20 –10 22 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 10 11 –10 14 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.

  2. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  3. Superdiffusion of relativistic electrons at supernova remnant shocks

    Science.gov (United States)

    Perri, Silvia

    2018-01-01

    Anomalous transport has been observed in various systems as nonlinear systems, numerical simulations of plasma turbulence, in laboratory plasmas, and recently in the propagation of energetic particles in the interplanetary space. Thanks to in situ observations it has been possible to deduce transport properties directly from spacecraft data. This technique has further found applicability to remote observations of relativistic electrons accelerated at supernova remnants (SNRs) shocks, pointing out that far upstream of the blast waves, the x-ray synchrotron emission, as captured by the Chandra spacecraft, is consistent with models of superdiffusive transport (i.e., transport faster than normal diffusive). Here we present and summarize evidences of superdiffusion both in the interplanetary space and upstream of SNRs shock fronts, in particular by analyzing, for the first time in the framework of superdiffusion, the transport properties of electrons accelerated at the young G1.9+0.3 SNR. We also briefly describe how this new model can be used to interpret radio emissions from electrons accelerated at shocks forming during galaxy cluster mergers.

  4. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  5. Current Fragmentation and Particle Acceleration in Solar Flares

    Science.gov (United States)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  6. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  7. Observational evidence of competing source, loss, and transport processes for relativistic electrons in Earth's outer radiation belt

    Science.gov (United States)

    Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan

    Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a

  8. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Science.gov (United States)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  9. Novel non-intercepting diagnostic techniques for low-emittance relativistic electron beams

    International Nuclear Information System (INIS)

    Moran, M.J.; Chang, B.

    1988-01-01

    Relativistic electron beams are being generated with emittances low enough that diffraction radiation can be used for beam diagnostics. Techniques based on diffraction radiation can be used to measure the beam transverse momentum distribution and to measure the transverse spatial distribution. The radiation is intense and can be in the visible spectral region where optical diagnostic techniques can be used to maximum advantage. 4 refs. 3 figs

  10. Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera

    OpenAIRE

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-01-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical ...

  11. Interaction of high-current relativistic electron beams with plasma. Physical nature of the phenomenon and its application in microwave electronics

    International Nuclear Information System (INIS)

    Rukhadze, A.A.

    1981-01-01

    Pulsed high-current electron beams with characteristic parameters: electron energy 10 5 -10 7 eV, electron current 10 3 -10 6 A, pulse duration 10 -8 -10 -6 s, beam energy 10 2 -10 6 J and power 10 8 -10 13 W, are widely used in different branches of science and technology such as controlled thermonuclear fusion, relativistic microwave electronics, powerful semiconductors, chemical and gaseous lasers, new principles of heavy-ion acceleration, and long-distance energy transmission. The paper discusses a new branch of science - pulsed high-current electronics, which has its own experimental technique and methods of theoretical analysis. Parts I and II determine what is meant by ''high current'' in an electron beam and calculate the maximum obtainable current values; these calculations are made for the simplest geometrical configurations realizable in practice. Current methods for theoretical analysis of high-current electron beam physics are described, together with classification of current experimental devices for generating such beams according to high-current parameters. The stability of electron beams is discussed and the concept of critical currents is introduced. Part III gives a detailed account of plasma-beam instability which occurs on the interaction of a high-current electron beam with high-density space-limited plasma. The linear and non-linear stages of beam instability are considered. The given theory is used for calculations for amplifiers and microwave generators of electromagnetic radiation. Finally, the experimental achievements in high-current relativistic microwave electronics are reviewed. (author)

  12. Three dimensional electrostatic solitary waves in a dense magnetoplasma with relativistically degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Masood, W. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); Eliasson, B. [Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)

    2013-09-15

    In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.

  13. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J.T.; Scoby, C.M.; Gutierrez, M.S.; Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S.

    2011-01-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  14. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P., E-mail: musumeci@physics.ucla.edu [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Moody, J.T.; Scoby, C.M.; Gutierrez, M.S. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, NM (United States)

    2011-05-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  15. HYDRO2GEN: Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams

    Science.gov (United States)

    Druett, M. K.; Zharkova, V. V.

    2018-03-01

    Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum

  16. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Directory of Open Access Journals (Sweden)

    K.B. Korotchenko

    2017-11-01

    Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.

  17. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  18. Radial focusing of a relativistic electron beam in a bipotential electrostatic lens

    International Nuclear Information System (INIS)

    Genoni, T.C.

    1994-01-01

    The focusing of a relativistic electron beam in a bipotential electrostatic lens is discussed. An iterative scheme for the solution of the paraxial ray equation is used to derive approximate analytic formulas for the lens parameters and lens transfer matrix elements. The formulas are compared to results of direct numerical integration of the paraxial ray equation

  19. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    Czech Academy of Sciences Publication Activity Database

    Hajra, R.; Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.; Brum, Ch. G. M.; Antunes Vieira, L. E.; Santolík, Ondřej

    2015-01-01

    Roč. 67, Article Number 109 (2015), 109/1-109/11 ISSN 1880-5981 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : HILDCAAs * high-speed streams * CIRs * chorus plasma waves * radiation belt * magnetospheric relativistic electrons * solar wind * geomagnetic storms Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.871, year: 2015

  20. Effect of Vavilov–Cherenkov radiation cone transformation upon entry of a relativistic electron into a substance layer

    Energy Technology Data Exchange (ETDEWEB)

    Kishchin, I. A.; Kubankin, A. S., E-mail: kubankin@bsu.edu.ru; Nikulicheva, T. B.; Al-Omari; Sotnikov, A. V.; Starovoitov, A. S. [Belgorod National Research University (Russian Federation)

    2016-12-15

    Transformation of the Vavilov–Cherenkov radiation cone under grazing interaction of a relativistic electron with a layer of substance is theoretically studied. It is shown that this effect can occur when the electron enters the substance layer.

  1. Electron Beam Propagation in a Plasma

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1988-06-01

    Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.

  2. Wakefield excitation in plasma resonator by a sequence of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    Wakefield excitation in a plasma resonator by a sequence of relativistic electron bunches with the purpose to increase excited field amplitude in comparison to waveguide case is experimentally investigated. A sequence of short electron bunches is produced by the linear resonant accelerator. Plasma resonator is formed at the beam-plasma discharge in rectangular metal waveguide filled with gas and closed by metal foil at entrance and movable short-circuited plunger at exit. Measurements of wakefield amplitude are performed showing considerably higher wakefield amplitude for resonator case

  3. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  4. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  5. Response of a relativistic quantum magnetized electron gas

    International Nuclear Information System (INIS)

    Melrose, Donald B; Weise, Jeanette I

    2009-01-01

    The response 4-tensor is derived for a spin-independent, relativistic magnetized quantum electron gas. The sum over spins is carried out both directly and using a procedure due to Ritus. The 4-tensor components are written in terms of a sum over the two solutions of the resonance condition for the particle 4-momentum. It is shown that the dispersive properties may be described in terms of a single plasma dispersion function, for arbitrary occupation numbers for electrons and positrons in each Landau level. The plasma dispersion function is evaluated explicitly in the completely degenerate and nondegenerate thermal limits. The perpendicular wave number appears in the arguments of J-functions, which are proportional to generalized Laguerre polynomials, but not in the plasma dispersion function. The result generalizes a known form for the response tensor for parallel propagation (in the completely degenerate case), when the J-functions are either zero or unity, to arbitrary angles of propagation.

  6. Instabilities excited by head-on collisions of two relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shu-Ying

    1982-02-01

    In this paper, we studied the instabilities excited by head-on collision of two relativistic electron beams in transporting, taking account of the magnetic field B/sub 0/ and the thermal pressure delp of the beams. The conditions under which the instabilities occur and the growth rate of instabilities are obtained. The results show that these instabilities can be excited or inhibited by controlling the velocity of the beams.

  7. Relativistic quantum similarities in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2011-01-01

    A study of different quantum similarity measures and their corresponding quantum similarity indices is carried out for the atoms from H to Lr (Z=1-103). Relativistic effects in both position and momentum spaces have been studied by comparing the relativistic values to the non-relativistic ones. We have used the atomic electron density in both position and momentum spaces obtained within relativistic and non-relativistic numerical-parameterized optimized effective potential approximations. -- Highlights: → Quantum similarity measures and indices in electronic structure of atoms. → Position and momentum electronic densities. → Similarity of relativistic and non-relativistic densities. → Similarity of core and valence regions of different atoms. → Dependence with Z along the Periodic Table.

  8. Flaring fix: better technologies green flaring

    International Nuclear Information System (INIS)

    Stastny, P.

    2004-01-01

    Recent advances in reducing solution gas flaring and venting are discussed, highlighting the 2002 report of the Clean Air Strategic Alliance (CASA) and its 39 recommendations targeting a 50 per cent reduction in flaring from a 1996 baseline. Much of the improvement to date (62 per cent at the end of 2002 on an annual basis) has come from collecting and sending gas down pipelines for processing, but improvements in technologies such as incineration, in combustion efficiency, and the use of micro-turbines, also helped to make a difference. Improvements in smokeless flares, through the addition of a special flare tip to flare stacks, has similarly contributed to higher combustion efficiency, and further improvements are expected from sonic flare technology currently under development. Expectations are also high for advances in incinerator technology, particularly enclosed burner systems, which almost completely burn flare gas while having no visible flame, smoke or odor

  9. Relativistic effects in ultra-high-intensity laser-plasma interaction: electron parametric instabilities and ponderomotive force

    International Nuclear Information System (INIS)

    Quesnel, Brice

    1998-01-01

    This research thesis reports a theoretical and numeric study of the behaviour of two non linear phenomena of the laser-plasma interaction physics in a relativistic regime: the electronic parametric instabilities, and the ponderomotive force. In a first part, the author establishes the three-dimensional scattering relationship of electron parametric instabilities for a circularly polarised wave propagating in a homogeneous and cold plasma, without limitations of wave intensity, nor of plasma density. Results are verified by comparison with those of two-dimensional numerical simulations. The Weibel instability is also briefly studied in relativistic regime. In the second part, the author establishes an expression of the ponderomotive force exerted by an ultra-intense laser pulse in the vacuum about the focus point. A numerical code of integration of equations of motion of an electron in the laser field is used for the different expressions corresponding different approximation degrees. Results are used to interpret a recent experiment, and to critic other theoretical works [fr

  10. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina

    2012-01-01

    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  11. Investigation of focusing of relativistic electron and positron bunches moving in cold plasma. Final report

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Elbakian, S.S.; Khachatryan, A.G.; Sekhpossian, E.V.

    1995-03-01

    This document is the final report on a project to study focusing effects of relativistic beams of electrons and positrons interacting with a cold plasma. The authors consider three different models for the overdense cold plasma - electron bunch interaction. They look at coulomb effects, wakefield effects, bunch parameters, and the effects of trains of pulses on focusing properties

  12. The thermal phase of solar flares

    International Nuclear Information System (INIS)

    Hirayama, Tadashi

    1979-01-01

    This paper is described on the observation of the flares, and then the numerical simulation on the structural change in the corona and the chromosphere during the flare is briefly discussed. Most of the flares occur on the active region where the density and the electron temperature are higher than those in the quiet region. The temperature and density increase after the flare started. The temperature of the pre-flare chromosphere is about 6000 K, and it rises during the flare. The temperature of the transition region is about 10 5 K, and the gas pressure increases more than one order of magnitude during the flare. Sometimes, the flaring in the photosphere is observed. Large amount of mass ejected at the time of the flare is observed. Most probable energy source of the flare is the magnetic energy contained in the form of electric current. Liberation of this energy into the corona is discussed in this paper. It is assumed that a column of unit area is standing vertically in the corona, the top being closed. A hydrostatic model of the corona-chromosphere is constructed, in which the heat source is assumed to be in the corona. As the results of calculation, it can be said that the temperature of the flaring corona does not depend upon the liberated energy, the density in the corona increases proportionally to the energy, and particles are supplied from the chromosphere with the upward velocity of about 100 km/s. The gas pressure of the transition region can become up to three orders of magnitude larger. All these are consistent with the observation. Extension of this calculation is also performed. (Kato, T.)

  13. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  14. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    International Nuclear Information System (INIS)

    Tang, C. L.; Wang, Y. X.; Ni, B.; Zhang, J.-C.

    2017-01-01

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. For non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.

  15. Flare-related color effects in UV Ceti stars

    International Nuclear Information System (INIS)

    Flesch, T.R.

    1975-01-01

    The UV Ceti flare stars YZ CMi, BD+16 0 2708, EV Lac, and AD Leo were monitored photoelectrically for flare activity with the 76 centimeter reflecting telescope of the University of Florida's Rosemary Hill Observatory. Observations were carried out from January, 1973 to April, 1975. The instrumentation allowed simultaneous readings to be taken at 3500, 4632, and 6496A with a time resolution of 2 seconds. A total of 15 major events were observed, with 14 of these being observed in all three colors. All events showed the classical fast rise and slower decline that is typical of this type of activity. One event showed peculiar behavior in the red bandpass that may indicate strong dependence of the flare light in some cases on line emission. The data were applied to the fast electron model of flare activity proposed by Gurzadyan. Several serious inconsistencies in the theory were found that would not have been evident in single-channel monitoring. No event could be fitted in all three colors using consistent values of the unknown parameters in the theory. The most serious deficiencies in the theory were the wavelength dependence of the optical depth of the electron cloud and the lack of treatment of line emission behavior. Differential color indices for flare light are calculated and are shown to be essentially constant throughout the entire event for the stronger flares. A color-color plot of the flare light at maximum reveals that 11 of the flares show a linear relation. This relation indicates that the smaller the u-b index, the larger is the b-r index. This is probably directly involved with line emission during flare events. Future research possibilities are discussed, with spectroscopic studies and simultaneous multicolor observations being stressed

  16. Relativistic Bose-Einstein condensates thin-shell wormholes

    Science.gov (United States)

    Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali

    2017-10-01

    We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.

  17. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  18. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  19. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  20. Relativistic electron acceleration in focused laser fields after above-threshold ionization

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2003-01-01

    Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently producible laser pulses up to GeV energies, as shown recently by Hu and Starace [Phys. Rev. Lett. 88, 245003 (2002)]. To describe electron acceleration by general focused laser fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization event. Analytical expressions for electron energy gain are derived and the applicability conditions of the ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are supported by numerical computations

  1. Relativistic band-structure calculations for electronic properties of actinide dioxides

    International Nuclear Information System (INIS)

    Maehira, Takahiro; Hotta, Takashi

    2007-01-01

    Energy band structures of actinide dioxides AnO 2 (An=Th, U, Np, and Pu) are investigated by a relativistic linear augmented-plane-wave method with the exchange-correlation potential in a local density approximation (LDA). It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between actinide 5f and oxygen 2p electrons. By focusing on the crystalline electric field states, we point out the problem in the application of the LDA to AnO 2

  2. Electronic excitation in transmission of relativistic H- ions through thin foils

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Kuerpick, P.; Burgdoerfer, J.; Yoshida, S.

    1998-01-01

    The authors describe a theoretical model to study the transmission of relativistic H - ions through thin carbon foils. The approach is based on a Monte Carlo solution of the Langevin equation describing electronic excitations of the atoms during the transport through the foil. Calculations for the subshell populations of outgoing hydrogen atoms are found to be in good agreement with recent experimental data on an absolute scale and show that there exists a propensity for populating extreme Stark states

  3. Quasistationary model of high-current relativistic electron beam. 1. Exact solution of Poisson equations

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.

    1995-01-01

    The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig

  4. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  5. On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, P.; Kašparová, J. [Astronomical Institute, Czech Academy of Sciences, 25165 Ondřejov (Czech Republic); Kleint, L.; Krucker, S., E-mail: pheinzel@asu.cas.cz [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2017-09-20

    The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanisms depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.

  6. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  7. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    Science.gov (United States)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  8. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    International Nuclear Information System (INIS)

    Gonzalez Felipe, R.; Perez Martinez, A.; Perez-Rojas, H.

    1990-05-01

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  9. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    Science.gov (United States)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  10. Fully relativistic free-electron laser in a completely filled waveguide

    International Nuclear Information System (INIS)

    Farokhi, B.; Abdykian, A.

    2005-01-01

    An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)

  11. Laser-driven relativistic electron dynamics in a cylindrical plasma channel

    Science.gov (United States)

    Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui

    2018-03-01

    The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).

  12. A neural network model of the relativistic electron flux at geosynchronous orbit

    International Nuclear Information System (INIS)

    Koons, H.C.; Gorney, D.J.

    1991-01-01

    A neural network has been developed to model the temporal variations of relativistic (>3 MeV) electrons at geosynchronous orbit based on model inputs consisting of 10 consecutive days of the daily sum of the planetary magnetic index ΣKp. The neural network consists of three layers of neurons, containing 10 neurons in the input layer, 6 neurons in a hidden layer, and 1 output neuron. The output is a prediction of the daily-averaged electron flux for the tenth day. The neural network was trained using 62 days of data from July 1, 1984, through August 31, 1984, from the SEE spectrometer on the geosynchronous spacecraft 1982-019. The performance of the model was measured by comparing model outputs with measured fluxes over a 6-year period from April 19, 1982, to June 4, 1988. For the entire data set the rms logarithmic error of the neural network is 0.76, and the average logarithmic error is 0.58. The neural network is essentially zero biased, and for accumulation intervals of 3 days or longer the average logarithmic error is less than 0.1. The neural network provides results that are significantly more accurate than those from linear prediction filters. The model has been used to simulate conditions which are rarely observed in nature, such as long periods of quiet (ΣKp = 0) and ideal impulses. It has also been used to make reasonably accurate day-ahead forecasts of the relativistic electron flux at geosynchronous orbit

  13. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  14. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  15. Effects of the electron's anomaly in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Tetchou Nganso, H.M.; Kwato Njock, M.G.

    2006-02-01

    We investigate the influence of the electron's anomalous magnetic moment on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. For this purpose, we use the Coulomb-Dirac-Volkov and the Dirac-Volkov functions with the electron's anomaly to describe the initial and final states respectively. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for linearly polarized laser light. Numerical calculations are carried out for various parameters values (i.e. scattering angle, the nucleus charge, photon energy, electrical field) and are compared with results obtained by Li et al. It is found that for parameters used in the present work, incorporating the anomaly of the electron in the initial and final states yields cross sections which are strongly modified whatever the scattering geometry, as compared to the outcome of the previous treatment. (author)

  16. Near-real time forecasts of MeV protons based on sub-relativistic electrons: communicating the outputs to the end users

    Science.gov (United States)

    Sarlanis, Christos; Heber, Bernd; Labrenz, Johannes; Kühl, Patrick; Marquardt, Johannes; Dimitroulakos, John; Papaioannou, Athanasios; Posner, Arik

    2017-04-01

    Solar Energetic Particle (SEP) events are one of the most important elements of space weather. Given that the complexity of the underlying physical processes of the acceleration and propagation of SEP events is still a very active research area, the prognosis of SEP event occurrence and their corresponding characteristics remains challenging. In order to provide up to an hour warning time before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. The REleASE forecasting scheme was recently rewritten in the open access programming language PYTHON and will be made publicly available. As a next step, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v work, we demonstrate the real-time outputs derived by the end user from the REleASE using both SOHO/EPHIN and ACE/EPAM. We further, show a user friendly illustration of the outputs that make use of a "traffic light" to monitor the different warning stages: quiet, warning, alert offering a simple guidance to the end users. Finally, the capabilities offered by this new system, accessing both the pictorial and textural outputs REleASE are being presented. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  17. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  18. Solar flares

    International Nuclear Information System (INIS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods is presented. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood. (IAA)

  19. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  20. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  1. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  2. Foldy-Wouthuysen transformations for the classical relativistic electron. Non grassmannian description

    International Nuclear Information System (INIS)

    Pupasov-Maksimov, Andrey; Deriglazov, Alexei

    2012-01-01

    Full text: We consider a classical model of the relativistic electron proposed by A. Deriglazov in Phys. Lett. A 376 (2012) 309-313. Though this model contains only bosonic variables, its quantization leads to the Dirac equation and one-particle relativistic quantum mechanics of the electron. There are constraints and gauge symmetries, therefore 18 initial variables of the model {x μ , p μ , ω A , π A }, μ is an element of (0,4), A is an element of (0,5) do not correspond to the observable quantities. There are 10 physical degrees of freedom implying another set of 10 gauge invariant variables which will be interpreted as physically observable quantities. On the other hand, to have a consistent one-particle relativistic quantum mechanics one has to consider only even operators which do not mix quantum states with positive and negative energy states. Such separation can be obtained with the Foldy-Wouthuysen transformation and leads to the Foldy-Wouthuysen representation with new operators for coordinates and spin (so-called Newton-Wigner coordinates). In the present work we match these to pictures by comparing the choice of the gauge invariant classical variables and the transition to the even operators in the quantum mechanics. We study different canonical transformations of this classical model in order to separate the set of observable quantities from variables with ambiguous dynamics. The constraints of the model in the case of free particle can be chosen in such a way that the Dirac brackets coincide with the Poisson brackets. This choice significantly simplify calculations of transformed variables. Moreover, new variables are canonical variables by construction. It is shown that the following generator of an infinitesimal canonical transformation S=1/2J 5j p j A(p 2 ), can be associated with the Foldy-Wouthuysen transformation. Thus we obtain a classical analog of the Foldy- Wouthuysen transformation. Moreover, the gauge invariant variables in the

  3. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  4. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  5. Total yield of channeling radiation from relativistic electrons in thin Si and W crystals

    International Nuclear Information System (INIS)

    Abdrashitov, S.V.; Bogdanov, O.V.; Dabagov, S.B.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2013-01-01

    Orientation dependences of channeling radiation total yield from relativistic 155–855 MeV electrons at both 〈1 0 0〉 axial and (1 0 0) planar channeling in thin silicon and tungsten crystals are studied by means of computer simulations. The model as well as computer code developed allows getting the quantitative results for orientation dependence of channeling radiation that can be used for crystal alignment in channeling experiments and/or for diagnostics of initial angular divergence of electron beam

  6. Relativistic properties of spherical diodes with a radial electron flux

    International Nuclear Information System (INIS)

    Chetvertkov, V.I.

    1987-01-01

    Forward and backward electron diodes with concentric spherical electrodes (inner cathode, outer anode or vice versa) are considered under the assumption that the emission is limited by the space charge and the guiding magnetic field is predominantly radial within a region of solid angle α f < 4π bounding the electron flux. The Poisson equations for the relativistic factor γ are solved for generalized model dependences. Ultrarelativistic and new nonrelativistic solutions are found, and analytic approximations to the solution near the cathode are used to carry out numerical calculations. The characteristics of forward and backward diodes turn out to be related to the exact solutions for a planar diode. Accurate approximations are found for calculating the diode parameters in a wide range of voltages; they can also be used to check the validity of the 3/2 laws and the ultrarelativistic solutions

  7. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  8. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  9. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  10. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  11. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  12. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    Science.gov (United States)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  13. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  14. Electron acoustic waves and parametric instabilities in a 4-component relativistic quantum plasma with Thomas-Fermi distributed electrons

    Science.gov (United States)

    Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus

    2018-01-01

    The interaction of Circularly Polarized Electro-Magnetic (CPEM) waves with a 4-component relativistic quantum plasma is studied. The plasma constituents are: relativistic-degenerate electrons and positrons, dynamic degenerate ions, and Thomas-Fermi distributed electrons in the background. We have employed the Klein-Gordon equations for the electrons as well as for the positrons, while the ions are represented by the Schrödinger equation. The Maxwell and Poisson equations are used for electromagnetic waves. Three modes are observed: one of the modes is associated with the electron acoustic wave, a second mode at frequencies greater than the electron acoustic wave mode could be associated with the positrons, and the third one at the lowest frequencies could be associated with the ions. Furthermore, Stimulated Raman Scattering (SRS), Modulational, and Stimulated Brillouin Scattering (SBS) instabilities are studied. It is observed that the growth rates of both the SRS and SBS instabilities decrease with increase in the quantum parameter of the plasma. It is also observed that the scattering spectra in both the SRS and SBS get restricted to very small wavenumber regions. It is shown that for low amplitude CPEM wave interaction with the quantum plasma, the positron concentration has no effect on the SRS and SBS spectra. In the case of large amplitude CPEM wave interaction, however, one observes spectral changes with varying positron concentrations. An increase in the positron concentration also enhances the scattering instability growth rates. Moreover, the growth rate first increases and then decreases with increasing intensity of the CPEM wave, indicating an optimum value of the CPEM wave intensity for the growth of these scattering instabilities. The modulational instability also shows dependence on the quantum parameter as well as on the positron concentration.

  15. Characteristics of pitch angle distributions of relativistic electrons under the interaction with Pc5 waves in the inner magnetosphere

    Science.gov (United States)

    Kamiya, K.; Seki, K.; Saito, S.; Amano, T.; Yoshizumi, M.

    2017-12-01

    Radial transport of relativistic electrons in the inner magnetosphere has been considered as one of acceleration mechanisms of the outer radiation belt electrons and can be driven by the drift resonance with ULF waves in the Pc5 frequency range. The maximum changes of the electron in the radial distance (L) due to the drift resonance depend on the electron energy, pitch angle, and Pc5 wave structure. Those dependences are expected to form the characteristic pitch angle distributions (PADs) as a function of L and electron energy. In this study, we investigate PADs of relativistic electrons due to the drift resonance with a monochromatic Pc5 wave by using two simulation models of the inner magnetosphere: GEMSIS-Ring Current (RC) and GEMSIS-Radiation Belt (RB) models. The GEMSIS-RB simulations calculate guiding center trajectories of relativistic electrons in electric and magnetic fields obtained from the GEMSIS-RC model, which simulates a monochromatic Pc5 wave propagation in the inner magnetosphere. The results show the characteristic PADs depending on the energy and L, which is explicable with the pitch angle dependence of resonance conditions. At a fixed location, those PADs can change from pancake (90°peaked) to butterfly (two peaks in oblique PAs) distributions as the transport by the monochromatic Pc5 wave progresses. These butterfly distributions are seen in the L range where electrons with lower PAs satisfy the resonance condition. It is also found that the lower PA electron with a fixed magnetic moment can be transported deeper inside because of the PA changes to larger values through the adiabatic transport, which enables them to satisfy the efficient resonance condition in wider L range compared to the 90 degrees PA electrons.

  16. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, 8010 Graz (Austria)

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  17. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  18. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    Science.gov (United States)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  19. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    Science.gov (United States)

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  20. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  1. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    Science.gov (United States)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  2. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: adam.f.kowalski@nasa.gov [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  3. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.

    2016-01-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10 4 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100

  4. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  5. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  6. Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma

    International Nuclear Information System (INIS)

    Nejoh, Yasunori

    1994-07-01

    Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)

  7. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  8. Generation of relativistic electron beam and its anomalous stopping in the fast ignition scheme

    International Nuclear Information System (INIS)

    Sengupta, S.; Sandhu, A.S.; Dharmadhikari, A.K.; Kumar, G.R.; Das, A.; Kaw, P.K.

    2005-01-01

    We present experimental/theoretical results concerning two main physics issues related to the fast ignition scheme viz. the nonlinear mechanism of conversion of incident laser energy into a relativistic electron beam at the critical layer and its subsequent transport through an overdense plasma. Theoretical/numerical modelling of the experimental data, firstly shows that the conversion of the laser energy into an inward propagating electron beam occurs through the nonlinear mechanism of wave breaking of plasma waves excited at the critical layer and, secondly the transport of the electron beam through the overdense plasma is influenced by electrostatically induced and/or turbulence induced anomalous resistivity. (author)

  9. Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres

    Science.gov (United States)

    Kowalski, Adam F.; Allred, Joel C.

    2018-01-01

    The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.

  10. The evolution of flaring and non-flaring active regions

    Science.gov (United States)

    Kilcik, A.; Yurchyshyn, V.; Sahin, S.; Sarp, V.; Obridko, V.; Ozguc, A.; Rozelot, J. P.

    2018-06-01

    According to the modified Zurich classification, sunspot groups are classified into seven different classes (A, B, C, D, E, F and H) based on their morphology and evolution. In this classification, classes A and B, which are small groups, describe the beginning of sunspot evolution, while classes D, E and F describe the large and evolved groups. Class C describes the middle phase of sunspot evolution and the class H describes the end of sunspot evolution. Here, we compare the lifetime and temporal evolution of flaring and non-flaring active regions (ARs), and the flaring effect on ARs in these groups in detail for the last two solar cycles (1996 through 2016). Our main findings are as follows: (i) Flaring sunspot groups have longer lifetimes than non-flaring ones. (ii) Most of the class A, B and C flaring ARs rapidly evolve to higher classes, while this is not applicable for non-flaring ARs. More than 50 per cent of the flaring A, B and C groups changed morphologically, while the remaining D, E, F and H groups did not change remarkably after the flare activity. (iii) 75 per cent of all flaring sunspot groups are large and complex. (iv) There is a significant increase in the sunspot group area in classes A, B, C, D and H after flaring activity. In contrast, the sunspot group area of classes E and F decreased. The sunspot counts of classes D, E and F decreased as well, while classes A, B, C and H showed an increase.

  11. A comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter.

    Science.gov (United States)

    Konstantopoulou, Kallirroi; Del'Omo, Roberto; Morley, Anne M; Karagiannis, Dimitris; Bunce, Catey; Pavesio, Carlos

    2015-10-01

    To assess the accuracy of standard clinical grading of aqueous flare in uveitis according to the Standardization of Uveitis Nomenclature consensus, and compare the results with the readings of the laser flare meter, Kowa 500. Two examiners clinically graded the flare in 110 eyes. The flare was then measured using the Kowa laser flare meter. Twenty-nine eyes were graded as anterior chamber flare +2; for 18 of these, the clinicians were in agreement, the rest differed by the order of one grade. The range of the laser flare meter for these eyes was 5.2-899.1 photons/ms. The median value was 41.4. Seventy-four eyes were graded with flare +1. Agreement was established in 51 of these eyes. Disagreement for the rest was again by the order of 1, and the flare meter range was 1.1-169.9 photons/ms, median value 18.4. For the clinical measure of flare 0, the clinicians disagreed on three out of five eyes. The flare meter readings ranged from 2.5 to 14.1 photons/ms, median value 9.9. Only two eyes were graded with flare +3 and there was one step disagreement on both of them. We found little evidence of association between the flare readings and intraocular pressure or age. Our findings suggest that clinical evaluation of aqueous flare is subjective. Compared with the Kowa laser flare meter's numeric readings, the discrepancies observed indicate that clinical grading is an approximate science. The laser flare meter provides an accurate, reproducible, non-invasive assessment of aqueous flare that can prove valuable in research and clinical decisions.

  12. Instrumental development of a quasi-relativistic ultrashort electron beam source for electron diffractions and spectroscopies.

    Science.gov (United States)

    Shin, Young-Min; Figora, Michael

    2017-10-01

    A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within quasi-relativistic UED system.

  13. The inner-relationship of hard X-ray and EUV bursts during solar flares

    International Nuclear Information System (INIS)

    Emslie, A.G.; Brown, J.C.; Donnelly, R.F.

    1978-01-01

    A comparison is made between the flux-versus-time profile in the EUV band and the thick target electron flux profile as inferred from hard X-rays for a number of moderately large solar flares. This complements Kane and Donnelly's (1971) study of small flares. The hard X-ray data are from ESRO TD-1A and the EUV inferred from SFD observations. Use of a chi 2 minimising method shows that the best overall fit between the profile fine structures obtains for synchronism to < approximately 5 s which is within the timing accuracy. This suggests that neither conduction nor convection is fast enough as the primary mechanism of energy transport into the EUV flare and rather favours heating by the electrons themselves or by some MHD wave process much faster than acoustic waves. The electron power deposited, for a thick target model, is however far greater than the EUV luminosity for any reasonable assumptions about the area and depth over which EUV is emitted. This means that either most of the power deposited is conducted away to the optical flare or that only a fraction < approximately 1-10% of the X-ray emitting electrons are injected downwards. Recent work on Hα flare heating strongly favours the latter alternative - i.e. that electrons are mostly confined in the corona. (Auth.)

  14. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  15. Relativistic electron beam interaction and $K_{\\alpha}$-generation in solid targets

    CERN Document Server

    Fill, E; Eder, D; Eidmann, K; Saemann, A

    1999-01-01

    When fs laser pulses interact with solid surfaces at intensities I lambda /sup 2/ >10/sup 18/ W/cm/sup 2/ mu m/sup 2/, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K/sub alpha /) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fur Quantenoptik, we investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 mu m. By varying the position of the focus, we measure the copper K/sub alpha /-yield as a function of intensity in a range from 10/sup 15/ to 2 x 10/sup 18/ W/cm/sup 2/ while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10/s...

  16. Solar flare pion and neutron production

    International Nuclear Information System (INIS)

    Forrest, D.J.; Vestrand, W.T.

    1992-01-01

    During cycle 21, the Gamma Ray Spectrometer on SMM observed three large flares with clear evidence for pion decay gamma rays and high energy neutrons. Two of these had an extended emission phase. The emission observed in these extended phases were clearly different from those observed in the impulsive phase. Compared to the impulsive phase, the extended phase emissions were strongly deficient in electron bremsstrahlung relative to the nuclear line emission in the 1.0-7.0 MeV band and appeared to have a reduced energetic neutron to pion gamma ray emission in the >10 MeV band. These changes can be produced either by a strong hardening of the accelerated ion spectrum together with a relative decrease in the energetic electron spectrum, or by a pronounced change in the geometry of the particle spectrum downwards towards the photosphere. The authors review the observational evidence in terms of these two possibilities. A dramatic change in the energetic particle geometry appears to offer the simplest explanation. If true these two flares represent the first clear evidence of strong particle geometry effects within individual flares

  17. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  18. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  19. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    Science.gov (United States)

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  20. Radio-flaring Ultracool Dwarf Population Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew, E-mail: mroute@purdue.edu [Department of Astronomy and Astrophysics, the Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2017-08-10

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator is powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ∼5% of radio-flaring UCDs within the local interstellar neighborhood (<25 pc away) have been discovered. I discuss a number of scenarios that may explain this radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.

  1. Microwave emission from flaring magnetic loops

    International Nuclear Information System (INIS)

    Vlahos, L.

    1980-01-01

    The microwave emission from a flaring loop is considered. In particular the author examines the question: What will be the characteristics of the radio emission at centimeter wavelengths from a small compact flaring loop when the mechanism which pumps magnetic energy into the plasma in the form of heating and/or electron acceleration satisfies the conditions: (a) the magnetic energy is released in a small volume compared to the volume of the loop, and the rate at which magnetic energy is transformed into plasma energy is faster than the energy losses from the same volume. This causes a local enhancement of the temperature by as much as one or two orders of magnitude above the coronal temperature; (b) The bulk of the energy released goes into heating the plasma and heats primarily the electrons. (Auth.)

  2. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  3. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  4. Geometry of the diffusive propagation region in the August 14, 1982 solar electron event

    Science.gov (United States)

    Evenson, P. A.

    1985-01-01

    On August 14, 1982, relativistic electrons arrived promptly after an impulsive gamma ray flare, indicating that very little scattering was taking place in interplanetary space. By ignoring anisotropy data the time profile of the event is well described by interplanetary diffusion except for the derived particle injection time. This discrepancy provides independent evidence that the particles are diffusing in a volume close to the Sun rather than in interplanetary space. The flux at maximum method of determining the number of particles produced is still a good approximation when appropriately applied.

  5. Relativistic Electrons Observed at UARS and the Interpretation of their Storm-Associated Intensity Variations

    Science.gov (United States)

    Pesnell, W. D.; Goldberg, R. A.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    The High Energy Particle Spectrometer (HEPS) instrument on the Upper Atmosphere Research Satellite (UARS) provides a database of electron intensities well resolved in energy and pitch-angle. Because of its 57 deg. orbital inclination, UARS encounters with magnetic shells L greater than 2 occur quite far off-equator (B/B (sub 0) greater than 9), corresponding to equatorial pitch angle alpha (sub 0) greater than 20 deg. Data acquired by HEPS (October 1991 through September 1994) span the declining phase of Solar Cycle 22. To reveal the storm-associated time dependence of relativistic electron intensities over the wide range of energies (50 keV to 5 MeV) covered by HEPS, we divide the daily average of the measured spectrum at a given L value (bin width = 0.25) by the corresponding 500-day average and plot the results with a color scale that spans only 2.5 decades. The data show that our off-equatorial electron intensities typically increase with time after the end of recovery phase (not during main phase or recovery phase) of each geomagnetic storm. The delay in off-equatorial energetic electron response and the subsequent lifetime of the corresponding electron flux enhancement seem to increase with particle energy above 300 keV. The trend below 300 keV seems to be opposite, such that the delay varies inversely with electron energy. Our working hypothesis for interpretation is that stormtime radial transport tends to increase the phase-space densities of trapped relativistic electrons but typically leads to a flux increases at specified energies only as the current (as indicated by Dst) decays. Flux enhancements in early recovery phase are greatest for equatorially mirroring electrons, and to pitch-angle anisotropies are initially large. Subsequent pitch-angle diffusion broadens the flux enhancement to particles that mirror off equator, thus gradually increasing low-altitude electron intensities (as detected by HEPS/UARS) on time scales equal to about 20% of

  6. Deep Flare Net (DeFN) Model for Solar Flare Prediction

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Ishii, M.

    2018-05-01

    We developed a solar flare prediction model using a deep neural network (DNN) named Deep Flare Net (DeFN). This model can calculate the probability of flares occurring in the following 24 hr in each active region, which is used to determine the most likely maximum classes of flares via a binary classification (e.g., ≥M class versus statistically predict flares, the DeFN model was trained to optimize the skill score, i.e., the true skill statistic (TSS). As a result, we succeeded in predicting flares with TSS = 0.80 for ≥M-class flares and TSS = 0.63 for ≥C-class flares. Note that in usual DNN models, the prediction process is a black box. However, in the DeFN model, the features are manually selected, and it is possible to analyze which features are effective for prediction after evaluation.

  7. On the relativistic large-angle electron collision operator for runaway avalanches in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2018-02-01

    Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.

  8. Multiple-wavelength analysis of energy release during a solar flare - Thermal and nonthermal electron populations

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.; Klein, Karl-Ludwig; Kerdraon, Alain; Trottet, Gerard

    1990-01-01

    Collaborative solar investigations by Tufts University and the Observatoire de Paris have resulted in simultaneous radio observations with the Very Large Array (VLA) and the Nancay Radioheliograph (NR), comparisons of this radio data with X-ray observations, and theoretical interpretations of the dominant radiation mechanisms during a weak impulsive solar flare observed on May 28, 1988. The VLA has mapped the flaring structures at time intervals of 3.3 s, showing that the preflash and flash-phase components of the impulsive emission originate in spatially separated sources. The 20.7 cm preflash source is ascribed to thermal gyroresonance emission from coronal loops with typical magnetic field strengths of up to 270 G; this emission is associated with heating and exhibits no detectable hard X-ray radiation above 30 keV. The flash-phase 20.7 cm source and the hard X-ray emission are attributed to nonthermal electrons in the coronal and chromospheric portions of a magnetic loop. The combination of imaging observations at 20.7 and 91.6 cm excludes emission from a confined hot plasma during the flash phase.

  9. Transport mean free path related to trajectory patterns: Comparison of nonrelativistic and highly relativistic electron penetration through matter

    International Nuclear Information System (INIS)

    Liljequist, D.; Ismail, M.

    1987-01-01

    This analysis is based on the similarity between multiple scattering and slowing down (random walk) processes described by the same transport mean-free-path function λ/sub tr/(s) (s = path length). We discuss the connection between λ/sub tr/(s) and the characteristic appearance and scale of the trajectory pattern. Straggling is considered by means by stochastically discontinuous λ/sub tr/(s) functions. In the application to electron penetration, we show that while nonrelativistic electron penetration is modeled by λ/sub tr/ = (r-s)/α, where r is the range and α is a material-dependent dimensionless constant, highly relativistic electron penetration is modeled by λ/sub tr/proportionalexp(-s/Λ), where Λ is a length characteristic for the penetrated material. The respective trajectory patterns are distinctly different. The effect of straggling on the trajectory pattern in the highly relativistic case is demonstrated by means of a simple model of the stochastic λ/sub tr/(s) behavior

  10. Rocket measurements of relativistic electrons: New features in fluxes, spectra and pitch angle distributions

    International Nuclear Information System (INIS)

    Herrero, F.A.; Baker, D.N.; Goldberg, R.A.

    1991-01-01

    The authors report new features of precipitating relativistic electron fluxes measured on a spinning sounding rocket payload at midday between altitudes of 70 and 130 km in the auroral region (Poker Flat, Alaska, 65.1 degree N, 147.5 degree W, and L = 5.5). The sounding rocket (NASA 33.059) was launched at 21:29 UT on May 13, 1990 during a relativistic electron enhancement event of modest intensity. Electron fluxes were measured for a total of about 210 seconds at energies from 0.1 to 3.8 MeV, while pitch angle was sampled from 0 degree to 90 degree every spin cycle. Flux levels during the initial 90 seconds were about 5 to 8 times higher than in the next 120 seconds, revealing a time scale of more than 100 seconds for large amplitude intensity variations. A shorter time scale appeared for downward electron bursts lasting 10 to 20 seconds. Electrons with energies below about 0.2 MeV showed isotropic pitch angle distributions during most of the first 90 seconds of data, while at higher energies the electrons had highest fluxes near the mirroring angle (90 degree); when they occurred, the noted downward bursts were seen at all energies. Data obtained during the second half of the flight showed little variation in the shape of the pitch angle distribution for energies greater than 0.5 MeV; the flux at 90 degree was about 100 times the flux at 0 degree. They have compared the low altitude fluxes with those measured at geostationary orbit (L = 6.6), and find that the low altitude fluxes are much higher than expected from a simple mapping of a pancake distribution at high altitudes (at the equator). Energy deposition of this modest event is estimated to increase rapidly above 45 km, already exceeding the cosmic ray background at 45 km

  11. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    Science.gov (United States)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  12. Fermi -LAT Observations of High-energy Behind-the-limb Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Allafort, A.; Bottacini, E.; Cameron, R. A.; Charles, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E.; Caragiulo, M.; Costanza, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095 Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Cavazzuti, E.; Ciprini, S. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma (Italy); Cecchi, C., E-mail: nicola.omodei@stanford.edu, E-mail: vahep@stanford.edu, E-mail: melissa.pesce.rollins@pi.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); and others

    2017-02-01

    We report on the Fermi -LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi -LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO . All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi -LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.

  13. The study of composition changes in thin film coatings of Ge-As-Se type under relativistic electron irradiation by means of electron Auger spectroscopy

    International Nuclear Information System (INIS)

    Kesler, L.G.; Dovgoshej, N.I.; Savchenko, N.D.

    1991-01-01

    Data on the influence of relativistic electrons on depth profile of Ge 33 As 12 Se 55 films were obtained for the first time. It was established that the most sufficient change of element composition of films in result of electron irradiation took place in the surface layer and on film-sublayer interface. It can be explained by increase of diffusion of impurities and free atoms

  14. Flare parameters inferred from a 3D loop model data base

    Science.gov (United States)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-06-01

    We developed a data base of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used, we built a large data base of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The data base was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter spectra and Nobeyama radioheliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the data base, indicating a possible range of solutions. The parameter search efficiency in this finite data base is discussed. 8 out of 10 parameters analysed for 1000 simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics, the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆ 2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare is presented as well.

  15. Design and performance of a Tesla transformer type relativistic electron beam generator

    International Nuclear Information System (INIS)

    Jain, K.K.; Chennareddy, D.; John, P.I.; Saxena, Y.C.

    1986-01-01

    A relativistic electron beam generator driven by an air core Tesla transformer is described. The Tesla transformer circuit analysis is outlined and computational results are presented for the case when the coaxial water line has finite resistance. The transformer has a coupling coefficient of 0.56 and a step-up ratio of 25. The Tesla transformer can provide 800 kV at the peak of the second half cycle of the secondary output voltage and has been tested up to 600 kV. A 100-200 keV, 15-20 kA electron beam having 150 ns pulse width has been obtained. The beam generator described is being used for the beam injection into a toroidal device BETA. (author). 20 refs. 9 figures

  16. Confinement of electron beams by mesh arrays in a relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Wang Pingshan; Gu Binlin

    1998-01-01

    Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system

  17. Dispersion characteristics of anisotropic unmagnetized ultra-relativistic transverse plasma wave with arbitrary electron degeneracy

    Science.gov (United States)

    Sarfraz, M.; Farooq, H.; Abbas, G.; Noureen, S.; Iqbal, Z.; Rasheed, A.

    2018-03-01

    Thermal momentum space anisotropy is ubiquitous in many astrophysical and laboratory plasma environments. Using Vlasov-Maxwell's model equations, a generalized polarization tensor for a collisionless ultra-relativistic unmagnetized electron plasma is derived. In particular, the tensor is obtained by considering anisotropy in the momentum space. The integral of moments of Fermi-Dirac distribution function in terms of Polylog functions is used for describing the border line plasma systems (T/e TF e ≈1 ) comprising arbitrary electron degeneracy, where Te and TF e, are thermal and Fermi temperatures, respectively. Furthermore, the effects of variation in thermal momentum space anisotropy on the electron equilibrium number density and the spectrum of electromagnetic waves are analyzed.

  18. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  19. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    International Nuclear Information System (INIS)

    Sahai, Aakash A.

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a 0 >1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary

  20. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  1. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  2. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80305 (United States); Allred, Joel C. [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Uitenbroek, Han [National Solar Observatory, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303 (United States); Tremblay, Pier-Emmanuel [Department of Physics, University of Warwick, Coventry CV47AL (United Kingdom); Brown, Stephen [School of Physics and Astronomy, Kelvin Building, University of Glasgow, G12 8QQ (United Kingdom); Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Osten, Rachel A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Hawley, Suzanne L., E-mail: Adam.Kowalski@lasp.colorado.edu [University of Washington Department of Astronomy, 3910 15th Avenue NE, Seattle, WA 98195 (United States)

    2017-03-10

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  3. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-01-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  4. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  5. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  6. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  7. Investigation of solar flares in X-ray and optical spectral region

    International Nuclear Information System (INIS)

    Kurt, V.; Kurochka, L.N.; Zenchenko, V.M.

    1989-01-01

    Measurements of hard X h radiation of 180 solar flares carried out on board of the space probes Venera-13,-14, were compared with measurements of optical and thermal X t radiation. Values of total energy release during a flare in these regions are calculated, and correlation analysis is carried out. The bond correlations found have shown that total energy of fast electrons, caused X h -flare in the flare pulse phase, and thermal energy at the end of a pulse phase are practically connected with each othesr functionally. Quantitative connection between a flare ball in H α -line and the most probable energy values, being in different radiation regions calculated in the scope of generally accepted models, is established. The total energy of an optical (cold) part of the flare, radiation energy in X-ray region and the energy introduced to the flare volume by energy particles are shown to be compared between each other

  8. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  9. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  10. Relativistic effects in the calibration of electrostatic electron analyzers. I. Toroidal analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Keski Rahkonen, O [Helsinki University of Technology, Espoo (Finland). Laboratory of Physics; Krause, M O [Oak Ridge National Lab., Tenn. (USA)

    1978-02-01

    Relativistic correction terms up to the second order are derived for the kinetic energy of an electron travelling along the circular central trajectory of a toroidal analyzer. Furthermore, a practical energy calibration equation of the spherical sector plate analyzer is written for the variable-plate-voltage recording mode. Accurate measurements with a spherical analyzer performed using kinetic energies from 600 to 2100 eV are in good agreement with this theory showing our approximation (neglect of fringing fields, and source and detector geometry) is realistic enough for actual calibration purposes.

  11. An expanding radio nebula produced by a giant flare from the magnetar SGR 1806-20.

    Science.gov (United States)

    Gaensler, B M; Kouveliotou, C; Gelfand, J D; Taylor, G B; Eichler, D; Wijers, R A M J; Granot, J; Ramirez-Ruiz, E; Lyubarsky, Y E; Hunstead, R W; Campbell-Wilson, D; van der Horst, A J; McLaughlin, M A; Fender, R P; Garrett, M A; Newton-McGee, K J; Palmer, D M; Gehrels, N; Woods, P M

    2005-04-28

    Soft gamma-ray repeaters (SGRs) are 'magnetars', a small class of slowly spinning neutron stars with extreme surface magnetic fields, B approximately 10(15) gauss (refs 1 , 2 -3). On 27 December 2004, a giant flare was detected from the magnetar SGR 1806-20 (ref. 2), only the third such event recorded. This burst of energy was detected by a variety of instruments and even caused an ionospheric disturbance in the Earth's upper atmosphere that was recorded around the globe. Here we report the detection of a fading radio afterglow produced by this outburst, with a luminosity 500 times larger than the only other detection of a similar source. From day 6 to day 19 after the flare from SGR 1806-20, a resolved, linearly polarized, radio nebula was seen, expanding at approximately a quarter of the speed of light. To create this nebula, at least 4 x 10(43) ergs of energy must have been emitted by the giant flare in the form of magnetic fields and relativistic particles.

  12. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  13. Propagation of a TE surface mode in a relativistic electron beam–quantum plasma system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.

    2012-01-01

    The dispersion properties of a transverse electric (TE) surface waves propagating along the interface between a magneto-quantum plasma–relativistic beam system and vacuum are studied by using the quantum hydrodynamic model. The general dispersion relations are derived and analyzed in some special cases of interest. Moreover, the effects of density gradients for the beam and plasma on the dispersion properties of surface waves are investigated. The kind of dispersion relations depends strongly on the ambient magnetic field B o via the gyro-frequency ω c , the quantum parameters, and the width of the plasma layer as well as the relativistic factor for the electron beam. It is found that the quantum effects play a crucial role to facilitate the propagation of TE surface waves. -- Highlights: ► Propagation of TE surface waves on bounded magneto-quantum plasma by relativistic beam is studied. ► The quantum plasma consists of transitional layer adjacent to uniform layer. ► Influence of quantum effects on the propagation of TE surface waves are taken into account. ► Effects of homogeneity and inhomogeneity for beam on TE surface waves are considered. ► It is found that quantum effects facilitate the propagation of TE surface modes.

  14. Thermal x-rays and deuterium production in stellar flares

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The x-ray spectrum of flares is shown to be necessarily thermal up to greater than or equal to 200 keV because the self magnetic field of any electron stream required for a thick or thin target source is inconsistently large. The resulting flare model can then be related to stellar luminosity, convection and magnetic fields to result in a maximum possible γ-burst (Mullan, 1976) and continuous x-ray flux. One of the most striking isotopic anomalies observed is the extreme enrichment of Helium (3) in some solar flares and the mysterious depletion of deuterium. It is discussed how deuterium may be produced and emitted in the largest flares associated with γ-bursts but in amounts insufficient to support the tentative conclusion of Colemen and Worden

  15. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  16. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  17. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  18. Silicon nanowire based high brightness, pulsed relativistic electron source

    Directory of Open Access Journals (Sweden)

    Deep Sarkar

    2017-06-01

    Full Text Available We demonstrate that silicon nanowire arrays efficiently emit relativistic electron pulses under irradiation by a high-intensity, femtosecond, and near-infrared laser (∼1018 W/cm2, 25 fs, 800 nm. The nanowire array yields fluxes and charge per bunch that are 40 times higher than those emitted by an optically flat surface, in the energy range of 0.2–0.5 MeV. The flux and charge yields for the nanowires are observed to be directional in nature unlike that for planar silicon. Particle-in-cell simulations establish that such large emission is caused by the enhancement of the local electric fields around a nanowire, which consequently leads to an enhanced absorption of laser energy. We show that the high-intensity contrast (ratio of picosecond pedestal to femtosecond peak of the laser pulse (10−9 is crucial to this large yield. We extend the notion of surface local-field enhancement, normally invoked in low-order nonlinear optical processes like second harmonic generation, optical limiting, etc., to ultrahigh laser intensities. These electron pulses, expectedly femtosecond in duration, have potential application in imaging, material modification, ultrafast dynamics, terahertz generation, and fast ion sources.

  19. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  20. Relativistic Electron Response to the Combined Magnetospheric Impact of a Coronal Mass Ejection Overlapping with a High-Speed Stream: Van Allen Probes Observations

    Science.gov (United States)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; hide

    2015-01-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  1. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  2. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  3. IRIS , Hinode , SDO , and RHESSI Observations of a White Light Flare Produced Directly by Non-thermal Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung-Sun [Hinode Science Center, National Astronomical Observatory of Japan (NAOJ), 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Imada, Shinsuke [Institute for Space–Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 466-8550 (Japan); Watanabe, Kyoko [National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka 239-8686 (Japan); Bamba, Yumi [Hinode team, ISAS/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Brooks, David H., E-mail: ksun.lee@nao.ac.jp [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2017-02-20

    An X1.6 flare occurred in active region AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode , IRIS , SDO , and RHESSI . We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode /EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. To understand the WL emission process, we calculated the energy flux deposited by non-thermal electrons (observed by RHESSI ) and compared it to the dissipated energy estimated from a chromospheric line (Mg ii triplet) observed by IRIS . The deposited energy flux from the non-thermal electrons is about (3–7.7) × 10{sup 10} erg cm{sup −2} s{sup −1} for a given low-energy cutoff of 30–40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg ii subordinate line is about (4.6–6.7) × 10{sup 9} erg cm{sup −2} s{sup −1}: ∼6%–22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.

  4. Resonance effects in projectile-electron loss in relativistic collisions with excited atoms

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2005-01-01

    The theory of electron loss from projectile-ions in relativistic ion-atom collisions is extended to the case of collisions with excited atoms. The main feature of such collisions is a resonance which can emerge between electron transitions in the ion and atom. The resonance becomes possible due to the Doppler effect and has a well-defined impact energy threshold. In the resonance case, the ion-atom interaction is transmitted by the radiation field and the range of this interaction becomes extremely long. Because of this the presence of other atoms in the target medium and the size of the space occupied by the medium have to be taken into account and it turns out that microscopic loss cross sections may be strongly dependent on such macroscopic parameters as the target density, temperature and size. We consider both the total and differential loss cross sections and show that the resonance can have a strong impact on the angular and energy distributions of electrons emitted from the projectiles and the total number of electron loss events

  5. On the kinetic theory of parametric resonance in relativistic plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.

    1982-08-01

    The instability of relativistic hot plasma located in high-frequency external electric field is studied. The dispersion relation, in the case when the plasma electrons have relativistic oscillatory motion, is obtained. It is shown that if the electron Deby's radius is less than the wave length of plasma oscillation and far from the resonance on the overtones of the external field frequency, the oscillation build-up is possible. It is also shown that taking into account the relativistic motion of electrons leads to a considerable decrease in the frequency at which the parametric resonance takes place. (author)

  6. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    Science.gov (United States)

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  7. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  8. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  9. Planar channeled relativistic electrons and positrons in the field of resonant hypersonic wave

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.H.; Khachatryan, H.F.; Tonoyan, V.U.; Wagner, W.

    2003-01-01

    The wave function of a planar channeled relativistic particle (electron, positron) in a single crystal excited by longitudinal hypersonic vibrations (HVs) is determined. The obtained expression is valid for periodic (not necessarily harmonic) HV of desired profile and single crystals with an arbitrary periodic continuous potential. A revised formula for the wave number of HV that exert resonance influence on the state of a channeled particle was deduced to allow for non-linear effects due to the influence of HV

  10. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  11. On the Solution of the Continuity Equation for Precipitating Electrons in Solar Flares

    Science.gov (United States)

    Emslie, A. Gordon; Holman, Gordon D.; Litvinenko, Yuri E.

    2014-01-01

    Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis & Zharkova claim to have found an "updated exact analytical solution" to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii & Shmeleva, and many others is invalid. We show that the solution of Dobranskis & Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the "new" analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result.We conclude that Dobranskis & Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii & Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.

  12. The Effects of Flare Definitions on the Statistics of Derived Flare Distrubtions

    Science.gov (United States)

    Ryan, Daniel; Dominique, Marie; Seaton, Daniel B.; Stegen, Koen; White, Arthur

    2016-05-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. However, statistical flare studies are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds which may affect the derived flare distributions. We explore the effect of the arbitrary thresholds used in the GOES event list and LYRA Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the algorithms’ flare start thresholds. We also find that the power law exponents of these distributions are not stable but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are clearly non-power law. We show that this is consistent with an insufficient degradation correction which causes LYRA absolute irradiance values to be unreliable. This means that they should not be used for flare statistics or energetics unless degradation is adequately accounted for. However they can be used to study time variations over shorter timescales and for space weather monitoring.

  13. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  14. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  15. Propagation and absorption of electromagnetic waves in fully relativistic plasmas

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Goldfinger, R.C.; Weitzner, H.

    1983-01-01

    Electron cyclotron heating calculations were made for plasmas with electron temperatures above 10 keV. It was assumed that n/sub parallel/ = 0 so that Doppler broadening is not present and relativistic effects are maximum. The plasma distribution function is assumed to be an isotropic relativistic Maxwellian

  16. Swift J2058.4+0516: Discovery of a Possible Second Relativistic Tidal Disruption Flare

    Science.gov (United States)

    Cenko, S. Bradely; Krimm, Hans A.; Horesh, Assaf; Rau, Arne; Frail, Dale A.; Kennea, Jamie A.; Levan, Andrew J.; Holland, Stephen T.; Butler, Nathaniel R.; Quimby, Robert M.; hide

    2011-01-01

    We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration approximately greater than months), luminous X-ray (L(sub x.iso) approximates 3 X 10(exp47) erg/s) and radio (vL(sub v.iso) approximates 10(exp 42) erg/s) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / Swift 1164449.3+573451 (Sw 11644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources implies that either these outflows are extremely narrowly collimated (theta disruptions generate relativistic ejecta. Analogous to the case of long duration gamma-ray bursts and core-collapse supernovae, we speculate that the spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus), this would imply that some galaxies can transition from apparent quiescence to a radiatively efficient state of accretion on quite short time scales.

  17. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  18. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  19. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  20. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States); Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Kowalski, Adam F. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hilton, Eric J., E-mail: jrad@astro.washington.edu [Universe Sandbox, 911 E. Pike Street #333, Seattle, WA 98122 (United States)

    2014-12-20

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10{sup 29} to 10{sup 33} erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events.

  1. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    International Nuclear Information System (INIS)

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M.; Hebb, Leslie; Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R.; Kowalski, Adam F.; Hilton, Eric J.

    2014-01-01

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10 29 to 10 33 erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events

  2. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    Science.gov (United States)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  3. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  4. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  5. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    Science.gov (United States)

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  6. A ``perfect'' Late Phase Flare Loop: X-ray And Radio Studies

    Science.gov (United States)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    We present observations of a GOES X3.1 class flare which occurred on the 24th August 2002. The event was observed by a number of instruments including RHESSI, TRACE and NoRH. This flare is particularly interesting due to its position and orientation on the west limb of the Sun. The flare appears to be perpendicular to the line of sight making it possible to ascertain the geometrical parameters of the post flare arcade loops. We investigate the decay phase of the flare by comparing X-ray and radio observations of the post flare arcade loops with models of soft x-ray and thermal gyrosynchrotron emission to characterise the electron distribution present within the loop. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  7. Coherent effects in relativistic electron beams radiation in the presence of beat waves; Kogerentnye ehffekty v izluchenii relyativistskogo ehlektronnogo sgustka pri nalichii voln bienij

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, L A; Shamamian, A N

    1992-12-31

    The problem of relativistic electron beam-laser beat waves interaction is considered. Due to interaction the electron density is changed as opposed to the case, when it interacts with still electron plasma, the change of density gets less. But it is interesting to research the coherent spontaneous radiation of the electron beam interacting with. It is shown that this interaction brings to an increase of the partial coherent effect. The radiation efficiency depends essentially on the beam parameters, i.e. on the radio of the distinctive longitudinal dimension density. The maximum amplification takes place when the beam length makes room for an odd number of wave length quarters. Since the gain factor decreases with the radiation wave length, we offer to use high-current relativistic electron beams to generate micro radio waves. 4 refs.

  8. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Zhang, Haocheng; Taylor, Greg; Li, Hui; Guo, Fan

    2017-01-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  9. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haocheng; Taylor, Greg [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Li, Hui; Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  10. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  11. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-01-01

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  12. High-energy particles associated with solar flares

    International Nuclear Information System (INIS)

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  13. Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare

    Science.gov (United States)

    Gömöry, P.; Veronig, A. M.; Su, Y.; Temmer, M.; Thalmann, J. K.

    2016-04-01

    Aims: We study the response of the solar atmosphere during a GOES M1.6 flare using spectroscopic and imaging observations. In particular, we examine the evolution of the mass flows and electron density together with the energy input derived from hard X-ray (HXR) in the context of chromospheric evaporation. Methods: We analyzed high-cadence sit-and-stare observations acquired with the Hinode/EIS spectrometer in the Fe xiii 202.044 Å (log T = 6.2) and Fe xvi 262.980 Å (log T = 6.4) spectral lines to derive temporal variations of the line intensity, Doppler shifts, and electron density during the flare. We combined these data with HXR measurements acquired with RHESSI to derive the energy input to the lower atmosphere by flare-accelerated electrons. Results: During the flare impulsive phase, we observe no significant flows in the cooler Fe xiii line but strong upflows, up to 80-150 km s-1, in the hotter Fe xvi line. The largest Doppler shifts observed in the Fe xvi line were co-temporal with the sharp intensity peak. The electron density obtained from a Fe xiii line pair ratio exhibited fast increase (within two minutes) from the pre-flare level of 5.01 × 109 cm-3 to 3.16 × 1010 cm-3 during the flare peak. The nonthermal energy flux density deposited from the coronal acceleration site to the lower atmospheric layers during the flare peak was found to be 1.34 × 1010 erg s-1 cm-2 for a low-energy cut-off that was estimated to be 16 keV. During the decline flare phase, we found a secondary intensity and density peak of lower amplitude that was preceded by upflows of ~15 km s-1 that were detected in both lines. The flare was also accompanied by a filament eruption that was partly captured by the EIS observations. We derived Doppler velocities of 250-300 km s-1 for the upflowing filament material. Conclusions: The spectroscopic results for the flare peak are consistent with the scenario of explosive chromospheric evaporation, although a comparatively low value of the

  14. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  15. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  16. Theory of relativistic radiation reflection from plasmas

    Science.gov (United States)

    Gonoskov, Arkady

    2018-01-01

    We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.

  17. Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements.

    Science.gov (United States)

    Höfener, Sebastian; Ahlrichs, Reinhart; Knecht, Stefan; Visscher, Lucas

    2012-12-07

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga(2) to Br(2) , the 5p-block dimers In(2) to I(2) , and their atoms. Extended basis sets up to pentuple zeta are employed and energies extrapolated to the complete basis-set limit. Relativistic and non-relativistic results for the dissociation energy D(e) are in close agreement with each other and previously published data, provided non-relativistic or scalar-relativistic results are corrected for spin-orbit contributions taken from the literature. An exception is Te(2) where theoretical results scatter by 0.085 eV. By virtue of this agreement it is unexpected that comparison with the experimental D(0) or D(e) dissociation energies (zero-point vibrational effects are negligible in this context) reveal errors larger than 0.1 eV for Ga(2), Ge(2), and Sb(2). Only relativistic treatments are presented for the 6p-block cases Tl(2) to At(2). Sufficient agreement with experimental data is found only for Pb(2) and Bi(2), the deviation of the computed and experimental D(0) values for Po(2) is again larger than 0.1 eV. Deviations of 0.1 eV between the computed and experimental D(0) values are a major reason for concern and call for additional investigations in both fields to clarify the situation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  19. Solar flare X-radiation and energetic particles by the observation data from the Venera-13,14 space probes

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Dajbog, E.I.; D'yachkov, A.P.

    1984-01-01

    The relationship between bursts of solar hard X-radiation quanta (Esub(x) > 0.055 MeV) and flares of solar cosmic rays (SCR) was considered on the basis of the data from the Venera-13, 14 space probes. The data on solar flares in Hsub(α) and thermal X-radiation range as well as radio-frequency radiation of the 3d type were used for analysis. It was established that the intensity amplitude of flare electrons (Esub(e) > 0.025 and > 0.07 MeV) and protons (Esub(p) > 1.0 MeV) correlates best with the flare importance in the thermal X-radiation range (r approximately 0.8+-0.03). The use of flare importance in thermal X-radiation range was independent measure of flare power in which SCR particles were generated enabled to construct heliolongitudinal dependences of the flare electron fluxes and to obtain the idea of the heliolongitudinal flare interval in which the effects of coronal propagation could be ignored. It is shown that the flux of the flare nonrelativistic electrons is related with the total energy release in the burst of hard X-radiation better than with the amplitude of this burst. Distributions of the solar events were studied with respect to the amplitudes of the intensity of electrons of SCR, thermal and hard X-radiation. It is shown that in the most part of the varying amplitude ranqe the distribution functions are approximated according to the power law. It is shown that the distribution function factor depends both on the parameter used for its construction and the type of events being used for analysis

  20. On the possible cyclic recurrence of flare activity of flare stars in the pleiades

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Oganyan, G.V.

    1977-01-01

    The flare activity of flare stars in Pleiades is investigated. It is shown that according to flare statistics only one half of the probable Pleiades members with low luminosities have flare activity throughout the observation period. Two assumptions are suggested to explain this contradiction with the concept on the evolutionary importance of the flare star phase which all the dwarf stars go through: cyclic nature of the flare activity and large dispersion in flare activity phase durations for equally luminous stars. Certain evidences to support cyclic flare activity assumption are adduced

  1. Nonlinear dynamic of interaction of the relativistic electron beam with plasma

    International Nuclear Information System (INIS)

    Dorofeenko, V.G.; Krasovitskii, V.B.; Osmolovsky, S.I.

    1994-01-01

    Quasi-transverse instability of thin relativistic electron beam in a dense plasma is studied numerically and analytically in a broad range of the frequency of the beam modulation and external longitudinal magnetic field. It is shown that the nonlinear stage of solution depends on the increment of the instability. It is permitted to classify possible nonlinear solutions and also to determine optimal regimes of the modulation for transport of beam along magnetic field in a plasma without substantial radial divergence. Numerical calculations show, that injection of the bunches with parameters, corresponding nonlinear regime of the beam's instability, in neutrally-charged plasma permits to output on the stationary regime without loss of particles

  2. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  3. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  4. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  5. About effect of the Ramsauer-Townsend type at scattering of relativistic electrons by crystal atomic string

    International Nuclear Information System (INIS)

    Shul'ga, N.F.; Truten', V.I.

    1999-01-01

    It is shown that a considerable decrease in a total cross-section of the elastic scattering of relativistic electrons by a crystal atomic string can take place at certain values of particle incidence angles. This effect is similar to the Ramsauer-Townsend effect of slow electrons scattering by an atom. It is shown that the decrease in the angle of particles incidence on the atomic string essentially changes the process of particles scattering. The phenomena of the particle rainbow scattering and orbiting may occur in this case. 14 refs., 5 figs

  6. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    Science.gov (United States)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  7. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  8. A theory of two-stream instability in two hollow relativistic electron beams

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1993-01-01

    Stability properties of two-stream instability of two hollow electron beams are investigated. The equilibrium configuration consists of two intense relativistic hollow electron beams propagating through a grounded conducting cylinder. Analysis of the longitudinal two-stream instability is carried out within the framework of the linearized Vlasov--Maxwell equations for the equilibrium distribution function, in which beam electrons have a Lorentzian distribution in the axial momentum. Dispersion relation of the longitudinal two-stream instability is derived. Stability criteria from this dispersion relation indicate that the normalized velocity difference Δβ between the beams should be within a certain range of value to be unstable. Growth rate of the instability is a substantial fraction of the real frequency, thereby indicating that the longitudinal two-stream instability is an effective means of beam current modulation. Transverse instability of hollow electron beams is also investigated. Dispersion relation of the coupled transverse oscillation of the beams is derived and numerical investigation of this dispersion relation is carried out. Growth rate of the kink instability is a substantial fraction of the diocotron frequency, which may pose a serious threat to the two-stream klystron

  9. Fibromyalgia Flares: A Qualitative Analysis.

    Science.gov (United States)

    Vincent, Ann; Whipple, Mary O; Rhudy, Lori M

    2016-03-01

    Patients with fibromyalgia report periods of symptom exacerbation, colloquially referred to as "flares" and despite clinical observation of flares, no research has purposefully evaluated the presence and characteristics of flares in fibromyalgia. The purpose of this qualitative study was to describe fibromyalgia flares in a sample of patients with fibromyalgia. Using seven open-ended questions, patients were asked to describe how they perceived fibromyalgia flares and triggers and alleviating factors associated with flares. Patients were also asked to describe how a flare differs from their typical fibromyalgia symptoms and how they cope with fibromyalgia flares. Content analysis was used to analyze the text. A total of 44 participants completed the survey. Responses to the seven open-ended questions revealed three main content areas: causes of flares, flare symptoms, and dealing with a flare. Participants identified stress, overdoing it, poor sleep, and weather changes as primary causes of flares. Symptoms characteristic of flares included flu-like body aches/exhaustion, pain, fatigue, and variety of other symptoms. Participants reported using medical treatments, rest, activity and stress avoidance, and waiting it out to cope with flares. Our results demonstrate that periods of symptom exacerbation (i.e., flares) are commonly experienced by patients with fibromyalgia and symptoms of flares can be differentiated from every day or typical symptoms of fibromyalgia. Our study is the first of its kind to qualitatively explore characteristics, causes, and management strategies of fibromyalgia flares. Future studies are needed to quantitatively characterize fibromyalgia flares and evaluate mechanisms of flares. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Concerning the maximum energy of ions accelerated at the front of a relativistic electron cloud expanding into vacuum

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Koga, J.; Tajima, T.; Farina, D.

    2004-01-01

    Results of particle-in-cell simulations are presented that demonstrate characteristic interaction regimes of high-power laser radiation with plasma. It is shown that the maximum energy of fast ions can substantially exceed the electron energy. A theoretical model is proposed of ion acceleration at the front of a relativistic electron cloud expanding into vacuum in the regime of strong charge separation. The model describes the electric field structure and the dynamics of fast ions inside the electron cloud. The maximum energy the ions can gain at the front of the expanding electron cloud is found

  11. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  12. An Expanding Radio Nebula Produced by a Giant Flare from the Magnetar SGR 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, B.

    2005-03-04

    Soft gamma repeaters (SGRs) are ''magnetars'', a small class of slowly spinning neutron stars with extreme surface magnetic fields, B {approx} 10{sup 15} gauss. On 2004 December 27, a giant flare was detected from the magnetar SGR 1806-20, the third such event ever recorded. This burst of energy was detected by a variety of instruments and even caused an ionospheric disturbance in the Earth's upper atmosphere recorded around the globe. Here we report the detection of a fading radio afterglow produced by this outburst, with a luminosity 500 times larger than the only other detection of a similar source. From day 6 to day 19 after the flare from SGR 1806-20, a resolved, linearly polarized, radio nebula was seen, expanding at approximately a quarter the speed of light. To create this nebula, at least 4 x 10{sup 43} ergs of energy must have been emitted by the giant flare in the form of magnetic fields and relativistic particles. The combination of spatially resolved structure and rapid time evolution allows a study in unprecedented detail of a nearby analog to supernovae and gamma-ray bursts.

  13. The interaction between a relativistic electron beam and a slow electromagnetic wave in a waveguide that is partially filled with a dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.T.; Nikolov, N.A.

    1979-01-01

    The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.

  14. Implications of NRL/ATM solar flare observations on flare theories

    International Nuclear Information System (INIS)

    Cheng, C.C.; Spicer, D.S.

    1975-01-01

    During the Skylab mission, many solar flares were observed with the NRL XUV spectroheliogram in the wavelength region from 150 to 650 A. Because of its high spatial resolution (approximately 2ins.) the three-dimensional structures of the flare emission regions characterized by temperatures from 10 4 K to 20 x 10 6 K can be resolved. Thus the spatial relationship between the relatively cool plasma and the hot plasma components of a flare, and the associated magnetic field structure can be inferred. The implications for various flare models are discussed. (Auth.)

  15. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  16. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    Science.gov (United States)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  17. A Large-scale Plume in an X-class Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E. [Physics Department, Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ, 07102-1982 (United States)

    2017-08-20

    Ever-increasing multi-frequency imaging of solar observations suggests that solar flares often involve more than one magnetic fluxtube. Some of the fluxtubes are closed, while others can contain open fields. The relative proportion of nonthermal electrons among those distinct loops is highly important for understanding energy release, particle acceleration, and transport. The access of nonthermal electrons to the open field is also important because the open field facilitates the solar energetic particle (SEP) escape from the flaring site, and thus controls the SEP fluxes in the solar system, both directly and as seed particles for further acceleration. The large-scale fluxtubes are often filled with a tenuous plasma, which is difficult to detect in either EUV or X-ray wavelengths; however, they can dominate at low radio frequencies, where a modest component of nonthermal electrons can render the source optically thick and, thus, bright enough to be observed. Here we report the detection of a large-scale “plume” at the impulsive phase of an X-class solar flare, SOL2001-08-25T16:23, using multi-frequency radio data from Owens Valley Solar Array. To quantify the flare’s spatial structure, we employ 3D modeling utilizing force-free-field extrapolations from the line of sight SOHO /MDI magnetograms with our modeling tool GX-Simulator. We found that a significant fraction of the nonthermal electrons that accelerated at the flare site low in the corona escapes to the plume, which contains both closed and open fields. We propose that the proportion between the closed and open fields at the plume is what determines the SEP population escaping into interplanetary space.

  18. Relativistic corrections for the conventional, classical Nyquist theorem

    International Nuclear Information System (INIS)

    Theimer, O.; Dirk, E.H.

    1983-01-01

    New expressions for the Nyquist theorem are derived under the condition in which the random thermal speed of electrons, in a system of charged particles, can approach the speed of light. Both the case in which, the electron have not drift velocity relative to the ions or neutral particles and the case in which drift occours are investigated. In both instances, the new expressions for the Nyquist theorem are found to contain relativistic correction terms; however for electron temperatures T approx. 10 9 K and drift velocity magnitudes w approx. 0.5c, where c is the speed of light, the effects of these correction terms are generally small. The derivation of these relativistic corrections is carried out by means of procedures developed in an earlier work. A relativistic distribution function, which incorporates a constant drift velocity with a random thermal velocity for a given particle species, is developed

  19. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  20. Opacity Build-up in Impulsive Relativistic Sources

    International Nuclear Information System (INIS)

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-01-01

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production (γγ → e + e - ) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, τγγ, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R 0 (le) R (le) R 0 +ΔR. This is particularly relevant for GRB internal shocks. We find that in an impulsive source (ΔR ∼ 0 ), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy (var e psilon)1(T) where tγγ((var e psilon)1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy (var e psilon)1* ∼ (var e psilon)1(ΔT) where ΔT is the duration of the emission episode. Furthermore, photons with energies (var e psilon) > (var e psilon)1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth τγγ((var e psilon)) initially increases with time and (var e psilon)1(T) correspondingly decreases with time, so that photons of energy (var e psilon) > (var e psilon)1* are able to escape the source mainly very early on while (var e psilon)1(T) > (var

  1. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    Science.gov (United States)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  2. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2....... The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit...... scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory....

  3. Transport and interaction of a relativistic electron beam in low pressure neutral gases

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Rohatgi, V.K.

    1989-01-01

    A numerical study of the transport of a 0.27-MeV, 6.6-kA, 40-ns relativistic electron beam in argon and hydrogen in the pressure range of 0.01--1.0 Torr taking into account charge and current neutralization effects is presented. Ionization by avalanching and by beam and plasma electrons is included in the calculation of plasma density buildup. Plasma heating resulting from return current heating and two-stream instability is taken into account. The computed results of charge transport, net current, and breakdown time are compared with experimental results obtained in this laboratory. The results are in reasonable agreement with the experiment and show a maximum charge transport of 75% at the optimum pressure of 0.1 and 0.6 Torr in argon and hydrogen, respectively. The calculations indicate beam-generated plasma parameters of 10 19 --10 20 m -3 density and 1--5 eV electron temperature

  4. Transfer and focusing of high current relativistic electron beams on a target

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Penkina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.; Bakshaeev, Yu.L.

    Research is being conducted at the I. V. Kurchatov Atomic Energy Institute to investigate possibilities of creating a pulsed thermonuclear reactor based on REBs; this work involves the creation of a multimodel system using vacuum lines for transferring energy and an acute angled external magnetic field for transferring electron beams to the target. A field of this configuration can be used at the same time for accumulating a ''cloud'' of relativistic protons around the target for purposes of irradiating them. This alternative solution of the problem of target irradiation, instead of focusing beams directly on it, may prove to be highly promising. Experiments are described which were conducted recently on high current electron accelerators ''URAL'', ''MS'' and others and which were directed at investigating possibilities of transferring and focusing high current REBs, as well as effective transmission of electromagnetic energy using vacuum lines at considerable distances

  5. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  6. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server

    1994-01-01

    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  7. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  8. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  9. Flare stars in Pleiades. 6

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Chavushyan, O.S.; Oganyan, G.B.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Melikyan, N.D.; Natsvlishvili, R.Sh.; AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya)

    1981-01-01

    The results of photographic observations of stellar flares in the Pleiades region carried out at the Byurakan and Abastumani astrophysical observatories during 1976-1979 are given. On the basis of these observations 17 new flare stars have been found. Total number of all known flare stars in the Pleiades region on 1 June 1980 reached 524, and the number of all flares-1244. The observational data on distribution of flare stars according to the observed flares is satisfactorily represented by the average frequency function introduced by V.A.Ambartsumian. The total number of the flare stars in the Pleiades is of the order of 1100. Using three telescopes, synchronous photographic observations of stellar flares in Pleiades in U, B, V, system are carried out. The colour indices U-B and B-V of stellar flares in periods including the maximum of the flare slightly differ from that of photoelectrically defined for flares of UV Ceti type stars, which testifies the physical relationship of flare stars in Pleiades and in the vicinity of the Sun [ru

  10. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  11. Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

    Science.gov (United States)

    Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.

    2018-04-01

    We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.

  12. ECR plasma source in a flaring magnetic field

    International Nuclear Information System (INIS)

    Meis, C.; Compant La Fontaine, A.; Louvet, P.

    1992-01-01

    The propagation and absorption of an electromagnetic wave, near the electron cyclotron zone, of a cold plasma (T e ∼ 1-5 eV) confined in a flaring magnetic field is studied. The case of both extraordinary and ordinary modes has been considered. Temperature effects and electron-neutral collisions have been taken account in the dielectric tensor

  13. Focusing peculiarities of ion-channel guiding on a relativistic electron beam in a free-electron laser with a three-dimensional wiggler

    International Nuclear Information System (INIS)

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2014-01-01

    In a free-electron laser the ‘natural focusing’ effect of a three-dimensional wiggler is too weak to confine the transport of a relativistic electron beam when the beam has a high current and consequently an external focusing system is often needed. In this paper we study the focusing peculiarities of an ion-channel guide field on an electron beam. Nonlinear simulations of an electron beam transport show that, compared to an axial guide magnetic field, the ion-channel guide field results in smaller velocity–space and configuration–space spreads. The intrinsic mechanism of this physical phenomenon is that the ion-channel guide field confines the trajectory of the electron motion resulting in a smaller instantaneous curvature radius and a slighter curvature-center excursion than an axial guide magnetic field does. It is also found that, unlike with an axial guide magnetic field, over-focusing may occur if the ion-channel guide field is too strong. (paper)

  14. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  15. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  16. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  17. Lower atmosphere of solar flares; Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, Aug. 20-24, 1985

    International Nuclear Information System (INIS)

    Neidig, D.F.

    1986-01-01

    The topics discussed by the present conference encompass the chromospheric flare phenomenon, white light flares, UV emission and the flare transition region, the flare corona and high energy emissions, stellar flares, and flare energy release and transport. Attention is given to radiative shocks and condensation in flares, impulsive brightening of H-alpha flare points, the structure and response of the chromosphere to radiation backwarming during solar flares, the interpretation of continuum emissions in white light flares, and the radiation properties of solar plasmas. Also discussed are EUV images of a solar flare and C III intensity, an active region survey in H-alpha and X-rays, dynamic thermal plasma conditions in large flares, the evolution of the flare mechanism in dwarf stars, the evidence concerning electron beams in solar flares, the energetics of the nonlinear tearing mode, macroscopic electric fields during two-ribbon flares, and the low temperature signatures of energetic particles

  18. Models for stellar flares

    International Nuclear Information System (INIS)

    Cram, L.E.; Woods, D.T.

    1982-01-01

    We study the response of certain spectral signatures of stellar flares (such as Balmer line profiles and the broad-band continuum) to changes in atmospheric structure which might result from physical processes akin to those thought to occur in solar flares. While each physical process does not have a unique signature, we can show that some of the observed properties of stellar flares can be explained by a model which involves increased pressures and temperatures in the flaring stellar chromosphere. We suggest that changes in stellar flare area, both with time and with depth in the atmosphere, may play an important role in producing the observed flare spectrum

  19. Flare stars in Pleiades. 5

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Chavushyan, O.S.; Erastova, L.K.; Oganyan, G.B.; Melikyan, N.D.; Natsvlishvili, R.Sh.; Tsvetkov, M.K.

    1977-01-01

    The results of photographic observations of stellar flares in the Pleiades region made in the Byurakan and Abastumany astrophysical observatories in 1973-1974 are presented. The observations and revisions of the pictures taken earlier helped to detect 20 new flare stars and 62 repeated flares of flare stars known before. Two-colour photographic and UV observation of 21 flares were carried out. The observation data point to considerable differences in the mean frequency of flares of various flare stars in the Pleiades

  20. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  1. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  2. Merger and reconnection of Weibel separated relativistic electron beam

    Science.gov (United States)

    Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.

    2018-02-01

    The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].

  3. Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go

    2011-01-01

    The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  4. Local re-acceleration and a modified thick target model of solar flare electrons

    Science.gov (United States)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  5. Elongation of Flare Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT (United States); Cassak, Paul A. [Department of Physics and Astronomy, West Virginia University, Morgantown WV (United States); Priest, Eric R. [School of Mathematics and Statistics, University of St. Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-03-20

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  6. Magnetic transients in flares

    International Nuclear Information System (INIS)

    Zirin, H.; Tanaka, K.

    1981-01-01

    We present data on magnetic transients (mgtr's) observed in flares on 1980 July 1 and 5 with Big Bear videomagnetograph (VMG). The 1980 July 1 event was a white light flare in which a strong bipolar mgtr was observed, and a definite change in the sunspots occurred at the time of the flare. In the 1980 July 5 flare, a mgtr was observed in only one polarity, and, although no sunspot changes occurred simultaneous with the flare, major spot changes occurred in a period of hours

  7. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    Science.gov (United States)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  8. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl, E-mail: cekdahl@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-06-15

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  9. Thermal equilibrium properties of an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Davidson, R.C.; Uhm, H.S.

    1979-01-01

    The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0

  10. Formation of universal and diffusion regions of non-linear spectra of relativistic electrons in spatially limited sources

    International Nuclear Information System (INIS)

    Kontorovich, V.M.; Kochanov, A.E.

    1980-01-01

    It is demonstrated that in the case of hard injection of relativistic electrons accompanied by the joint action of synchrotron (Compton) losses and energy-dependent spatial diffusion, a spectrum with 'breaks' is formed containing universal (with index γ = 2) and diffusion regions, both independent of the injection spectrum. The effect from non-linearity of the electron spectrum is considered in averaged electromagnetic spectra for various geometries of sources (sphere, disk, arm). It is shown that an universal region (with index α = 0.5) can occur in the radiation spectrum. (orig.)

  11. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  12. Nonlinear bound on unstable field energy in relativistic electron beams and plasmas

    International Nuclear Information System (INIS)

    Davidson, R.C.; Yoon, P.H.

    1989-01-01

    This paper makes use of Fowler's method [J. Math Phys. 4, 559 (1963)] to determine the nonlinear thermodynamic bound on field energy in unstable plasmas or electron beams in which the electrons are relativistic. Treating the electrons as the only active plasma component, the nonlinear Vlasov--Maxwell equations and the associated global conservation constraints are used to calculate the lowest upper bound on the field energy [ΔE-script/sub F/]/sub max/ that can evolve for the general initial electron distribution function f/sub b//sub / 0 equivalentf/sub b/(x,p,0). The results are applied to three choices of the initial distribution function f/sub b//sub / 0 . Two of the distribution functions have an inverted population in momentum p/sub perpendicular/ perpendicular to the magnetic field B 0 e/sub z/, and the third distribution function reduces to a bi-Maxwellian in the nonrelativistic limit. The lowest upper bound on the efficiency of radiation generation, eta/sub max/ = [ΔE-script/sub F/]/sub max//[V -1 ∫ d 3 x∫ d 3 p(γ-1)mc 2 f/sub b//sub / 0 ], is calculated numerically over a wide range of system parameters for varying degrees of initial anisotropy

  13. Solar flares

    International Nuclear Information System (INIS)

    Brown, J.C.; Smith, D.F.

    1980-01-01

    The current observational and theoretical status of solar flares as a typical astrophysical problem is reviewed with especial reference to the intense and complex energy release in large flares. Observations and their diagnostic applications are discussed in three broad areas: thermal radiation at temperatures T 5 K; thermal radiation at T > approximately 10 5 K; and non-thermal radiation and particles. Particular emphasis is given to the most recent observational discoveries such as flare γ-rays, interplanetary Langmuir waves, and the ubiquitous association of soft x-ray loops with flares, and also the progress in particle diagnostics of hard x-ray and radio bursts. The theoretical problems of primary energy release are considered in terms of both possible magnetic configuration and in plasma instabilities and the question of achieving the necessary flash power discussed. The credibility of models for the secondary redistribution through the atmosphere of the primary magnetic energy released in terms of conduction, convection, radiation and particle transport is examined. Progress made in the flare problem in the past decade is assessed and some possible reasons why no convincing solution has yet been found are considered. 296 references. (U.K.)

  14. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, DC 20064 (United States); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago (Chile)

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  15. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  16. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  17. Under-the-barrier dynamics in laser-induced relativistic tunneling.

    Science.gov (United States)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2013-04-12

    The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an electron momentum shift as well as a spatial shift along the laser propagation direction arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz force. The momentum shift is proportional to the Keldysh time, while the wave-packet's spatial drift is proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic tunneling dynamics.

  18. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  19. Studies of the relativistic electron source and related phenomena in Petawatt Laser matter interactions

    International Nuclear Information System (INIS)

    Key, M.H.; Campbell, E.M.; Cowan, T.E.; Hatchett, S.P.; Henry, E.A.; Koch, J.A.; Landgon, A.B.; Lasinski, B.F.; Lee, R.W.; MacKinnon, A.; Offenberger, A.; Pennington, D.M.; Perry, M.D.; Sangster, T.C.; Yasuike, K.; Snavely, R.; Roth, M.; Phillips, T.W.; Stoyer, M.A.; Wilks, S.C.; Singh, M.S.

    1999-01-01

    The interaction of laser radiation with solid targets at 1 petawatt power and intensity up to 3x10 20 Wcm -2 has been studied with emphasis on relativistic electrons and high energy ions. Secondary effects including Bremsstrahlung radiation, nuclear interactions and heating have been characterized. A collimated beam of protons with up to 55 MeV energy is emitted normal to the rear surface of thin targets and its characteristics and origin are discussed. The significance of the data for radiography, fast ignition and proton beam applications is summarized

  20. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  1. Atmospheric nitrous oxide produced by solar protons and relativistic electrons

    International Nuclear Information System (INIS)

    Prasad, S.S.; Zipf, E.C.

    1981-01-01

    An alternative means of nitric oxide production in the stratosphere to that of direct formation in the upper atmosphere by solar proton (SP) events and by relativistic electron precipitation (REP) events from the Earth's radiation belt, is described. It is suggested that nitrous oxide is produced in the mesosphere and then migrates downward and is converted in the stratosphere to NO by the reaction N 2 O + O( 1 D) → 2 NO. Such a process could amplify the direct NO production by >10%. Mesospheric nitrous oxide mixing ratios increase to values as high as 6 x 10 -7 due to REP- and SP- related production. Lateral transport will reduce these high values but mesospheric mixing ratios of N 2 O in the high latitudes would approach 10 -7 , considerably greater than those expected on the basis of theories which neglect REP- and SP-related production of this species. (U.K.)

  2. Novel probe for determining the size and position of a relativistic electron beam

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.

    1984-01-01

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed

  3. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    International Nuclear Information System (INIS)

    LaJohn, L. A.

    2010-01-01

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.

  4. A general theory of electronic parametric instability of relativistically intense laser light in plasma

    International Nuclear Information System (INIS)

    Parr, D.M.

    2000-04-01

    This thesis studies the propagation and stability of ultraintense laser light in plasma. A new method is devised, both general and inclusive yet requiring only modest computational effort. The exact anharmonic waveforms for laser light are established. An examination of their stability extends the theory of electron parametric instabilities to relativistic regimes in plasmas of any density including classically overdense plasma accessible by self-induced transparency. Such instabilities can rapidly degrade intense pulses, but can also be harnessed, for example in the self-resonant laser wakefield accelerator. Understanding both the new and established regimes is thus basic to the success of many applications arising in high-field science, including novel x-ray sources and ignition of laser fusion targets, as well as plasma-based accelerator schemes. A covariant formulation of a cold electron fluid plasma is Lorentz transformed to the laser group velocity frame; this is the essence of the method and produces a very simple final model. Then, first, the zero-order laser 'driver' model is developed, in this frame representing a spatially homogeneous environment and thus soluble numerically as ordinary differential equations. The linearised first-order system leads to a further set of differential equations, whose solution defines the growth and other characteristics of an instability. The method is exact, rugged and flexible, avoiding the many approximations and restrictions previously necessary. This approach unifies all theory on purely electronic parametric instabilities over the last 30 years and, for the first time in generality, extends it into the ultrahigh relativistic regime. Besides extensions to familiar parametric instabilities, such as Stimulated Raman Scattering and Two-Plasmon Decay, strong stimulated harmonic generation emerges across a wide range of harmonics with high growth rates, presenting a varied and complex physical entity

  5. Relativistic Many-Body Theory A New Field-Theoretical Approach

    CERN Document Server

    Lindgren, Ingvar

    2011-01-01

    Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...

  6. Radio follow-up observations of stellar tidal disruption flares: Constraints on off-axis jets

    Directory of Open Access Journals (Sweden)

    Körding E.

    2012-12-01

    Full Text Available Observations of active galactic nuclei (AGN and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a massive black hole. This birth of a relativistic jet may have been observed recently in two stellar tidal disruption flares (TDFs, which were discovered in gamma-rays by Swift. Yet no transient radio emission has been detected from the tens of TDF candidates that were discovered at optical to soft X-ray frequencies. Because the sample that was followed-up at radio frequencies is small, the non-detections can be explained by Doppler boosting, which reduces the jet flux for off-axis observers. Plus, the existing followup observation are mostly within ∼ 10 months of the discovery, so the non-detections can also be due to a delay of the radio emission with respect to the time of disruption. To test the conjecture that all TDFs launch jets, we obtained 5 GHz follow-up observations with the Jansky VLA of six known TDFs. To avoid missing delayed jet emission, our observations probe 1–8 years since the estimated time of disruption. None of the sources are detected, with very deep upper limits at the 10 micro Jansky level. These observations rule out the hypothesis that these TDFs launched jets similar to radio-loud quasars. We also constrain the possibility that the flares hosted a jet identical to Sw 1644+57.

  7. Identifying flares in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Bingham, Clifton O; Choy, Ernest H

    2016-01-01

    to flare, with escalation planned in 61%. CONCLUSIONS: Flares are common in rheumatoid arthritis (RA) and are often preceded by treatment reductions. Patient/MD/DAS agreement of flare status is highest in patients worsening from R/LDA. OMERACT RA flare questions can discriminate between patients with...... Set. METHODS: Candidate flare questions and legacy measures were administered at consecutive visits to Canadian Early Arthritis Cohort (CATCH) patients between November 2011 and November 2014. The American College of Rheumatology (ACR) core set indicators were recorded. Concordance to identify flares...

  8. Relativistic electron transport in a solid target: study of heating in the framework of inertial fusion; Transport d'electrons relativistes dans une cible solide: etude du chauffage dans le cadre de l'allumage rapide

    Energy Technology Data Exchange (ETDEWEB)

    Martinolli, E

    2003-04-15

    This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of K{alpha} rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)

  9. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    DEFF Research Database (Denmark)

    Hofener, S.; Ahlrichs, R.; Knecht, S.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...

  10. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  11. SUPPRESSION OF PARALLEL TRANSPORT IN TURBULENT MAGNETIZED PLASMAS AND ITS IMPACT ON THE NON-THERMAL AND THERMAL ASPECTS OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2016-06-20

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  12. Solar flare impulsivity and its relationship with white-light flares and with CMEs

    Science.gov (United States)

    Watanabe, K.; Masuda, S.

    2017-12-01

    There are many types of classification in solar flares. One of them is a classification by flare duration in soft X-rays; so-called impulsive flare and long duration event (LDE). Typically, the duration of an impulsive flare is shorter than 1 hour, and that of an LDE is longer than 1 hour. These two types of flare show different characteristics. In soft X-rays, impulsive flares usually have a compact loop structure. On the other hand, LDEs show a large-scale loop, sometimes a large arcade structure. In hard X-rays (HXRs), the difference appears clear, too. The former shows a strong and short-time (10 minutes) emissions and show a large coronal source. These facts suggest that HXR observation becomes one of a good indicator to classify solar flares, especially for the study on the particle acceleration and the related phenomena. However, HXR data do not always exist due to the satellite orbit and the small sensitivity of HXR instruments. So, in this study, based on the concept of the Neupert effect (Neupert, 1968), we use soft X-ray derivative data as the proxy of HXR. From this data, we define impulsivity (IP) for each flare. Then we investigate solar flares using this new index. First we apply IP index to white-light flare (WLF) research. We investigate how WL enhancement depends on IP, then it is found that WLF tend to have large IP values. So the flare impulsivity (IP) is one of the important factors if WL enhancement appears or not in a solar flare. Next we investigate how CME itself and/or its physical parameters depend on IP index. It has been believed that most of CMEs are associated with LDEs, but we found that there is only a weak correlation between the existence of CME and IP index. Finally, we also search for the relationship between WLF and CME as a function of IP and discuss the physical condition of WLF.

  13. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  14. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  15. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  16. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  17. Effects of relativistic small radial component on atomic photoionization cross sections

    International Nuclear Information System (INIS)

    Liu Xiaobin; Xing Yongzhong; Sun Xiaowei

    2008-01-01

    The effects of relativistic small radial component on atomic photoionization cross sections have been studied within relativistic average self-consistent field theory. Relativistic effects are relatively unimportant for low photon energy, along with a review of high-energy photoionization the relativistic effects are quite important. The effects of relativistic small radial component on photoionization process should show breakdown when the nuclear finite-size effects is taken into account. The compression of wavefunction into the space near nucleus is so strong in highly charged ions that the electronic radius greatly decreases, and the effects of relativistic small radial component on photoionization cross sections turn to stronger than ordinary atoms. Since relativistic effects are extremely sensitive to the behavior of small radial component, the results are in good agreement with relativistic effects on photoionization cross section. (authors)

  18. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    International Nuclear Information System (INIS)

    Hack, Szabolcs; Varró, Sándor; Czirják, Attila

    2016-01-01

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  19. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  20. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.