A relativistic solitary wave in electron positron plasma
International Nuclear Information System (INIS)
Berezhiani, V.I.; Skarka, V.; Mahajan, S.
1993-09-01
The relativistic solitary wave propagation is studied in cold electron-positron plasma embedded in an external arbitrary strong magnetic field. The exact, analytical soliton-like solution corresponding to a localized, purely electromagnetic pulse with arbitrary big amplitude is found. (author). 7 refs, 1 fig
Relativistic current sheets in electron-positron plasmas
International Nuclear Information System (INIS)
Zenitani, S.
2008-01-01
The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This
Jet cross sections in electron-positron annihilation
International Nuclear Information System (INIS)
Sharpe, S.R.
1983-08-01
There are few, if any, detailed tests of QCD at present. I disucss the problems associated with testing QCD and argue that the three jet angular distribution in electron-positron annihilation is a good quantity to use because it minimizes the sensitivity to nonperturbative effects and provides a test of the detailed structure of QCD. However, for such a test to be possible, the perturbation expansion must be well behaved. I present a calculation of the perturbative corrections using two different generalizations of the Sterman-Weinberg two-jet cross section. I argue that because of the uncertainties in our understanding of hadronization it is necessary that the corrections to both these cross sections be small. In presenting the results I use the recent proof of Mukti and Sterman that all the logarithms can be resummed. I find that at Z-factory energies there is a substantial region of parameters defining the jets for which the correction is small, but that there is no such region at PEP/PETRA energies. This problem at PEP/PETRA energies is made worse by the results of a study of the effects of hadronization. Using a simple model I find very significant effects at PEP/PETRA energies that would make a test difficult. These effects do not, however, present problems at Z-factory energies. I conclude that, even if there are further theoretical advances, testing QCD at PEP/PETRA energies using the three-jet angular distribution will be very difficult. However, this distribution can be used to test QCD in a detailed way at Z-factory energies. The corrected results, furthermore, show a systematic difference from the lowest order result that may be measurable at Z-factory energies. If this effect could be measured it would provide a yet more detailed test of QCD, testing, for example, the three gluon coupling. 66 references
International Nuclear Information System (INIS)
Rubinstein, J.E.
1976-01-01
Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV
Jet reconstruction at high-energy electron-positron colliders
Energy Technology Data Exchange (ETDEWEB)
Boronat, M.; Fuster, J.; Garcia, I.; Vos, M. [IFIC (CSIC/UVEG), Valencia (Spain); Roloff, P.; Simoniello, R. [CERN, Geneva (Switzerland)
2018-02-15
In this paper we study the performance in e{sup +}e{sup -} collisions of classical e{sup +}e{sup -} jet reconstruction algorithms, longitudinally invariant algorithms and the recently proposed Valencia algorithm. The study includes a comparison of perturbative and non-perturbative jet energy corrections and the response under realistic background conditions. Several algorithms are benchmarked with a detailed detector simulation at √(s) = 3 TeV. We find that the classical e{sup +}e{sup -} algorithms, with or without beam jets, have the best response, but they are inadequate in environments with non-negligible background. The Valencia algorithm and longitudinally invariant k{sub t} algorithms have a much more robust performance, with a slight advantage for the former. (orig.)
Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions
International Nuclear Information System (INIS)
Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.
1997-01-01
We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society
Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions
Del Duca, Vittorio
2016-01-01
We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.
Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy
Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán
2016-10-01
We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.
Three-jet production in electron-positron collisions using the CoLoRFulNNLO method
Del Duca, Vittorio
2016-01-01
We introduce a subtraction method for jet cross sections at next-to-next-to-leading order (NNLO) accuracy in the strong coupling and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C-parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.
Electron-positron pair production in relativistic ion-atom collisions
International Nuclear Information System (INIS)
Eichler, Joerg
2005-01-01
The creation of electron-positron pairs constitutes an example for the conversion of energy into mass. We here give a brief outline of the various processes and theoretical approaches in a simple fashion. We point out some recent results and difficulties that have yet to be overcome
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)
2015-09-15
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.
International Nuclear Information System (INIS)
López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.
2015-01-01
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, DC 20064 (United States); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago (Chile)
2014-09-15
We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.
Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets
Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.
Energy Technology Data Exchange (ETDEWEB)
Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2013-04-15
We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.
Polarization and Structure of Relativistic Parsec-Scale AGN Jets
International Nuclear Information System (INIS)
Lyutikov, M
2004-01-01
We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor Λ. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with Λ >> 1 whose axis makes a small angle to the line of sight, θ ∼ 1/Λ, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90 o changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B φ /B z (ge) Λ. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited range of radii not too close to the jet core. (5) For
International Nuclear Information System (INIS)
Hencken, K.; Trautmann, D.; Baur, G.
1995-01-01
We calculate the impact-parameter-dependent total probability P total (b) for the electromagnetic production of electron-positron pairs in relativistic heavy-ion collisions in lowest order. We study expecially impact parameters smaller than the Compton wavelength of the electron, where the equivalent-photon approximation cannot be used. Calculations with and without a form factor for the heavy ions are done; the influence is found to be small. The lowest-order results are found to violate unitarity and are used for the calculation of multiple-pair production probabilities with the help of the approximate Poisson distribution already found in earlier publications
Inductive and electrostatic acceleration in relativistic jet-plasma interactions.
Ng, Johnny S T; Noble, Robert J
2006-03-24
We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.
Electron-positron interactions
International Nuclear Information System (INIS)
Wiik, B.; Wolf, G.
1979-01-01
This book is an introduction into the physics of electron-positron interactions. After a description of electron-positron storage rings pure electromagnetic e + e - interactions, and the total cross section are considered. Then low energy processes, the production of the J/psi and psi' particles including their radiative decay as well as the search for other narrow vector states are described. Then after the quark model interpretation of J/psi and psi' charmed mesons, the heavy lepton t, and the upsilon resonances are described. Thereafter inclusive hadron production and jet formation is discussed. Finally the next generation of e + e - colliding rings is described, and the first results from PETRA are presented. This book is suited for all physicists, who want to get a general review about e + e - physics. (HSI) 891 HSI/HSI 892 RKD
Study on the coherent emission of gluons in QCD jets from electron-positron annihilation
International Nuclear Information System (INIS)
Kreutzmann, H.
1990-11-01
The inclusive momentum distribution of charged particles is studied with the OPAL detector at LEP in multihadronic events produced in e + e - -annihilations at E cm ≅ M(Z 0 ). Agreement is found with analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from c.m. energies between 14 GeV and 91 GeV, the dependence of the inclusive momentum distribution on the centre of momentum energy E cm is investigated. The analytic predictions derived from perturbative energy E cm ≅ M(Z 0 ) and its change with E cm are also described by QCD shower Monte Carlo programs which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and the momentum spectra. A detailed simulation of the OPAL Jet Chamber and a reconstruction program for jet chamber tracks were developed and applied in this analysis. The essential features of both programs are presented. (orig.) [de
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Jets in relativistic heavy ion collisions
International Nuclear Information System (INIS)
Wang, Xin-Nian; Gyulassy, M.
1990-09-01
Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
Directory of Open Access Journals (Sweden)
Richard Anantua
2018-03-01
Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.
Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Radiatively-driven general relativistic jets
Indian Academy of Sciences (India)
Mukesh K. Vyas
2018-02-10
Feb 10, 2018 ... relativistic jets and shocks induced by non radial nature of the cross section. Isothermal assumption does not contain the effect of the thermal gradient term which is a significant accelerating agent and is very effec- tive close to the BH. It is also the same region where one needs to consider the effects of ...
Energy Technology Data Exchange (ETDEWEB)
Kang, Hyejoo
2002-01-30
We present production measurements of the charged hadrons {pi}{sup {+-}}, K{sup {+-}} and p/{bar p} in e{sup +}e{sup -} interactions at the Z{sup 0} pole. The excellent particle identification capability of the SLC Large Detector (SLD) at the Stanford Linear Collider (SLC) are used. In addition to studies over a wide momentum range in hadronic Z{sup 0} events of all five flavors, we have made the most precise measurements in light (uds), c and b flavor events separately. Unambiguous flavor dependencies have been observed, and the results have been compared with the predictions of several QCD fragmentation models. We have also exploited the unique feature of electron beam polarization in our experiment to compare hadron production separately in quark and antiquark jets. Direct evidence that higher momentum hadrons are more likely to contain the primary quark and antiquark is seen, with precision sufficient to provide new model tests. Finally, we have studied hard gluon jets in detail. We have confirmed that gluon jets have a higher multiplicity of softer particles than light quark jets, and found this enhancement to be the same for {pi}{sup {+-}}, K{sup {+-}} and p/{bar p} at the few percent level at all momenta. Any overall difference in the hadron fractions is limited to 0.018 at the 95% confidence level, indicating that there are no differences at the hadronization stage in jet formation between gluons and quarks.
Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.
Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-12-12
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.
Magnetic Field Structure in Relativistic Jets
Directory of Open Access Journals (Sweden)
Jermak Helen
2013-12-01
Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.
International Nuclear Information System (INIS)
Margon, B.
1982-01-01
The most unusual characteristic of the star SS 433 emerged in the late 1970's when a series of optical spectra showed intense, broad optical emission lines whose profiles and wavelengths changed drastically from night to night. These features are interpreted as strong Doppler-shifted Balmer and HeI lines. The modulation of the Doppler shifts are observed as being cyclic with a period of about 164 days. It was hypothesized that these phenomena were caused by two collimated, colinear, jets which were ejecting in opposite directions from SS 433. Most authors believe that velocity variations of the emission lines are caused by a cyclic rotation of jet axis inclined to line of sight. This rotation being the result of precession, which leads one to suspect SS 433 as a member of a close binary system. This hypothesis has been confirmed from recent optical, radio, and x-ray observations which are discussed in the article. The combination of optical and radio observations of SS 433, described in the article, gives an accurate measure of the Kinematics of the system and some confidence that the Kinematic equations are understood. However, the specific physical processes of this ejection are poorly understood. Some theoretical difficulties regarding this are given
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Energy Technology Data Exchange (ETDEWEB)
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.
2018-04-01
Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the
Relativistic jets from accreting black holes
International Nuclear Information System (INIS)
Coriat, Mickael
2010-01-01
Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Arons, J.
1988-08-15
I outline particle simulations and theory of relativistic shock waves in an e/sup +-/ plasma. Magnetic reflection of particles is an essential role in the shock structure. Instability of the reflected particles in the shock front produces intense extraordinary mode radiation. Such shocks are candidates for the particle accelerator in plerions and in extragalactic jets only if the upstream Poynting flux composes no more than 10% of the total. I summarize analytical and numerical studies of radiation dominated accretion onto the magnetic poles of neutron stars. The upper limit to the photon luminosity depends upon magnetic confinement, not upon the dragging of photons into the star. Numerical solutions show the plasma forms large scale ''photon bubbles.'' I suggest the percolative loss of radiation controls the pressure and therefore the limits of magnetic confinement. Loss of magnetic confinement through resistive interchange instability is suggested as a means of generating TeV to PeV voltage drops along the magnetic field. 34 refs., 6 figs., 1 tab.
International Nuclear Information System (INIS)
Arons, J.
1988-01-01
I outline particle simulations and theory of relativistic shock waves in an e/sup +-/ plasma. Magnetic reflection of particles is an essential role in the shock structure. Instability of the reflected particles in the shock front produces intense extraordinary mode radiation. Such shocks are candidates for the particle accelerator in plerions and in extragalactic jets only if the upstream Poynting flux composes no more than 10% of the total. I summarize analytical and numerical studies of radiation dominated accretion onto the magnetic poles of neutron stars. The upper limit to the photon luminosity depends upon magnetic confinement, not upon the dragging of photons into the star. Numerical solutions show the plasma forms large scale ''photon bubbles.'' I suggest the percolative loss of radiation controls the pressure and therefore the limits of magnetic confinement. Loss of magnetic confinement through resistive interchange instability is suggested as a means of generating TeV to PeV voltage drops along the magnetic field. 34 refs., 6 figs., 1 tab
RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS
International Nuclear Information System (INIS)
Singal, Ashok K.
2016-01-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
Relativistic Doppler Beaming and Misalignments in AGN Jets
Singal, Ashok K.
2016-08-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
Studies of relativistic jets in active galactic nuclei with SKA
Agudo, I.; Bottcher, M.; Falcke, H.; Georganopoulos, M.; Ghisellini, G.; Giovannini, G.; Giroletti, M.; Gomez, J.L.; Gurvits, L.; Laing, R.; Lister, M.; Marti, J.M.; Meyer, E.T.; Mizuno, Y.; O'Sullivan, S.; Padovani, P.; Paragi, Z.; Perucho, M.; Schleicher, D.; Stawarz, L.; Vlahakis, N.; Wardle, J.
2014-01-01
Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli &
International Nuclear Information System (INIS)
Budker, G.I.; Gaponov, V.A.; Gorniker, Eh.I.
1982-01-01
A gyrocon, SHF-generator, is described in which the energy of debunched relativistic electron beam is converted to the energy of electromagnetic oscillations. The gyrocon is intended for supplying the VEPP-4 accelerating resonators. A high-voltage accelerator is used as an electron source. An electron beam is scanned by a rotating magnetic field of the resonator and in different points of the orbit circumscribed by the beam and is injected into the outlet resonator. The resonator represents a ring-form waveguide with slots for the beam passage. A travelling wave, whose field decelerates electrons, is excited in the resonator tuned in to the scanning frequency, converting the beam power to RF-power which is taken off through the energy outlets. The design parameters of the gyrocon are as follows: electron efficiency > 95%, the general efficiency > 80%, amplification factor 23 dB, output power = 5 MW. Results of preliminary tests of the gyrocon are presented
International Nuclear Information System (INIS)
Mueller, C.; Gruen, N.; Voitkiv, A.B.
2004-01-01
We study the nonlinear process of e - e + pair creation by a nucleus which moves at a relativistic energy in the laboratory frame and collides with an intense x-ray laser beam. The collision system under consideration is chosen in such a way that the simultaneous absorption of at least two photons from the laser wave is required in order to exceed the energy threshold of the reaction. We calculate total and differential rates for both free-free and bound-free pair production. In the case of free-free pair creation we demonstrate the effect of the laser polarization on the spectra of the produced particles, and we show that at very high intensities the total rate exhibits features analogous to those well known from above-threshold ionization rates for atoms. In the case of bound-free pair creation a singularity is found in the laboratory frame angular distribution of the produced positron. This singularity represents a distinct characteristic of the bound-free pair production and allows one to separate this process from free-free pair creation even without detecting a bound state of the captured electron. For both types of pair creation we consider the dependences of the total rates on the collision parameters, give the corresponding scaling laws, and discuss the possibility to observe these nonlinear processes in a future experiment
Transmission line analogy for relativistic Poynting-flux jets
Lovelace, R. V. E.; Kronberg, P. P.
2013-04-01
Radio emission, polarization and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a galactic-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. The electromagnetic energy flow in the jet is the jet impedance times the square of the jet current. The observed current in 3C 303 can be used to calculate the electromagnetic energy flow in this magnetically dominated jet. Time dependent but not necessarily small perturbations of a Poynting-flux jet are described by the `telegrapher's equations'. These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of the nearby galaxy M87. For a relativistic Poynting jet on parsec scales, the reflected voltage wave from an inductive termination or load can lead to a backward propagating wave which breaks down the magnetic insulation of the jet giving |{boldsymbol E}| /|{boldsymbol B}|ge 1. At the threshold for breakdown, |{boldsymbol E}|/|{boldsymbol B}|=1, positive and negative particles are directly accelerated in the {boldsymbol E} × {boldsymbol B} direction which is approximately along the jet axis. Acceleration can occur up to Lorentz factors ˜107. This particle acceleration mechanism is distinct from that in shock waves and that in magnetic field reconnection.
WORKSHOP: Electron-positron mystery
International Nuclear Information System (INIS)
Bokemeyer, H.; Mueller, B.
1989-01-01
The tightly correlated electron-positron pairs seen in experiments at the GSI Darmstadt heavy ion Laboratory and elsewhere have yet to be explained. New particle or new effect? The question was highlighted at a recent Moriond workshop held at Les Arcs in the French Alps in January
DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS
Energy Technology Data Exchange (ETDEWEB)
Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)
2016-12-01
Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.
Electron-positron annihilation physics
International Nuclear Information System (INIS)
Foster, B.
1990-01-01
Electron-Positron Annihilation Physics is a detailed introduction to the main topics in e + e - annihilation, with particular emphasis on experimental work. Four main areas are covered, each in great detail, beginning with the Standard Model and its application to the production of lepton, quark and boson pairs. Secondly, the general features of fragmentation and different fragmentation models are explained. Chapter 3 is devoted to heavy quark and lepton physics, to which e + e - experiments have made an immense contribution. The final chapter, 'Where do we go from here?', looks for new phenomena beyond the Standard Model. Predictions of theory are compared with experimental results, highlighting shortcomings of some current theories. Details of instrumentation are included whenever possible. This ensures that the book is of maximum practical use to research workers. A comprehensive introduction to the major topics in the field, Electron-Positron Annihilation Physics is aimed at both graduate students studying high-energy physics and mature research workers. (author)
Classical-quantum correspondence in electron-positron pair creation
International Nuclear Information System (INIS)
Chott, N. I.; Su, Q.; Grobe, R.
2007-01-01
We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics
''Heavy light bullets'' in electron-positron plasma
International Nuclear Information System (INIS)
Berezhiani, V.I.; Mahajan, S.M.
1995-03-01
The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong amplitudes in an unmagnetized hot electron-positron plasma with a small fraction of ions is investigated. The possibility of finding localized solutions in such a plasma is explored. It is shown that these plasmas support the propagation of ''heavy light bullets''; nondiffracting and nondispersive electromagnetic (EM) pulses with large density bunching. (author). 24 refs, 12 figs
Relativistic jets from active galactic nuclei
Harris, D E; Krawczynski
2012-01-01
Written by a carefully selected consortium of researchers working in the field, this book fills the gap for an up-to-date summary of the observational and theoretical status. As such, this monograph includes all used wavelengths, from radio to gamma, the FERMI telescope, a history and theory refresher, and jets from gamma ray bursts. For astronomers, nuclear physicists, and plasmaphysicists.
General relativistic study of astrophysical jets with internal shocks
Vyas, Mukesh K.; Chattopadhyay, Indranil
2017-08-01
We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.
2017-11-01
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.
Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G
2017-11-03
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Relativistic jets without large-scale magnetic fields
Parfrey, K.; Giannios, D.; Beloborodov, A.
2014-07-01
The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.
Relativistic Hydrodynamics and Spectral Evolution of GRB Jets
Cuesta-Martínez, C.
2017-09-01
In this thesis we study the progenitor systems of long gamma-ray bursts (GRBs) using numerical models of their dynamics and the electromagnetic emission. Of all the possible classes of events, we focus on those showing a prominent component of thermal emission, which might be generated due to the interaction of a relativistic jet with the medium into which it is propagating. The main part of the thesis is devoted to modelling GRBs from two different clases of progenitors: ultra-long GRBs dominated by blackbody emission and GRBs associated with core-collapse supernovae (SNe). The study of GRB jets and their radiative emission has been basically divided into two steps. First, the dynamical evolution of relativistic jets can be simulated by means of multidimensional special relativistic hydrodynamic simulations which have been performed with the MRGENESIS code. Second, the synthetic emission from such jets is computed with the relativistic radiative transfer code SPEV in a post-processing stage assuming different radiative processes in which we follow the temporal and spectral evolution of the emitted radiation. An instrumental part of this project consisted in extending SPEV to include thermal processes, such as thermal bremsstrahlung, in order to account for the thermal signal that may arise in some GRBs. In the first part of this thesis, we extend an existing theoretical model to explain the class of blackbody-dominated GRBs (BBD-GRBs), i.e., long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the "Christmas burst", is the most prominent member of this class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of an evolved, massive star. We model in 2D the propagation of ultrarelativistic jets through the environments created by such mergers. We outline the most relevant
VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS
Energy Technology Data Exchange (ETDEWEB)
Pollack, Maxwell; Pauls, David; Wiita, Paul J., E-mail: wiitap@tcnj.edu [Department of Physics, The College of New Jersey P.O. Box 7718, Ewing, NJ 08628-0718 (United States)
2016-03-20
We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.
VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS
International Nuclear Information System (INIS)
Pollack, Maxwell; Pauls, David; Wiita, Paul J.
2016-01-01
We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods
Photospheric Emission from Collapsar Jets in 3D Relativistic Hydrodynamics
Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.
2015-12-01
We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.
Jet Quenching in Relativistic Heavy Ion Collisions at the LHC
Angerami, Aaron
Jet production in relativistic heavy ion collisions is studied using Pb+Pb collisions at a center of mass energy of 2.76 TeV per nucleon. The measurements reported here utilize data collected with the ATLAS detector at the LHC from the 2010 Pb ion run corresponding to a total integrated luminosity of 7 μb−1. The results are obtained using fully reconstructed jets using the anti-kt algorithm with a per-event background subtraction procedure. A centrality-dependent modification of the dijet asymmetry distribution is observed, which indicates a higher rate of asymmetric dijet pairs in central collisions relative to peripheral and pp collisions. Simultaneously the dijet angular correlations show almost no centrality dependence. These results provide the first direct observation of jet quenching. Measurements of the single inclusive jet spectrum, measured with jet radius parameters R = 0.2,0.3,0.4 and 0.5, are also presented. The spectra are unfolded to correct for the finite energy resolution introduced by bot...
The Innermost Regions of Relativistic Jets: Wrapping Up the Enigma
Directory of Open Access Journals (Sweden)
Marscher Alan P.
2013-12-01
Full Text Available What are relativistic jets like within a million Schwarzschild radii of the accreting black hole that powers them? A meeting in Granada, Spain in June 2013, organized by José L. Gómez and his conspirators brought together observers and theorists to survey the current state of observational data and efforts to interpret them. This conference summary reviews the results, insights, arguments, conflicts, and agreements that occurred during five sunny days spent in a windowless room in a hotel at the bottom of the hill that holds the heart of the beautiful city.
On the linear stability of sheared and magnetized jets without current sheets - relativistic case
Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.
2018-03-01
In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.
Relativistic jets: An astrophysical laboratory for the Doppler effect
Zakamska, Nadia L.
2018-05-01
Special Relativity is one of the most abstract courses in the standard curriculum for physics majors, and therefore practical applications or laboratory exercises are particularly valuable for providing real-world experiences with this subject. This course poses a challenge for lab development because relativistic effects manifest themselves only at speeds close to the speed of light. The laboratory described in this paper constitutes a low-cost, low-barrier exercise suitable for students whose only background is the standard mechanics-plus-electromagnetism sequence. The activity uses research-quality astronomical data on SS433—a fascinating Galactic X-ray binary consisting of a compact object (a neutron star or a black hole) and a normal star. A pair of moderately relativistic jets moving with v ˜ 0.3 c in opposite directions emanate from the vicinity of the compact object and are clearly detected in optical and radio observations. Following step-by-step instructions, students develop a full kinematic model of a complex real-world source, use the model to fit the observational data, obtain best-fit parameters, and understand the limitations of the model. The observations are in exquisite agreement with the Doppler effect equations of Special Relativity. The complete lab manual, the dataset and the solutions are available in online supplemental materials; this paper presents the scientific and pedagogical background for the exercise.
Coupled channel calculations for electron-positron pair production in collisions of heavy ions
Gail, M; Scheid, W
2003-01-01
Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).
Velocity shear generated Alfven waves in electron-positron plasmas
International Nuclear Information System (INIS)
Rogava, A.D.; Berezhiani, V.I.; Mahajan, S.M.
1996-01-01
Linear MHD modes in cold, nonrelativistic electron-positron plasma shear flow are considered. The general set of differential equations, describing the evolution of perturbations in the framework of the nonmodal approach is derived. It is found, that under certain circumstances, the compressional and shear Alfven perturbations may exhibit large transient growth fuelled by the mean kinetic energy of the shear flow. The velocity shear also induces mode coupling allowing the exchange of energy as well as the possibility of a strong mutual transformation of these modes into each other. The compressional Alfven mode may extract the energy of the mean flow and transfer it to the shear Alfven mode via this coupling. The relevance of these new physical effects to provide a better understanding of the laboratory e + e - plasma is emphasized. It is speculated that the shear-induced effects in the electron-positron plasmas could also help solve some astrophysical puzzles (e.g., the generation of pulsar radio emission). Since most astrophysical plasma are relativistic, it is shown that the major results of the study remain valid for weakly sheared relativistic plasmas. (author). 21 refs, 4 figs
SIGNATURES OF RELATIVISTIC HELICAL MOTION IN THE ROTATION MEASURES OF ACTIVE GALACTIC NUCLEUS JETS
Energy Technology Data Exchange (ETDEWEB)
Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2009-10-01
Polarization has proven to be an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of the toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects, these profiles also display marked asymmetries that are difficult to explain in simple helical jet models. Furthermore, in some cases, the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency-dependent RM profile morphologies, and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.
The physics of gamma-ray bursts & relativistic jets
Energy Technology Data Exchange (ETDEWEB)
Kumar, Pawan, E-mail: pk@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics & Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)
2015-02-24
We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to 100s GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.
Wake field in electron-positron plasmas
International Nuclear Information System (INIS)
Avinash, K.; Berezhiani, V.I.
1993-03-01
We study the creation of wake field in cold electron positron plasma by electron bunches. In the resulting plasma inhomogeneity we study the propagation of short electromagnetic pulse. In is found that wake fields can change the frequency of the radiation substantially. (author). 7 refs, 1 fig
LEP - Large Electron Positron Exhibition LEPFest 2000
2000-01-01
The Large Electron-Positron Collider (LEP) is 27 km long. Its four detectors (ALEPH, DELPHI, L3, OPAL) measure precisely what happens in the collisions of electrons and positrons. These conditions only exist-ed in the Universe when it was about 10 -10 sec old.
High energy electron positron physics
International Nuclear Information System (INIS)
Ali, A.; Soding, P.
1987-01-01
With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles
Next generation of electron-positron colliding beam machines
International Nuclear Information System (INIS)
Richter, B.
1979-03-01
The contribution of electron-positron colliding beam experiments to high-energy physics in the 1970's has been prodigious. From the research done with the two highest-energy e + e - machines of the present generation of these devices, have come such things as the discovery and illumination of the properties of the psi family, charmed particles, a new heavy lepton, non-ambigious evidence for hadronic jets, etc. The rapid pace of new developments in physics from such machines comes about for two reasons. First, the electron-positron annihilation process at present energies is particularly simple and well understood, making the problem of determining the quantum numbers and properties of new particles particularly simple. Second, in electron-positron annihilation all final states are on a relatively equal footing, and small production cross sections are compensated for by a lack of confusing background. For example, the rate of production of charmed particles at the SPEAR storage ring at SLAC and the DORIS storage ring at DESY is 3 or 4 orders of magnitude less than the rate of production at FNAL and the SPS. Yet these particles were first found at the storage rings where the background cross sections are comparable to the signal cross section, and have not yet been observed directly by their hadronic decays at the proton machines where the background cross sections are 4 orders of magnitude larger than the signal cross sections. The machines PEP at SLAC and PETRA at DESY will soon be operating at 35 to 40 GeV cm to explore new regions of energy. Studies of electron-positron annihilation at much higher energies than presently planned have a great deal to teach, not only about particle structure and dynamics, but also about the nature of the weak interaction. Some of the physics which can be done with such machines is discussed with a view toward getting an idea of the minimum required energy for the new generation of colliding beam devices
Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X
Corbel, Stéphane
2009-05-01
In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.
Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X
International Nuclear Information System (INIS)
Corbel, Stephane
2009-01-01
In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
The energetics of relativistic jets in active galactic nuclei with various kinetic powers
Musoke, Gibwa Rebecca; Young, Andrew; Molnar, Sandor; Birkinshaw, Mark
2018-01-01
Numerical simulations are an important tool in understanding the physical processes behind relativistic jets in active galactic nuclei. In such simulations different combinations of intrinsic jet parameters can be used to obtain the same jet kinetic powers. We present a numerical investigation of the effects of varying the jet power on the dynamic and energetic characteristics of the jets for two kinetic power regimes; in the first regime we change the jet density whilst maintaining a fixed velocity, in the second the jet density is held constant while the velocity is varied. We conduct 2D axisymmetric hydrodynamic simulations of bipolar jets propagating through an isothermal cluster atmosphere using the FLASH MHD code in pure hydrodynamics mode. The jets are simulated with kinetic powers ranging between 1045 and 1046 erg/s and internal Mach numbers ranging from 5.6 to 21.5.As the jets begin to propagate into the intracluster medium (ICM), the injected jet energy is converted into the thermal, kinetic and gravitational potential energy components of the jet cocoon and ICM. We explore the temporal evolution of the partitioning of the injected jet energy into the cocoon and the ICM and quantify the importance of entrainment process on the energy partitioning. We investigate the fraction of injected energy transferred to the thermal energy component of the jet-ICM system in the context of heating the cluster environments, noting that the jets simulated display peak thermalisation efficiencies of least 65% and a marked dependence on the jet density. We compare the efficiencies of the energy partitioning between the cocoon and ICM for the two kinetic power regimes and discuss the resulting efficiency-power scaling relations of each regime.
A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems
Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.
2013-01-01
Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.
Energy Technology Data Exchange (ETDEWEB)
Alberdi, A.; Gomez, J.L.; Marcaide, J.M.
1993-01-01
The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.
Nonlinear interaction of photons and phonons in electron-positron plasmas
International Nuclear Information System (INIS)
Tajima, T.; Taniuti, T.
1990-03-01
Nonlinear interaction of electromagnetic waves and acoustic modes in an electron-positron plasma is investigated. The plasma of electrons and positrons is quite plastic so that the imposition of electromagnetic (EM) waves causes depression of the plasma and other structural imprints on it through either the nonresonant or resonant interaction. Our theory shows that the nonresonant interaction can lead to the coalescence of photons and collapse of plasma cavity in higher (≥ 2) dimensions. The resonant interaction, in which the group velocity of EM waves is equal to the phase velocity of acoustic waves, is analyzed and a set of basic equations of the system is derived via the reductive perturbation theory. We find new solutions of solitary types: bright solitons, kink solitons, and dark solitons as the solutions to these equations. Our computation hints their stability. An impact of the present theory on astrophysical plasma settings is expected, including the cosmological relativistically hot electron-positron plasma. 20 refs., 9 figs
Nonlinear screening effect in an ultrarelativistic degenerate electron-positron gas
International Nuclear Information System (INIS)
Tsintsadze, N. L.; Rasheed, A.; Shah, H. A.; Murtaza, G.
2009-01-01
Nonlinear screening process in an ultrarelativistic degenerate electron-positron gas has been investigated by deriving a generalized nonlinear Poisson equation for the electrostatic potential. In the simple one-dimensional case, the nonlinear Poisson equation leads to Debye-like (Coulomb-like) solutions at distances larger (less) than the characteristic length. When the electrostatic energy is larger than the thermal energy, this nonlinear Poisson equation converts into the relativistic Thomas-Fermi equation whose asymptotic solution in three dimensions shows that the potential field goes to zero at infinity much more slowly than the Debye potential. The possibility of the formation of a bound state in electron-positron plasma is also indicated. Further, it is investigated that the strong spatial fluctuations of the potential field may reduce the screening length and that the root mean square of this spatial fluctuating potential goes to zero for large r rather slowly as compared to the case of the Debye potential.
Energy Technology Data Exchange (ETDEWEB)
Alberdi, A.; Gomez, J.L.; Marcaide, J.M.
1993-01-01
We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.
Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media
Harrison, Richard; Gottlieb, Ore; Nakar, Ehud
2018-06-01
Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion, the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. derived a general simplified (semi-)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g. collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/˜ore/propagation.html.
Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media
Harrison, Richard; Gottlieb, Ore; Nakar, Ehud
2018-03-01
Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. (2011b) derived a general simplified (semi)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g., collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/ ore/propagation.html.
Dynamical efficiency of collisionless magnetized shocks in relativistic jets
Aloy, Miguel A.; Mimica, Petar
2011-09-01
The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.
Relativistic jets and the most powerful radio sources in the universe
International Nuclear Information System (INIS)
Bridle, A.
1987-01-01
Relativistic jets, which are beams of particles and magnetic fields emitting synchrotron radiation that emanate from black holes at the centers of galaxies and quasars, have been one of the most exciting discoveries made at the Very Large Array (VLA) operated by the National Radio Astronomy Observatory (NRAO). The VLA is an array of 27 antennas, each 25 meters in diameter, distributed in a Y-formation with two branches 21 kilometers long and one branch 19 kilometers long. Astronomers can use it to study relativistic jets that generate intense natural radio sources (or transmitters). These sources, associated with regions hundreds of thousands of light years across, are the most powerful in the universe in energy output. In his lecture, Bridle describes how consecutive advances in imaging techniques for radio astronomy have uncovered the properties of the powerful radio sources, culminating in the discovery at the VLA that many of these sources contain radio emitting jets. He then describes some of the NRAO's research on these jets, and discusses the jets' physical properties. He concludes with an outlook for the future: the NRAO's Very Long Baseline Array (VLBA) is to be completed in the early 1990's. The VLBA is an array of ten radio telescopes distributed from Hawaii to St. Croix, from the Canadian border to Texas. With the VLBA, astronomers plan to look more deeply into these radio sources. 15 figs
Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets
Directory of Open Access Journals (Sweden)
Zabrodin E.
2015-01-01
Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.
EVIDENCE OF THE DYNAMICS OF RELATIVISTIC JET LAUNCHING IN QUASARS
Energy Technology Data Exchange (ETDEWEB)
Punsly, Brian, E-mail: brian.punsly1@verizon.net [1415 Granvia Altamira, Palos Verdes Estates CA, USA 90274 and ICRANet, Piazza della Repubblica 10 Pescara I-65100 (Italy)
2015-06-10
Hubble Space Telescope (HST) spectra of the EUV, the optically thick emission from the innermost accretion flow onto the central supermassive black hole, indicate that radio loud quasars (RLQs) tend to be EUV weak compared to the radio-quiet quasars; yet the remainder of the optically thick thermal continuum is indistinguishable. The deficit of EUV emission in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. This article is an examination of the evidence for a distribution of magnetic flux tubes in the innermost accretion flow that results in magnetically arrested accretion (MAA) and creates the EUV deficit. These same flux tubes and possibly the interior magnetic flux that they encircle are the sources of the jet power as well. In the MAA scenario, islands of large-scale vertical magnetic flux perforate the innermost accretion flow of RLQs. The first prediction of the theory that is supported by the HST data is that the strength of the (large-scale poloidal magnetic fields) jets in the MAA region is regulated by the ram pressure of the accretion flow in the quasar environment. The second prediction that is supported by the HST data is that the rotating magnetic islands remove energy from the accretion flow as a Poynting flux dominated jet in proportion to the square of the fraction of the EUV emitting gas that is displaced by these islands.
Particle identification with the OPAL jet chamber in the region of the relativistic rise
Energy Technology Data Exchange (ETDEWEB)
Breuker, H; Fischer, H M; Hauschild, M; Hartmann, H; Wuensch, B; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D
1987-10-15
An important goal of the OPAL jet chamber is particle identification at high momenta by exploiting the relativistic rise of the energy loss. Extensive tests have been performed with the full scale prototype of the OPAL jet chamber to measure the energy loss in an argon-methane-isobutane mixture as function of momentum and particle species. The measurements were done under various operating conditions in order to optimise the operationg point, to investigate sources of systematic errors, to monitor the stability of the energy loss measurement and to develop calibration procedures. The particle separation capability in the region of relativistic rise has been studied at gas pressures of 3 and 4 bar. The adopted operation point represents a reasonable compromise between the requirements for particle identification and tracking accuracy.
International Nuclear Information System (INIS)
Broderick, Avery E.; McKinney, Jonathan C.
2010-01-01
It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to ∼10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.
Energy Technology Data Exchange (ETDEWEB)
Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); McKinney, Jonathan C., E-mail: aeb@cita.utoronto.c, E-mail: jmckinne@stanford.ed [Department of Physics and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305-4060 (United States)
2010-12-10
It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to {approx}10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.
Relativistic jets in narrow-line Seyfert 1 galaxies. New discoveries and open questions
Directory of Open Access Journals (Sweden)
D’Ammando F.
2013-12-01
Full Text Available Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the γ-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic γ-ray sky, but the discovery of γ-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-γ-rays properties of the γ-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
Equation of state for electron gas in the presence of electron-positron pairs
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, D; Nomoto, K [Tokyo Univ. (Japan). Coll. of General Education
1975-12-01
Fermi-Dirac integrals for partially relativistic, partially degenerate, electron gas are tabulated, especially for the region of electron-positron pair-creation in equilibrium with radiation field. Electrons are treated to be non-interacting particles. Independent entries for the table are non-dimensional temperature and a degeneracy parameter which is related directly with matter density. Thermodynamical quantities and their partial derivatives with respect to density and temperature are also given in table, which are intended for use in computing stellar evolution by means of a Henyey-type technique. This table is a supplement to one published earlier, in which only electrons were taken into account explicitly.
The PEP electron-positron ring
International Nuclear Information System (INIS)
Rees, J.R.
1988-01-01
The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup minus/ ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus at the intersection regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup minus 2/s/sup minus 1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described
Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries
Directory of Open Access Journals (Sweden)
Russell D.M.
2013-12-01
Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.
Energy Technology Data Exchange (ETDEWEB)
Geng, Jin-Jun [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China); Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Kuiper, Rolf, E-mail: gengjinjun@gmail.com, E-mail: zhang@physics.unlv.edu [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany)
2016-12-10
The prompt emission of gamma-ray bursts (GRBs) is characterized by rapid variabilities, which may be a direct reflection of the unsteady central engine. We perform a series of axisymmetric 2.5-dimensional simulations to study the propagation of relativistic, hydrodynamic, intermittent jets through the envelope of a GRB progenitor star. A realistic rapidly rotating star is incorporated as the background of jet propagation, and the star is allowed to collapse due to the gravity of the central black hole. By modeling the intermittent jets with constant-luminosity pulses with equal on and off durations, we investigate how the half period, T , affects the jet dynamics. For relatively small T values (e.g., 0.2 s), the jet breakout time t {sub bo} depends on the opening angle of the jet, with narrower jets more penetrating and reaching the surface at shorter times. For T ≤ 1 s, the reverse shock (RS) crosses each pulse before the jet penetrates through the stellar envelope. As a result, after the breakout of the first group of pulses at t {sub bo}, several subsequent pulses vanish before penetrating the star, causing a quiescent gap. For larger half periods ( T = 2.0 and 4.0 s), all the pulses can successfully penetrate through the envelope, since each pulse can propagate through the star before the RS crosses the shell. Our results may interpret the existence of a weak precursor in some long GRBs, given that the GRB central engine injects intermittent pulses with a half period T ≤ 1 s. The observational data seem to be consistent with such a possibility.
Electron-positron plasma generation in a pulsar magnetosphere
International Nuclear Information System (INIS)
Gurevich, A.V.; Istomin, Ya.N.
1985-01-01
The generation of an electron-positron plasma in vacuum (vacuum ''breakdown'') in the presence of an inhomogeneous electric field and strong curvilinear magnetic field is considered. A situation of this type may occur in the magnetosphere of a rotating neutron star. A general set of kinetic equations for electrons, positrons and γ quanta in a curvilinear magnetic field is derived by taking into account electron-positron pair production and emission of curvicur and synchrotron photons. The conditions for appearance of ''breakdown'' are determined and the threshold value of the elec tric field discontinuity at the surface of the star is found. Multiplication of particles in the magnetosphere is investigated and the electron, positron and γ quantum distribution functions are found. The extinction limit of pulsars is determined. The theory is shown to be in accordance with the observation results
Study of electron-positron interactions
International Nuclear Information System (INIS)
Abashian, A.; Gotow, K.; Philonen, L.
1990-01-01
For the past seven years, this group has been interested in the study of tests of the Standard Model of Electroweak interactions. The program has centered about the AMY experiment which examines the nature of the final state products in electron-positron collisions in the center of mass energy range near 60 GeV. Results of these measurements have shown a remarkable consistency with the predictions of the minimal model of 3 quark and lepton generations and single charged and neutral intermediate bosons. No new particles or excited states have been observed nor has any evidence for departures in cross sections or angular asymmetries from expectations been observed. These conclusions have been even more firmly established by the higher energy results from the LEP and SLC colliders at center of mass energies of about 90 GeV. Our focus is shifting to the neutrino as a probe to electroweak interactions. The relative merit of attempting to observe neutrinos from point sources versus observing neutrinos generally is not easy to predict. The improved ability to interpret is offset by the probably episodic nature of the emission and irreproducibility of the results. In this phase of development, it is best to be sensitive to both sources of neutrinos. As a second phase of our program at Virginia Tech, we are studying the feasibility of detecting cosmic ray neutrinos in a proposed experiment which we have called NOVA. the results of the test setup will be instrumental in developing an optimum design. A third program we are involved in is the MEGA experiment at Los Alamos, an experiment to place a limit on the rate of muon decay to electron plus photon which is forbidden by the Standard Model
RESOLVING THE GEOMETRY OF THE INNERMOST RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI
Energy Technology Data Exchange (ETDEWEB)
Algaba, J. C.; Lee, S. S. [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Nakamura, M.; Asada, K., E-mail: algaba@kasi.re.kr [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China)
2017-01-01
In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.
Energy Technology Data Exchange (ETDEWEB)
Singh, Chandra B.; Pino, Elisabete M. de Gouveia Dal [Department of Astronomy (IAG-USP), University of São Paulo, São Paulo (Brazil); Mizuno, Yosuke, E-mail: csingh@iag.usp.br, E-mail: dalpino@iag.usp.br, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, D-60438, Frankfurt am Main (Germany)
2016-06-10
Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.
A Model of Polarisation Rotations in Blazars from Kink Instabilities in Relativistic Jets
Directory of Open Access Journals (Sweden)
Krzysztof Nalewajko
2017-10-01
Full Text Available This paper presents a simple model of polarisation rotation in optically thin relativistic jets of blazars. The model is based on the development of helical (kink mode of current-driven instability. A possible explanation is suggested for the observational connection between polarisation rotations and optical/gamma-ray flares in blazars, if the current-driven modes are triggered by secular increases of the total jet power. The importance of intrinsic depolarisation in limiting the amplitude of coherent polarisation rotations is demonstrated. The polarisation rotation amplitude is thus very sensitive to the viewing angle, which appears to be inconsistent with the observational estimates of viewing angles in blazars showing polarisation rotations. Overall, there are serious obstacles to explaining large-amplitude polarisation rotations in blazars in terms of current-driven kink modes.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks
Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Particle Acceleration, Magnetic Field Generation in Relativistic Shocks
Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2005-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra
Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix
2018-05-01
The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.
Hadronic physics in electron-positron annihilation
International Nuclear Information System (INIS)
Bethke, S.
1993-01-01
The author presents an introduction to the study of hadronic physics by means of e + e - processes. After an introduction to the theory of the strong interactions and QCD the current accelerator facilities for such studies are listed. Then the treatment of e + e - annihilation into hadrons by QCD is discussed. Thereafter the studies of hadronic event shapes, jet physics, the tests of the basic quantum numbers of quarks and gluons, the measurement of α S , and the studies of the differences between quark and gluon jets are described. Finally an outlook to further studies of such processes at higher energies is given. (HSI)
Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.
2018-04-01
We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.
Experimental study of jets in electron-positron-annihilation
International Nuclear Information System (INIS)
Bartel, W.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Haidt, D.; Krehbiel, H.; Naroska, B.; O'Neill, L.H.; Steffen, P.
1981-02-01
Data on hadron production by e + e - -annihilation at c.m. energies between 30 GeV and 36 GeV are presented and compared with two models both based on first order QCD but using different schemes for the fragmentation of quarks and gluons into hadrons. In one model the fragmentation proceeds along the parton momenta, in the other along the colour-anticolour axes. The data are reproduced better by fragmentation along the colour axes. (orig.)
Electron-positron pair creation in heavy ion collisions
International Nuclear Information System (INIS)
Kienle, P.
1987-01-01
The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering
Multi-GeV electron-positron beam generation from laser-electron scattering.
Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan
2018-03-16
The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.
International Nuclear Information System (INIS)
Ghaffary, Tooraj
2016-01-01
By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.
Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy
2016-01-01
We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between
Source theory analysis of electron--positron annihilation experiments
International Nuclear Information System (INIS)
Schwinger, J.
1975-01-01
The phenomenological viewpoint already applied to deep inelastic scattering is extended to the discussion of electron-positron annihilation experiments. Some heuristic arguments lead to simple forms for the pion differential cross section that are in reasonable accord with the published experimental data in the energy interval 3 to 4.8 GeV
Electron-positron colliders: looking at future physics
Energy Technology Data Exchange (ETDEWEB)
Anon.
1991-12-15
With research and development work underway throughout the world towards high energy electron-positron linear colliders, interest turns to the new physics these machines would open up. The first International Workshop on Physics and Experiments with Linear Colliders was held recently in Selkirk's in Finnish Lapland - some 300 kilometres north of the Arctic Circle.
Simulation of tail distributions in electron-positron circular colliders
International Nuclear Information System (INIS)
Irwin, J.
1992-02-01
In addition to the Gaussian shaped core region, particle bunches in electron-positron circular colliders have a rarefied halo region of importance in determining beam lifetimes and backgrounds in particle detectors. A method is described which allows simulation of halo particle distributions
Electromagnetic pulses in a strongly magnetized electron-positron plasma
International Nuclear Information System (INIS)
Yu, M.Y.; Rao, N.N.
1985-01-01
The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references
Production of new particles in electron-positron annihilation
International Nuclear Information System (INIS)
Gilman, F.J.
1977-02-01
A number of areas are reviewed where there is important progress in the production of new particles in electron--positron annihilation, but of a more detailed quantitative nature. Charmonium states, charmed mesons, and evidence for a charged heavy lepton are covered. 50 references
Electron-positron colliders: looking at future physics
International Nuclear Information System (INIS)
Anon.
1991-01-01
With research and development work underway throughout the world towards high energy electron-positron linear colliders, interest turns to the new physics these machines would open up. The first International Workshop on Physics and Experiments with Linear Colliders was held recently in Selkirk's in Finnish Lapland - some 300 kilometres north of the Arctic Circle
Topics in electron-positron interactions
International Nuclear Information System (INIS)
Soeding, P.
1983-01-01
This chapter investigates the collision of an electron and a positron in a high energy storage ring in which a large energy Q=W=√s=2 E /SUB beam/ is dumped into a tiny region of space-time. If the electron and positron annihilate each other almost all of this energy becomes concentrated in a single field quantum. Points out 3 consequences: 1) all flavored particles existing in nature are expected to be pair-produced provided their mass is not larger than W/2; 2) the pair production process acts as an effective ''filter'' for fundamental (i.e. pointlike) particles; and 3) particles without flavor (i.e. the gluons) are not directly pair-produced in e - e + interactions. Discusses basic processes; probing QED and lepton structure; hadron production at high energies; resonances; e - e + storage rings; detectors; electroweak interaction and new particles (leptons, quarks); restrictions on a more general weak interaction scenario; limits on pair production of scalar particles; and jets and QCD tests
New relativistic particle-in-cell simulation studies of prompt and early afterglows from GRBs
International Nuclear Information System (INIS)
Ken-Ichi Nishikawa
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons' transverse deflection behind the jet head. The '' jitter '' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. (author)
Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes
Ruffini, Remo; Vereshchagin, Gregory; Xue, She-Sheng
2010-02-01
scales. What has become clear in the last ten years is that all the three above mentioned processes, duly extended in the general relativistic framework, are necessary for the understanding of the physics of the gravitational collapse to a black hole. Vice versa, the natural arena where these processes can be observed in mutual interaction and on an unprecedented scale, is indeed the realm of relativistic astrophysics. We systematically analyze the conceptual developments which have followed the basic work of Dirac and Breit-Wheeler. We also recall how the seminal work of Born and Infeld inspired the work by Sauter, Heisenberg and Euler on effective Lagrangian leading to the estimate of the rate for the process of electron-positron production in a constant electric field. In addition to reviewing the intuitive semi-classical treatment of quantum mechanical tunneling for describing the process of electron-positron production, we recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and effective Lagrangian for constant electromagnetic fields. We also review the electron-positron production in both time-alternating electromagnetic fields, studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the corresponding processes relevant for pair production at the focus of coherent laser beams as well as electron-beam-laser collision. We finally report some current developments based on the general JWKB approach which allows us to compute the Schwinger rate in spatially varying and time varying electromagnetic fields. We also recall the pioneering work of Landau and Lifshitz, and Racah on the collision of charged particles as well as the experimental success of AdA and ADONE in the production of electron-positron pairs. We then turn to the possible experimental verification of these phenomena. We review: (A) the experimental verification of the e+e-→2γ process studied by Dirac. We also briefly recall the very successful experiments of e
Bruno Touschek: From Betatrons to Electron-Positron Colliders
Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio
Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.
Electron-positron pair creation in heavy ion collisions
International Nuclear Information System (INIS)
Kienle, P.
1987-08-01
We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)
Electrostatic stability of electron-positron plasmas in dipole geometry
Mishchenko, Alexey; Plunk, Gabriel; Helander, Per
2017-01-01
The electrostatic stability of electron-positron plasmas is investigated in the point-dipole and Z-pinch limits of dipole geometry. The kinetic dispersion relation for sub-bounce-frequency instabilities is derived and solved. For the zero-Debye-length case, the stability diagram is found to exhibit singular behavior. However, when the Debye length is non-zero, a fluid mode appears, which resolves the observed singularity, and also demonstrates that both the temperature and density gradients c...
Vortex structures in dense electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Haque, Q [Theoretical Plasma Physics Division, PINSTECH, P O Nilore, Islamabad (Pakistan)], E-mail: qamar_haque@hotmail.com
2009-11-15
A linear dispersion relation for electrostatic quantum drift and acoustic waves has been found for dense electron-positron-ion magnetoplasmas. Both the fermion and thermal temperature effects have been considered for electrons and positrons. In the nonlinear regime, a stationary solution in the form of dipolar vortices has been obtained. For illustration, the results were applied to the astrophysical plasma of the atmosphere of neutron stars/pulsars.
Electron-positron correlations in an electron liquid
International Nuclear Information System (INIS)
Stachowiak, H.
1980-01-01
The importance of studying electron-positron interaction for the interpretation of angular correlation data obtained for metallic systems is emphasized. The most successful approaches to electron-positron correlations in jellium are presented. Those include the Bethe-Goldstone two-body equation proposed by Kahana, the charge-density-dielectric function approach connected with the names of Singwi, Sjolander, Stott and Bhattacharyya and the Sawada boson-generalized Tamm-Dancoff approach elaborated recently by Arponen and Pajanne. In conclusion, it is reported that one can consider that the behaviour of a positron at rest in jellium is relatively well understood, though the problem of the optimal choice of a two-body electron-positron phenomenological equation is still open. Also, the behaviour of a positron in a real metal is not well understood and so far, serious calculations in this field have been performed only on very simple models while realistic calculations of the ACPAQ curves tend to minimize the importance of the problems which remain to be solved. (K.B.)
Research of the internal electron-positron pair production
International Nuclear Information System (INIS)
Fenyes, Tibor
1985-01-01
The phenomenon of internal electron-positron pair production by excited nuclei is briefly reviewed. The advantages of this phenomenon in nuclear structure investigations are pointed. The new Si(Li)-Si(Li) electron spectrometer with superconducting magnetic transporter (SMS) built at ATOMKI, Hungary, was tested for detection of internal electron-positron pair production events. Proton beam of a Van de Graaff accelerator of 5 MV was used to excite the target nuclei of sup(27)Al, sup(42)Ca and sup(19)F. The internal pair production coefficients were measured and compared with the data of literature. The detection efficiency of SMS is calculated to be (37+-7)%. The test proved that the SMS is suitable for nuclear structure investigations producing electron-positron pairs. The SMS of ATOMKI is recently the top instrument all over the world in this field: its detection efficiency, energy resolution and applicability for multipolarity identification are much better than these properties of other detectors. (D.Gy.)
Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.
2018-03-01
The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.
Energy Technology Data Exchange (ETDEWEB)
Liu, Ruoyu
2015-06-10
Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.
Multi-Frequency Blazar Micro-Variability as a Tool to Investigate Relativistic Jets
Directory of Open Access Journals (Sweden)
James R. Webb
2016-08-01
Full Text Available For the past 12 years we have been studying optical micro-variability of a sample of 15 Blazars. We summarize the results of this study and draw some basic conclusions about the characteristics of micro-variability. The intermittency, the stochastic nature, and the similar profile shapes seen in micro-variations at different times and in different objects have led us to a possible model to explain the observed micro-variations. The model is based on a strong shock propagating down a relativistic jet and encountering turbulence which causes density or magnetic field enhancements. We use the theory of Kirk, Reiger, and Mastichiadis (1998 to describe the pulse of synchrotron emission emanating from individual density enhancements energized by the shock. By fitting these “pulses” to micro-variability observations, we obtain excellent fits to actual micro-variations. The model predicts that the spectral index changes as a function of pulse duration. This effect should be observable in multi-frequency micro-variability data. We present the theoretical model, model fits of our micro-variability light curves, and preliminary multi-frequency micro-variability observations that support this model. A further test that has yet to be carried out involves observing polarization changes in different pulses.
Recoil effects in multiphoton electron-positron pair creation
International Nuclear Information System (INIS)
Krajewska, K.; Kaminski, J. Z.
2010-01-01
Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.
Optical distortions in electron/positron storage rings
International Nuclear Information System (INIS)
Brown, K.L.; Donald, M.; Servranckx, R.
1983-01-01
We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine
The Cornell electron-positron storage ring - CESR
International Nuclear Information System (INIS)
DeWire, J.W.
1977-01-01
At the Laboratory of Nuclear Studies of Cornell University we are working on a project to convert the present 12 GeV electron synchrotron complex into the Cornell Electron-Positron Storage Ring - CESR. The design studies for this new device were begun in early 1975. During the past eighteen months the National Science Foundation has supported a program of research and development on CESR and funds to begin construction are included in the NSF budget now before the U.S. Congress. Our goal is to have CESR in operation in the fall of 1979. (orig.) [de
Electron-positron annihilation at high luminosity colliding beams
International Nuclear Information System (INIS)
Grigoryan, G.V.; Khodzhamiryan, A.Yu.
1977-01-01
Experiments are discussed, which can be carried out at the electron-positron storage rings with increased luminosity (up to 10 34 cm -2 sec -1 ) and corresponding improvement of detectors at total energy region up to 10 GeV. This improvement of the experimental conditions may provide valuable physical information from the theoretical point of view. The comparison is made with analogous experimental possibilities of the projected high energy e + e - storage rings with luminosity up to 10 32 cm -2 sec -1
Electron--positron storage ring PETRA: plans and status
International Nuclear Information System (INIS)
Voss, G.A.
1977-01-01
Construction of the Electron-Positron Storage Ring PETRA was authorized October 20, 1975. At present most of the civil engineering work is completed and ring installation work is under way. All major components are on order and series production of bending magnets, quadrupoles, vacuum chambers and rf-resonators has started. Start-up of the machine is planned with a fourfold symmetry configuration with four active beam-beam interaction points. Five experimental facilities have been recommended for the first round of experiments scheduled to begin mid 79
Faraday rotation in an electron-positron plasma containing a fraction of ions
International Nuclear Information System (INIS)
Hall, J.O.; Shukla, P.K.
2005-01-01
The Faraday rotation in a magnetized electron-positron plasma containing a fraction of ions is investigated by using a multifluid description. It is shown that the Faraday rotation for circularly polarized electromagnetic waves with frequencies much larger than the electron/positron plasma and electron gyrofrequencies is proportional to the ion number density and the magnitude of the ambient magnetic-field strength. The results are relevant for astrophysical observations and diagnostics of laboratory electron-positron-ion magnetoplasmas
Quark jets, gluon jets and the three-gluon vertex
International Nuclear Information System (INIS)
Fodor, Z.
1989-11-01
Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)
International Nuclear Information System (INIS)
Wagner, A. Y.; Umemura, M.; Bicknell, G. V.
2012-01-01
We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P jet /L edd ∼ –4 , although systems with large cloud complexes ∼> 50 pc require jets of Eddington ratio in excess of 10 –2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than ∼25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.
Pumping Electron-Positron Pairs from a Well Potential.
Wang, Qiang; Liu, Jie; Fu, Li-Bin
2016-04-29
In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states.
Search for excited charged leptons in electron positron collisions
Vachon, Brigitte Marie Christine; Sobie, Randall
2002-01-01
A search for evidence that fundamental particles are made of smaller subconstituents is performed. The existence of excited states of fundamental particles would be an unambiguous indication of their composite nature. Experimental signatures compatible with the production of excited states of charged leptons in electron-positron collisions are studied. The data analysed were collected by the OPAL detector at the LEP collider. No evidence for the existence of excited states of charged leptons was found. Upper limits on the product of the cross-section and the electromagnetic branching fraction are inferred. Using results from the search for singly produced excited leptons, upper limits on the ratio of the excited lepton coupling constant to the compositeness scale are calculated. From pair production searches, 95% confidence level lower limits on the masses of excited electrons, muons and taus are determined to be 103.2 GeV.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Electrostatic stability of electron-positron plasmas in dipole geometry
Mishchenko, Alexey; Plunk, Gabriel G.; Helander, Per
2018-04-01
The electrostatic stability of electron-positron plasmas is investigated in the point-dipole and Z-pinch limits of dipole geometry. The kinetic dispersion relation for sub-bounce-frequency instabilities is derived and solved. For the zero-Debye-length case, the stability diagram is found to exhibit singular behaviour. However, when the Debye length is non-zero, a fluid mode appears, which resolves the observed singularity, and also demonstrates that both the temperature and density gradients can drive instability. It is concluded that a finite Debye length is necessary to determine the stability boundaries in parameter space. Landau damping is investigated at scales sufficiently smaller than the Debye length, where instability is absent.
Nonlinear electrostatic solitary waves in electron-positron plasmas
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Mushtaq, A. [TPPD, PINSTECH Nilore, 44000 Islamabad (Pakistan); National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Maroof, R.; Ahmad, Zulfiaqr [Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan); Qamar, A. [National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan)
2012-05-15
Low frequency magnetosonic waves are studied in magnetized degenerate electron-positron-ion plasmas with spin effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, and spin magnetization energy, a generalized dispersion relation for oblique magnetosonic waves is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. For three different values of angle {theta}, the generalized dispersion relation is reduced to three different relations under the low frequency magnetohydrodynamic assumptions. It is found that the effect of quantum corrections in the presence of positron concentration significantly modifies the dispersive properties of these modes. The importance of the work relevant to compact astrophysical bodies is pointed out.
Hot accretion disks with electron-positron pairs
International Nuclear Information System (INIS)
White, T.R.; Lightman, A.P.
1989-01-01
The hot thermal accretion disks of the 1970s are studied and consideration is given to the effects of electron-positron pairs, which were originally neglected. It is found that disks cooled by internally produced photons have a critical accretion rate above which equilibrium is not possible in a radial annulus centered around r = 10 GM/c-squared, where M is the mass of the central object. This confirms and extends previous work by Kusunose and Takahara. Above the critical rate, pairs are created more rapidly than they can be destroyed. Below the critical rate, there are two solutions to the disk structure, one with a high pair density and one with a low pair density. Depending on the strength of the viscosity, the critical accretion rate corresponds to a critical luminosity of about 3-10 percent of the Eddington limit. 32 refs
Electron-positron collision physics: 1 MeV to 2 TeV
International Nuclear Information System (INIS)
Perl, M.L.
1988-07-01
An overview of electron-positron collision physics is presented. It begins at 1 MeV, the energy region of positronium formation, and extends to 2 TeV, the energy region which requires an electron- positron linear collider. In addition, the concept of searching for a lepton-specific forces is discussed. 18 refs., 15 figs., 1 tab
Magnetic field, reconnection, and particle acceleration in extragalactic jets
Romanova, M. M.; Lovelace, R. V. E.
1992-01-01
Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.
DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS
Energy Technology Data Exchange (ETDEWEB)
McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)
2016-12-10
We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 < z < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.
A Model of Electron-Positron Pair Formation
Directory of Open Access Journals (Sweden)
Lehnert B.
2008-01-01
Full Text Available The elementary electron-positron pair formation process is consideredin terms of a revised quantum electrodynamic theory, with specialattention to the conservation of energy, spin, and electric charge.The theory leads to a wave-packet photon model of narrow line widthand needle-radiation properties, not being available from conventionalquantum electrodynamics which is based on Maxwell's equations. Themodel appears to be consistent with the observed pair productionprocess, in which the created electron and positron form two raysthat start within a very small region and have original directionsalong the path of the incoming photon. Conservation of angular momentum requires the photon to possess a spin, as given by the present theory but not by the conventional one. The nonzero electric field divergence further gives rise to a local intrinsic electric charge density within the photon body, whereas there is a vanishing total charge of the latter. This may explain the observed fact that the photon decays on account of the impact from an external electric field. Such a behaviour should not become possible for a photon having zero local electric charge density.
Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas
International Nuclear Information System (INIS)
Mahmood, S.; Ur-Rehman, H.
2009-01-01
Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.
Cosmological Implications of the Electron-Positron Aether
Rothwarf, Allen
1997-04-01
An aether is not prohibited on theoretical nor experimental grounds; only a credible physical model for it is lacking.By assuming that the particles and anti-particles created during the "big-bang" origin of the universe have not annihilated one another, but instead, form a bound state plasma, we have a model for a real aether.This aether is dominated by electron-positron pairs at very high density(10**30/cm3),in close analogy with electron-hole droplets formed in laser irradiated semiconductors. The Fermi velocity of this plasma is the speed of light, and the plasma expands at this speed. This gives results for the expanding universe in agreement with the Einstein-deSitter result for a universe dominated by radiation.The speed of light varies with time as do the other fundamental constants.This leads to an alternate explanation for cosmological redshifts. Independent,mini big bangs can occur and account for observed anomalous redshifts. The model can be tested using LIGO apparatus.
Transient beam loading in electron-positron storage rings
International Nuclear Information System (INIS)
Wilson, P.B.
1978-01-01
In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime
Electron-positron pair production in inhomogeneous electromagnetic fields
International Nuclear Information System (INIS)
Kohlfürst, C.
2015-01-01
The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de
Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.
2012-01-01
Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...
Relativistic klystron research at SLAC and LLNL
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-06-01
We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab
International Nuclear Information System (INIS)
Nowak, Michael A.; Trowbridge, Sarah N.; Davis, John E.; Hanke, Manfred; Wilms, Joern; Markoff, Sera B.; Maitra, Dipankar; Tramper, Frank; Pottschmidt, Katja; Coppi, Paolo
2011-01-01
Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard 'low states'. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the 'focused wind' from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2 . All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2 .
MONITORING THE BIDIRECTIONAL RELATIVISTIC JETS OF THE RADIO GALAXY 1946+708
International Nuclear Information System (INIS)
Taylor, G. B.; Charlot, P.; Vermeulen, R. C.; Pradel, N.
2009-01-01
We report on a multifrequency, multi-epoch campaign of Very Long Baseline Interferometry (VLBI) observations of the radio galaxy 1946+708 using the Very Long Baseline Array and a Global VLBI array. From these high-resolution observations, we deduce the kinematic age of the radio source to be ∼4000 years, comparable with the ages of other Compact Symmetric Objects. Ejections of pairs of jet components appears to take place on time scales of ten years and these components in the jet travel outward at intrinsic velocities between 0.6c and 0.9c. From the constraint that jet components cannot have intrinsic velocities faster than light, we derive H 0 > 57 km s -1 Mpc -1 from the fastest pair of components launched from the core. We provide strong evidence for the ejection of a new pair of components in ∼1997. From the trajectories of the jet components, we deduce that the jet is most likely to be helically confined, rather than being purely ballistic in nature.
Production of an electron-positron plasma in a pulsar magnetosphere
International Nuclear Information System (INIS)
Gurevich, A.V.; Istomin, Y.N.
1985-01-01
A study is made of the production of electron-positron plasma in the vacuum state (''breakdown'' of the vacuum) in the presence of an inhomogeneous electric field and a strong curvilinear magnetic field. Such conditions are encountered in the magnetosphere of a rotating neutron star. A general system of kinetic equations is derived for the electrons, positrons, and γ photons in the curvilinear magnetic field with allowance for the production of electron-positron pairs and the emission of curvature and synchrotron photons. The conditions of occurrence of ''breakdown'' are determined, and the threshold value of the jump in the value of the electric field at the surface of the star is found. The process of multiplication of particles in the magnetosphere is investigated, and the distribution functions of the electrons, positrons, and photons are found. The extinction limit of pulsars is determined. It is shown that the theory is in agreement with observational data
Cross section formulae on single W and Z boson productions in electron-positron collisions
International Nuclear Information System (INIS)
Katuya, Mituaki
1987-01-01
The formulae are given for the transverse momentum distributions and total cross sections for the single W boson and Z boson productions in electron-positron collisions by using the equivalent photon approximation. (author)
Angular correlations of coincident electron-positron pairs in heavy ion collisions
International Nuclear Information System (INIS)
Graf, O.
1988-10-01
In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de
On thermalization of electron-positron-photon plasma
Energy Technology Data Exchange (ETDEWEB)
Siutsou, I. A., E-mail: siutsou@icranet.org [CAPES–ICRANet program, ICRANet–Rio, CBPF 22290-180, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ (Brazil); Aksenov, A. G. [Institute for Computer-Aided Design, Russian Academy of Sciences 123056, 2nd Brestskaya st., 19/18, Moscow (Russian Federation); Vereshchagin, G. V. [ICRANet 65122, p.le della Republica, 10, Pescara (Italy)
2015-12-17
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
On thermalization of electron-positron-photon plasma
Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.
2015-12-01
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
Vector mesons in reactions with colliding electron-positron beams
International Nuclear Information System (INIS)
Rekalo, M.P.; Gakh, G.I.
1980-01-01
Polarization phenomena in the processes of vector meson production in reactions with colliding electron-positron beams e + e - → V+X, where V is a vector meson, X is a nondetected set of particles are investigated. For the one-photon mechanism of the process, where V and X are hadrons, the mutually unambiguous correspondence between the structural functions is found. The dependence of the e + e - → VX differential cross section upon the electron and positron polarizations is calculated using the virtual photon density matrix in the helicity basis. This formalism permits to take explicitly into account the P-invariance consequences for the angular distribution of the V-meson decay products. For the processes e + e - → πA 1 , and e + e - → rho + rho - the structural functions are calculated in terms of the corresponding electromagnetic form factors. It is noted that six functions out ten real structural functions describing the e + e - → VX reaction can be determined by means of investigation of the angular distribution of the V-meson decay products which is produced in collisions of unpolarized leptons. To study the collision of polarized leptons one more structural function can be determined. The formation of the X system with definite values of parity and spin is characterized by seven structural functions, five of which can be found while studying the angular distribution of the V-meson decay products produced in e + e - collisions with unpolarized (polarized) particles. If the spin of the X state is 1, in experiments with polarized beams all structural functions can be determined while investigating the angular distribution of the V-meson decay products
Two-site Hubbard molecule with a spinless electron-positron pair
Cossu, Fabrizio
2012-12-19
We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.
Two-site Hubbard molecule with a spinless electron-positron pair
Cossu, Fabrizio; Schuster, Cosima; Schwingenschlö gl, Udo
2012-01-01
We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.
Analysis of JET LCHD/ICRH synergy experiments in terms of relativistic current drive theory
Energy Technology Data Exchange (ETDEWEB)
Start, D F.H.; Baranov, Y; Brusati, M; Ekedahl, A; Froissard, P; Gormezano, C; Jacquinot, J; Paquin, L; Rimini, F G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cox, M; Gardner, C; O` Brien, M R [UKAEA Culham Lab., Abingdon (United Kingdom); Di Vita, A [Ansaldo SpA, Genoa (Italy)
1994-07-01
The present analysis shows that the observed efficiency of current drive with synergy between LHCD and ICRH is in good agreement with the relativistic theory of Karney and Fisch for Landau damped waves. The predicted power absorption from the fast wave by the electron tail is within 30% of the measured value. In the presence of significant fast electron diffusion within a slowing down time it would be possible to produce central current drive using multiple ICRF resonances even when the LHCD deposition is at half radius, as in an ITER type device. (authors). 4 refs., 6 figs.
Analysis of JET LCHD/ICRH synergy experiments in terms of relativistic current drive theory
International Nuclear Information System (INIS)
Start, D.F.H.; Baranov, Y.; Brusati, M.; Ekedahl, A.; Froissard, P.; Gormezano, C.; Jacquinot, J.; Paquin, L.; Rimini, F.G.; Di Vita, A.
1994-01-01
The present analysis shows that the observed efficiency of current drive with synergy between LHCD and ICRH is in good agreement with the relativistic theory of Karney and Fisch for Landau damped waves. The predicted power absorption from the fast wave by the electron tail is within 30% of the measured value. In the presence of significant fast electron diffusion within a slowing down time it would be possible to produce central current drive using multiple ICRF resonances even when the LHCD deposition is at half radius, as in an ITER type device. (authors). 4 refs., 6 figs
Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.
2015-02-01
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Energy Technology Data Exchange (ETDEWEB)
Rahman, Ata-ur-, E-mail: ata797@yahoo.com [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa (Pakistan); Kerr, Michael Mc, E-mail: mjamckerr@gmail.com; Kourakis, Ioannis, E-mail: IoannisKourakisSci@gmail.com [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN Northern Ireland (United Kingdom); El-Taibany, Wael F., E-mail: eltaibany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. Box 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. Box 960, Abha (Saudi Arabia); Qamar, A., E-mail: anisaqamar@gmail.com [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-02-15
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Ur-Rahman, Ata; Ali, S.; Mushtaq, A.; Qamar, A.
2015-01-01
A misprint occured in equation 26 in the original article (Ur-Rahman et al. 2013). The correct equation is provided below. \\[\\zeta=\\epsilon1/2\\left(x-\\lambda t\\right) \\rm{, \\ \\ }\\tau=\\epsilon3/2t\\rm{.}%\\] This misprint does not affect the calculations, the figures and the discussion presented in the original article.
The annihilation spectrum of relatiVistic electron-positron plasma
International Nuclear Information System (INIS)
Aragonyan, F.A.; Atoyan, A.M.; Syunyaev, R.A.
1980-01-01
The annihilation spectrum of isotropically distributed monoenergetic electrons and positrons is obtained. The spectrum of the (e + e - ) plasma is analyzed in a large range of plasma temperatures. The comparison of transitions peratures. The comparison of transitions intensities of annihilation radiation and bremsstrahlung shows that for temperatures kT 2 (e + e - ) plasma is cooled mainly due to annihilation. The case of the fast positron annihilation on the rest electrons also considered. The possible astrophysical applications are discussed [ru
Search for a Signature of Interaction between Relativistic Jet and Progenitor in Gamma-Ray Bursts
Yoshida, Kazuki; Yoneoku, Daisuke; Sawano, Tatsuya; Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro
2017-11-01
The time variability of prompt emission in gamma-ray bursts (GRBs) is expected to originate from the temporal behavior of the central engine activity and the jet propagation in the massive stellar envelope. Using a pulse search algorithm for bright GRBs, we investigate the time variability of gamma-ray light curves to search a signature of the interaction between the jet and the inner structure of the progenitor. Since this signature might appear in the earlier phase of prompt emission, we divide the light curves into the initial phase and the late phase by referring to the trigger time and the burst duration of each GRB. We also adopt this algorithm for GRBs associated with supernovae/hypernovae that certainly are accompanied by massive stars. However, there is no difference between each pulse interval distribution described by a lognorma distribution in the two phases. We confirm that this result can be explained by the photospheric emission model if the energy injection of the central engine is not steady or completely periodic but episodic and described by the lognormal distribution with a mean of ˜1 s.
Search for a Signature of Interaction between Relativistic Jet and Progenitor in Gamma-Ray Bursts
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Kazuki; Yoneoku, Daisuke; Sawano, Tatsuya [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro, E-mail: yoshida@astro.s.kanazawa-u.ac.jp, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Astrophysical Big Ban Laboratory, RIKEN, Saitama 351-0198 (Japan)
2017-11-01
The time variability of prompt emission in gamma-ray bursts (GRBs) is expected to originate from the temporal behavior of the central engine activity and the jet propagation in the massive stellar envelope. Using a pulse search algorithm for bright GRBs, we investigate the time variability of gamma-ray light curves to search a signature of the interaction between the jet and the inner structure of the progenitor. Since this signature might appear in the earlier phase of prompt emission, we divide the light curves into the initial phase and the late phase by referring to the trigger time and the burst duration of each GRB. We also adopt this algorithm for GRBs associated with supernovae/hypernovae that certainly are accompanied by massive stars. However, there is no difference between each pulse interval distribution described by a lognorma distribution in the two phases. We confirm that this result can be explained by the photospheric emission model if the energy injection of the central engine is not steady or completely periodic but episodic and described by the lognormal distribution with a mean of ∼1 s.
Theory of electron--positron annihilation into hadrons
International Nuclear Information System (INIS)
Gilman, F.J.
1975-01-01
The total cross section for e + e - → hadrons and R, its ratio to the muon pair cross section, the physics below and above the threshold near 4 GeV cms with particular attention to what is changing there and exactly where it happens, and inclusive distributions and jets of final state hadrons are treated
Cloud Ablation by a Relativistic Jet and the Extended Flare in CTA 102 in 2016 and 2017
Zacharias, M.; Böttcher, M.; Jankowsky, F.; Lenain, J.-P.; Wagner, S. J.; Wierzcholska, A.
2017-12-01
In late 2016 and early 2017, the flat spectrum radio quasar CTA 102 exhibited a very strong and long-lasting outburst. The event can be described by a roughly two-month long increase of the baseline flux in the monitored energy bands (optical to γ-rays) by a factor 8, and a subsequent decrease over another two months back to pre-flare levels. The long-term trend was superseded by short but very strong flares, resulting in a peak flux that was a factor 50 above pre-flare levels in the γ-ray domain and almost a factor 100 above pre-flare levels in the optical domain. In this paper, we explain the long-term evolution of the outburst by the ablation of a gas cloud penetrating the relativistic jet. The slice-by-slice ablation results in a gradual increase of the particle injection until the center of the cloud is reached, after which the injected number of particles decreases again. With reasonable cloud parameters, we obtain excellent fits of the long-term trend.
VizieR Online Data Catalog: Radio-loud AGN with relativistic jets (Olguin-Iglesias+, 2016)
Olguin-Iglesias, A.; Leon-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Anorve, C.; Valdes, J.; Carrasco, L.
2017-11-01
The sample of sources analysed in this work is a sub-sample of variable radio-loud AGN monitored at 7mm (S7mm>1Jy) with the Aalto University Metsahovi Radio Observatory, in Finland (http://metsahovi.aalto.fi/en/) since the last 30 years (Terasranta et al., 1992A&AS...94..121T; Teraesranta et al., 1998, Cat. J/A+AS/132/305; Leon-Tavares et al., 2011A&A...532A.146L; Nieppola et al., 2011, Cat. J/A+A/535/A69). According to the AGN unification scheme (Antonucci, 1993ARA&A..31..473A; Urry & Padovani, 1995PASP..107..803U), FSRQ and BL Lacs are those AGN whose relativistic jets point towards the Earth. Observations were made with the Nordic Optical Telescope (NOT) at La Roque de los Muchachos, La Palma, Canarias, Spain. They were conducted between 2011 May 09 and September 15 using the near-infrared Camera (NOTCam)3 on the NOT. NOTcam field of view is 4'x4' with a pixel scale of 0.234-arcsec/pixel designed to be used in the range from 0.8 to 2.5um in the bands J, H and K. (1 data file).
Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2013-06-01
The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.
Physical processes in relativistic plasmas
International Nuclear Information System (INIS)
Svensson, R.
1984-01-01
The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.
1989-01-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.
1989-01-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-09-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab
Linear electrostatic waves in a three-component electron-positron-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)
2014-12-15
Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.
Quark flavor identification in electron-positron annihilation
International Nuclear Information System (INIS)
Kaye, H.S.
1983-09-01
The theoretical issues relevant to inclusive muon analysis, the MAC detector and its data flow structure, the identification of muons in hadronic events and the measurement of their momenta, and the selection of events so as to minimize background are described. Experimental results are presented describing the fragmentation of heavy quarks into hadrons, the semimuonic branching fractions of the heavy quarks, the asymmetry in the angular distribution of the heavy quarks, and the invariant mass and charged multiplicity of heavy quark jets. In addition, lower limits are set on the masses of certain proposed particles that are expected to decay semileptonically. Finally, events containing two muons are analyzed in order to investigate the possibility of mixing in the B-B system and whether the b might form its own SU(2) singlet
Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy
2009-12-19
REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE
The beam energy measurement system for the Beijing electron-positron collider
International Nuclear Information System (INIS)
Zhang, J.Y.; Abakumova, E.V.; Achasov, M.N.; Blinov, V.E.; Cai, X.; Dong, H.Y.; Fu, C.D.; Harris, F.A.; Kaminsky, V.V.; Krasnov, A.A.; Liu, Q.; Mo, X.H.; Muchnoi, N.Yu.; Nikolaev, I.B.; Qin, Q.; Qu, H.M.; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.
2012-01-01
The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2⋅10 -5 .
Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma
Institute of Scientific and Technical Information of China (English)
Q. Haque; H. Saleem
2004-01-01
@@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.
Progress in measurement and understanding of beam polarization in electron positron storage rings
International Nuclear Information System (INIS)
Barber, D.P.; Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Limberg, T.; Mais, H.; Ripken, G.; Rossmanith, R.; Schmidt, R.
1983-07-01
A report is presented on the status of attempts to obtain and measure spin polarization in electron-positron storage rings. Experimental results are presented and their relationship to predictions of calculations discussed. Examples of methods for decoupling orbital and spin motion and thus improving polarization are discussed. (orig.)
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
Localized structures of electromagnetic waves in hot electron-positron plasma
International Nuclear Information System (INIS)
Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.
1995-08-01
The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs
The beam energy measurement system for the Beijing electron-positron collider
International Nuclear Information System (INIS)
Abakumova, E.V.; Achasov, M.N.; Blinov, V.E.; Cai, X.; Dong, H.Y.; Fu, C.D.; Harris, F.A.; Kaminsky, V.V.; Krasnov, A.A.; Liu, Q.; Mo, X.H.; Muchnoi, N.Yu.; Nikolaev, I.B.; Qin, Q.; Qu, H.M.; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.; Todyshev, K.Yu.
2011-01-01
The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2×10 -5 . The relative uncertainty of the beam's energy spread is about 6%.
Creation of electron-positron plasma with superstrong laser field
International Nuclear Information System (INIS)
Narozhny, N.B.; Fedotov, A.M.
2014-01-01
We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e - e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exa-watt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of 10 26 W/cm 2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3 /eℎ = 1.32*10 16 V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promising effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities of about 5*10 25 W/cm 2 , creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength E ≅ E S is not accessible for a pair-creating electromagnetic field at all. (authors)
OPAL: Decay of Z0 to three jets
1990-01-01
This track is an example of real data collected from the OPAL detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. A Z0 particle is produced in the electron-positron collision which decays into a quark and an antiquark, one of which emits a gluon. Both quarks and gluons appear in the detector as jets of hadrons.
Relativistic description of pair production of doubly heavy baryons in e+e− annihilation
International Nuclear Information System (INIS)
Martynenko, A. P.; Trunin, A. M.
2015-01-01
Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated
Relativistic klystron research for high gradient accelerators
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-06-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs
On the average luminosity of electron positron collider and positron-producing energy
International Nuclear Information System (INIS)
Xie Jialin
1985-01-01
In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy
Renormalization theory of beam-beam interaction in electron-positron colliders
International Nuclear Information System (INIS)
Chin, Y.H.
1989-07-01
This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs
The design, construction and commissioning of the CERN Large Electron-Positron collider
International Nuclear Information System (INIS)
Myers, S.; Picasso, E.
1990-01-01
A description is given of the most important parameters considered in the design of the CERN Large Electron-Positron collider. It is shown how these parameters affect the collider performance and how they have been optimised with respect to the cost of the project. The functioning of each major subsystem is described with respect to its role as part of the collider. Finally, the planning, testing and initial commissioning of LEP is described and possible future developments are outlined. (author)
Electron-positron pair production by two identical photons in the nuclear field
International Nuclear Information System (INIS)
Smirnov, A.I.
1977-01-01
In the Born approximation of the perturbation theory considered is a nonlinear effect of the electron-positron pair production by two identical photons in the Coulomb field of an atomic nucleus. The kinematic version of identical photons is studied. All the particles are considered to be nonpolarized. The calculation of the differential probability of the effect has been carried out earlier by the Feynman method. The total probability of the effect in limiting energy ranges is determined by integrating the formulas of the pair component distribution over energies. The probabilities of the electron-positron pair production and fusion of two photons into one in the nucleus field have been compared for the case of identical quanta. From the comparison of the results of analyzing both the nonlinear effects it follows that in the high-energy range the electron-positron pair production by two identical photons in the nucleus field extremely predominates over the fusion of two photons into one photon in the same field
Photoionization at relativistic energies
International Nuclear Information System (INIS)
Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.
2000-11-01
At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others
2016-04-01
The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.
Relativistic shocks and particle acceleration
International Nuclear Information System (INIS)
Heavens, A.F.
1988-01-01
In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)
Time dependent approach of TeV blazars based on a model of inhomogeneous stratified jet
International Nuclear Information System (INIS)
Boutelier, T.
2009-05-01
The study of the emission and variability mechanisms of TeV blazars has been the subject of intensive research for years. The homogeneous one-zone model commonly used is puzzling since it yields very high Lorentz factor, in contradiction with other observational evidences. In this work, I describe a new time dependent multi-zone approach, in the framework of the two-flow model. I compute the emission of a full jet, where relativistic electron-positron pairs distributed in pileup propagate. The evolution and the emission of the plasma is computed taking into account a turbulent heating term, some radiative cooling, and a pair production term due to photo-annihilation process. Applied to PKS 2155-304, the model allows the reproduction of the full spectra, as well as the simultaneous multi wavelength variability, with a relatively small Lorentz factor. The variability is explained by the instability of the pair creation process. Nonetheless, the value is still high to agree with other observational evidences in radio. Hence, I show in the last part of this work how to conciliate high Lorentz factor with the absence of apparent superluminal movement in radio, by taking into account the effect of the opening angle on the appearance of relativistic jets. (author)
J-PET detector system for studies of the electron-positron annihilations
Directory of Open Access Journals (Sweden)
Pawlik-Niedźwiecka M.
2016-01-01
Full Text Available Jagiellonian Positron Emission Tomograph (J-PET has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.
Neutrino (antineutrino) effective charge in a magnetized electron-positron plasma
International Nuclear Information System (INIS)
Serbeto, A.; Rios, L.A.; Mendonca, J.T.; Shukla, P.K.
2004-01-01
Using dynamical techniques of the plasma physics, the neutrino (antineutrino) effective charge in a magnetized dense electron-positron plasma is determined here. It shown that its value, which is determined by the plasma collective processes, depends mainly on the propagation direction of plasma waves and neutrinos against the external magnetic field direction. The direction dependence of the effective charge occurs due to the fact that the magnetic field breaks the plasma isotropy. The present theory gives a unified picture of the problem which is valid for an external magnetic field below the Landau-Schwinger critical value. Comparison with some of the results from the quantum field theory has been made
International Nuclear Information System (INIS)
Rubaszek, A.
2001-01-01
Several methods to describe the electron-positron (e-p) correlation effects are used in calculations of positron annihilation characteristics in solids. The weighted density approximation (WDA), giving rise to the non-local, state-selective e-p correlation functions, is applied to calculate positron annihilation rates and e-p momentum densities in a variety of metals and silicon. The WDA results are compared to the results of other methods such as the independent particle model, local density approximation, generalised gradient approximation, and also to experiments. The importance of non-locality and state-dependence of the e-p correlation functions is discussed. (orig.)
Positron-acoustic waves in an electron-positron plasma with an electron beam
International Nuclear Information System (INIS)
Nejoh, Y.N.
1996-01-01
The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
Kusunose, Masaaki; Takahara, Fumio
1990-01-01
The present account of the effects of soft photons from external sources on two-temperature accretion disks in electron-positron pair equilibrium solves the energy-balance equation for a given radial distribution of the input rate of soft photons, taking into account their bremsstrahlung and Comptonization. Critical rate behavior is investigated as a function of the ratio of the energy flux of incident soft photons and the energy-generation rate. As in a previous study, the existence of a critical accretion rate is established.
Beam-beam interaction in high energy linear electron-positron colliders
International Nuclear Information System (INIS)
Ritter, S.
1985-04-01
The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)
Polarization effects in the reaction of charm baryon production on colliding electron-positron beams
International Nuclear Information System (INIS)
Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.
1980-01-01
To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume
[Experiment studies of electron-positron interactions at the Stanford Linear Accelerator Center
International Nuclear Information System (INIS)
Hertzbach, S.S.; Kofler, R.R.
1993-01-01
The High Energy Physics group at the University of Massachusetts has continued its' program of experimental studies of electron-positron interactions at the Stanford Linear Accelerator Center (SLAC). The group activities have included: analysis of data taken between 1982 and 1990 with the TPC detector at the PEP facility, continuing data collection and data analysis using the SLC/SLD facility, planning for the newly approved B-factory at SLAC, and participation in design studies for future high energy linear colliders. This report will briefly summarize these activities
Development of a stripline-type position monitor for the KEK electron/positron linac
International Nuclear Information System (INIS)
Suwada, T.; Urano, T.; Lazos, A.; Kobayashi, H.
1994-01-01
A stripline-type beam-position monitor (BPM) is under development at the KEK electron/positron linac. This monitor will be installed in order to easily handle the orbit of a high-current electron beam (∼10 nC/pulse) generating a positron beam in the B-factory. The prototype BPM was tested at a test bench and then in the linac using a single-bunch electron beam. In this report some basic characteristics and the experimental results of the BPM are presented
Online beam energy measurement of Beijing electron positron collider II linear accelerator
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Improving the equivalent-photon approximation in electron-positron collisions
Schuler, G A
1996-01-01
The validity of the equivalent-photon approximation for two-photon processes in electron--positron collisions is critically examined. Commonly used forms to describe hadronic two-photon production are shown to lead to sizeable errors. An improved two-photon luminosity function is presented, which includes beyond-leading-logarithmic effects and scalar-photon contributions. Comparisons of various approximate expressions with the exact calculation in the case of the total hadronic cross section are given. Furthermore, effects of the poorly known low-Q2 behaviour of the virtual hadronic cross sections are discussed.
On the physics of runaway particles in JET and MAST
International Nuclear Information System (INIS)
Helander, P.; Akers, R.J.; Gimblett, C.G.; Tournianski, M.R.; Byrom, C.; Eriksson, L.-G.; Andersson, F.
2003-01-01
This paper explores the physics of runaway particles observed in MAST and JET. During internal reconnection events in MAST, it is observed that the ion distribution function, as measured by a neutral-particle analyser, develops a high-energy tail, which subsequently decays on the time scale of collisional slowing down. These observations are explained in terms of runaway ion acceleration in the electric field induced by the reconnection - a phenomenon predicted theoretically by Furth and Rutherford in 1972 but not commonly noted in tokamaks. In JET, long-lived post-disruption currents carried by runaway electrons have been observed to decay on a time scale of 1-2 s. A relativistic kinetic theory is developed to explain this decay as a consequence of the combined action of Coulomb collisions and synchrotron radiation emission. It is also pointed out that substantial electron-positron pair production should occur in such discharges, which have also been made more recently on JT-60U. In fact, tokamaks may be the largest positron repositories made by man. (author)
CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP
Energy Technology Data Exchange (ETDEWEB)
Anon.
1993-09-15
The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel.
Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP
Schael, S.; Bruneliere, R.; Buskulic, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.P.; Lucotte, A.; Martin, F.; Merle, E.; Minard, M.N.; Nief, J.Y.; Odier, P.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Comas, P.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Park, I.C.; Perlas, J.; Riu, I.; Ruiz, H.; Sanchez, F.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Bazarko, A.; Becker, U.; Boix, G.; Bird, F.; Blucher, E.; Bonvicini, B.; Bright-Thomas, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hagelberg, R.; Halley, A.W.; Gianotti, F.; Girone, M.; Hansen, J.B.; Harvey, J.; Jacobsen, R.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Knobloch, J.; Kado, M.; Lehraus, I.; Lazeyras, P.; Maley, P.; Mato, P.; May, J.; Moutoussi, A.; Pepe-Altarelli, M.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, B.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Veenhof, R.; Valassi, A.; Wiedenmann, W.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Fayolle, D.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Bertelsen, H.; Fernley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Lindahl, A.; Mollerud, R.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Tanaka, R.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Picchi, P.; Colrain, P.; ten Have, I.; Hughes, I.S.; Kennedy, J.; Knowles, I.G.; Lynch, J.G.; Morton, W.T.; Negus, P.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J.M.; Smith, K.; Thompson, A.S.; Turnbull, R.M.; Wasserbaech, S.; Buchmuller, O.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, W.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Keemer, N.R.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; Snow, S.W.; Williams, M.I.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Bauerdick, L.A.T.; Blumenschein, U.; van Gemmeren, P.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kasemann, M.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Wanke, R.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Etienne, F.; Fouchez, D.; Motsch, F.; Payre, P.; Rousseau, D.; Tilquin, A.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buscher, V.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Seywerd, H.; Stenzel, H.; Villegas, M.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Mutz, A.M.; Schune, M.H.; Serin, L.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Giammanco, A.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Edwards, M.; Haywood, S.J.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Emery, S.; Fabbro, B.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Barberio, E.; Bohrer, A.; Brandt, S.; Burkhardt, H.; Feigl, E.; Grupen, C.; Hess, J.; Lutters, G.; Meinhard, H.; Minguet-Rodriguez, J.; Mirabito, L.; Misiejuk, A.; Neugebauer, E.; Ngac, A.; Prange, G.; Rivera, F.; Saraiva, P.; Schafer, U.; Sieler, U.; Smolik, L.; Stephan, F.; Trier, H.; Apollonio, M.; Borean, C.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Pitis, L.; He, H.; Kim, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Bellantoni, L.; Berkelman, K.; Cinabro, D.; Conway, J.S.; Cranmer, K.; Elmer, P.; Feng, Z.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Grahl, J.; Harton, J.L.; Hayes, O.J.; Hu, H.; Jin, S.; Johnson, R.P.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Sharma, V.; Walsh, A.M.; Walsh, J.; Wear, J.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Yamartino, J.M.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; De Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Duperrin, A.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gele, D.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S-O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R.Mc; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolaenko, V.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, I.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Simard, L.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M-L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; De Asmundis, R.; D'eglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S.N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, G.; Grimm, O.; Gruenewald, M.W.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, L.W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Pirou'e, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ackerstaff, K.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, J.; Altekamp, N.; Ametewee, K.; Anagnostou, G.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Bartoldus, R.; Batley, R.J.; Baumann, S.; Bechtle, P.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Boeriu, O.; Blobel, V.; Bloodworth, I.J.; Bloomer, J.E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Bosch, H.M.; Boutemeur, M.; Bouwens, B.T.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R.M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Cammin, J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, M.; Dallison, S.; de Jong, S.; De Roeck, A.; Dervan, P.; De Wolf, E.A.; del Pozo, L.A.; Desch, K.; Dienes, B.; Dixit, M.S.; do Couto e Silva, E.; Donkers, M.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Edwards, J.E.G.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanti, M.; Fath, P.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Ford, M.; Foucher, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Giunta, M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Graham, K.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hart, P.A.; Hartmann, C.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hilse, T.; Hobson, P.R.; Hocker, A.; Hoffman, K.; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Hughes-Jones, R.E.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ingram, M.R.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, G.; Jones, M.; Jones, R.W.L.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; King, B.J.; Kirk, J.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, R.V.; Kramer, T.; Krasznahorkay, A., Jr.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lewis, C.; Liebisch, R.; Lillich, J.; List, B.; List, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, A.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Matthews, W.; Mattig, P.; McDonald, W.J.; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McNab, A.I.; McPherson, R.A.; Mendez-Lorenzo, P.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, N.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Muller, U.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nellen, B.; Nijjhar, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oldershaw, N.J.; Omori, T.; Oreglia, M.J.; Orito, S.; Pahl, C.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pearce, M.J.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Poffenberger, P.; Polok, J.; Poli, B.; Pooth, O.; Posthaus, A.; Przybycien, M.; Przysiezniak, H.; Quadt, A.; Rabbertz, K.; Rees, D.L.; Rembser, C.; Renkel, P.; Rick, H.; Rigby, D.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Ros, E.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Rylko, R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sasaki, M.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schmitt, S.; Schorner-Sadenius, T.; Schroder, M.; Schultz-Coulon, H.C.; Schulz, M.; Schumacher, M.; Schutz, P.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Smith, T.J.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Springer, R.W.; Sproston, M.; Stahl, A.; Steiert, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Strohmer, R.; Strumia, F.; Stumpf, L.; Surrow, B.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Taylor, R.J.; Tasevsky, M.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsukamoto, T.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Utzat, P.; Vachon, B.; Van Kooten, R.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Vikas, P.; Vincter, M.; Vokurka, E.H.; Vollmer, C.F.; Voss, H.; Vossebeld, J.; Wackerle, F.; Wagner, A.; Waller, D.; Ward, C.P.; Ward, D.R.; Ward, J.J.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilkens, B.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wotton, S.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.; Zivkovic, L.
2013-01-01
Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3~fb$^{-1}$ collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from $130~GeV$ to $209~GeV$. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron-positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose-Einstein correlations between the two W decay systems arising ...
Measurement of the hadronic cross section in electron-positron annihilation
International Nuclear Information System (INIS)
Clearwater, S.
1983-11-01
This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given
CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP
International Nuclear Information System (INIS)
Anon.
1993-01-01
The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel
Nonlinear dust-acoustic structures in space plasmas with superthermal electrons, positrons, and ions
Energy Technology Data Exchange (ETDEWEB)
Saberian, E., E-mail: e.saberian@neyshabur.ac.ir [University of Neyshabur, Department of Physics, Faculty of Basic Sciences (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Afsari-Ghazi, M. [Azarbaijan Shahid Madani University, Department of Physics, Faculty of Sciences (Iran, Islamic Republic of)
2017-01-15
Some features of nonlinear dust-acoustic (DA) structures are investigated in a space plasma consisting of superthermal electrons, positrons, and positive ions in the presence of negatively charged dust grains with finite-temperature by employing a pseudo-potential technique in a hydrodynamic model. For this purpose, it is assumed that the electrons, positrons, and ions obey a kappa-like (κ) distribution in the background of adiabatic dust population. In the linear analysis, it is found that the dispersion relation yield two positive DA branches, i.e., the slow and fast DA waves. The upper branch (fast DA waves) corresponds to the case in which both (negatively charged) dust particles and (positively charged) ion species oscillate in phase with electrons and positrons. On the other hand, the lower branch (slow DA waves) corresponds to the case in which only dust particles oscillate in phase with electrons and positrons, while ion species are in antiphase with them. On the other hand, the fully nonlinear analysis shows that the existence domain of solitons and their characteristics depend strongly on the dust charge, ion charge, dust temperature, and the spectral index κ. It is found that the minimum/maximum Mach number increases as the spectral index κ increases. Also, it is found that only solitons with negative polarity can propagate and that their amplitudes increase as the parameter κ increases. Furthermore, the domain of Mach number shifts to the lower values, when the value of the dust charge Z{sub d} increases. Moreover, it is found that the Mach number increases with an increase in the dust temperature. Our analysis confirms that, in space plasmas with highly charged dusts, the presence of superthermal particles (electrons, positrons, and ions) may facilitate the formation of DA solitary waves. Particularly, in two cases of hydrogen ions H{sup +} (Z{sub i} = 1) and doubly ionized Helium atoms He{sup 2+} (Z{sub i} = 2), the mentioned results are the same
International Nuclear Information System (INIS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Axelsson, M.; Battelino, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Caliandro, G. A.; Bruel, P.
2009-01-01
We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ∼1500 km s -1 ), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-ray and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti and Ghisellini. We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.
Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan
2018-03-01
We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.
Electron-positron pair production in a hot accretion plasma around a massive black hole
International Nuclear Information System (INIS)
Takahara, Fumio; Kusunose, Masaaki.
1985-01-01
We investigate the electron-positron pair production in a hot accretion plasma around a supermassive black hole in connection with active galactic nuclei. Assuming that an optically thin two-temperature plasma is produced in the vicinity of the central black hole, we examine the condition for the significant pair production by comparing relevant time scales. Since the pair production is dominated by collisions between hard photons, the conditions for significant pair production depend on the production rate of hard photons. We examine the case where the unsaturated Comptonization of soft photons produces hard photons as well as that of bremsstrahlung. We show that significant pair production occurs for a moderately high accretion rate with relatively slow accretion flow as compared to the free fall velocity in both cases. Possible consequences of pair production are briefly discussed. (author)
Laser driven electron-positron pair creation-kinetic theory versus analytical approximations
International Nuclear Information System (INIS)
Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.
2013-01-01
The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Neutron dosimetry at a high-energy electron-positron collider
Bedogni, Roberto
Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
Drift-Alfven eigenmodes in inhomogeneous electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Haque, Q; Ahmad, Ali [Theoretical Plasma Physics Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Yamin, S, E-mail: qamar@pinstech.org.pk [Physics Division, PO Nilore, Islamabad (Pakistan)
2011-03-15
An analytical description of drift-Alfven modes in nonuniform bounded magnetized electron-positron-ion plasmas is presented here. In the linear domain, linearized equations are solved by considering the Gaussian density profile in the radial direction. For this bounded plasma, the condition for the quantization of the modes is found. We note that the condition depends upon the density ratios of different plasma species. The full set of nonlinear equations is also solved, yielding stationary rotating solutions in terms of Bessel functions. We also note that the behavior of the nonlinear structures can be affected by the concentration of the positrons in the system. The importance of the present results with respect to astrophysical plasmas is pointed out.
Electron-positron pair production in Coulomb collisions at ultrarelativistic energies
International Nuclear Information System (INIS)
Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R.
1993-01-01
We have measured angular and momentum distributions for electrons and positrons created as pairs in peripheral collisions of 6.4 TeV bare sulfur ions with fixed targets of Al, Pd, and Au. Singly- and doubly-differential cross sections have been determined for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Integrated yields for pair production are found to vary as the square of the target nuclear charge. Relative angular and momentum differential cross sections are effectively target independent. Probability distributions for the pair total momentum, the positron fraction of the pair momentum, and the pair traverse momentum have been derived from the coincident electron-positron data
Silari, Marco
2004-01-01
The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...
Feedback for suppression of single-bunch transverse instability in electron-positron storage rings
International Nuclear Information System (INIS)
Smaluk, V; Sukhanov, D; Oreshonok, V; Cherepanov, V; Kiselev, V
2012-01-01
Transverse head-tail instability is a severe limitation of a single-bunch beam current in circular accelerators. Applicability and efficiency of feedbacks for suppression of the instability is analyzed. Both chromatic and nonlinear effects have been taken into account to understand the processes of excitation and damping of the instability. Analytical estimations are compared with the results of experiments and numerical simulations. A feedback system has been developed, installed and commissioned at the VEPP-4M electron-positron collider. An original scheme of the kicker powering has been developed to provide the necessary performance with minimal expenses. Real-time digital data processing performed by a code running in an FPGA module provides high efficiency and flexibility of the system. During the system commissioning, a more than threefold increase of intensity of the VEPP-4M single-bunch beam has been achieved.
Focusing of relativistic electron bunch, moving in cylindrical plasma waveguide
International Nuclear Information System (INIS)
Amatuni, A.Ts.; Ehlbakyan, S.S.; Sekhpossyan, E.V.
1994-01-01
The problem on the focusing of electron bunches moving with the relativistic velocity along the axis of cylindrical overdense plasma waveguide with the conducting internal surface is considered. The existence of periodic and nonperiodic components of the fields, generated in the plasma is shown. The conditions of electron bunch self-focusing by transverse electrical field and azimuthal magnetic field are derived. The possibility of the acceleration and focusing of electron or positron bunches by driving electron bunch wake field is discussed. The conditions, when the bunch in plasma waveguide moves without wake fields generating are obtained, which could be of the interest for the transport of relativistic electron (positron) bunches. 5 refs
Directory of Open Access Journals (Sweden)
J. Köhler
2016-01-01
Full Text Available The Radiation Assessment Detector (RAD, on board the Mars Science Laboratory (MSL rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements. We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements. We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.
International Nuclear Information System (INIS)
Venus, W.
1991-01-01
The results of studies of the jet structure of hadronic Z 0 decays performed in the first year of Large Electron-Positron collider (LEP) operation are reviewed. The measurements of the quantum chromodynamics (QCD) coupling constant α s (M z )and the detection of the presence of the triple gluon vertex are summarized. After a brief review of the promising status of QCD in relation to even the very soft processes, the running of the coupling constants to high energy is considered in the context of grand unified theories. The necessity and importance of further theoretical work is stressed. (author)
ALEPH: Decay of Z0 to two jets
1991-01-01
This track is an example of real data collected from the ALEPH detector on the Large Electron-Positron (LEP) collider at CERN. Here a Z0 particle is produced in the collision between an electron and positron, which then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.
Electron-positron annihilation into hadrons at the higher-loop levels
Energy Technology Data Exchange (ETDEWEB)
Nesterenko, A.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-12-15
The strong corrections to the R-ratio of electron-positron annihilation into hadrons are studied at the higher-loop levels. Specifically, the derivation of a general form of the commonly employed approximate expression for the R-ratio (which constitutes its truncated re-expansion at high energies) is delineated, the appearance of the pertinent π{sup 2}-terms is expounded, and their basic features are examined. It is demonstrated that the validity range of such approximation is strictly limited to √(s)/Λ > exp(π/2) ≅ 4.81 and that it converges rather slowly when the energy scale approaches this value. The spectral function required for the proper calculation of the R-ratio is explicitly derived and its properties at the higher-loop levels are studied. The developed method of calculation of the spectral function enables one to obtain the explicit expression for the latter at an arbitrary loop level. By making use of the derived spectral function the proper expression for the R-ratio is calculated up to the five-loop level and its properties are examined. It is shown that the loop convergence of the proper expression for the R-ratio is better than that of its commonly employed approximation. The impact of the omitted higher-order π{sup 2}-terms on the latter is also discussed. (orig.)
On-ground detection of an electron-positron annihilation line from thunderclouds.
Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K
2016-02-01
Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.
Effects of new neutral currents at linear electron-positron colliders
International Nuclear Information System (INIS)
Pankov, A.A.
2002-01-01
Effects that are induced by contact four-fermion interactions in the processes e + e - → μ + μ - , b-barb, and c-barc at √(s) = 0.5 TeV linear electron-positron colliders are investigated for the case of longitudinally polarized initial beams. This analysis employs new integrated observables constructed from the polarized cross sections for the scattering of final fermions into the forward (σ F ) and the backward (σ B ) hemisphere in such a way that they single out the helicity cross sections for the processes in question. This property of the observables makes it possible to perform, in the most general form, a model-independent analysis of contact four-fermion interactions and to set constraints on their parameters. It is also shown that the sensitivity of new polarization observables to contact interactions is noticeably higher than the corresponding sensitivity of canonical observables like σ, A FB , A LR , and A LR,FB
Simulation Study of Invisible Decays of the Higgs Boson with the Circular Electron Positron Collider
Jyotishmati, Susmita
A Higgs-like boson has been discovered by the experiments ATLAS and CMS at the LHC. We need to verify that it is the Standard Model (SM) Higgs and understand its nature. A Circular Electron Positron Collider (CEPC), has been proposed as a Higgs factory for detailed study of the Higgs boson. In this dissertation we study the feasibility of measuring the H → Invisible decays at the CEPC. Dark Matter (DM) interacts with matter by gravity, thus appears to be invisible in the CEPC experiment. If Higgs boson couples to DM it could be an important "portal" to New Physics. A Monte Carlo analysis of H → Invisible optimized to achieve high signal significance, and low backgrounds in the e +e- → ZH, Z → mu +mu- channel based on an integrated luminosity of 5 ab-1 expected for ten years run of the CEPC, is performed. Precision on the Higgs to invisible branching ratio at the input values of 0.1%(SM) and Beyond Standard Model (BSM) cases 0%, 1%, 5% and 10% is determined. Two approaches have been employed. They are the cut-based analysis and the multivariate analysis. Based on this dissertation study a baseline analysis approach is recommended for future CEPC design and studies.
The PEP [positron-electron-proton] electron-positron ring: PEP Stage I
International Nuclear Information System (INIS)
Rees, J.R.
1974-01-01
The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e/sup /plus//e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup/minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 refs., 8 figs., 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)
2012-05-15
The linear and nonlinear propagation of ion-acoustic waves are investigated in a magnetized electron-positron-ion (e-p-i) plasma with nonthermal electrons. In the linear regime, the propagation of two possible modes and their evolution are studied via a dispersion relation. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. Then, the Korteweg-de Vries equation describing the dynamics of ion-acoustic solitary waves is derived from a weakly nonlinear analysis. The influence on the solitary wave characteristics of relevant physical parameters such as nonthermal electrons, magnetic field, obliqueness, positron concentration, and temperature ratio is examined. It is observed that the increasing nonthermal electrons parameter makes the solitary structures much taller and narrower. Also, it is revealed that the magnetic field strength makes the solitary waves more spiky. The present investigation contributes to the physics of the nonlinear electrostatic ion-acoustic waves in space and laboratory e-p-i plasmas in which wave damping produces an electron tail.
Four Pion Final States with Tagged Photons at Electron Positron Colliders
Czyz, H
2001-01-01
A Monte Carlo generator has been constructed to simulate the reaction e^+e^- \\to \\gamma + 4 \\pi, where the photon is assumed to be observed in the detector. Isospin relations between the amplitudes governing tau decays into four pions and electron positron annihilation into four pions respectively have been found which allow to determine all four modes after the amplitude for the \\pi^+\\pi^-2\\pi^0 channel has been fixed. The kinematic breaking of these isospin relations as a consequence of the \\pi^- -- \\pi^0 mass difference has also been investigated. The program is constructed in analogy to an earlier one simulating e^+e^- \\to \\gamma + 2 \\pi. However, it does not include final state radiation from the charged pions. Additional collinear photon radiation has been incorporated with the technique of structure functions. Predictions are presented for cms energies of 1GeV, 3GeV and 10GeV, corresponding to the energies of DAPHNE, BEBC and of B-meson factories. Using this program it is demonstrated that, even after ...
Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma
International Nuclear Information System (INIS)
Chawla, J. K.; Mishra, M. K.
2010-01-01
Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,σ), where p and σ are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.
Collisionless magnetic reconnection in large-scale electron-positron plasmas
International Nuclear Information System (INIS)
Daughton, William; Karimabadi, Homa
2007-01-01
One of the most fundamental questions in reconnection physics is how the dynamical evolution will scale to macroscopic systems of physical relevance. This issue is examined for electron-positron plasmas using two-dimensional fully kinetic simulations with both open and periodic boundary conditions. The resulting evolution is complex and highly dynamic throughout the entire duration. The initial phase is distinguished by the coalescence of tearing islands to larger scale while the later phase is marked by the expansion of diffusion regions into elongated current layers that are intrinsically unstable to plasmoid generation. It appears that the repeated formation and ejection of plasmoids plays a key role in controlling the average structure of a diffusion region and preventing the further elongation of the layer. The reconnection rate is modulated in time as the current layers expand and new plasmoids are formed. Although the specific details of this evolution are affected by the boundary and initial conditions, the time averaged reconnection rate remains fast and is remarkably insensitive to the system size for sufficiently large systems. This dynamic scenario offers an alternative explanation for fast reconnection in large-scale systems
c-Axis projected electron-positron momentum density in YBa2Cu3O7
International Nuclear Information System (INIS)
Bansil, A.; Smedskjaer, L.C.
1990-11-01
The authors present the theoretical c-axis projected electron-positron momentum density N 2γ (P x ,p y ) in YBa 2 Cu 3 O 7 based on the local density approximation (LDA) framework along various lines in momentum space. The calculations use the Korringa-Kohn-Rostoker (KKR) band structure formalism. The anisotropic distribution defined by taking cuts through the calculated spectra along different lines in the (p x ,p y ) plane possesses complex structures which arise from both Fermi surface effects and the anisotropy of the smoothly varying underlying background from filled bands; the maximum size of the anisotropy is about 10% of N 2γ (0,0). The theoretically predicted N 2γ (p x , y ) distribution is compared with the measured 2D-ACAR spectrum. The considerations suggest that in interpreting the 2D-ACAR data on YBa 2 Cu 3 O 7 in terms of a band theory LDA picture, a substantial, largely isotropic, background should be subtracted from both the 2D-ACAR's and the associated LCW-folded spectra
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.
Amin, M R
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Maity, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2014-07-15
Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ω{sub pe}t{sub mix}∼[(6/δ{sup 2})((2−α){sup 5/2}/(1−α))]{sup 1/3}, where “δ” and “α” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ω{sub pe}∼√(4πn{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.
Electron-positron pair creation from vacuum induced by variable electric field
International Nuclear Information System (INIS)
Marinov, M.S.; Popov, V.S.
1977-01-01
Problem is considered of spontaneous creation of electron-positron pairs from the vacuum induced by external electric field, that is homogeneous and depends on time in an arbitrary way. The Heisenberg equations of motion are obtained for the creation-annihilation operators. The solution is a linear canonical transformation. The problem is reduced to a set of differential equations for the second-order matrices determining this transformation. A consequence of the CP symmetry of the Dirac equation with an external electric field is that the e + e - pair is created from the vacuum in a state with total spin 1. The case when the variating electric field conserves its direction, is considered in more detail. In this case the equations are much simplified and may be reduced to the Riccati equation or to problem of oscillator with variable frequency, so the problem is equivalent to the one-dimensional quantal problem of a barrier penetration. Two approximate methods to calculate the pair creation probabilities are discussed: the quasiclassical approach and the antidiabatical method, applicable for sharp variations of the external field. Numerical estimates are obtained for the number of e + e - pairs produced by the field E(t) = E cos ωt. Group-theoretical aspects of the problem are also considered. (author)
Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Adnan, Muhammad; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); Physics Institute, Federal University of Rio Grande do Sul (UFRGS), 915051-970, Porto Alegre, RS (Brazil)
2014-09-15
Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.
Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas
Adnan, Muhammad; Mahmood, S.; Qamar, Anisa
2014-09-01
Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.
The PEP [positron-electron-proton] electron-positron ring: An update
International Nuclear Information System (INIS)
1975-03-01
The first stage of the positron-electron-protron (PEP) colliding-beam system, which has been under joint study by a Lawrence Berkeley Laboratory--Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions was set provisionally at 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup /minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 figs., 3 tabs
Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method
International Nuclear Information System (INIS)
Pilla, R.P.; Shaham, J.
1997-01-01
A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons. These are coupled nonlinear integro-differential equations. The collision kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equilibrium solution is expressed analytically in terms of the initial conditions. For two specific cases, for which the photon and the pair spectra are initially constant or have a power-law distribution within the given limits, the time evolution of the plasma is analyzed using the new method. The final spectra are found to be in a good agreement with the analytical solutions. The new algorithm is faster than the Monte Carlo scheme based on uniform sampling and more flexible than the numerical methods used in the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astrophysical applications of this technique are discussed. copyright 1997 The American Astronomical Society
Radiation problems in the design of the large electron-positron collider (LEP)
International Nuclear Information System (INIS)
Fasso, A.; Goebel, K.; Hoefert, M.; Rau, G.; Schoenbacher, H.; Stevenson, G.R.; Sullivan, A.H.; Swanson, W.P.; Tuyn, J.W.N.
1984-01-01
This is a comprehensive review of the radiation problems taken into account in the design studies for the Large Electron-Positron collider (LEP) now under construction at CERN. It provides estimates and calculations of the magnitude of the most important hazards, including those from non-ionizing radiations and magnetic fields as well as from ionizing radiation, and describes the measures to be taken in the design, construction, and operation to limit them. Damage to components is considered as well as the risk to people. More general explanations are given of the physical processes and technical parameters that influence the production and effects of radiation, and a comprehensive bibliography provides access to the basic theories and other discussions of the subject. The report effectively summarizes the findings of the Working Group on LEP radiation problems and parallels the results of analogous studies made for the previous large accelerator. The concluding chapters describe the LEP radiation protection system, which is foreseen to reduce doses far below the legal limits for all those working with the machine or living nearby, and summarize the environmental impact. Costs are also briefly considered. (orig.)
The Study on the Physical Properties of Blazar Jets
Kang, S. J.
2017-09-01
of LSP blazars is the same as that of FR IIs, we find that it is an electron-positron pair dominated leptonic jet in these blazars, and the number density of electron-positron pairs is several times higher than that of electron-proton pairs, but the jet power is still dominated by protons. For the high-synchrotron-peaked (HSP) BL Lac PKS 1424+240, the SED fitting with the synchrotron self-Compton (SSC) model gave unreasonable fitting parameters (e.g., a very large Doppler factor δ). In this work, we take into account the possible external soft photon field, and then fit the multi-waveband SEDs of blazar PKS 1424+240 with one-zone leptonic jet models in both states. We find the SSC+external-Compton (EC) model can give a better fitting result if the EC process is included. However, the needed energy density of external soft photon field (U_{ext}) is much lower than the typical value. This result is consistent with the results of some other BL Lacs, where the BLR or torus is very weak or disappearing. It means that there is evolution of the energy density of external soft photon field with decreasing of the luminosity of blazars (the flat spectrum radio quasars (FSRQs)-BL Lac: low energy peaked BL Lac (LBL)-intermediate energy peaked BL Lac (IBL)-high energy peaked BL Lac (HBL)). And on this basis, in the chapter 5, we further explore the possible evolution of the external soft photon field of blazars based on the EC process. We employ the one-zone homogeneous leptonic jet model and χ2 procedure to fit simultaneously or quasi-simultaneously multi-waveband SEDs for a sample of blazars with a wide distribution of luminosities. In our model, we set Uext as a free parameter. Studying the energy density of the external photon field in different subclasses of blazars, we find: (1) the Uext of the high luminosity blazar (FSRQs and LBLs) keeps roughly as a constant, which is, however, smaller than that constrained from BLR observations. Assuming IR as the source of soft
Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.
1996-08-01
A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.
Folegati, P.; Makkonen, I.; Ferragut, R.; Puska, Martti J.
2007-01-01
Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and i...
Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta
2014-10-01
The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.
Energy Technology Data Exchange (ETDEWEB)
Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)
2014-10-15
The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.
Charmed and strange baryon production in 29-GeV electron positron collisions
International Nuclear Information System (INIS)
Klein, S.R.
1988-01-01
Baryon production is one of the least understood areas of hadron production in electron positron collisions. Early models of hadronization predicted that very few baryons should be produced. However, experiments have shown a very substantial rate of baryon production, and many different models have been proposed to explain this. One way to test these models, and to further probe the hadronization process is to measure the production rates of different types of baryons. This dissertation presents measurements of the production rates of baryons with different strangeness and spin. The analyses presented here use data taken with the Mark II detector at the PEP storage ring, operating at a center of mass energy of 29 GeV. The Ξ - production rate is measured to be 0.017 ± 0.004 ± 0.004 per hadronic event, Ω - production is measured to be 0.014 ± 0.006 ± 0.004 per hadronic event, and Ξ *0 production is less than 0.006 per hadronic event at a 90% confidence level. These measurements place strong constraints on models of baryon production. In particular, the unexpectedly high rate of Ω - production is difficult to explain in any disquark based model. Semileptonic Λ c + decays have also been observed, with σ(e + e - → Λ c X) * Br(Λ c → eΛX) = 0.0031 ± 0.0012 ± 0.0010 per hadronic event, and σ(e + e - → Λ c X) * Br(Λ c → μΛX) = 0.0024 ± 0.0024 ± 0.0007 per hadronic event. Because neither the branching ratios nor the production rate are well known, it is difficult to interpret these results
Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies
Hencken, Kai; Trautmann, Dirk; Baur, Gerhard
1994-01-01
Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...
Planar channeled relativistic electrons and positrons in the field of resonant hypersonic wave
International Nuclear Information System (INIS)
Grigoryan, L.Sh.; Mkrtchyan, A.H.; Khachatryan, H.F.; Tonoyan, V.U.; Wagner, W.
2003-01-01
The wave function of a planar channeled relativistic particle (electron, positron) in a single crystal excited by longitudinal hypersonic vibrations (HVs) is determined. The obtained expression is valid for periodic (not necessarily harmonic) HV of desired profile and single crystals with an arbitrary periodic continuous potential. A revised formula for the wave number of HV that exert resonance influence on the state of a channeled particle was deduced to allow for non-linear effects due to the influence of HV
Pair production with electron capture in peripheral collisions of relativistic heavy ions
Energy Technology Data Exchange (ETDEWEB)
Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br
2001-02-26
The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.
Connell, P. H.
2017-12-01
The University of Valencia has developed a software simulator LEPTRACK to simulate lepton and photon scattering in any kind of media with a variable density, and permeated by electric/magnetic fields of any geometry, and which can handle an exponential runaway avalanche. Here we show results of simulating the interaction of electrons/positrons/photons in an incoming TeV cosmic ray shower with the kind of electric fields expected in a stormcloud after a CG discharge which removes much of the positive charge build up at the centre of the cloud. The point is to show not just a Relativistic Runaway Electron Avalanche (RREA) above the upper negative shielding layer at 12 km but other gamma ray emission due to electron/positron interaction in the remaining positive charge around 9km and the lower negative charge at 6km altitude. We present here images, lightcurves, altitude profiles, spectra and videos showing the different ionization, excitation and photon density fields produced, their time evolution, and how they depend critically on where the cosmic ray shower beam intercepts the electric field geometry. We also show a new effect of incoming positrons, which make up a significant fraction of the shower, where they appear to "orbit" within the high altitude negative shielding layer, and which has been conjectured to produce significant microwave emission, as well as a short range 511 keV annihilation line. The interesting question is if this conjectured emission can be observed and correlated with TGF orbital observations to prove that a TGF originates in the macro-fields of stormclouds or the micro-fields of light leaders and streamers where this "positron orbiting" is not likely to occur.
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas
Ata-Ur-Rahman; A. Khan, S.; Qamar, A.
2015-12-01
In this paper, we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field. The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions. Firstly, the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis. Secondly, the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method. The effects of various plasma parameters like positron concentration, strength of magnetic field, obliqueness of field, etc., are discussed in detail. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.
A study of electron-positron pair equilibria in models of compact X- and gamma-ray sources
International Nuclear Information System (INIS)
Bjoernsson, G.
1990-01-01
Thermal electron-positron pair equilibria in two temperature models of compact x ray and gamma ray sources are studied. The pairs are assumed to be heated by Coulomb interaction with the much hotter protons and cooled by bremsstrahlung emission, Compton scattering, and annihilation. Two parameters, the proton optical depth and the compactness, characterize each equilibrium state. It is shown that a careful account of the energy balance is very important when the stability properties of the pair equilibria in a spherical plasma cloud are determined. The equilibria are found to be unstable in a very limited range of compactness and proton optical depth. This particular instability is unlikely to be the cause of the observed variability of the compact sources and implies that it is possible to build up high pair densities by a thermal mechanism in two temperature environments. The most important result considers the effects of pairs on the structure of geometrically and effectively optically thin accretion disks. A new approach for solving for the equilibrium structure of the disks is presented. In effect, the pair equilibrium states are projected into the space spanned by the disk structure parameters. This allows a direct visualization of all possible disk solutions at once. Each solution profile needs to be calculated only once and a complete disk solution is obtained by a simple radial coordinate transformation. The disk solutions are thus seen to be scale free in terms of the radial coordinate as well as in terms of the mass of the central object and the accretion rate. Two particular disk solutions are given. It is shown that including electron-positron pairs in the disk structure calculations leads to a breakdown of the thin disk assumptions and that more detailed disk modeling is required before electron-positron pairs can be self-consistently included
International Nuclear Information System (INIS)
Andreev, Pavel A.
2015-01-01
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction
Effect of μe universality violation in muon pair production on colliding electron-positron beams
International Nuclear Information System (INIS)
Guliev, N.A.; Dzhafarov, I.G.; Mekhtiev, B.I.
1981-01-01
The muonic pair production in colliding electron-positron beams is treated assuming the electron and muon weak interaction constants to be different. General formulae for the differential and total cross sections applicable at arbitrary energies of the colliding beams are obtained taking simultaneously into account arbitrary polarizations of the incident particles and longitudinal polarization of the muon (μ - ). It is shown that study of some polarization characteristics of a given reaction allows to distinguish possible weak interaction μe universality breaking effects. The revealing effects are analysed in the framework of unified gauge SU(2)xU(1) models, of weak and electromagnetic interactions [ru
Search for the sixth quark in hadronic final states of the electron-positron annihilation at PETRA
International Nuclear Information System (INIS)
Rykaczewski, H.
1981-08-01
Using the MARK-J detector at the PETRA storage ring hadronic final states of the electron-positron annihilation were studied. One aim of these measurements is mainly the search for a further quark, the top quark. The results yield no indications for bound state of the top quark in the energy range between 29.90 and 37.72 GeV. From the analysis of the spatial energy distribution of hadronic final states as well the rate of inclusive muon events also the result is obtained that top quarks are not produced below an energy of W=36.72 GeV. (orig./HSI) [de
Extended quasiparticle approximation for relativistic electrons in plasmas
Directory of Open Access Journals (Sweden)
V.G.Morozov
2006-01-01
Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.
Energy Technology Data Exchange (ETDEWEB)
Lalanne, D.
1970-07-17
The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10{sup -14} cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e{sup +}e{sup -} → e{sup +}e{sup -}γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10{sup -31} cm{sup 2}. The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV.
International Nuclear Information System (INIS)
Fazleev, N. G.; Jung, E.; Weiss, A. H.
2009-01-01
Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M 4,5 N 1 N 2,3 , M 2,3 M 4,5 M 4,5 , M 2,3 M 4,5 V, and M 1 M 4,5 M 4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.
Study of four-lepton final states in electron-positron interactions at 29 GeV
International Nuclear Information System (INIS)
Petradza, A.
1989-08-01
This thesis presents a study of electron-positron scattering to four light leptons. The motivations behind it are twofold. Firstly, the study is a test of the theory of electron-positron interactions to 4th order in the fine structure constant α. A deviation from the theory could indicate the existence of a heavy new particle. Secondly, a measurement of these processes may prove useful in the understanding of other QED-type reactions. The method for simulating the four-lepton processes by the Monte Carlo event generator of Berends, Daverveldt and Kleiss is described. Theoretical predictions are compared to data from the Mark II and HRS experiments at the PEP storage ring. The observed events consist of four leptons at large angles. Data for all three e + e - e + e - , e + e - μ + μ - and μ + μ - μ + μ - processes are well described by the QED Monte Carlo calculation. The various kinematical distributions are in good agreement with QED to order α 4 . 18 refs., 64 figs., 19 tabs
International Nuclear Information System (INIS)
Lalanne, D.
1970-01-01
The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10 -14 cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e + e - → e + e - γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10 -31 cm 2 . The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV
Multi-photon creation and single-photon annihilation of electron-positron pairs
Energy Technology Data Exchange (ETDEWEB)
Hu, Huayu
2011-04-27
In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)
Multi-photon creation and single-photon annihilation of electron-positron pairs
International Nuclear Information System (INIS)
Hu, Huayu
2011-01-01
In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei
Zdziarski, Andrzej A.
1992-01-01
The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.
ALEPH: Decay of Z0 to two jets
1991-01-01
This track is an example of real data collected from the ALEPH detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Here a Z0 particle is produced in the collision between an electron and positron, which then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.
1990-01-01
This track is an example of real data collected from the OPAL detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Here a Z0 particle is produced in the collision between an electron and positron that then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.
ALEPH: Decay of Z0 to two jets
1991-01-01
This track is an example of real data collected from the ALEPH detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Here a Z0 particle in the collision between an electron and positron, which then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.
Relativistic centrifugal instability
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
International Nuclear Information System (INIS)
Somogyi, Gabor; Trocsanyi, Zoltan; Del Duca, Vittorio
2007-01-01
We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this first part we deal with the regularization of the doubly-real contribution to the NNLO correction
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Del Duca, Vittorio [Istituto Nazionale di Fisica Nucleare, Sez. di Torino, via P. Giuria, 1 - 10125 Turin (Italy)
2007-01-15
We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this first part we deal with the regularization of the doubly-real contribution to the NNLO correction.
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor; Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary)
2007-01-15
We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this second part we deal with the regularization of the real-virtual contribution to the NNLO correction.
Energy Technology Data Exchange (ETDEWEB)
Shahmansouri, M., E-mail: mshmansouri@gmail.com [Department of Physics, Faculty of Science, Arak University, Arak 38156-8 8349 (Iran, Islamic Republic of); Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)
2016-07-15
The dispersion properties of elliptically polarized electromagnetic waves in a magnetized electron-positron-pair (EP-pair) plasma are studied with the effects of particle dispersion associated with the Bohm potential, the Fermi degenerate pressure, and the exchange-correlation force. Two possible modes of the extraordinary or X wave, modified by these quantum effects, are identified and their propagation characteristics are investigated numerically. It is shown that the upper-hybrid frequency and the cutoff and resonance frequencies are no longer constants but are dispersive due to these quantum effects. It is found that the particle dispersion and the exchange-correlation force can have different dominating roles on each other depending on whether the X waves are of short or long wavelengths (in comparison with the Fermi Debye length). The present investigation should be useful for understanding the collective behaviors of EP plasma oscillations and the propagation of extraordinary waves in magnetized dense EP-pair plasmas.
International Nuclear Information System (INIS)
Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.
2003-01-01
It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas
Report of Snowmass 2001 Working Group E2: Electron-Positron Colliders from the Phi to the Z
Energy Technology Data Exchange (ETDEWEB)
Decker, Franz-Josef
2002-08-07
We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -} B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.
Superconducting snake with the field of 75 kGs for the VEPP-2M electron-positron storage ring
International Nuclear Information System (INIS)
Anashin, V.V.; Vasserman, I.B.; Vlasov, A.M.
1985-01-01
Superconducting ''snake'' with the field of 75 kG is established in the VEPP-2M electron-positron storage ring for increase of colliding beam luminosity up to 2x10 31 cmsup(-2)sdup(-1) in the energy range from 2x200 to 2x700 MeV. The ''snake'' comprises three central magnets with the field of 75 kG and two side ones with the field of 45 kG and it is placed in one of rectilinear experimental gaps. Description of design peculiarities of the ''snake'' and its parameters are given. Parameters of beams with switched on and switched off ''snake'' as well as parameters of coils and superconducting wire are presented
Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions
Energy Technology Data Exchange (ETDEWEB)
Chen, Long [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,52056 Aachen (Germany); Dekkers, Oliver [PRISMA Cluster of Excellence and Institut für Physik,Johannes-Gutenberg-Universität Mainz,55099 Mainz (Germany); Heisler, Dennis; Bernreuther, Werner [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,52056 Aachen (Germany); Si, Zong-Guo [School of Physics, Shandong University,Jinan, Shandong 250100 (China)
2016-12-19
We set up a formalism, within the antenna subtraction framework, for computing the production of a massive quark-antiquark pair in electron positron collisions at next-to-next-to-leading order in the coupling α{sub s} of quantum chromodynamics at the differential level. Our formalism applies to the calculation of any infrared-safe observable. We apply this set-up to the production of top-quark top antiquark pairs in the continuum. We compute the production cross section and several distributions. We determine, in particular, the top-quark forward-backward asymmetry at order α{sub s}{sup 2}. Our result agrees with previous computations of this observable.
EL-Kalaawy, O. H.
2018-02-01
We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.
Inner-shell ionization of atoms by electron, positron and photon impacts
International Nuclear Information System (INIS)
Khare, S.P.; Sinha, P.; Wadehra, J.M.
1994-01-01
Plane wave Born approximation with Coulomb, relativistic and exchange corrections is employed to obtain L1-, L2- and L3-subshell ionization cross sections of several atoms due to electron and positron impacts for projectile energy varying from the threshold of ionization to 60 times the threshold energy. Photoionization cross sections for all the three L-subshells of the atoms are also calculated using the hydrogenic approximation for the atomic wave functions. For L3-subshell the present cross sections due to electron impact are in good agreement with a number of experimental data for different atoms over the entire energy range investigated. For L1- and L2-subshells the present calculations yield qualitative agreement with the experimental data. The agreement between the present results and the limited experimental data for positron impact is also satisfactory. The hydrogenic approximation for the L-subshell photoionization is found to be good at small photon energies but it underestimates the cross sections at large photon energies. (orig.)
Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)
CERN. Geneva
2010-01-01
Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.
Energy Technology Data Exchange (ETDEWEB)
Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)
2017-06-10
The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.
Somogyi, Gábor
2013-04-01
We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.
Somogyi, Gabor
2013-01-01
We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.
International Nuclear Information System (INIS)
Kahn, F.D.
1983-01-01
A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
International Nuclear Information System (INIS)
Meng, R.
1988-01-01
The modern theory describing the strong interaction, which holds the quarks together in the hadrons, is quantum chromodynamics (QCD), in which the interaction is mediated by the exchange of spin 1 particles called gluons. Today good qualitative agreement between the theory and experimental results has been found in the investigation of the interactions in which there is a large momentum transfer. This situation has prompted us to look for other detailed tests of the theory. We study the order α s measurement of the MS parton decay functions, which play an important role in the application of high order perturbative QCD calculations. We calculate the hard scattering cross section for e + + e - → parton + anything. Then, by carefully analyzing the electron positron annihilation data, we obtain the order α s MS quark decay function. We also study the gluon bremsstrahlung effects predicted by QCD in a semi-inclusive process at the future HERA electron proton collider, p + e - → h + e - + X. In analogy to studies of Drell-Yan process we study the transverse momentum distribution and angular distribution of the final state hadrons, which are sensitive to the gluon bremsstrahlung effects. Then we investigate the general structure of the hadronic tensor, which appears in the formula for the cross section, including both the parity conserving and parity violating terms. Using the soft gluon resummation technique, the singular and the nonsingular structure functions are all calculated for the process p + e - → γ → h + e - + X
International Nuclear Information System (INIS)
Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing
2015-04-01
With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.
International Nuclear Information System (INIS)
Holtzapple, R.L.; Campbell, R.C.; McArdle, K.E.; Miller, M.I.; Totten, M.M.; Tucker, S.L.; Billing, M.G.; Dugan, G.F.; Ramirez, G.A.; Sonnad, K.G.; Williams, H.A.; Flanagan, J.; Palmer, M.A.
2016-01-01
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions
Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard
Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...
Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.
2018-06-01
A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.
General-relativistic pulsar magnetospheric emission
Pétri, J.
2018-06-01
Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.
Indian Academy of Sciences (India)
which are rapidly rotating neutron stars emitting narrow beams of radiation. Images of ... rized into starburst galaxies and AGN powered by SMBHs. The ..... swer lies in the relativistic motion of the jets which boosts the flux density of .... radio cores, detection of ... to as synchrotron self-Compton or SSC, or those of the cosmic.
Enhanced production of low-mass electron-positron pairs in 40-AGeV Pb-Au collisions at the CERN SPS.
Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Richter, M; Sako, H; Schmitz, W; Sedykh, S; Seipp, W; Sharma, A; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V
2003-07-25
We report on first measurements of low-mass electron-positron pairs in Pb-Au collisions at the CERN SPS beam energy of 40 AGeV. The observed pair yield integrated over the range of invariant masses 0.2e(+)e(-) annihilation with a modified rho propagator. They may be linked to chiral symmetry restoration and support the notion that the in-medium modifications of the rho are more driven by baryon density than by temperature.
International Nuclear Information System (INIS)
Xu Yanxia; Lin Maimai; Shi Yuren; Duan Wenshan; Liu Zongming
2011-01-01
According to the comments of Akbari-Moghanjoughi that the electron-positron-ion(e-p-i) plasmas parameters σ representing the ratio of the positron to electron Fermi-temperature and p standing for the positron to electron number-density ratio are related by the equation of p σ 3/2 . Based on this conclusion, we have replaced the Figs. 1-6 (Ref. 1) in the present paper.
Price, R H
1993-01-01
Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two speciﬁc areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
International Nuclear Information System (INIS)
Font, J. A.
2015-01-01
The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-03-14
Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in pp[over ] collisions at square root s = 1.96 TeV with the upgraded Collider Detector at Fermilab in run II, based on an integrated luminosity of 1.7 fb(-1). The measurements cover the rapidity region |y(jet)|30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
Relativistic plasma turbulence and its application to pulsar phenomena
International Nuclear Information System (INIS)
Hinata, S.
1976-01-01
A turbulent plasma model of pulsars which has the potential of providing a self-regulatory mechanism for producing an electron-positron plasma over the polar caps, as well as the coherency of the radio wave emission, is analyzed. Turbulent plasma properties including the kinetic and electrostatic energy densities, the wavelength of the most unstable mode, and the effective collision frequency due to the excited electric field, are obtained and applied to the pulsar situation. Since these properties depend on the momentum distribution of the plasma particles, model calculations have been carried out with simple momentum distribution functions. The radio luminosity due to turbulence (bunching or otherwise) turned out to be either insufficient or unclear at the moment for these simple momentum distributions. This indicates that a further investigation of turbulence processes with the self-consistently determined momentum distribution is needed. This is left for future analysis, because entirely different processes (e.g. trapping) are likely to dominate the physics as is demonstrated for one of the model distribution functions. In addition to the above mentioned model, we examine some wave propagation properties in a relativistic electron-positron plasma immersed in a strong magnetic field
International Nuclear Information System (INIS)
Allen, M.A.; Azuma, O.; Callin, R.S.
1989-03-01
Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
International Nuclear Information System (INIS)
Marks, R.
1985-09-01
Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs
Electromagnetic processes in relativistic heavy ion collisions
International Nuclear Information System (INIS)
Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.
1987-10-01
A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)
Somogyi, Gábor; Trócsányi, Zoltán
2008-08-01
In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.
Relativistic Outflows from ADAFs
Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes
2001-04-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.
2018-01-01
We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux
International Nuclear Information System (INIS)
Sizun, P.
2007-04-01
A spectral feature was detected in 1970 in the gamma-ray emission from the central regions of the Milky Way, during balloon flight observations. Located near 511 keV, this feature was soon attributed to the gamma-ray line tracing the annihilation of electrons with their anti-particles, positrons. However, none of the multiple astrophysical scenarios contemplated to explain the production of positrons in the Galactic bulge has been able to reproduce the high injection rate deduced from the flux of the 511 keV line, close to 10 43 positrons per second. Launched in 2002, the European gamma-ray satellite INTEGRAL was provided with a spectrometer, SPI, whose unprecedented imaging and spectral capabilities in this energy range enable us to further study the source of the 511 keV line detected in the Galactic centre region. Indeed, a better determination of the spatial extent of the source, the intrinsic width of the line and the fraction of positrons annihilating in-flight, directly or via the formation of ortho-Positronium atoms would improve our knowledge of both the annihilation medium and the initial source of positrons, and could allow us to discriminate between the various explanatory scenarios. The first part of this thesis deals with a key ingredient in the extraction of the annihilation spectrum: the optimization of the instrumental background model. New data screening and tracer selection procedures are presented. Classical multi-linear models are compared to neural and Bayesian networks. Finally, three years of observation are used to constrain the width of the source and derive its spectrum. The second part of the thesis focuses on one of the possible scenarios explaining the high positron injection rate deduced from the flux of the 511 keV line: the annihilation of light dark matter particles into electron-positron pairs. The various radiation mechanisms involved are modeled and confronted to observations in order to set an upper limit on the injection
International Nuclear Information System (INIS)
Datz, S.; Vane, C.R.; Dittner, P.F.; Krause, H.F.; Schuch, R.; Gao, H.; Hutton, R.
1994-01-01
Angular and momentum distributions have been measured for electron-positron pairs created in peripheral collisions of 6.4 TeV bare sulfur ions with thin targets of Al, Pd, and Au. Singly- and doubly-differential cross sections are presented for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Various physical parameters are deduced from the coincident electron and positron data, including probability distributions for the pair transverse momentum, the pair total energy, and the positron fraction of the pair energy
Zhang, Bing; Li, Kunyang
2018-02-01
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
International Nuclear Information System (INIS)
Loizides, C.A.
2005-01-01
The ALICE experiment is one of the experiments currently prepared for the Large Hadron Collider (LHC) at CERN, Geneva, starting operation end of 2007. ALICE is dedicated to the research on nucleus-nucleus collisions at ultra-relativistic energies, which addresses the properties of strongly interacting matter under varying conditions of high density and temperature. The conditions provided at the LHC allow significant qualitative improvement with respect to previous studies. In particular, energetic probes, light quarks and gluons, will be abundantly produced. These probes might be identified by their fragmentation into correlated particles, so called jets, of high enough energy to allow full reconstruction of jet properties; even in the underlying heavy-ion environment. Understanding the dependence of high-energy jet production and fragmentation influenced by the dense medium created in the collision region is an open field of active research. Generally, one expects energy loss of the probes due to medium-induced gluon radiation. It is suggested that hadronization products of these, rather soft gluons may be contained within the jet emission cone, resulting in a modification of the characteristic jet fragmentation, as observed via longitudinal and transverse momentum distributions with respect to the direction of the initial parton, as well as of the multiplicity distributions arising from the jet fragmentation. Particle momenta parallel to the jet axis are softened (jet quenching), while transverse to it increased (transverse heating). The present thesis studies the capabilities of the ALICE detectors to measure these jets and quantifies obtainable rates and the quality of jet reconstruction, in both proton-proton and lead-lead collisions at the LHC. In particular, it is addressed whether modification of the jet fragmentation can be detected within the high-particle-multiplicity environment of central lead-lead collisions. (orig.)
International Nuclear Information System (INIS)
Goeringer, Christian
2013-01-01
The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identified as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no significant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Confidence Level (C.L.).
International Nuclear Information System (INIS)
Povarov, A.V.; Smirnov, A.D.
2003-01-01
The contributions of scalar-leptoquark doublets to the cross sections σ QQ-tilde ' for the production of quark-antiquark pairs in electron-positron annihilation are calculated within the minimal model based on the four-color symmetry of quarks and leptons. These contributions are analyzed versus the scalar-leptoquark masses and the mixing parameters of the model at colliding-particle energies in the range 250-1000 GeV. It is shown that the contributions in question are of greatest importance for processes leading to t-quark production. In particular, it is found that, with allowance for the contribution of the scalar leptoquark of charge 5/3 and mass in the range 250-500 GeV, the cross section σ tt-tilde calculated at a mixing-parameter value of k t ∼ 1 may be severalfold larger than the corresponding cross section σ tt-tilde (SM) within the Standard Model. The possibility of setting constraints on the scalar-leptoquark masses and on the mixing parameters by measuring such contributions at future electron-positron colliders is indicated
Energy Technology Data Exchange (ETDEWEB)
Goeringer, Christian
2013-04-25
The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identified as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no significant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Confidence Level (C.L.).
Subtraction method of computing QCD jet cross sections at NNLO accuracy
Trócsányi, Zoltán; Somogyi, Gábor
2008-10-01
We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.
Subtraction method of computing QCD jet cross sections at NNLO accuracy
Energy Technology Data Exchange (ETDEWEB)
Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen P.O.Box 51 (Hungary)], E-mail: Zoltan.Trocsanyi@cern.ch; Somogyi, Gabor [University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)], E-mail: sgabi@physik.unizh.ch
2008-10-15
We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.
The Structure and Dynamics of GRB Jets
Energy Technology Data Exchange (ETDEWEB)
Granot, Jonathan; /KIPAC, Menlo Park
2006-10-25
There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.
International Nuclear Information System (INIS)
Martinez, Homero
2013-01-01
This work presents the measurement of the Z boson differential cross section in transverse momentum (p T Z ), in the electron-positron decay channel, using the ATLAS detector at the LHC. The measurement is done using 4.64 fb -1 of proton-proton collision data, collected in 2011 at a center-of-mass energy of 7 TeV. The result is combined with an independent measurement done in the muon-anti-muon decay channel. The measurement is done up to p T Z = 800 GeV, and has a typical uncertainty of 0.5 % for transverse momentum below 60 GeV, rising up to 5 % towards the end of the spectrum. The measurement is compared to theoretical models and Monte Carlo generators predictions. (author) [fr
Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-10-26
We report the results of a search for a narrow resonance in electron-positron events in the invariant mass range of 150-950 GeV/c(2) using 1.3 fb(-1) of pp[over] collision data at square root s = 1.96 TeV collected by the CDF II detector at Fermilab. No significant evidence of such a resonance is observed and we interpret the results to exclude the standard-model-like Z' with a mass below 923 GeV/c(2) and the Randall-Sundrum graviton with a mass below 807 GeV/c(2) for k/M[over](pl) = 0.1, both at the 95% confidence level. Combining with diphoton data excludes the Randall-Sundrum graviton for masses below 889 GeV/c(2) for k/M[over](pl) = 0.1.
The relativistic virial theorem
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1989-11-01
The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)
Polarized Emission from Gamma-Ray Burst Jets
Directory of Open Access Journals (Sweden)
Shiho Kobayashi
2017-11-01
Full Text Available I review how polarization signals have been discussed in the research field of Gamma-Ray Bursts (GRBs. I mainly discuss two subjects in which polarimetry enables us to study the nature of relativistic jets. (1 Jet breaks: Gamma-ray bursts are produced in ultra-relativistic jets. Due to the relativistic beaming effect, the emission can be modeled in a spherical model at early times. However, as the jet gradually slows down, we begin to see the edge of the jet together with polarized signals at some point. (2 Optical flash: later time afterglow is known to be insensitive to the properties of the original ejecta from the GRB central engine. However, a short-lived, reverse shock emission would enable us to study the nature of of GRB jets. I also briefly discuss the recent detection of optical circular polarization in GRB afterglow.
Directory of Open Access Journals (Sweden)
Melon Fuksman J. D.
2018-01-01
Full Text Available The binary-driven hypernova (BdHN model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO core and a neutron star undergoing an induced gravitational collapse to a black hole, triggered by the CO core explosion as a supernova (SN. This collapse produces an optically-thick e+e- plasma, which expands and impacts onto the SN ejecta. This process is here considered as a candidate for the production of X-ray flares, which are frequently observed following the prompt emission of GRBs. In this work we follow the evolution of the e+e- plasma as it interacts with the SN ejecta, by solving the equations of relativistic hydrodynamics numerically. Our results are compatible with the Lorentz factors estimated for the sources that produce the flares, of typically Γ ≲ 4.
International Nuclear Information System (INIS)
Weng, W.T.
1988-01-01
The traveller was invited to IHEP to participate in the commissioning of the newly constructed Beijing electron-positron collider BEPC, give a status report on the AGS Booster Project and to assess the feasibility of sub-contracting booster sextupoles to IHEP. The trip to SRRC was undertaken to discuss magnet manufacturing and measurement methods
Full One-loop Electro-Weak Corrections to Three-jet Observables at the Z pole and Beyond
Calame, C M Carloni; Piccinini, F; Ross, D A
2009-01-01
We describe the impact of the full one-loop EW terms of O(alpha_s alpha_EM^3) entering the electron-positron into three-jet cross-section from \\sqrt{s}=M_Z to TeV scale energies. We include both factorisable and non-factorisable virtual corrections, photon bremsstrahlung but not the real emission of W and Z bosons. Their importance for the measurement of alpha_S from jet rates and shape variables is explained qualitatively and illustrated quantitatively.
QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY
Energy Technology Data Exchange (ETDEWEB)
Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)
2015-11-10
This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.
International Nuclear Information System (INIS)
Axon, D.J.; Pedlar, A.; Unger, S.W.; Meurs, E.J.A.; Ward, M.J.
1989-01-01
Core-dominated radio sources associated with quasars are a manifestation of the most extreme form of activity in galactic nuclei. In general, the morphology of their inner radio structure is in the form of a jet detected on only one side of the core; the larger-scale radio emission is relatively symmetric. Superluminal motion in some sources has led to the suggestion that the ejection of radio-emitting material is relativistic and intrinsically two-sided. The apparent one-sidedness of the jets is then explained by relativistic aberration. This persuasive interpretation has not escaped criticism: both physical and statistical arguments have been advanced in favour of one-sided ejection. However, our new optical observations of 3C120, which reveal the details of the interaction between the radio jet and the quiescent gas in the galaxy, offer significant kinematic evidence in favour of the relativistic-beaming hypothesis. (author)
Jet suppression measurement with the ATLAS detector
AUTHOR|(INSPIRE)INSPIRE-00443411; The ATLAS collaboration
2016-01-01
A hot medium with a high density of unscreened color charges is produced in relativistic heavy ion collisions. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of the energy loss is the modification of the dijet balance and the modification of fragmentation functions. In these proceedings, the latest ATLAS results on single jet suppression, dijet suppression, and modification of the jet internal structure in \\PbPb~collisions are presented.
Jet observables without jet algorithms
Energy Technology Data Exchange (ETDEWEB)
Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2014-04-02
We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Relativistic motion of spinning particles in a gravitational field
International Nuclear Information System (INIS)
Chicone, C.; Mashhoon, B.; Punsly, B.
2005-01-01
The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed
Wollstadt, Simon
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model. The production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum $m_{ee}$ is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large moment...
International Nuclear Information System (INIS)
Gainutdinov, R.Kh.; Khamadeev, M.A.; Mutygullina, A.A.
2010-01-01
Complete text of publication follows. We discuss various approaches to problem of the electron-positron pair creation in the strong external field. Special interest presents the circuit, in which the interaction of two strong counterpropagating laser beams in vacuum is considered. For the calculation of the probability of the creation the following formula is usually applied: W = 2Im(L (E-H) (ρ L )) = 2m 4 /(2π) 3 ρ L 2 Σ n=1 -∞ 1/n 2 e -nπ /ρ L where ρ L = E L / E cr and E cr = m 2 /e = 1.3 x 10 16 V/cm is the Schwinger field limit. However this expression was obtained even in pioneer works dedicated to vacuum nonlinearity and it based on some approximations. Attempt of the strict analysis has been made in work by introducing the nonlocal form-factor into the Lagrangian. But, as it is well known, such procedure leads to the loss of Lorenz invariance or unitarity. We show that the formalism of generalized quantum dynamic (GQD) opens new opportunities to solve such problems. We show also how it can be made proceeding from nonlocal interaction operator obtained earlier within the framework of the formalism of GQD. Acknowledgements. This work was supported by the Grant of Federal Agency on Education, Russia (Contract number 02.740.11.0428) and by the Grant of Russian President No. NSh 2965.2008.2.
Gataullin, Marat I
2006-01-01
In this thesis I study the production of photonic events with missing energy in e+e- collisions at the Large Electron-Positron (LEP) Collider. My analysis was based on 619 inverse picobarns of data collected by the L3 detector during 1998--2000 at center-of-mass energies between 189 and 208 GeV, the highest energies ever attained in an e+e- collider. I selected a high-purity sample of 2,022 well-reconstructed single- and multi-photon events with missing energy. I used this sample to study the pair-production of neutrinos accompanied by the emission of one or more photons. The average ratio of the measured to expected cross section was found to be R = 0.987±0.022(stat)±0.014 (syst). The number of light neutrino species was measured to be 2.98±0.05(stat)±0.04(syst), and the first direct evidence for the pair-production of electron neutrinos was found. The experimental errors in these results are smaller than those of comparable previous measurements. The selection results are also given in the form of table...
International Nuclear Information System (INIS)
Satyamurthy, Polepalle; Rai, Pravin; Tiwari, Vikas; Kulkarni, Kiran; Amann, John; Arnold, Raymond G.; Walz, Dieter; Seryi, Andrei; Davenne, Tristan; Caretta, Ottone; Densham, Chris; Appleby, Robert B.
2012-01-01
Beam dumps are essential components of any accelerator system. They are usually located at the end of the beam delivery systems and are designed to safely absorb and dissipate the particle energy. In the second stage of the proposed International Linear Collider (ILC), the electron and positron beams are accelerated to 500 GeV each (1 TeV total). Each bunch will have 2×10 10 electrons/positrons, and 2820 bunches form one beam bunch train with time duration of 0.95 ms and 4 Hz frequency. The average beam power will be 18 MW with a peak power of 4.5 GW. The FLUKA code was used to determine the power deposited by the beam at all critical locations. This data forms the input into the thermal hydraulic analysis CFD code for detailed flow and thermal evaluation. Both 2D and 3D flow analyses were carried out at all the critical regions to arrive at optimum geometry and flow parameters of the beam dump. The generation and propagation of pressure waves due to rapid deposition of heat has also been analyzed.
Time-dependence in relativistic collisionless shocks: theory of the variable
Energy Technology Data Exchange (ETDEWEB)
Spitkovsky, A
2004-02-05
We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.
A description of jet structure by psub(T)-limited phase space
International Nuclear Information System (INIS)
Clegg, A.B.; Donnachie, A.
1982-01-01
It is shown that the distribution of momenta of particles in quark jets from electron-positron annihilation and deep inelastic lepton scattering, at energies up to about 14 GeV, can be described by a simple psub(T)-limited phase space model. This model than allows a simple, essentially kinematical, explanation of various experimental results, in particular the observed rise in or 2 > with increasing energy at lower energies, departures from scaling in momentum distributions of charged particles in e + e - annihilation and seagull dips in or 2 > at xsub(F) = 0. (orig.)
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-01
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Energy Technology Data Exchange (ETDEWEB)
Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows
Le, Truong; Newman, William; Edge, Brinkley
2018-06-01
Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.
Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet
Directory of Open Access Journals (Sweden)
Monika Mościbrodzka
2017-09-01
Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.
Electromagnetic lepton-pair production in relativistic collisions
International Nuclear Information System (INIS)
Albert, C.J.; Ernst, D.J.; Strayer, M.R.; Bottcher, C.
1991-01-01
Electromagnetic lepton-pair production in relativistic collisions is studied in an ab initio approach with no free parameters. After a semi-classical approximation to the relative motion of the two incident particles is made, the resulting second-order diagram is calculated using a Monte Carlo technique to evaluate the resulting seven-dimensional integral. We examine the case of electron-positron pair production in π - p collisions at p pi = 17 GeV. We find that a significant fraction of the measured pairs in this reaction are produced via the magnetic spin-flip current of the proton. Approaches, such as the equivalent photon approximation, which neglect this part of the current predict much too small a cross section. This feature is traced to the cuts imposed in taking the experimental data. Lepton-pair production in the scattering of 3 He, 4 He and 4 He, 4 He is proposed as a clean way of experimentally separating the spin-flip and non-flip processes; predictions are made for these systems
Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano
2018-02-01
Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.
International Nuclear Information System (INIS)
Saxon, D.H.
1985-10-01
The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
Plasma relativistic microwave electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.
2001-01-01
One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru
Electron-Positron Accumulator (EPA)
Photographic Service
1986-01-01
After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.
Energy Technology Data Exchange (ETDEWEB)
Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)
2009-05-15
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
International Nuclear Information System (INIS)
Strange, P.
2010-01-01
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
Empirical model of the M 87 jet
International Nuclear Information System (INIS)
Shklovskij, I.S.
1984-01-01
The nature of the M87 jet is discussed. Recent observations of the M87 jet in radio, optical and X-ray regions, carried out with a sufficiently high resolving power, have revealed an identity of the brightness distribution at all frequencies. This points to a decisive role of the regular magnetic field variations along the jet for its overall structure. The bright knots of the jet are in the places where the field is enhanced. In the same places, a small fraction of relativistic electrons acquires large pitch-angles due to the interaction with plasma waves, leading to the synchrotron emission of the knots. The velocity of the plasma ejected from the nucleus of M87 should be 0.1 c. Thus, the M87 jet is one-sided
Energy Technology Data Exchange (ETDEWEB)
Alexander, K. D.; Berger, E.; Fong, W.; Williams, P. K. G.; Guidorzi, C.; Margutti, R.; Metzger, B. D.; Annis, J.; Blanchard, P. K.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Chornock, R.; Cowperthwaite, P. S.; Drout, M.; Eftekhari, T.; Frieman, J.; Holz, D. E.; Nicholl, M.; Rest, A.; Sako, M.; Soares-Santos, M.; Villar, V. A.
2017-10-16
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter ($13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $\\gtrsim 10^{48}$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $\\gtrsim 20^{\\circ}$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $\\sim 10^{49}-10^{50}$ erg that exploded in a uniform density environment with $n\\sim 10^{-4}-10^{-2}$ cm$^{-3}$, viewed at an angle of $\\sim 20^{\\circ}-40^{\\circ}$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $\\sim 5-10$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.
Rotation and toroidal magnetic field effects on the stability of two-component jets
Millas, Dimitrios; Keppens, Rony; Meliani, Zakaria
2017-09-01
Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of 'spine and sheath' models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization σ, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, mpi-amrvac code.
Analytic properties of the relativistic Thomas-Fermi equation and the total energy of atomic ions
International Nuclear Information System (INIS)
March, N.H.; Senatore, G.
1985-06-01
The analytic properties of solutions of the relativistic Thomas-Fermi equation which tend to zero at infinity are first examined, the neutral atom solution being a member of this class. A new length is shown to enter the theory, proportional to the square root of the fine structure constant. This information is used to develop a perturbation expansion around the neutral atom solution, corresponding to positive atomic ions with finite but large radii. The limiting law relating ionic radius to the degree of ionization is thereby displayed in functional form, and solved explicitly to lowest order in the fine structure constant. To embrace this knowledge of heavy positive ions, as well as results from the one-electron Dirac equation, a proposal is then advanced as to the analytic form of the relativistic total energy E(Z,N) of an atomic ion with nuclear charge Ze and total number of electrons N. The fact that, for N>1, the nucleus is known only to bind Z+n electrons, where n is 1 or 2, indicates non-analyticity in the complex Z plane, represented by a circle of radius Z approx.= N. Such non-analyticity is also a property of the non-relativistic energy derived from the many-electron Schroedinger equation. The relativistic theory, however, must also embody a second type of non-analyticity associated with the known property for N=1 that the Dirac equation predicts electron-positron pair production when the electronic binding energy becomes equal to twice the electron rest mass energy. This corresponds to a second circle of non-analyticity in E(Z,N), and hence to a Taylor-Laurent expansion of this quantity in the atomic number Z. The relation of this expansion to the Layzer-Bahcall series is finally discussed. (author)
Relativistic and non-relativistic studies of nuclear matter
Banerjee, MK; Tjon, JA
2002-01-01
We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Relativistic solitons and pulsars
Energy Technology Data Exchange (ETDEWEB)
Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N
1975-05-01
A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Handbook of relativistic quantum chemistry
International Nuclear Information System (INIS)
Liu, Wenjian
2017-01-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Biquaternions and relativistic kinematics
International Nuclear Information System (INIS)
Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.
1979-01-01
The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles
Relativistic heavy ion collisions
International Nuclear Information System (INIS)
Barz, H.W.; Kaempfer, B.; Schulz, H.
1984-12-01
An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)
The jet of the Low Luminosity AGN of M81
Directory of Open Access Journals (Sweden)
Alberdi A.
2013-12-01
Full Text Available In this contribution, we summarize our main results of a big campaign of global VLBI observations of the AGN in M81 (M81* phase-referenced to the radio supernova SN 1993J. Thanks to the precise multi-epoch and multi-frequency astrometry, we have determined the normalized core-shift of the relativistic jet of M81* and estimated both the magnetic field and the particle density at the jet base. We have also found evidence of jet precession in M81* coming from the systematic time evolution of the jet orientation correlated with changes in the overall flux density.
Jets as a probe of dense matter at RHIC
International Nuclear Information System (INIS)
Filimonov, Kirill
2004-01-01
Jet quenching in the matter created in high energy nucleus-nucleus collisions provides a tomographic tool to probe the medium properties. Recent experimental results on jet production at the Relativistic Heavy-Ion Collider (RHIC) are reviewed. Jet properties in p+p and d+Au collisions have been measured, establishing the baseline for studying jet modification in heavy-ion collisions. Current progress on detailed studies of high transverse momentum production in Au+Au collisions is discussed, with an emphasis on dihadron correlation measurements
Photon structure and the production of jets, hadrons, and prompt photons
International Nuclear Information System (INIS)
Klasen, M.
1999-01-01
We give a pedagogical introduction to hard photoproduction processes at HERA, including the production of jets, hadrons, and prompt photons. Recent theoretical developments in the three areas are reviewed. In summary, hard photoproduction processes can provide very useful information on the hadronic structure of the photon, in particular on the gluon density, which is complimentary to the information coming from deep inelastic photon-photon scattering at electron-positron colliders. Among the different hadronic final states, jets are most easily accessible experimentally and phenomenologically. On the other hand, inclusive hadron production offers the possibility to test the universality of hadron fragmentation functions and measure the photon structure down to very low values of p T and x γ . Prompt photon production suffers from a reduced cross section and limited data, but allows for the additional testing of photon fragmentation functions
Relativistic particle in a box
Alberto, P.; Fiolhais, Carlos; Gil, Victor
1996-01-01
The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case
International Nuclear Information System (INIS)
Wollstadt, Simon
2015-01-01
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model. The production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurement of the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of √(s)=7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb -1 . The differential cross-section of pp→Z 0 /γ * +X→e + e - +X is measured as a function of the invariant mass in the range 116 GeV
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Non-relativistic supersymmetry
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1984-01-01
The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)
International Nuclear Information System (INIS)
Contopoulos, G.
1983-01-01
In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)
Directory of Open Access Journals (Sweden)
Bialynicki-Birula Iwo
2014-01-01
Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic few body calculations
International Nuclear Information System (INIS)
Gross, F.
1988-01-01
A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs
Relativistic Polarizable Embedding
DEFF Research Database (Denmark)
Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob
2017-01-01
Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Relativistic Coulomb excitation
International Nuclear Information System (INIS)
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Fundamental Relativistic Rotator
International Nuclear Information System (INIS)
Staruszkiewicz, A.
2008-01-01
Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Energy Technology Data Exchange (ETDEWEB)
Lopez-Camara, D.; Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706-1582 (United States); Begelman, Mitchell C., E-mail: dlopezc@ncsu.edu [JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440 (United States)
2013-04-10
We present the results of special relativistic, adaptive mesh refinement, 3D simulations of gamma-ray burst jets expanding inside a realistic stellar progenitor. Our simulations confirm that relativistic jets can propagate and break out of the progenitor star while remaining relativistic. This result is independent of the resolution, even though the amount of turbulence and variability observed in the simulations is greater at higher resolutions. We find that the propagation of the jet head inside the progenitor star is slightly faster in 3D simulations compared to 2D ones at the same resolution. This behavior seems to be due to the fact that the jet head in 3D simulations can wobble around the jet axis, finding the spot of least resistance to proceed. Most of the average jet properties, such as density, pressure, and Lorentz factor, are only marginally affected by the dimensionality of the simulations and therefore results from 2D simulations can be considered reliable.
Time-dependent inhomogeneous jet models for BL Lac objects
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-05-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
International Nuclear Information System (INIS)
Juknevich, J.
2014-01-01
We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)
Schwaller, Pedro; Weiler, Andreas
2015-01-01
In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...
Energy Technology Data Exchange (ETDEWEB)
Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-02-15
In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.
International Nuclear Information System (INIS)
Schwaller, Pedro; Stolarski, Daniel
2015-02-01
In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Relativistic studies in actinides
International Nuclear Information System (INIS)
Weinberger, P.; Gonis, A.
1987-01-01
In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs
International Nuclear Information System (INIS)
Hines, D.F.; Frankel, N.E.
1979-01-01
The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed
Relativistic heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Brink, D M
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Bratek, Łukasz
2015-01-01
Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...
Relativistic heavy ion reactions
International Nuclear Information System (INIS)
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs
VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION
International Nuclear Information System (INIS)
Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.
2012-01-01
-ray jets in this complete sample suggests that they are a signature of a ubiquitous process in FRI jets. It appears that the FRI jets start out relativistically on parsec scales but decelerate on kiloparsec scales, with the X-ray emission revealing the sites of bulk deceleration and particle reacceleration.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Jet studies in heavy ion collisions with the ATLAS detector
Slovak, Radim; The ATLAS collaboration
2016-01-01
In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.
Spatial stability of jets - the nonaxisymmetric fundamental and reflection modes
International Nuclear Information System (INIS)
Hardee, P.E.
1987-01-01
A spatial stability analysis of the relativistic dispersion relation governing the growth and propagation of harmonic components comprising a perturbation to the surface of a cylindrical jet is performed. The spatial growth of harmonic components associated with the nonaxisymmetric fundamental solution and reflection solutions of several Fourier modes are analyzed. Approximate analytical expressions describing resonant frequencies and wavelengths, and maximum growth rates at resonance applicable to relativistic jets are found from the dispersion relation, and the nature of the resonances is explored. On transonic jets there is only a fundamental solution for each Fourier mode with no resonance or maximum growth rate. On supersonic jets there is a fundamental solution and reflection solutions for each Fourier mode, and each solution contains a resonance at which the growth rate is a maximum. A numerical analysis of the fundamental and first three reflection solutions of the axisymmetric and first three nonaxisymmetric Fourier modes is performed. The numerical analysis is restricted to nonrelativistic flows but otherwise covers a broad range of Mach numbers and jet densities. The numerical results are used along with the analytical results to obtain accurate expressions for resonant frequencies, wavelengths, and growth rates as a function of Mach numnber and jet density. In all cases the fastest spatial growth rate at a given frequency is of harmonic components associated with the fundamental solution of one of the nonaxisymmetric Fourier modes. The application of these results to jet structure and implication of these results for jet structure in extragalactic radio sources are considered. 23 references
Stellar signatures of AGN-jet-triggered star formation
International Nuclear Information System (INIS)
Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel
2014-01-01
To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.
CAFE: A NEW RELATIVISTIC MHD CODE
Energy Technology Data Exchange (ETDEWEB)
Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)
2015-06-22
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
Henderson, Brenda
2016-01-01
The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.
Vogt, D.; Letelier, P.S.
2005-01-01
An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of
The formation and disruption of black hole jets
Gabuzda, Denise; Kylafis, Nikolaos
2015-01-01
This book reviews the phenomenology displayed by relativistic jets as well as the most recent theoretical efforts to understand the physical mechanisms at their origin. Relativistic jets have been observed and studied in Active Galactic Nuclei (AGN) for about half a century and are believed to be fueled by accretion onto a supermassive black hole at the center of the host galaxy. Since the first discovery of relativistic jets associated with so-called "micro-quasars" much more recently, it has seemed clear that much of the physics governing the relativistic outflows in stellar X-ray binaries harboring black holes and in AGN must be common, but acting on very different spatial and temporal scales. With new observational and theoretical results piling up every day, this book attempts to synthesize a consistent, unified physical picture of the formation and disruption of jets in accreting black-hole systems. The chapters in this book offer overviews accessible not only to specialists but also to graduat...
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
Relativistic twins or sextuplets?
International Nuclear Information System (INIS)
Sheldon, Eric
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic quantum cryptography
Kaniewski, Jedrzej
Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).
Relativistic distances, sizes, lengths
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs
Localization of relativistic particles
International Nuclear Information System (INIS)
Omnes, R.
1997-01-01
In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Relativistic quarkonium dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1985-06-01
We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters
International Nuclear Information System (INIS)
Araujo, Wilson Roberto Barbosa de
1995-01-01
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)
Relativistic nuclear collisions: theory
International Nuclear Information System (INIS)
Gyulassy, M.
1980-07-01
Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1991-01-01
The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A; Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica)
1980-11-01
In this paper some unsolved problems of the linear MHD Kelvin-Helmholtz instability are re-examined, starting from the analysis of relativistic (and non-relativistic) flows in the approximation of a plane vortex sheet, for the contact layer between the fluids in relative motion. Results are discussed for a range of physical parameters in specific connection with application to models of jets in extragalactic radio sources. Other physical aspects of the instability will be considered in forthcoming papers.
Relativistic approach to nuclear structure
International Nuclear Information System (INIS)
Nguyen Van Giai; Bouyssy, A.
1987-03-01
Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined
Relativistic dynamics without conservation laws
Rothenstein, Bernhard; Popescu, Stefan
2006-01-01
We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.
Relativistic non-Hamiltonian mechanics
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Dynamics and stability of relativistic gamma-ray-bursts blast waves
Meliani, Z.; Keppens, R.
2010-09-01
Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.
Misaligned Accretion and Jet Production
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1992-01-01
In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given
Reflection jets and collimation of radio sources
International Nuclear Information System (INIS)
Pacholczyk, A.G.
1983-01-01
The author proposes a description of only a certain class of jets in extended radio sources by discussing hydrodynamics of jets formed by discrete portions of material ejected from the parent galaxy through a channel and reflected back into it as a result of an encounter with the material accumulated at the end of the channel. The picture presented here combines some older ideas with recent ones. The older ideas consist of modeling of extended radio sources in terms of multiple ejection of plasmons through a channel ploughed by the first few plasmons in the ambient medium with a resupply of energy in plasmons through the conversion of bulk kinetic energy into relativistic electron energy through instability driven turbulence. The recent ideas concern the formation of retro-jets as the result of interaction of a plasmon with the dense relic material at the end of a channel and the collimation of plasmon material in channels. (Auth.)
Jets and beams in powerful extragalatic radio sources
International Nuclear Information System (INIS)
Pelletier, G.; Roland, J.; Asseo, E.
1989-01-01
The simplest, but the most constraining assumption for jet modeling powerfull extragalatic radio sources is to consider a single relativistic plasma with relativistic motion from short distances (few pc) to large distances (few 100 kpc) from the nucleus. We argue that it is worth introducing more ingredients in the model. Besides the interest in developing plasma physics motivated by these objects, there are two reasons for enriching the physics. First, the interpretation of hot spots as resulting from shocks with diffusive acceleration in a thermal classical plasma with a tenuous relativistic component is consistent with data and constrain the parameters. Second, the interpretation of relativistic motions on parsec scales as resulting from a core beam relaxing in a collimated wind is consistent with data and avoid several difficulties. (author). 14 refs
A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS
Energy Technology Data Exchange (ETDEWEB)
Cécere, Mariana [Instituto de Astronomía Teórica y Experimental, Universidad Nacional de Córdoba, X5000BGR, Córdoba (Argentina); Velázquez, Pablo F.; De Colle, Fabio; Esquivel, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, CP: 04510, D.F., México (Mexico); Araudo, Anabella T. [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58090, Morelia, Michoacán, México (Mexico)
2016-01-10
Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.
International Nuclear Information System (INIS)
Lamb, D.Q.; Donaghy, T.Q.; Graziani, C.
2005-01-01
One third of all HETE-2-localized bursts are X-Ray Flashes (XRFs), a class of events first identified by Heise in which the fluence in the 2-30 keV energy band exceeds that in the 30-400 keV energy band We summarize recent HETE-2 and other results on the properties of XRFs. These results show that the properties of XRFs, X-ray-rich gamma-ray bursts (GRBs), and GRBs form a continuum, and thus provide evidence that all three kinds of bursts are closely related phenomena. As the most extreme burst population, XRFs provide severe constraints on burst models and unique insights into the structure of GRB jets, the GRB rate, and the nature of Type Ib/Ic supernovae. We briefly mention a number of the physical models that have been proposed to explain XRFs. We then consider two fundamentally different classes of phenomenological jet models: universal jet models, in which it is posited that all GRBs jets are identical and that differences in the observed properties of the bursts are due entirely to differences in the viewing angle; and variable-opening angle jet models, in which it is posited that GRB jets have a distribution of jet opening angles and that differences in the observed properties of the bursts are due to differences in the emissivity and spectra of jets having different opening angles. We consider three shapes far the emissivity as a function of the viewing angle θ ν from the axis of the jet: power law, top hat (or uniform) , and Gaussian (or Fisher). We then discuss the effect of relativistic beaming on each of these models. We show that observations can distinguish between these various models
International Nuclear Information System (INIS)
Martirena, S.G.
1994-04-01
In this work, a measurement of the strong coupling constant α s in e + e - annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as 'jets', various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter Λ bar MS , defined in the bar MS renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O(α s 2 ) calculations. The value of α s obtained was α s (M z0 ) = 0.122 ± 0.004 -0.007 +0.008 where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, Λ bar MS = 0.28 -0.10 +0.16 GeV where the experimental and theoretical uncertainties have been combined
Modeling the Emission from Turbulent Relativistic Jets in Active ...
Indian Academy of Sciences (India)
2014-07-12
Jul 12, 2014 ... Victoria Calafut1,2,∗ & Paul J. Wiita1. 1Department of Physics, The College of New Jersey, 2000 Pennington Road .... The paper is structured as follows. ..... values of the maximum value of the turbulent velocity, vt, as illustrated in the last ... light-year provides a fundamental timestep of ≃9 days for v0 = 0.1c.
Relativistic hydrodynamic simulation of jet deceleration in GRB
International Nuclear Information System (INIS)
Meliani, Z.; Keppens, R.; Casse, F.
2008-01-01
Using the novel adaptive mesh refinement code, AMRVAC, we investigate the interaction between collimated ejecta (jetlike fireball models with various opening angle) with its surrounding cold Interstellar Medium (ISM). This is relevant for Gamma Ray Bursts, and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell-ISM matter. We determine the deceleration from an initial Lorentz factor γ = 100 up to the almost Newtonian γ∼O(3) phase of the flow. We discuss the effect of varying the opening angle on the deceleration, and pay attention to differences with their 1D isotropic GRB equivalents. These are due to thermally induced sideways expansions of both shocked shell and shocked ISM regions. The propagating 2D ultrarelativistic shell does not accrete all the surrounding medium located within its initial opening angle. The difference with isotropic GRB models is quite pronounced for shells with small opening angle. In the most collimated ejecta (open angle of 1 deg.), the deceleration phase (once the reverse shock has traversed the shell structure) shows distinct modulation, attributed to repeated rarefactions traversing the shell. These may have a clear impact on the emitted afterglow radiation
Kinematical Diagrams for Conical Relativistic Jets Gopal-Krishna ...
Indian Academy of Sciences (India)
2007-02-28
Feb 28, 2007 ... 3Inter-University Centre for Astronomy & Astrophysics, Pune University Campus, Post Bag. No. 4, Pune 411 007, India. e-mail: samir@iucaa.ernet.in .... disc were determined (e.g., Aave) and these are taken to be the effective values for the entire radio knot. Note that the effective δ for the knot is then δeff = A.
Electric Currents along Astrophysical Jets
Directory of Open Access Journals (Sweden)
Ioannis Contopoulos
2017-10-01
Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.
Two-Loop Master Integrals for $\\gamma^{*} \\to 3$ Jets the Non-Planar Topologies
Gehrmann, T
2001-01-01
The calculation of the two-loop corrections to the three-jet production rate and to event shapes in electron--positron annihilation requires the computation of a number of two-loop four-point master integrals with one off-shell and three on-shell legs. Up to now, only those master integrals corresponding to planar topologies were known. In this paper, we compute the yet outstanding non-planar master integrals by solving differential equations in the external invariants which are fulfilled by these master integrals. We obtain the master integrals as expansions in $\\e=(4-d)/2$, where $d$ is the space-time dimension. The fully analytic results are expressed in terms of the two-dimensional harmonic polylogarithms already introduced in the evaluation of the planar topologies.
International Nuclear Information System (INIS)
Nemenov, L.
2001-01-01
The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1993-01-01
This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given
Relativistic plasma dispersion functions
International Nuclear Information System (INIS)
Robinson, P.A.
1986-01-01
The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived
Energy Technology Data Exchange (ETDEWEB)
Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)
2017-06-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
International Nuclear Information System (INIS)
Kipping, David
2017-01-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
Rotating relativistic neutron stars
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Glendenning, N.K.
1991-07-21
Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.
Some problems in relativistic thermodynamics
International Nuclear Information System (INIS)
Veitsman, E. V.
2007-01-01
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived
Review of physics and applications of relativistic plasmas driven by ultra-intense lasers
International Nuclear Information System (INIS)
Umstadter, Donald
2001-01-01
As tabletop lasers continue to reach record levels of peak power, the interaction of light with matter has crossed a new threshold, in which plasma electrons at the laser focus oscillate at relativistic velocities. The highest forces ever exerted by light have been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. Not only is this acceleration gradient up to a thousand times greater than in radio-frequency-based sources, but the transverse emittance of the particle beams is comparable or lower. Additionally, laser-based accelerators have been demonstrated to work at a repetition rate of 10 Hz, an improvement of a factor of 1000 over their best performance of just a couple of years ago. Anticipated improvements in energy spread may allow these novel compact laser-based radiation sources to be useful someday for cancer radiotherapy and as injectors into conventional accelerators, which are critical tools for x-ray and nuclear physics research. They might also be used as a spark to ignite controlled thermonuclear fusion. The ultrashort pulse duration of these particle bursts and the x rays they can produce, hold great promise as well to resolve chemical, biological or physical reactions on ultrafast (femtosecond) time scales and on the spatial scale of atoms. Even laser-accelerated protons are soon expected to become relativistic. The dense electron-positron plasmas and vast array of nuclear reactions predicted to occur in this case might even help bring astrophysical phenomena down to Earth, into university laboratories. This paper reviews the many recent advances in this emerging discipline, called high-field science
Relativistic electron kinetic effects on laser diagnostics in burning plasmas
Mirnov, V. V.; Den Hartog, D. J.
2018-02-01
Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.
Conductivity of a relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.
Relativistic description of atomic nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters
Conductivity of a relativistic plasma
International Nuclear Information System (INIS)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab
Kinetic instabilities in relativistic plasmas: the Harris instability revisited
International Nuclear Information System (INIS)
Tautz, R.C.
2008-01-01
Plasma instabilities that generate aperiodic fluctuations are of outstanding importance in the astrophysical context. Two prominent examples are the electromagnetic Weibel instability and the electrostatic Harris instability, which operate in initially non-magnetized and magnetized plasmas, respectively. In this talk, the original formulation of the Harris instability will be reviewed and generalizations will be presented such as the inclusion of (1) relativistic effects, (2) ion effects, and (3) mode coupling. It will be shown that, with these modifications, a powerful method has been developed for the determination of both the existence and the growth rate of low-frequency instabilities. Applications can be found in astrophysical jets, where the rest frame can be used and so no parallel motion is present. At the end of the talk, how the particle composition of gamma-ray burst jets can be predicted using the Harris technique. (author)
Relativistic heavy-ion physics
Herrera Corral, G
2010-01-01
The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.
Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...
2015-06-23
crackle is correlated to signals with intermittent periods of steepened shock-like waves followed by weaker, longer, rounded rarefaction regions, but to...turbulence is concentrated in a weakly curved (for a typical round jet) shear layer between the high-speed potential core flow and the surrounding co-flow...decreases into the acoustic field. The effect of varying dc between −0.1 and −0.003δm(t)/∆U causes the Nδm/Lx curves to shift downward as fewer waves
An introduction to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-11-15
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Radiation dominated relativistic current sheets
International Nuclear Information System (INIS)
Jaroschek, C.H.
2008-01-01
Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)
Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J.; Nonaka, C.
2011-07-01
We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.
International Nuclear Information System (INIS)
Barber, D.P.; Heinemann, K.; Mais, H.; Ripken, G.
1991-12-01
In the following report we investigate stochastic particle motion in electron-positron storage ring in the framework of a Fokker-Planck treatment. The motion is described by using the canonical variables χ, p χ , z, p z , σ = s - cxt, p σ = ΔE/E 0 of the fully six-dimensional formalism. Thus synchrotron- and betatron-oscillations are treated simultaneously taking into account all kinds of coupling (synchro-betatron coupling and the coupling of the betatron oscillations by skew quadrupoles and solenoids). In order to set up the Fokker-Planck equation, action-angle variables of the linear coupled motion are introduced. The averaged dimensions of the bunch, resulting from radiation damping of the synchro-betatron oscillations and from an excitation of these oscillations by quantum fluctuations, are calculated by solving the Fokker-Planck equation. The surfaces of constant density in the six-dimensional phase space, given by six-dimensional ellipsoids, are determined. It is shown that the motion of such an ellipsoid under the influence of external fields can be described by six generating orbit vectors which may be combined into a six-dimenional matrix B(s). This 'bunch-shape matrix', B(s), contains complete information about the configuration of the bunch. Classical spin diffusion in linear approximation has also been included so that the dependence of the polarization vector on the orbital phase space coordinates can be studied and another derivation of the linearized depolarization time obtained. (orig.)
The aim of this experiment is to measure the influence of strong fields on QED-processes like: Emission of coherent radiation and pair-production when multi-hundred GeV electrons/positrons and photons penetrate single crystals near axial/planar directions. The targets will be diamond, Si, Ge and W crystals.\\\\\\\\ QED is a highly developed theory and has been investigated experimentally in great detail. In recent years it has become technically possible to investigate QED-processes in very strong electromagnetic fields around the characteristic strong field E$_{0}$ = m$^{2}$c$^{3}$/eh = 1.32.10$^{16}$ V/cm. The work of such a field over the Compton length equals the electron mass. The theoretical description of QED in such fields is beyond the framework of perturbation theory. Such fields are only obtained in laboratories for a) heavy ion collisions b) interactions of multi-GeV electrons with extremely intense laser fields and in oriented crystals. In fact it turns out that crystals are unique for this type of e...
König, Sebastian
In this thesis the measurement of the effective weak mixing angle $\\sin^2{\\theta_W^{\\mathrm{eff}}}$ in proton-proton collisions is described. The results are extracted from the forward-backward asymmetry ($A_\\textit{FB}$) in electron-positron final states at the ATLAS experiment at the LHC. The $A_\\textit{FB}$ is defined upon the distribution of the polar angle between the incoming quark and outgoing lepton. The signal process used in this study is the reaction $pp\\to Z/\\gamma^*+X\\to e^+e^-+X$ taking a total integrated luminosity of 4.8 fb$^{-1}$ of data into account. The data was recorded at a proton-proton center-of-mass energy of $\\sqrt{s}=7$ TeV. The weak mixing angle is a central parameter of the electroweak theory of the Standard Model (SM) and relates the neutral current interactions of electromagnetism and weak force. The higher order corrections on $\\sin^2{\\theta_W^{\\mathrm{eff}}}$ are related to other SM parameters like the mass of the Higgs boson. Because of the symmetric initial...
PHOTOSPHERIC EMISSION FROM STRATIFIED JETS
International Nuclear Information System (INIS)
Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji
2013-01-01
We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p -L p relation can be explained by differences in the outflow properties of individual sources
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Jet measurements in heavy-ion collisions with the ATLAS detector
Havener, Laura Brittany; The ATLAS collaboration
2017-01-01
In relativistic heavy-ion collisions, a hot medium with a high density of unscreened colour charges is produced. Jets are produced by parton-parton scatterings in the early stages of the collision, and are observed to be attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of energy loss is the modification of both dijet transverse energy balance, and a similar modification of photon-jet correlations. Finally, the internal structure of jets is also observed to be modified, from a careful study of fragmentation functions. In this talk, the latest ATLAS results on single jet suppression, dijet suppression, photon-jet correlations, and modification of the jet internal structure in both p+Pb and Pb+Pb collisions, compared to pp, will be presented.
Jet suppression and the flavor dependence of partonic energy loss with ATLAS
Energy Technology Data Exchange (ETDEWEB)
Kosek, Tomas
2016-12-15
In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. One manifestation of the energy loss of jets propagating through the medium is a lower yield of jets and hadrons emerging from this medium than expected in the absence of medium effects. Therefore modifications of the jet yield are directly sensitive to the energy loss mechanism. Furthermore, jets with different flavor content are expected to be affected by the medium in different ways. In this publication, the latest ATLAS results on single hadron suppression along with the complementary measurements of single jet suppression are presented. Rapidity dependence, which is sensitive to the relative energy loss between quark and gluon jets, is discussed. Finally, a new measurement of jet fragmentation functions is presented.
International Nuclear Information System (INIS)
Grau, N.
2009-01-01
Full jet reconstruction in relativistic heavy ion collisions provides new and unique insights to the physics of parton energy loss. Because of the large underlying event multiplicity in A+A collisions, random and correlated fluctuations in the background can result in the reconstruction of fake jets. These fake jets must be identified and rejected to obtain the purest jet sample possible. A large but reducible fake rate of jets reconstructed using an iterative cone algorithm on HIJING events is observed. The absolute rate of fake jets exceeds the binary-scaled p+p jet rate below 50 GeV and is not negligible until 100 GeV. The variable Σj T , the sum of the jet constituent's E T perpendicular to the jet axis, is introduced to identify and reject fake jets at by a factor of 100 making it negligible. This variable is shown to not strongly depend on jet energy profiles modified by energy loss. By studying azimuthal correlations of reconstructed di-jets, the fake jet rate can be evaluated in data. (orig.)
The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures
Margalit, Ben; Metzger, Brian D.; Thompson, Todd A.; Nicholl, Matt; Sukhbold, Tuguldur
2018-04-01
Multiple lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long-duration gamma-ray bursts (GRBs). Both classes of events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a unifying model for magnetar thermalization and jet formation: misalignment between the rotation (Ω) and magnetic dipole (μ) axes dissipates a fraction of the spin-down power by reconnection in the striped equatorial wind, providing a guaranteed source of `thermal' emission to power the supernova. The remaining unthermalized power energizes a relativistic jet. We show that even weak relativistic jets of luminosity ˜1046 erg s-1 can escape the expanding SN ejecta implying that escaping relativistic jets may accompany many SLSNe. We calculate the observational signature of these jets. We show that they may produce transient ultraviolet (UV) cocoon emission lasting a few hours when the jet breaks out of the ejecta surface. A longer lived optical/UV signal may originate from a mildly relativistic wind driven from the interface between the jet and the ejecta walls, which could explain the secondary early-time maximum observed in some SLSNe light curves, such as LSQ14bdq. Our scenario predicts a population of GRB from on-axis jets with extremely long durations, potentially similar to the population of `jetted-tidal disruption events', in coincidence with a small subset of SLSNe.
POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS
Energy Technology Data Exchange (ETDEWEB)
Nagakura, Hiroki; Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ioka, Kunihito, E-mail: hiroki@heap.phys.waseda.ac.jp [KEK Theory Center, 1-1 Oho, Tsukuba 305-0801 (Japan)
2012-08-01
We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.
Relativistic positioning systems: perspectives and prospects
Coll Bartolomé
2013-11-01
Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).
A Precessing Jet in the CH Cyg Symbiotic System
Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.
2010-02-01
Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.
A PRECESSING JET IN THE CH Cyg SYMBIOTIC SYSTEM
International Nuclear Information System (INIS)
Karovska, Margarita; Gaetz, Terrance J.; Raymond, John C.; Lee, Nicholas P.; Carilli, Christopher L.; Hack, Warren
2010-01-01
Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ∼300 AU to ∼1400 AU, with the shock front propagating with velocity -1 . The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ∼170 AU, and a SW component ending in several clumps extending out to ∼750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ∼500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.
Relativistic inverse Compton scattering of photons from the early universe.
Malu, Siddharth; Datta, Abhirup; Colafrancesco, Sergio; Marchegiani, Paolo; Subrahmanyan, Ravi; Narasimha, D; Wieringa, Mark H
2017-12-05
Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p min - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters. The total pressure due to the relativistic, non-thermal population of electrons can be measured using the Sunyaev-Zel'dovich Effect, and is critically dependent on p min , making the measurement of this non-thermal pressure a promising technique to estimate the electron low-energy cutoff. We present here the first unambiguous detection of this Sunyaev-Zel'dovich Effect for a non-thermal population of electrons in a radio galaxy jet/lobe, located at a significant distance away from the center of the Bullet cluster of galaxies.
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Radiatively driven relativistic spherical winds under relativistic radiative transfer
Fukue, J.
2018-05-01
We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.
Scattering in relativistic particle mechanics
International Nuclear Information System (INIS)
De Bievre, S.
1986-01-01
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed
Dihadron fragmentation functions in the quark-jet model: Transversely polarized quarks
Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.
2018-01-01
Within the most recent extension of the quark-jet hadronization framework, we explore the transverse-polarization-dependent dihadron fragmentation functions (DiFFs) H1∢ and H1⊥ of a quark into π+π- pairs. Monte Carlo (MC) simulations are employed to model polarized quark hadronization and calculate the corresponding number densities. These, in turn, are used to extract the Fourier cosine moments of the DiFFs H1∢ and H1⊥. A notable finding is that there are previously unnoticed apparent discrepancies between the definitions of the so-called interference DiFF (IFF) H1∢ , entering the cross sections for two-hadron semi-inclusive electroproduction, and those involved in the production of two pairs of hadrons from back-to-back jets in electron-positron annihilation. This manuscript completes the studies of all four leading-twist DiFFs for unpolarized hadron pairs within the quark-jet framework, following our previous work on the helicity-dependent DiFF G1⊥.
International Nuclear Information System (INIS)
Del Duca, V.
1992-11-01
Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons
Perpendicular relativistic shocks in magnetized pair plasma
Plotnikov, Illya; Grassi, Anna; Grech, Mickael
2018-04-01
Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.
Plasmoid statistics in relativistic magnetic reconnection
Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.
2018-04-01
Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.
Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions
Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.
2018-04-01
The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.
International Nuclear Information System (INIS)
Keen, B.E.; O'Hara, G.W.; Pollard, I.E.
1988-07-01
The paper presents the Jet Joint Undertaking annual report 1987. A description is given of the JET and Euratom and International Fusion Programmes. The technical status of JET is outlined, including the development and improvements made to the system in 1987. The results of JET Operation in 1987 are described within the areas of: density effects, temperature improvements, energy confinement studies and other material effects. The contents also contain a summary of the future programme of JET. (U.K.)
De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico
2012-02-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.
International Nuclear Information System (INIS)
De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; López-Cámara, Diego
2012-01-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρ∝r –k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.
Energy Technology Data Exchange (ETDEWEB)
De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)
2012-02-20
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the
International Nuclear Information System (INIS)
Nottale, Laurent
2003-01-01
The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, Paolo [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Somogyi, Gabor [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Zoltan [Debrecen Univ. (Hungary); Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research
2010-11-15
We perform the integration of all iterated singly-unresolved subtraction terms over the two-particle factorized phase space. We also sum over the unresolved parton flavours. The final result can be written as a convolution (in colour space) of the Born cross section and an insertion operator. We spell out the insertion operator in terms of 24 basic integrals that are defined explicitly. We compute the coefficients of the Laurent-expansion of these integrals in two different ways, with the method of Mellin-Barnes representations and sector decomposition. Finally, we present the Laurentexpansion of the full insertion operator for the specific examples of electron-positron annihilation into two and three jets. (orig.)
Bolzoni, Paolo; Somogyi, Gábor; Trócsányi, Zoltán
2011-01-01
We perform the integration of all iterated singly-unresolved subtraction terms, as defined in ref. [1], over the two-particle factorized phase space. We also sum over the unresolved parton flavours. The final result can be written as a convolution (in colour space) of the Born cross section and an insertion operator. We spell out the insertion operator in terms of 24 basic integrals that are defined explicitly. We compute the coefficients of the Laurent expansion of these integrals in two different ways, with the method of Mellin-Barnes representations and sector decomposition. Finally, we present the Laurent-expansion of the full insertion operator for the specific examples of electron-positron annihilation into two and three jets.
SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)
2016-12-20
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Methods in relativistic nuclear physics
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.; Cauvin, M.
1984-01-01
This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
Jetted GRBs, afterglows and SGRs from quark stars birth
Dar, Arnon
1999-01-01
Recent studies suggest that when cold nuclear matter is compressed to high nuclear densities, diquarks with spin zero and antisymmetric color wave function Bose condensate into a superfluid/superconducting state that is several times as dense. Various astrophysical phenomena may be explained by gravitational collapse of neutron stars (NSs) to (di)quark stars (QSs) as a result of a first order phase transition in NSs within $\\sim 10^{4}$ years after their birth in supernova explosions, when they cooled and spun down sufficiently (by magnetic braking ?). The gravitational energy release drives an explosion which may eject both highly relativistic narrowly collimated jets and a mildly relativistic ``spherical'' shell. The slow contraction/cooling of the remnant QSs can power soft gamma ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs), without invoking a huge magnetic energy storage. The jets can produce the observed gamma ray bursts (GRBs) in distant galaxies when they happen to point in our direction and...
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George
2011-09-01
initio within the relativistic framework presented in the other resolutions (in that regard, there still exist some difficult problems to solve), their relativistic terms are accurate enough for all the current and near-future observational techniques. At that level, the Earth rotation models are consistent with the general relativity framework recommended by the IAU and considered in this book. The chapter presents practical algorithms for implementing the recommended models. The appendices to the book contain a list of astronomical constants and the original text of the relevant IAU resolutions adopted by the IAU General Assemblies in 1997, 2000, 2006, and 2009. Numerous colleagues have contributed to this book in one way or or another. It is a pleasure for us to acknowledge the enlightening discussions which one or more of the authors had on different occasions with Victor A. Brumberg of the Institute of Applied Astronomy (St. Petersburg, Russia); Tianyi Huang and Yi Xie of Nanjing University (China); Edward B. Fomalont of the National Radio Astronomical Observatory (USA); Valeri V. Makarov, William J. Tangren, and James L. Hilton of the US Naval Observatory; Gerhard Schäfer of the Institute of Theoretical Physics (Jena, Germany); Clifford M. Will of Washington University (St. Louis, USA); Ignazio Ciufolini of the Università del Salento and INFN Sezione di Lecce (Italy); and Patrick Wallace, retired from Her Majesty's Nautical Almanac Office (UK). We also would like to thank Richard G. French of Wellesley College (Massachusetts, USA); Michael Soffel and Sergei Klioner of the Technical University of Dresden; Bahram Mashhoon of the University of Missouri-Columbia; John D. Anderson, retired from the Jet Propulsion Laboratory (USA); the late Giacomo Giampieri, also of JPL; Michael Kramer, Axel Jessner, and Norbert Wex of the Max-Planck-Institut für Radioastronomie (Bonn, Germany); Alexander F. Zakharov of the Institute of Theoretical and Experimental Physics (Moscow