Some duality relations in the theory of tensor products
Czech Academy of Sciences Publication Activity Database
Hájek, Petr Pavel; Smith, R. J.
2012-01-01
Roč. 30, č. 3 (2012), s. 239-249 ISSN 0723-0869 R&D Projects: GA ČR(CZ) GAP201/11/0345 Institutional support: RVO:67985840 Keywords : tensor * projective * injective Subject RIV: BA - General Mathematics Impact factor: 0.780, year: 2012 http://www.sciencedirect.com/science/article/pii/S072308691200045X
Tensor rank is not multiplicative under the tensor product
DEFF Research Database (Denmark)
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2018-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection b...
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2018-01-01
textabstractThe tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2017-01-01
textabstractThe tensor rank of a tensor is the smallest number r such that the tensor can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor (not to be confused with the "tensor Kronecker product" used in
Tensor rank is not multiplicative under the tensor product
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2017-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specif...
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Tensor products of higher almost split sequences
Pasquali, Andrea
2015-01-01
We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...
Tensor Product of Polygonal Cell Complexes
Chien, Yu-Yen
2017-01-01
We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.
Tensor product of quantum logics
Pulmannová, Sylvia
1985-01-01
A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.
Tensor product varieties and crystals. GL case
Malkin, Anton
2001-01-01
The role of Spaltenstein varieties in the tensor product for GL is explained. In particular a direct (non-combinatorial) proof of the fact that the number of irreducible components of a Spaltenstein variety is equal to a Littlewood-Richardson coefficient (i.e. certain tensor product multiplicity) is obtained.
The tensor rank of tensor product of two three-qubit W states is eight
Chen, Lin; Friedland, Shmuel
2017-01-01
We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states.
International Nuclear Information System (INIS)
McIntosh, C.B.G.; Foyster, J.M.; Lun, A.W.h.
1981-01-01
A list is given of a canonical set of the Newman--Penrose quantities Phi/sub A/B, the tetrad components of the trace-free Ricci tensor, for each Plebanski class according to Plebanski's classification of this tensor. This comparative list can easily be extended to cover the classification in tetrad language of any second-order, trace-free, symmetric tensor in a space-time. A fourth-order tensor which is the product of two such tensors was defined by Plebanski and used in his classification. This has the same symmetries as the Weyl tensor. The Petrov classification of this tensor, here called the Plebanski tensor, is discussed along with the classification of the Ricci tensor. The use of the Plebanski tensor in a couple of areas of general relativity is also briefly discussed
Tables of Products of Tensor Operators and Stevens Operators
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1975-01-01
Numerical tables of products of tensor (Racah) operators, Rl,m(J), and Stevens operators Olm(J), working within a J-multiplet are given as a function of X=J(J+1). Examples of the use of the tables, such as the calculation of commutation relations and thermal averages are given.......Numerical tables of products of tensor (Racah) operators, Rl,m(J), and Stevens operators Olm(J), working within a J-multiplet are given as a function of X=J(J+1). Examples of the use of the tables, such as the calculation of commutation relations and thermal averages are given....
General projective relativity and the vector-tensor gravitational field
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation
Empirical logic and tensor products
International Nuclear Information System (INIS)
Foulis, D.J.; Randall, C.H.
1981-01-01
In our work we are developing a formalism called empirical logic to support a generalization of conventional statistics; the resulting generalization is called operational statistics. We are not attempting to develop or advocate any particular physical theory; rather we are formulating a precision 'language' in which such theories can be expressed, compared, evaluated, and related to laboratory experiments. We believe that only in such a language can the connections between real physical procedures (operations) and physical theories be made explicit and perspicuous. (orig./HSI)
Product numerical range in a space with tensor product structure
Puchała, Zbigniew; Gawron, Piotr; Miszczak, Jarosław Adam; Skowronek, Łukasz; Choi, Man-Duen; Życzkowski, Karol
2010-01-01
We study operators acting on a tensor product Hilbert space and investigate their product numerical range, product numerical radius and separable numerical range. Concrete bounds for the product numerical range for Hermitian operators are derived. Product numerical range of a non-Hermitian operator forms a subset of the standard numerical range containing the barycenter of the spectrum. While the latter set is convex, the product range needs not to be convex nor simply connected. The product ...
Tensor products of quantized tilting modules
International Nuclear Information System (INIS)
Andersen, H.H.
1992-01-01
Let U k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for pound. Also assume that this order is odd and not divisible by 3 if type G 2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U k -modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k , F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups. (orig.)
Fast evaluation of nonlinear functionals of tensor product wavelet expansions
Schwab, C.; Stevenson, R.
2011-01-01
Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree
Geometrical foundations of tensor calculus and relativity
Schuller , Frédéric; Lorent , Vincent
2006-01-01
Manifolds, particularly space curves: basic notions 1 The first groundform, the covariant metric tensor 11 The second groundform, Meusnier's theorem 19 Transformation groups in the plane 28 Co- and contravariant components for a special affine transformation in the plane 29 Surface vectors 32 Elements of tensor calculus 36 Generalization of the first groundform to the space 46 The covariant (absolute) derivation 57 Examples from elasticity theory 61 Geodesic lines 63 Main curvatur...
Gauge theories, duality relations and the tensor hierarchy
Bergshoeff, Eric A.; Hartong, Jelle; Hohm, Olaf; Huebscher, Mechthild; Ortin, Tomas; Hübscher, Mechthild
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of
Tensor products of process matrices with indefinite causal structure
Jia, Ding; Sakharwade, Nitica
2018-03-01
Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.
Gauge theories, duality relations and the tensor hierarchy
International Nuclear Information System (INIS)
Bergshoeff, Eric A.; Hohm, Olaf; Hartong, Jelle; Huebscher, Mechthild; OrtIn, Tomas
2009-01-01
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 ≤ p ≤ D, which realize an off-shell algebra of bosonic gauge transformations. We show how these tensor hierarchies can be put on-shell by introducing a set of duality relations, thereby introducing additional scalars and a metric tensor. These so-called duality hierarchies encode the equations of motion of the bosonic part of the most general gauged supergravity theories in those dimensions, including the (projected) scalar equations of motion. We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of the same fields in the tensor hierarchy.
An introduction to tensor calculus, relativity and cosmology /3rd edition/
Lawden, D. F.
This textbook introduction to the principles of special relativity proceeds within the context of cartesian tensors. Newton's laws of motion are reviewed, as are the Lorentz transformations, Minkowski space-time, and the Fitzgerald contraction. Orthogonal transformations are described, and invariants, gradients, tensor derivatives, contraction, scalar products, divergence, pseudotensors, vector products, and curl are defined. Special relativity mechanics are explored in terms of mass, momentum, the force vector, the Lorentz transformation equations for force, calculations for photons and neutrinos, the development of the Lagrange and Hamilton equations, and the energy-momentum tensor. Electrodynamics is investigated, together with general tensor calculus and Riemmanian space. The General Theory of Relativity is presented, along with applications to astrophysical phenomena such as black holes and gravitational waves. Finally, analytical discussions of cosmological problems are reviewed, particularly Einstein, de Sitter, and Friedmann universes, redshifts, event horizons, and the redshift.
The classification of the Ricci tensor in the general theory of relativity
International Nuclear Information System (INIS)
Cormack, W.J.
1979-10-01
A comprehensive classification of the Ricci tensor in General Relativity using several techniques is given and their connection with existing classification studied under the headings; canonical forms for the Ricci tensor, invariant 2-spaces in the classification of the Ricci tensor, Riemannian curvature and the classification of the Riemann and Ricci tensors, and spinor classifications of the Ricci tensor. (U.K.)
The tensor product in Wadler's analysis of lists
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1992-01-01
We consider abstract interpretation (in particular strictness analysis) for pairs and lists. We begin by reviewing the well-known fact that the best known description of a pair of elements is obtained using the tensor product rather than the cartesian product. We next present a generalisation...... of Wadler's strictness analysis for lists using the notion of open set. Finally, we illustrate the intimate connection between the case analysis implicit in Wadler's strictness analysis and the precision that the tensor product allows for modelling the inverse cons operation....
The tensor product in Wadler's analysis of lists
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1994-01-01
We consider abstract interpretation (in particular strictness analysis) for pairs and lists. We begin by reviewing the well-known fact that the best known description of a pair of elements is obtained using the tensor product rather than the cartesian product. We next present a generalisation...... of Wadler's strictness analysis for lists (1987) using the notion of open set. Finally, we illustrate the intimate connection between the case analysis implicit in Wadler's strictness analysis and the precision that the tensor product allows for modelling the inverse cons operation...
Entanglement and tensor product decomposition for two fermions
International Nuclear Information System (INIS)
Caban, P; Podlaski, K; Rembielinski, J; Smolinski, K A; Walczak, Z
2005-01-01
The problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators is discussed. The set of physical states of the composite system is restricted by the superselection rule forbidding the superposition of fermions and bosons. It is shown that the Wootters concurrence is not the proper entanglement measure in this case. The explicit formula for the entanglement of formation is found. This formula shows that the entanglement of a given state depends on the tensor product decomposition of a Hilbert space. It is shown that the set of separable states is narrower than in the two-qubit case. Moreover, there exist states which are separable with respect to all tensor product decompositions of the Hilbert space. (letter to the editor)
The metric theory of tensor products Grothendieck's resume revisited
Diestel, Joe; Swart, Johan; Swarte, Johannes Laurentius; Diestel, Joseph
2008-01-01
Grothendieck's Resumé is a landmark in functional analysis. Despite having appeared more than a half century ago, its techniques and results are still not widely known nor appreciated. This is due, no doubt, to the fact that Grothendieck included practically no proofs, and the presentation is based on the theory of the very abstract notion of tensor products. This book aims at providing the details of Grothendieck's constructions and laying bare how the important classes of operators are a consequence of the abstract operations on tensor norms. Particular attention is paid to how the classical
Tensor calculus, relativity, and cosmology a first course
Dalarsson, M
2005-01-01
This book combines relativity, astrophysics, and cosmology in a single volume, providing an introduction to each subject that enables students to understand more detailed treatises as well as the current literature. The section on general relativity gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes, Penrose processes, and similar topics), and considers the energy-momentum tensor for various solutions. The next section on relativistic astrophysics discusses
Ambiguities and symmetry relations associated with fermionic tensor densities
International Nuclear Information System (INIS)
Dallabona, G.; Battistel, O. A.
2004-01-01
We consider the consistent evaluation of perturbative (divergent) Green functions associated with fermionic tensor densities and the derivation of symmetry relations for them. We show that, in spite of current algebra methods being not applicable, it is possible to derive symmetry properties analogous to the Ward identities of vector and axial-vector densities. The proposed method, which is applicable to any previously chosen order of perturbative calculation, gives the same results as those of current algebra when such a tool is applicable. By using a very general calculational strategy, concerning the manipulations and calculations involving divergent Feynman integrals, we evaluate the purely fermionic two-point functions containing tensor vertices and derive their symmetry properties. The present investigation is the first step in the study and characterization of possible anomalies involving fermionic tensor densities, particularly in purely fermionic three-point functions
Energy momentum tensor and operator product expansion in local causal perturbation theory
International Nuclear Information System (INIS)
Prange, D.
2000-09-01
We derive new examples for algebraic relations of interacting fields in local perturbative quantum field theory. The fundamental building blocks in this approach are time ordered products of free (composed) fields. We give explicit formulas for the construction of Poincare covariant ones, which were already known to exist through cohomological arguments. For a large class of theories the canonical energy momentum tensor is shown to be conserved. Classical theories without dimensionful couplings admit an improved tensor that is additionally traceless. On the example of φ 4 -theory we discuss the improved tensor in the quantum theory. Its trace receives an anomalous contribution due to its conservation. Moreover, we define an interacting bilocal normal product for scalar theories. This leads to an operator product expansion of two time ordered fields. (orig.) [de
C7-Decompositions of the Tensor Product of Complete Graphs
Directory of Open Access Journals (Sweden)
Manikandan R.S.
2017-08-01
Full Text Available In this paper we consider a decomposition of Km × Kn, where × denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only if (1 either m or n is odd and (2 14 | m(m − 1n(n − 1. The results of this paper together with the results of [Cp-Decompositions of some regular graphs, Discrete Math. 306 (2006 429–451] and [C5-Decompositions of the tensor product of complete graphs, Australasian J. Combinatorics 37 (2007 285–293], give necessary and sufficient conditions for the existence of a p-cycle decomposition, where p ≥ 5 is a prime number, of the graph Km × Kn.
Tensor products and regularity properties of Cuntz semigroups
Antoine, Ramon; Thiel, Hannes
2018-01-01
The Cuntz semigroup of a C^*-algebra is an important invariant in the structure and classification theory of C^*-algebras. It captures more information than K-theory but is often more delicate to handle. The authors systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a C^*-algebra A, its (concrete) Cuntz semigroup \\mathrm{Cu}(A) is an object in the category \\mathrm{Cu} of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, the authors call the latter \\mathrm{Cu}-semigroups. The authors establish the existence of tensor products in the category \\mathrm{Cu} and study the basic properties of this construction. They show that \\mathrm{Cu} is a symmetric, monoidal category and relate \\mathrm{Cu}(A\\otimes B) with \\mathrm{Cu}(A)\\otimes_{\\mathrm{Cu}}\\mathrm{Cu}(B) for certain classes of C^*-algebras. As a main tool for their approach the authors introduce the category \\mathrm{W} of ...
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
International Nuclear Information System (INIS)
van Nieuwenhuizen, P.; Wu, C.C.
1977-01-01
The lowest order quantum corrections to pure gravitation are finite because there exists an integral relation between products of two Riemann tensors (the Gauss--Bonnet theorem). In this article several algebraic and integral relations are determined between products of three Riemann tensors in four- and six-dimensional spacetime. In both cases, one is left with only one invariant when R/sub μ//sub ν/=0, viz., ∫ (-g) 1 / 2 (R/sub b//sub β//sub μ//sub ν/R/sup μ//sup ν//sup rho//sup sigma/R/sub rho//sub sigma/ /sup α//sup β/).It is explicitly shown that this invariant does not vanish, even when R/sub μ//sub ν/=0. Consequently, the two-loop quantum corrections to pure gravitation will only be finite if, due to miraculous cancellation, the coefficient of this invariant vanishes
Coupling coefficients for tensor product representations of quantum SU(2)
International Nuclear Information System (INIS)
Groenevelt, Wolter
2014-01-01
We study tensor products of infinite dimensional irreducible * -representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometric orthogonal polynomials and q-Bessel-type functions
Coupling coefficients for tensor product representations of quantum SU(2)
Groenevelt, Wolter
2014-10-01
We study tensor products of infinite dimensional irreducible *-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometric orthogonal polynomials and q-Bessel-type functions.
Generalization of binary tensor product schemes depends upon four parameters
International Nuclear Information System (INIS)
Bashir, R.; Bari, M.; Mustafa, G.
2018-01-01
This article deals with general formulae of parametric and non parametric bivariate subdivision scheme with four parameters. By assigning specific values to those parameters we get some special cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with smoothness, sum rules, convergence and approximation order. We also calculate the polynomial generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme. Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed schemes has also been established. Some numerical examples are also presented to show the behavior of bivariate schemes. (author)
Frames and bases in tensor products of Hilbert spaces and Hilbert C ...
Indian Academy of Sciences (India)
In this article, we study tensor product of Hilbert *-modules and Hilbert spaces. We show that if is a Hilbert -module and is a Hilbert -module, then tensor product of frames (orthonormal bases) for and produce frames (orthonormal bases) for Hilbert A ⊗ B -module E ⊗ F , and we get more results. For Hilbert ...
The metric theory of tensor products (grthendieck's résumé revisited ...
African Journals Online (AJOL)
This paper presents the first of a multi-part series of papers on the metric theory of tensor products according to Grothendieck's “Résumé de la theorie metrique des produits tensoriels topologiques” It contains the basics on tensor norms: a discussion of the special character of the injective and the projective norms, ...
Tensor Transpose and Its Properties
Pan, Ran
2014-01-01
Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank.
Tensor products of Uq′sl-caret(2)-modules and the big q2-Jacobi function transform
International Nuclear Information System (INIS)
Gade, R. M.
2013-01-01
Four tensor products of evaluation modules of the quantum affine algebra U q ′ sl-caret(2) obtained from the negative and positive series, the complementary and the strange series representations are investigated. Linear operators R(z) satisfying the intertwining property on finite linear combinations of the canonical basis elements of the tensor products are described in terms of two sets of infinite sums {τ (r,t) } r,t∈Z ≥0 and {τ (r,t) } r,t∈Z ≥0 involving big q 2 -Jacobi functions or related nonterminating basic hypergeometric series. Inhomogeneous recurrence relations can be derived for both sets. Evaluations of the simplest sums provide the corresponding initial conditions. For the first set of sums the relations entail a big q 2 -Jacobi function transform pair. An integral decomposition is obtained for the sum τ (r,t) . A partial description of the relation between the decompositions of the tensor products with respect to U q sl(2) or with respect to its complement in U q ′ sl-caret(2) can be formulated in terms of Askey-Wilson function transforms. For a particular combination of two tensor products, the occurrence of proper U q ′ sl-caret(2)-submodules is discussed.
Tensor product of no-signaling boxes in the framework of quantum logics
International Nuclear Information System (INIS)
Tylec, T I; Kuś, M
2017-01-01
In the quantum logic framework we show that the no-signaling box model is a particular type of tensor product with single box logics. Such notion of a tensor product is too strong to apply in the category of logics of quantum mechanical systems. In the light of the obtained results, the statement that no-signaling box models are generalizations of quantum models is questionable. (letter)
International Nuclear Information System (INIS)
Huf, P A; Carminati, J
2015-01-01
In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment. (paper)
Tensor structure for Nori motives
Barbieri-Viale, Luca; Huber, Annette; Prest, Mike
2018-01-01
We construct a tensor product on Freyd's universal abelian category attached to an additive tensor category or a tensor quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives.
Relations among the crack growth modes resulting from tensor splitting
Czech Academy of Sciences Publication Activity Database
Kafka, Vratislav
2015-01-01
Roč. 60, č. 4 (2015), s. 319-335 ISSN 0001-7043 Institutional support: RVO:68378297 Keywords : fracture mechanics * combination of crack-growth modes * non-local effect * tensor splitting Subject RIV: JL - Materials Fatigue, Friction Mechanics http://journal.it.cas.cz/60(15)4-Contents/60(15)4a.pdf
Collineations of the curvature tensor in general relativity
Indian Academy of Sciences (India)
Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.
Relative-observer definition of the Simon tensor
Bini, Donato; Geralico, Andrea
2018-05-01
The definition of the Simon tensor, originally given only in Kerr spacetime and associated with the static family of observers, is generalized to any spacetime and to any possible observer family. Such generalization is obtained by a standard ‘3 + 1’ splitting of the Bianchi identities, which are rewritten here as a ‘balance equation’ between various spatial fields, associated with the kinematical properties of the observer congruence and representing the spacetime curvature.
Energy Technology Data Exchange (ETDEWEB)
Orús, Román, E-mail: roman.orus@uni-mainz.de
2014-10-15
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.
Filtering overpopulated isoscalar tensor states with mass relations
International Nuclear Information System (INIS)
Burakovsky, Leonid; Page, Philip R.
2000-01-01
Schwinger-type mass formulas are used to analyze glueball-meson mixing for isoscalar tensor mesons. In one solution, the f J (2220) is the physical glueball, and in the other the glueball is distributed over various states, with f 2 (1810) having the largest glueball component. Neither the f 2 (1565) nor the f J (1710) are among the physical states without assuming significant coupling to decay channels. The decay f 2 (1525)→ππ is consistent with experiment, and f J (2220) is neither narrow nor decays flavor democratically. (c) 2000 The American Physical Society
Unifying neural-network quantum states and correlator product states via tensor networks
Clark, Stephen R.
2018-04-01
Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.
Examining the consistency relations describing the three-point functions involving tensors
International Nuclear Information System (INIS)
Sreenath, V.; Sriramkumar, L.
2014-01-01
It is well known that the non-Gaussianity parameter f NL characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C NL R and C NL γ that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h NL used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary models that permit deviations from
Entanglement beyond tensor product structure: algebraic aspects of quantum non-separability
International Nuclear Information System (INIS)
Derkacz, Łukasz; Gwóźdź, Marek; Jakóbczyk, Lech
2012-01-01
An algebraic approach to quantum non-separability is applied to the case of two qubits. It is based on the partition of the algebra of observables into independent subalgebras and the tensor product structure of the Hilbert space is not exploited. Even in this simple case, such a general formulation has some advantages. Using algebraic formalism, we can explicitly show the relativity of the notion of entanglement to the observables measured in the system and characterize separable and non-separable pure states. As a universal measure of non-separability of pure states, we propose to take the so-called total correlation. This quantity depends on the state as well as on the algebraic partition. Its numerical value is given by the norm of the corresponding correlation matrix. (paper)
Jonge, de R.; Zanten, van J.H.
2012-01-01
We investigate posterior contraction rates for priors on multivariate functions that are constructed using tensor-product B-spline expansions. We prove that using a hierarchical prior with an appropriate prior distribution on the partition size and Gaussian prior weights on the B-spline
Analysis and control of Boolean networks a semi-tensor product approach
Cheng, Daizhan; Li, Zhiqiang
2010-01-01
This book presents a new approach to the investigation of Boolean control networks, using the semi-tensor product (STP), which can express a logical function as a conventional discrete-time linear system. This makes it possible to analyze basic control problems.
Frames and bases in tensor products of Hilbert spaces and Hilbert C ...
Indian Academy of Sciences (India)
[14] Heil C E and Walnut D F, Continuous and discrete wavelet transforms, SIAM Review 31. (1989) 628–666. [15] Khosravi A and Asgari M S, Frames and bases in tensor product of Hilbert spaces, Int. J. Math. 4(6) (2003) 527–538. [16] Lance E C, Hilbert C. ∗. -modules – a toolkit for operator algebraists, London Math. Soc.
Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.
Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F
2006-04-03
The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
International Nuclear Information System (INIS)
Serna, A; Alimi, J-M; Navarro, A
2002-01-01
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function α (in the Einstein frame). We show that, in general, the evolution of the scalar field (φ) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, α 0 , strongly differ from some theories to others. For example, in theories defined by α ∝ |φ| analytical estimates lead to very stringent nucleosynthesis bounds on α 0 (∼ -19 ). By contrast, in scalar-tensor theories defined by α ∝ φ much larger limits on α 0 (∼ -7 ) are found
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Serna, A [Dept. Fisica y Computacion, Universidad Miguel Hernandez, E03202-Elche (Spain); Alimi, J-M [LAEC, CNRS-UMR 8631, Observatoire de Paris-Meudon, F92195-Meudon (France); Navarro, A [Dept. Fisica, Universidad de Murcia, E30071-Murcia (Spain)
2002-03-07
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function {alpha} (in the Einstein frame). We show that, in general, the evolution of the scalar field ({phi}) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, {alpha}{sub 0}, strongly differ from some theories to others. For example, in theories defined by {alpha} {proportional_to} |{phi}| analytical estimates lead to very stringent nucleosynthesis bounds on {alpha}{sub 0}({approx}<10{sup -19}). By contrast, in scalar-tensor theories defined by {alpha} {proportional_to} {phi} much larger limits on {alpha}{sub 0}({approx}<10{sup -7}) are found.
Irreducible integrable theories form tensor products of conformal models
International Nuclear Information System (INIS)
Mathur, S.D.; Warner, N.P.
1991-01-01
By using Toda field theories we show that there are perturbations of direct products of conformal theories that lead to irreducible integrable field theories. The same affine Toda theory can be truncated to different quantum integrable models for different choices of the charge at infinity and the coupling. The classification of integrable models that can be obtained in this fashion follows the classification of symmetric spaces of type G/H with rank H = rank G. (orig.)
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
A remark on the unitary group of a tensor product of n finite ...
Indian Academy of Sciences (India)
By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product H = H 1 ⊗ H 2 ⊗ … ⊗ H n can be expressed as a composition of a finite number of unitary operators living on ...
Ludyk, Günter
2013-01-01
This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
Collineations of the curvature tensor in general relativity
Indian Academy of Sciences (India)
The general theory of relativity, which is a field theory of gravitation, is described by the Einstein field equations. These equations whose fundamental constituent is the space-time metric gij, are highly non-linear partial differential equations and, therefore it is very difficult to obtain exact solutions. They become still more diffi-.
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2014-01-01
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569
Energy Technology Data Exchange (ETDEWEB)
Ludyk, Guenter [Bremen Univ. (Germany). Physics and Electrical Engineering
2013-11-01
Derives the fundamental equations of Einstein's theory of special and general relativity using matrix calculus, without the help of tensors. Provides necessary mathematical tools in a user-friendly way, either directly in the text or in the appendices. Appendices contain an introduction to classical dynamics as a refresher of known fundamental physics. Rehearses vector and matrix calculus, differential geometry, and some special solutions of general relativity in the appendices. This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the ''Black Hole'' phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
International Nuclear Information System (INIS)
Ludyk, Guenter
2013-01-01
Derives the fundamental equations of Einstein's theory of special and general relativity using matrix calculus, without the help of tensors. Provides necessary mathematical tools in a user-friendly way, either directly in the text or in the appendices. Appendices contain an introduction to classical dynamics as a refresher of known fundamental physics. Rehearses vector and matrix calculus, differential geometry, and some special solutions of general relativity in the appendices. This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the ''Black Hole'' phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
Time integration of tensor trains
Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart
2014-01-01
A robust and efficient time integrator for dynamical tensor approximation in the tensor train or matrix product state format is presented. The method is based on splitting the projector onto the tangent space of the tensor manifold. The algorithm can be used for updating time-dependent tensors in the given data-sparse tensor train / matrix product state format and for computing an approximate solution to high-dimensional tensor differential equations within this data-sparse format. The formul...
Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike
2016-06-28
In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms.
Vector and tensor meson production in quasi-two-body final states using the dual fermion model
International Nuclear Information System (INIS)
Becker, L.; Matthaeus, E.; Weigt, G.
1976-01-01
Phenomenological dual fermion amplitudes are obtained by using Neveu-Schwarz-Ramond model as a guide to incorporate half-integer spin. The model relates the production mechanism of different resonances lying on the same degenerate Regge trajectory, thus allowing a simultaneous description of vector and tensor meson production. A characteristic feature of the amplitudes is their non-evasive coupling structure. Predictions of the model for rho 0 -f-g 0 , ω-A 2 - and anti K*(890)-anti K*(1420) production in quasi-two-body reactions are compared with experimental data. The differential cross sections for natural and unnatural spin-parity t-channel exchanges as well as their contributions to different helicities of the produced resonances are given. In particular, new properties arise from the non-evasive pion exchange. Reasonable agreement with the data is found. (Auth.)
Vector and tensor meson production in quasi-two-body final states using the dual fermion model
International Nuclear Information System (INIS)
Becker, L.; Matthaeus, E.; Weigt, G.
1975-01-01
Phenomenological dual fermion amplitudes are obtained by using the Neveu-Schwarz-Ramond model as a guide to incorporate half-integer spin. The model relates the production mechanism of different resonances lying on the same degenerated Regge trajectory, thus allowing a simultaneous description of vector and tensor meson production. A characteristic feature of the amplitudes is their non-evasive coupling structure. Predictions of the model for rho 0 - f - g 0 , ω - A 2 - and anti K-890 and anti K-1420 resonances production in quasi-two-body reactions are compared with experimental data. The differential cross sections for natural and unnatural spin-parity t-channel exchanges as well as their contributions to different helicities of the produced resonances are given. In particular, new properties arise from the non-evasive pion exchange. Reasonable agreement with the data is found. (author)
Parametrizations in scalar-tensor theories of gravity and the limit of general relativity
International Nuclear Information System (INIS)
Järv, L; Kuusk, P; Saal, M; Vilson, O
2014-01-01
We consider a general scalar-tensor theory of gravity and review briefly different forms it can be presented (different conformal frames and scalar field parametrizations). We investigate the conditions under which its field equations and the parametrized post-Newtonian parameters coincide with those of general relativity. We demonstrate that these so-called limits of general relativity are independent of the parametrization of the scalar field, although the transformation between scalar fields may be singular at the corresponding value of the scalar field. In particular, the limit of general relativity can equivalently be determined and investigated in the commonly used Jordan and Einstein frames.
Grid-search Moment Tensor Estimation: Implementation and CTBT-related Application
Stachnik, J. C.; Baker, B. I.; Rozhkov, M.; Friberg, P. A.; Leifer, J. M.
2017-12-01
This abstract presents a review work related to moment tensor estimation for Expert Technical Analysis at the Comprehensive Test Ban Treaty Organization. In this context of event characterization, estimation of key source parameters provide important insights into the nature of failure in the earth. For example, if the recovered source parameters are indicative of a shallow source with large isotropic component then one conclusion is that it is a human-triggered explosive event. However, an important follow-up question in this application is - does an alternative hypothesis like a deeper source with a large double couple component explain the data approximately as well as the best solution? Here we address the issue of both finding a most likely source and assessing its uncertainty. Using the uniform moment tensor discretization of Tape and Tape (2015) we exhaustively interrogate and tabulate the source eigenvalue distribution (i.e., the source characterization), tensor orientation, magnitude, and source depth. The benefit of the grid-search is that we can quantitatively assess the extent to which model parameters are resolved. This provides a valuable opportunity during the assessment phase to focus interpretation on source parameters that are well-resolved. Another benefit of the grid-search is that it proves to be a flexible framework where different pieces of information can be easily incorporated. To this end, this work is particularly interested in fitting teleseismic body waves and regional surface waves as well as incorporating teleseismic first motions when available. Being that the moment tensor search methodology is well-established we primarily focus on the implementation and application. We present a highly scalable strategy for systematically inspecting the entire model parameter space. We then focus on application to regional and teleseismic data recorded during a handful of natural and anthropogenic events, report on the grid-search optimum, and
Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem
Directory of Open Access Journals (Sweden)
Xuqing Zhang
2013-01-01
Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.
Directory of Open Access Journals (Sweden)
Guoliang Zhao
2013-01-01
Full Text Available This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed \\emph{TensorLy}, a high-level API for tensor methods and deep tensorized neural networks in Python. TensorLy aims to follow the same standards adopted by the main projects of the Python scie...
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
Pazner, Will; Persson, Per-Olof
2018-02-01
In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.
The Computation of Nash Equilibrium in Fashion Games via Semi-Tensor Product Method
Institute of Scientific and Technical Information of China (English)
GUO Peilian; WANG Yuzhen
2016-01-01
Using the semi-tensor product of matrices,this paper investigates the computation of pure-strategy Nash equilibrium (PNE) for fashion games,and presents several new results.First,a formal fashion game model on a social network is given.Second,the utility function of each player is converted into an algebraic form via the semi-tensor product of matrices,based on which the case of two-strategy fashion game is studied and two methods are obtained for the case to verify the existence of PNE.Third,the multi-strategy fashion game model is investigated and an algorithm is established to find all the PNEs for the general case.Finally,two kinds of optimization problems,that is,the so-called social welfare and normalized satisfaction degree optimization problems are investigated and two useful results are given.The study of several illustrative examples shows that the new results obtained in this paper are effective.
Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu
2014-01-01
Purpose To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). Materials and Methods The lower leg of five young and five senior subjects was scanned at 3T and DTI indices extracted using three methods: ROI, histogram and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. Results The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (p<0.05), while the small increase in fractional anisotropy (FA) with age was not significant (MG/LG: p=0.39/0.85; 95% CI:[ −0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (p<0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Conclusion Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. PMID:24771672
Tensor Permutation Matrices in Finite Dimensions
Christian, Rakotonirina
2005-01-01
We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...
International Nuclear Information System (INIS)
Kei Ito.
1988-07-01
The vacuum amplitude of heterotic string compactified on a tensor product of nine copies of c=1, N=2 superconformal models is shown to vanish due to a generalized Riemann's theta identity associated with the 12x12 matrix identity t BB=6 2 I 12 , identity B ij =-5(i=j), 1(i≠j). (author). 4 refs
Tensor spherical harmonics and tensor multipoles. II. Minkowski space
International Nuclear Information System (INIS)
Daumens, M.; Minnaert, P.
1976-01-01
The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation
Kolecki, Joseph C.
2005-01-01
Tensor analysis is one of the more abstruse, even if one of the more useful, higher math subjects enjoined by students of physics and engineering. It is abstruse because of the intellectual gap that exists between where most physics and engineering mathematics leave off and where tensor analysis traditionally begins. It is useful because of its great generality, computational power, and compact, easy to use, notation. This paper bridges the intellectual gap. It is divided into three parts: algebra, calculus, and relativity. Algebra: In tensor analysis, coordinate independent quantities are sought for applications in physics and engineering. Coordinate independence means that the quantities have such coordinate transformations as to leave them invariant relative to a particular observer s coordinate system. Calculus: Non-zero base vector derivatives contribute terms to dynamical equations that correspond to pseudoaccelerations in accelerated coordinate systems and to curvature or gravity in relativity. These derivatives have a specific general form in tensor analysis. Relativity: Spacetime has an intrinsic geometry. Light is the tool for investigating that geometry. Since the observed geometry of spacetime cannot be made to match the classical geometry of Euclid, Einstein applied another more general geometry differential geometry. The merger of differential geometry and cosmology was accomplished in the theory of relativity. In relativity, gravity is equivalent to curvature.
A recursive reduction of tensor Feynman integrals
International Nuclear Information System (INIS)
Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.
2009-07-01
We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)
Tensor gauge condition and tensor field decomposition
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
Bennett, Ilana J; Stark, Craig E L
2016-03-01
Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network. Copyright © 2015 Elsevier Inc. All rights reserved.
C1 finite elements on non-tensor-product 2d and 3d manifolds
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2015-01-01
Geometrically continuous (Gk) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3) convergence in the L∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis. PMID:26594070
Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system
International Nuclear Information System (INIS)
Stadlbauer, Andreas; Salomonowitz, Erich; Strunk, Guido; Hammen, Thilo; Ganslandt, Oliver
2008-01-01
Cerebral white matter is known to undergo degradation with aging, and diffusion tensor imaging (DTI) is capable of revealing the white matter integrity. We assessed age-related changes of quantitative diffusivity parameters and fiber characteristics within the fornix and the cingulum. Thirty-eight healthy subjects aged 18-88 years were examined at 3 Tesla using a 1.9-mm isotropic DTI sequence. Quantitative fiber tracking was performed for 3D-segmentation of the fornix and the cingulum to determine fractional anisotropy (FA), mean diffusivity (MD), eigenvalues (λ 1 , λ 2 , and λ 3 ), number of fibers (NoF), and mean NoF/voxel (FpV). In the fornix, all diffusivity parameters (FA, MD, and eigenvalues) were moderately correlated with age. Strong and moderate negative correlations for NoF and FpV were found, respectively. In the cingulum, no correlation was observed between FA and age, and only weak correlations for the other quantitative parameters. Differences in correlations between the fornix and the cingulum were significant for all diffusivity parameters and for NoF, but not for FpV. The strongest relative changes per decade of age were found in the fornix: FA -2.1%, MD 4.2%, NoF -10.6%, and FpV -4.6%. Our quantitative 3D fiber tracking approach shows that the cingulum is resistant to aging while the fornix is not. (orig.)
A Review of Tensors and Tensor Signal Processing
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Expansion Formulation of General Relativity: the Gauge Functions for Energy-Momentum Tensor
Beloushko, Konstantin; Karbanovski, Valeri
At present the one of the GR (General Relativity) basic problem remains a definition of the gravitation field (GF) energy. We shall analyze this content. As well known, the energy-momentum ``tensor'' (EMT) of GF was introduced by Einstein [1] with purpose of the SRT (Special Relativity Theory) generalization. It supposed also, that EMT of matter satisfy to the condition begin{equation} ⪉bel{GrindEQ__1_1_} T^{ik} _{;i} =0 (a semicolon denotes a covariant differentiation with respect to coordinates). In absence of GF the equation (ref{GrindEQ__1_1_}) reduces to a corresponding SRT expression begin{equation} ⪉bel{GrindEQ__1_2_} T^{ik} _{,i} =0 (a comma denotes a differentiation with respect to coordinates of space-time). Obviously, the ``conservation law'' (ref{GrindEQ__1_2_}) is not broken by transformation begin{equation} ⪉bel{GrindEQ__1_3_} T^{ik} to tilde{T}^{ik} =T^{ik} +h^{ikl} _{,l} , where for h(ikl) takes place a constrain begin{equation} ⪉bel{GrindEQ__1_4_} h^{ikl} =-h^{ilk} Later the given property has been used for a construction ``pseudo-tensor'' tau (ik) of ``pure'' GF [2, S 96] begin{equation} ⪉bel{GrindEQ__1_5_} -gleft(frac{c^{4} }{8pi G} left(R^{ik} -frac{1}{2} g^{ik} Rright)+tau ^{ik} right)=h^{ikl} _{,l} However such definition was a consequence of non-covariant transition from a reference system with condition g(ik) _{,l} =0 to an arbitrary frame. Therefore the Landau-Lifshitz pseudo-tensor has no physical contents and considered problem remains actual. ``The non-covariant character'' of GF energy was the reason for criticism of GR as Einstein's contemporaries [3, 4], as and during the subsequent period (see, for example, [5]). In [6] were analyzed the grounds of given problem, which are connected with a formulation indefiniteness of ``the conservation law'' in curved space-time. In [7] contends, that the gravitational energy in EMT can be separated only ``artificially'' by a choice of the certain coordinate system. In [8] is concluded
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2018-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new vertices
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2016-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new
Calculus of tensors and differential forms
Sinha, Rajnikant
2014-01-01
Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.
On the properties of an extended class of metric tensors in relativity
International Nuclear Information System (INIS)
Oliveira, C.G.
1984-01-01
Considering an extended 'metric' tensor which is a function of an internalvector y sup(a) (x), it is possible to determine a spin 1 massless field of gravitational origin. It is shown that this new field vanishes in the linear aproximation for the extended 'metric'. (Author) [pt
CSIR Research Space (South Africa)
Linzer, LM
2005-04-01
Full Text Available The primary objective of this study was to develop a robust MTI method to estimate the moment tensors of clusters of seismic events recorded in the underground environment. To achieve this, three 'hybrid' MTI methods were developed by the author...
Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord
Energy Technology Data Exchange (ETDEWEB)
Wang, Kun, E-mail: medsciwangkun@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Chen, Shiyue [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Hao, Qiang, E-mail: haoqiang@189.cn [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Shen, Hongxing, E-mail: shenhxgk@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China)
2014-12-15
Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis.
Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord
International Nuclear Information System (INIS)
Wang, Kun; Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing; Chen, Shiyue; Hao, Qiang; Shen, Hongxing
2014-01-01
Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis
Dechevsky, Lubomir T.; Bang, Børre; Laksa˚, Arne; Zanaty, Peter
2011-12-01
At the Seventh International Conference on Mathematical Methods for Curves and Surfaces, To/nsberg, Norway, in 2008, several new constructions for Hermite interpolation on scattered point sets in domains in Rn,n∈N, combined with smooth convex partition of unity for several general types of partitions of these domains were proposed in [1]. All of these constructions were based on a new type of B-splines, proposed by some of the authors several years earlier: expo-rational B-splines (ERBS) [3]. In the present communication we shall provide more details about one of these constructions: the one for the most general class of domain partitions considered. This construction is based on the use of two separate families of basis functions: one which has all the necessary Hermite interpolation properties, and another which has the necessary properties of a smooth convex partition of unity. The constructions of both of these two bases are well-known; the new part of the construction is the combined use of these bases for the derivation of a new basis which enjoys having all above-said interpolation and unity partition properties simultaneously. In [1] the emphasis was put on the use of radial basis functions in the definitions of the two initial bases in the construction; now we shall put the main emphasis on the case when these bases consist of tensor-product B-splines. This selection provides two useful advantages: (A) it is easier to compute higher-order derivatives while working in Cartesian coordinates; (B) it becomes clear that this construction becomes a far-going extension of tensor-product constructions. We shall provide 3-dimensional visualization of the resulting bivariate bases, using tensor-product ERBS. In the main tensor-product variant, we shall consider also replacement of ERBS with simpler generalized ERBS (GERBS) [2], namely, their simplified polynomial modifications: the Euler Beta-function B-splines (BFBS). One advantage of using BFBS instead of ERBS
Directory of Open Access Journals (Sweden)
Qing-Bo Cai
2017-11-01
Full Text Available Abstract In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of ( p , q $(p, q$ -integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.
The Boolean Algebra of Cubical Areas as a Tensor Product in the Category of Semilattices with Zero
Directory of Open Access Journals (Sweden)
Nicolas Ninin
2014-10-01
Full Text Available In this paper we describe a model of concurrency together with an algebraic structure reflecting the parallel composition. For the sake of simplicity we restrict to linear concurrent programs i.e. the ones with no loops nor branching. Such programs are given a semantics using cubical areas. Such a semantics is said to be geometric. The collection of all these cubical areas enjoys a structure of tensor product in the category of semi-lattice with zero. These results naturally extend to fully fledged concurrent programs up to some technical tricks.
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)
Can we see scalar, pseudoscalar or tensor interactions in coherent pion production?
International Nuclear Information System (INIS)
Rein, D.
1988-01-01
The possibility to detect nonconventional scalar, pseudoscalar or tensor interactions (SPT) in the angular distribution of pions produced coherently in neutrino nucleus reactions is reexamined. It is found that the angular distribution does not differ qualitatively from a corresponding distribution arising from conventional vector-axial vector (VA) interactions unless the energy of the outgoing pion is restricted. Even then SPT interactions are likely to be overshadowed by transverse VA interactions which can mimic the former at finite although small momentum transfer Q 2 . (author)
Diffusion tensor image registration using hybrid connectivity and tensor features.
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-07-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.
Tensors and their applications
Islam, Nazrul
2006-01-01
About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces
Roeloffs, E. A.
2016-12-01
A Gladwin Tensor Strainmeter (GTSM) is designed to measure changes of the horizontal strain tensor, derived as linear combinations of radial elongations or contractions of the strainmeter's cylindrical housing measured at four azimuths. Each radial measurement responds to changes in the areal, horizontal shear and vertical components of the strain tensor in the surrounding formation. The elastic response coefficients to these components depend on the relative elastic moduli of the housing, formation, and cement. These coefficients must be inferred for each strainmeter after it is cemented into its borehole by analyzing the instrument response to well-characterized strain signals such as earth tides. For some GTSMs of the Earthscope Plate Boundary Observatory (PBO), however, reconciling observed earth-tide signals with modeled tidal strains requires response coefficients that differ substantially between the instrument's four gauges, and/or orientation corrections of tens of degrees. GTSM response coefficients can also be estimated from high-resolution records of teleseismic Love waves from great earthquakes around the world. Such records can be used in conjunction with apparent propagation azimuths from nearby broadband seismic stations to determine the GTSM's orientation. Knowing the orientation allows the ratios between the shear strain response coefficients of a GTSM's four gauges to be estimated. Applying this analysis to 14 PBO GTSMs confirms that orientations of some instruments differ significantly from orientations measured during installation. Orientations inferred from earth-tide response tend to agree with those inferred from Love waves for GTSMs far from tidal water bodies, but to differ for GTSMs closer to coastlines. Orientations derived from teleseismic Love waves agree with those estimated by Grant and Langston (2010) using strains from a broadband seismic array near Anza, California. PBO GTSM recordings of teleseismic Love waves show differences of
Miao, Xijiang; Mukhopadhyay, Rishi; Valafar, Homayoun
2008-10-01
Advances in NMR instrumentation and pulse sequence design have resulted in easier acquisition of Residual Dipolar Coupling (RDC) data. However, computational and theoretical analysis of this type of data has continued to challenge the international community of investigators because of their complexity and rich information content. Contemporary use of RDC data has required a-priori assignment, which significantly increases the overall cost of structural analysis. This article introduces a novel algorithm that utilizes unassigned RDC data acquired from multiple alignment media ( nD-RDC, n ⩾ 3) for simultaneous extraction of the relative order tensor matrices and reconstruction of the interacting vectors in space. Estimation of the relative order tensors and reconstruction of the interacting vectors can be invaluable in a number of endeavors. An example application has been presented where the reconstructed vectors have been used to quantify the fitness of a template protein structure to the unknown protein structure. This work has other important direct applications such as verification of the novelty of an unknown protein and validation of the accuracy of an available protein structure model in drug design. More importantly, the presented work has the potential to bridge the gap between experimental and computational methods of structure determination.
Introduction to vector and tensor analysis
Wrede, Robert C
1972-01-01
A broad introductory treatment, this volume examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, fundamental notions in n-space, Riemannian geometry, algebraic properties of the curvature tensor, and more. 1963 edition.
Gurau, Razvan
2017-01-01
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....
Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu
2015-04-01
To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). The lower leg of five young and five senior subjects was scanned at 3 Tesla and DTI indices extracted using three methods: region of interest, histogram, and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary, and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (P < 0.05), while the small increase in fractional anisotropy with age was not significant (MG/LG: P = 0.39/0.85; 95% confidence interval: [-0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (P < 0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. © 2014 Wiley Periodicals, Inc.
von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin
2016-04-01
Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
Akkerman, Erik M.
2010-01-01
Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Tensor norms and operator ideals
Defant, A; Floret, K
1992-01-01
The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer
Energy Technology Data Exchange (ETDEWEB)
Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)
2017-03-13
The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.
Zhu, Mengchen; Salcudean, Septimiu E
2011-07-01
In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.
Directory of Open Access Journals (Sweden)
Rishu Rathee
2016-01-01
Full Text Available The aim is to investigate the relationship between microstructural white matter (WM diffusivity indices and macrostructural WM volume (WMV among healthy individuals (20–85 years. Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA. Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group ( P < 0.05. We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices.
Jurd, Andrew P S; Titman, Jeremy J
2009-08-28
Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.
The Physical Interpretation of the Lanczos Tensor
Roberts, Mark D.
1999-01-01
The field equations of general relativity can be written as first order differential equations in the Weyl tensor, the Weyl tensor in turn can be written as a first order differential equation in a three index tensor called the Lanczos tensor. The Lanczos tensor plays a similar role in general relativity to that of the vector potential in electro-magnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electro-magnetic theory the vector potential is dynamicall...
International Nuclear Information System (INIS)
Alsing, Paul M; McDonald, Jonathan R; Miller, Warner A
2011-01-01
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area-an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.
Alsing, Paul M.; McDonald, Jonathan R.; Miller, Warner A.
2011-08-01
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincarè conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area—an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.
Random SU(2) invariant tensors
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
2017-01-01
In the current era of big data, the amount of data available is continuously increasing. Both the number and types of samples, or features, are on the rise. The mixing of distinct features often makes interpretation more difficult. However, separate analysis of individual types requires subsequent integration. A tensor is a useful framework to deal with distinct types of features in an integrated manner without mixing them. On the other hand, tensor data is not easy to obtain since it requires the measurements of huge numbers of combinations of distinct features; if there are m kinds of features, each of which has N dimensions, the number of measurements needed are as many as Nm, which is often too large to measure. In this paper, I propose a new method where a tensor is generated from individual features without combinatorial measurements, and the generated tensor was decomposed back to matrices, by which unsupervised feature extraction was performed. In order to demonstrate the usefulness of the proposed strategy, it was applied to synthetic data, as well as three omics datasets. It outperformed other matrix-based methodologies. PMID:28841719
A RENORMALIZATION PROCEDURE FOR TENSOR MODELS AND SCALAR-TENSOR THEORIES OF GRAVITY
SASAKURA, NAOKI
2010-01-01
Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian config...
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
International Nuclear Information System (INIS)
Qin Hong; Phillips, Cynthia K.; Davidson, Ronald C.
2007-01-01
The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of infinite sums of products of Bessel functions. For applications where the particle's gyroradius is larger than the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves, and the focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly. In this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a symmetry in the particle's orbit to simplify the integration along the unperturbed trajectories. As a consequence, the infinite sums appearing in the conventional expression are replaced by definite double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel functions of complex order, in agreement with expressions deduced previously using the Newburger sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the full hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution in the large gyroradius limit. These results are of more general importance in the numerical evaluation of the plasma susceptibility tensor. Instead of using the infinite sums occurring in the conventional expression, it is only necessary to evaluate the Bessel functions once according to the new expression, which has significant advantages, especially when the particle's gyroradius is large and the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the computational saving enabled by this representation can be several orders-of-magnitude
Shape anisotropy: tensor distance to anisotropy measure
Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.
2011-03-01
Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.
Hess, Siegfried
2015-01-01
This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...
(Ln-bar, g)-spaces. Special tensor fields
International Nuclear Information System (INIS)
Manoff, S.; Dimitrov, B.
1998-01-01
The Kronecker tensor field, the contraction tensor field, as well as the multi-Kronecker and multi-contraction tensor fields are determined and the action of the covariant differential operator, the Lie differential operator, the curvature operator, and the deviation operator on these tensor fields is established. The commutation relations between the operators Sym and Asym and the covariant and Lie differential operators are considered acting on symmetric and antisymmetric tensor fields over (L n bar, g)-spaces
Schrimpf, Martin
2016-01-01
Google's Machine Learning framework TensorFlow was open-sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively. This work is aimed towards people with experience in Machine Learning considering whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity,...
Efficient Low Rank Tensor Ring Completion
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2017-01-01
Using the matrix product state (MPS) representation of the recently proposed tensor ring decompositions, in this paper we propose a tensor completion algorithm, which is an alternating minimization algorithm that alternates over the factors in the MPS representation. This development is motivated in part by the success of matrix completion algorithms that alternate over the (low-rank) factors. In this paper, we propose a spectral initialization for the tensor ring completion algorithm and ana...
Geometric decomposition of the conformation tensor in viscoelastic turbulence
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
International Nuclear Information System (INIS)
Kibler, M.; Grenet, G.
1979-07-01
The SU 2 unit tensor operators tsub(k,α) are studied. In the case where the spinor point group G* coincides with U 1 , then tsub(k α) reduces up to a constant to the Wigner-Racah-Schwinger tensor operator tsub(kqα), an operator which produces an angular momentum state. One first investigates those general properties of tsub(kα) which are independent of their realization. The tsub(kα) in terms of two pairs of boson creation and annihilation operators are realized. This leads to look at the Schwinger calculus relative to one angular momentum of two coupled angular momenta. As a by-product, a procedure is given for producing recursion relationships between SU 2 Wigner coefficients. Finally, some of the properties of the Wigner and Racah operators for an arbitrary compact group and the SU 2 coupling coefficients are studied
Properties of the stress tensor in more than two dimensions
International Nuclear Information System (INIS)
Cappelli, A.
1988-03-01
Some aspects of conformal invariance in more than two dimensions are analysed. In this case conformal (Weyl) transformations of the metric are not realized in general by coordinate transformations. The operator product expansion of the stress tensor is investigated by means of examples in the free bosonic and fermionic theories. The effective action for the general form of the trace anomaly is built in four dimensions and the Wess-Zumino consistency conditions are discussed. This gives the anomalous transformation law of the stress tensor and the relation to the Casimir effect in the geometry R x S 3 . The explicit computation of the bosonic partition function provides a check
Rodríguez-Vázquez, Jose Francisco; Honkura, Yohei; Katori, Yukio; Murakami, Gen; Abe, Hiroshi
2017-01-01
The existence of hard tissue pulleys that act to change the direction of a muscle insertion tendon is well known in the human body. These include (1) the trochlea for the extraocular obliquus superior muscle, (2) the pterygoid hamulus for the tensor veli palatini muscle, (3) the deep sulcus on the plantar aspect of the cuboid bone for the peroneus longus tendon, (4) the lesser sciatic notch for the obturator internus muscle, and (5) the bony trochleariformis process for the tensor tympani muscle tendon. In addition, (6) the stapedius muscle tendon shows a lesser or greater angulation at the pyramidal eminence of the temporal bone. Our recent studies have shown that the development of pulleys Nos. 1 and 2 can be explained by a change in the topographical relationship between the pulley and the tendon, that of pulley No. 3 by the rapidly growing calcaneus pushing the tendon, and that of pulley No. 4 by migration of the insertion along the sciatic nerve and gluteus medius tendon. Therefore, in Nos. 1-4, an initially direct tendon curves secondarily and obtains an attachment to the pulley. In case No. 6, the terminal part of the stapedius tendon originates secondarily from the interzone mesenchymal tissue of the incudostapedial joint. In the case of pulley No. 5, we newly demonstrated that its initial phase of development was similar to No. 6, but the tensor tympani tendon achieved a right-angled turn under guidance by a specific fibrous tissue and it migrated along the growing malleus manubrium. Copyright Â© 2016 Elsevier GmbH. All rights reserved.
International Nuclear Information System (INIS)
Ricard, J.
1979-01-01
In the relativity theory, the variation of a certain amount of energy supplied to a body, according to its speed, has been a matter of controversy. We study this variation either for a fluid that is submitted by a compression, or for a gas receiving heat from outward. It is shown that the problem is solved by a simple matter of definition of the energy received in the system of coordinate where the body is moving. Besides, we establish the impulse-energy tensor for a compressible fluid [fr
Tensor eigenvalues and their applications
Qi, Liqun; Chen, Yannan
2018-01-01
This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.
Energy Technology Data Exchange (ETDEWEB)
Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)
2016-07-01
Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.
Thaler, Avner; Artzi, Moran; Mirelman, Anat; Jacob, Yael; Helmich, Rick C; van Nuenen, Bart F L; Gurevich, Tanya; Orr-Urtreger, Avi; Marder, Karen; Bressman, Susan; Bloem, Bastiaan R; Hendler, Talma; Giladi, Nir; Ben Bashat, Dafna
2014-05-01
Patients with Parkinson's disease have reduced gray matter volume and fractional anisotropy in both cortical and sub-cortical structures, yet changes in the pre-motor phase of the disease are unknown. A comprehensive imaging study using voxel-based morphometry and diffusion tensor imaging tract-based spatial statistics analysis was performed on 64 Ashkenazi Jewish asymptomatic first degree relatives of patients with Parkinson's disease (30 mutation carriers), who carry the G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene. No between-group differences in gray matter volume could be noted in either whole-brain or volume-of-interest analysis. Diffusion tensor imaging analysis did not identify group differences in white matter areas, and volume-of-interest analysis identified no differences in diffusivity parameters in Parkinson's disease-related structures. G2019S carriers do not manifest changes in gray matter volume or diffusivity parameters in Parkinson's disease-related structures prior to the appearance of motor symptoms. © 2014 International Parkinson and Movement Disorder Society.
Sirlin, Samuel W.
1993-01-01
Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.
DEFF Research Database (Denmark)
Sidaros, A.; Engberg, A.W.; Sidaros, K.
2008-01-01
of longitudinal studies on TBI that follow DTI changes over time and correlate findings with long-term clinical outcome. We performed a prospective longitudinal study of 30 adult patients admitted for subacute rehabilitation following severe traumatic brain injury. DTI and conventional MRI were acquired at mean 8......Diffusion tensor imaging (DTI) has been proposed as a sensitive biomarker of traumatic white matter injury, which could potentially serve as a tool for prognostic assessment and for studying microstructural changes during recovery from traumatic brain injury (TBI). However, there is a lack...... weeks (5-11 weeks), and repeated in 23 of the patients at mean 12 months (9-15 months) post-trauma. Using a region-of-interest-based approach, DTI parameters were compared to those of healthy matched controls, scanned during the same time period and rescanned with a similar interval as that of patients...
International Nuclear Information System (INIS)
Beig, Robert; Krammer, Werner
2004-01-01
For a conformally flat 3-space, we derive a family of linear second-order partial differential operators which sends vectors into trace-free, symmetric 2-tensors. These maps, which are parametrized by conformal Killing vectors on the 3-space, are such that the divergence of the resulting tensor field depends only on the divergence of the original vector field. In particular, these maps send source-free electric fields into TT tensors. Moreover, if the original vector field is the Coulomb field on R 3 {0}, the resulting tensor fields on R 3 {0} are nothing but the family of TT tensors originally written by Bowen and York
Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.
Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N
2017-05-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.
3D reconstruction of tensors and vectors
International Nuclear Information System (INIS)
Defrise, Michel; Gullberg, Grant T.
2005-01-01
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields
Categorical Tensor Network States
Directory of Open Access Journals (Sweden)
Jacob D. Biamonte
2011-12-01
Full Text Available We examine the use of string diagrams and the mathematics of category theory in the description of quantum states by tensor networks. This approach lead to a unification of several ideas, as well as several results and methods that have not previously appeared in either side of the literature. Our approach enabled the development of a tensor network framework allowing a solution to the quantum decomposition problem which has several appealing features. Specifically, given an n-body quantum state |ψ〉, we present a new and general method to factor |ψ〉 into a tensor network of clearly defined building blocks. We use the solution to expose a previously unknown and large class of quantum states which we prove can be sampled efficiently and exactly. This general framework of categorical tensor network states, where a combination of generic and algebraically defined tensors appear, enhances the theory of tensor network states.
Cartesian tensors an introduction
Temple, G
2004-01-01
This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t
Meintjes, E M; Narr, K L; van der Kouwe, A J W; Molteno, C D; Pirnia, T; Gutman, B; Woods, R P; Thompson, P M; Jacobson, J L; Jacobson, S W
2014-01-01
Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD). Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM) methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6-11.0 years) and controls (n = 16, 9.5-11.0 years). Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1) the thalamus, midbrain, and ventromedial frontal lobe, (2) the superior cerebellum and inferior occipital lobe, (3) the dorsolateral frontal cortex, and (4) the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA) regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.
Directory of Open Access Journals (Sweden)
E.M. Meintjes
2014-01-01
Full Text Available Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD. Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6–11.0 years and controls (n = 16, 9.5–11.0 years. Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1 the thalamus, midbrain, and ventromedial frontal lobe, (2 the superior cerebellum and inferior occipital lobe, (3 the dorsolateral frontal cortex, and (4 the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.
Efficient MATLAB computations with sparse and factored tensors.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)
2006-12-01
In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.
Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI
Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.
2015-01-01
Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085
Performance Related Pay and Labor Productivity
Gielen, A. C.; Kerkhofs, M.J.M.; van Ours, J.C.
2006-01-01
This paper uses information from a panel of Dutch firms to investigate the labor productivity effects of performance related pay (PRP).We find that PRP increases labor productivity at the firm level with about 9%.
Performance Related Pay and Labour Productivity
Gielen, Anne; Kerkhofs, Marcel J M; van Ours, Jan C
2006-01-01
This paper uses information from a panel of Dutch firms to investigate the labour productivity effects of performance related pay (PRP). We find that PRP increases labour productivity at the firm level with about 9%.
Tensor harmonic analysis on homogenous space
International Nuclear Information System (INIS)
Wrobel, G.
1997-01-01
The Hilbert space of tensor functions on a homogenous space with the compact stability group is considered. The functions are decomposed onto a sum of tensor plane waves (defined in the text), components of which are transformed by irreducible representations of the appropriate transformation group. The orthogonality relation and the completeness relation for tensor plane waves are found. The decomposition constitutes a unitary transformation, which allows to obtain the Parseval equality. The Fourier components can be calculated by means of the Fourier transformation, the form of which is given explicitly. (author)
Local Tensor Radiation Conditions For Elastic Waves
DEFF Research Database (Denmark)
Krenk, S.; Kirkegaard, Poul Henning
2001-01-01
A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...
International Nuclear Information System (INIS)
Wit, B. de; Rocek, M.
1982-01-01
We construct a conformally invariant theory of the N = 1 supersymmetric tensor gauge multiplet and discuss the situation in N = 2. We show that our results give rise to the recently proposed variant of Poincare supergravity, and provide the complete tensor calculus for the theory. Finally, we argue that this theory cannot be quantized sensibly. (orig.)
Algebraic classification of the conformal tensor
International Nuclear Information System (INIS)
Ares de Parga, Gonzalo; Chavoya, O.; Lopez B, J.L.; Ovando Z, Gerardo
1989-01-01
Starting from the Petrov matrix method, we deduce a new algorithm (adaptable to computers), within the Newman-Penrose formalism, to obtain the algebraic type of the Weyl tensor in general relativity. (author)
Quantum mechanics of Yano tensors: Dirac equation in curved spacetime
International Nuclear Information System (INIS)
Cariglia, Marco
2004-01-01
In spacetimes admitting Yano tensors, the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank 2, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors
A density tensor hierarchy for open system dynamics: retrieving the noise
International Nuclear Information System (INIS)
Adler, Stephen L
2007-01-01
We develop a density tensor hierarchy for open system dynamics that recovers information about fluctuations (or 'noise') lost in passing to the reduced density matrix. For the case of fluctuations arising from a classical probability distribution, the hierarchy is formed from expectations of products of pure state density matrix elements and can be compactly summarized by a simple generating function. For the case of quantum fluctuations arising when a quantum system interacts with a quantum environment in an overall pure state, the corresponding hierarchy is defined as the environmental trace of products of system matrix elements of the full density matrix. Whereas all members of the classical noise hierarchy are system observables, only the lowest member of the quantum noise hierarchy is directly experimentally measurable. The unit trace and idempotence properties of the pure state density matrix imply descent relations for the tensor hierarchies, that relate the order n tensor, under contraction of appropriate pairs of tensor indices, to the order n - 1 tensor. As examples to illustrate the classical probability distribution formalism, we consider a spatially isotropic ensemble of spin-1/2 pure states, a quantum system evolving by an Ito stochastic Schroedinger equation and a quantum system evolving by a jump process Schroedinger equation. As examples to illustrate the corresponding trace formalism in the quantum fluctuation case, we consider the tensor hierarchies for collisional Brownian motion of an infinite mass Brownian particle and for the weak coupling Born-Markov master equation. In different specializations, the latter gives the hierarchies generalizing the quantum optical master equation and the Caldeira-Leggett master equation. As a further application of the density tensor, we contrast stochastic Schroedinger equations that reduce and that do not reduce the state vector, and discuss why a quantum system coupled to a quantum environment behaves like
Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Krtous, Pavel [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, David [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Page, Don N. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada); Frolov, Valeri P. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada)
2007-02-15
From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 {<=} j {<=} k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)
Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions
International Nuclear Information System (INIS)
Krtous, Pavel; Kubiznak, David; Page, Don N.; Frolov, Valeri P.
2007-01-01
From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 ≤ j ≤ k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)
Glyph-Based Comparative Visualization for Diffusion Tensor Fields.
Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna
2016-01-01
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.
Talking about Relations : Factors Influencing the Production of Relational Descriptions
Baltaretu, Adriana-Alexandra; Krahmer, Emiel; van Wijk, Carel; Maes, Alfons
2016-01-01
In a production experiment (Experiment 1) and an acceptability rating one (Experiment 2), we assessed two factors, spatial position and salience, which may influence the production of relational descriptions (such as “the ball between the man and the drawer”). In Experiment 1, speakers were asked to
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
Measuring Nematic Susceptibilities from the Elastoresistivity Tensor
Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian
The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.
International Nuclear Information System (INIS)
Huisman, Thierry A.G.M.; Loenneker, Thomas; Barta, Gerd; Bellemann, Matthias E.; Hennig, Juergen; Fischer, Joachim E.; Il'yasov, Kamil A.
2006-01-01
The objectives were to study the ''impact'' of the magnetic field strength on diffusion tensor imaging (DTI) metrics and also to determine whether magnetic-field-related differences in T2-relaxation times of brain tissue influence DTI measurements. DTI was performed on 12 healthy volunteers at 1.5 and 3.0 Tesla (within 2 h) using identical DTI scan parameters. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured at multiple gray and white matter locations. ADC and FA values were compared and analyzed for statistically significant differences. In addition, DTI measurements were performed at different echo times (TE) for both field strengths. ADC values for gray and white matter were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla (% change between -1.94% and -9.79%). FA values were statistically significantly higher at 3.0 Tesla compared with 1.5 Tesla (% change between +4.04 and 11.15%). ADC and FA values are not significantly different for TE=91 ms and TE=125 ms. Thus, ADC and FA values vary with the used field strength. Comparative clinical studies using ADC or FA values should consequently compare ADC or FA results with normative ADC or FA values that have been determined for the field strength used. (orig.)
Potentials for transverse trace-free tensors
International Nuclear Information System (INIS)
Conboye, Rory; Murchadha, Niall Ó
2014-01-01
In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space. (paper)
Tensor interaction in heavy-ion scattering. Pt. 1
International Nuclear Information System (INIS)
Nishioka, H.; Johnson, R.C.
1985-01-01
The Heidelberg shape-effect model for heavy-ion tensor interactions is reformulated and generalized using the Hooton-Johnson formulation. The generalized semiclassical model (the turning-point model) predicts that the components of the tensor analysing power anti Tsub(2q) have certain relations with each other for each type of tensor interaction (Tsub(R), Tsub(P) and Tsub(L) types). The predicted relations between the anti Tsub(2q) are very simple and have a direct connection with the properties of the tensor interaction at the turning point. The model predictions are satisfied in quantum-mechanical calculations for 7 Li and 23 Na elastic scattering from 58 Ni in the Fresnel-diffraction energy region. As a consequence of this model, it becomes possible to single out effects from a Tsub(P)- or Tsub(L)-type tensor interaction in polarized heavy-ion scattering. The presence of a Tsub(P)-type tensor interaction is suggested by measured anti T 20 /anti T 22 ratios for 7 Li + 58 Ni scattering. In the turning-point model the three types of tensor operator are not independent, and this is found to be true also in a quantum-mechanical calculation. The model also predicts relations between the components of higher-rank tensor analysing power in the presence of a higher-rank tensor interaction. The rank-3 tensor case is discussed in detail. (orig.)
Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings.
Iwasaki, Tohru; Furukawa, Tetsuo
2016-05-01
In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Greening Non-Product-Related Procurement
DEFF Research Database (Denmark)
Mosgaard, Mette; Riisgaard, Henrik; Huulgaard, Rikke Dorothea
2013-01-01
link to the strategy for greening private consumption, as similarities exist and the purchasers lean on their private experiences when purchasing non-product related items; and finally, 3) Intensify the efforts in product categories in which strict normative legislation makes management more motivated....... environmental benefits of millions of procurement decisions do add up to large environmental improvement potentials. Thus, non-product-related procurement focuses on the similarities in the purchases made across different sectors. Explorative interviews with purchasers in Danish companies form the basis...
Directory of Open Access Journals (Sweden)
Vijay eVenkatraman
2011-09-01
Full Text Available Background: Slowing information processing is common among community-dwelling elderly and it predicts greater mortality and disability risk. Slowing information processing is related to brain macro-structural abnormalities. Specifically, greater global atrophy and greater small vessel disease of the white matter have been associated to slower processing speed. However, community-dwelling elderly with such macro-structural abnormalities can maintain processing speed. The roles of brain micro-structure for slow processing in very old adults living in the community is uncertain, as epidemiological studies relating these brain markers to cognition and in the context of other health characteristics are sparse. Hypothesis: Information processing is cross-sectionally associated with white matter micro-structure independent of overt macro-structural abnormalities and also independent of health related characteristics. Methods: Imaging indices of micro-structure (diffusion tensor imaging, DTI, and magnetization transfer imaging, MTI, macro-structure (white matter hyperintensities, gray matter volume, Digit Symbol Substitution Test (DSST and health characteristics were measured in 272 elderly (mean age 83 years old, 43% men, 40% Black living in the community. Results: The DTI- and MTI-indices of micro-structure from the normal appearing white matter and not from the normal appearing gray matter were associated with DSST score independent of white matter hyperintensities and gray matter volumes. Associations were also independent of age, race, gender, mini-mental score, systolic blood pressure, prevalent myocardial infarction. Interpretation: DTI and MTI indices of normal appearing white matter are indicators of information processing speed in this cohort of very old adults living in the community. Since processing slowing is a potent index of mortality and disability, these indices may serve as biomarkers in prevention or treatment trials of disability.
Q-creation and annihilation tensors for the two parameters deformation of U(SU(2))
International Nuclear Information System (INIS)
Wehrhahn, R.F.; Vraceanu, D.
1993-03-01
The Jordan-Schwinger construction for the Hopf algebra U qp (su(2)) is realized. The creation and annihilation tensor operators together with their tensor products including the Casimir operators are calculated. (orig.)
Decomposition of a symmetric second-order tensor
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
Diffusion tensor optical coherence tomography
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
An introduction to tensors and group theory for physicists
Jeevanjee, Nadir
2011-01-01
An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...
Tensor analysis for physicists
Schouten, J A
1989-01-01
This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...
Generalized dielectric permittivity tensor
International Nuclear Information System (INIS)
Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.
1986-01-01
The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form
Killing tensors and conformal Killing tensors from conformal Killing vectors
International Nuclear Information System (INIS)
Rani, Raffaele; Edgar, S Brian; Barnes, Alan
2003-01-01
Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
QCD vacuum tensor susceptibility and properties of transversely polarized mesons
International Nuclear Information System (INIS)
Bakulev, A.P.; Mikhajlov, S.V.
1999-01-01
We re-estimate the tensor susceptibility of QCD vacuum, χ, and to this end, we re-estimate the leptonic decay constants for transversely polarized ρ-, ρ'- and b 1 -mesons. The origin of the susceptibility is analyzed using duality between ρ- and b 1 -channels in a 2-point correlator of tensor currents and disagree with [2] on both OPE expansion and the value of QCD vacuum tensor susceptibility. Using our value for the latter we determine new estimations of nucleon tensor charges related to the first moment of the transverse structure functions h 1 of a nucleon
WDVV equation and triple-product relation
International Nuclear Information System (INIS)
Shigechi, Keiichi; Wadati, Miki; Wang Ning
2005-01-01
We study the relation between the WDVV equations and the τ-function of the noncommutative KP (NCKP) hierarchy. WDVV-like equations (Hirota triple-product relation) in the noncommutative context appear as a consequence of the nontrivial equation for τ-function of the NC KP hierarchy, while the prepotential in the Seiberg-Witten (SW) theory has been identified to the τ-function of the Whitham hierarchy. We show that the spectral curve for the SW theory is the same as the Toda-chain hierarchy. We also show explicitly that Whitham hierarchy includes commutative Toda/KP hierarchy. Further, we comment on the origin of the Hirota triple-product relation in the context of the SW theory
DEFF Research Database (Denmark)
Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel
In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle s...
The evolution of tensor polarization
International Nuclear Information System (INIS)
Huang, H.; Lee, S.Y.; Ratner, L.
1993-01-01
By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake
Tensor Calculus: Unlearning Vector Calculus
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
On the energy-momentum tensor in Moyal space
International Nuclear Information System (INIS)
Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois
2015-01-01
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)
The gauge-invariant canonical energy-momentum tensor
Lorcé, Cédric
2016-03-01
The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictacted in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMDs and GPDs). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive three similar new sum rules expressing the conservation of transverse momentum.
The gauge-invariant canonical energy-momentum tensor
International Nuclear Information System (INIS)
Lorce, C.
2016-01-01
The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictated in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMD and GPD). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive 3 similar new sum rules expressing the conservation of transverse momentum. (author)
Gogny interactions with tensor terms
Energy Technology Data Exchange (ETDEWEB)
Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)
2016-07-15
We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
DEFF Research Database (Denmark)
Riis, Jesper; Hansen, Benjamin Loer; Hvam, Lars
2003-01-01
on experience from product modelling projects in several companies. Among them for example companies manufacturing electronic switchboards, spray dryer systems and air conditioning equipment. The framework is divided into three views: the product knowledge view, the life phase system view and the transformation...... and personalization. The framework for product knowledge and product related knowledge is based on the following theories: axiomatic design, technical systems, theory of domains, theory of structuring, theory of properties and the framework for the content of product and product related models. The framework is built......The article presents a framework for product knowledge and product related knowledge which can be used to support the product modelling process which is needed for developing IT systems. These IT systems are important tools for many companies when they aim at achieving mass customization...
International Nuclear Information System (INIS)
Littlejohn, R.G.
1982-01-01
The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular
Ross, R T
1982-01-01
Results on K^{0}, K^{0} Lambda ^{0}, Lambda , K* and rho ^{0} production from an exposure of BEBC filled with hydrogen to a 70 Ge V/c K^{+} beam are presented. Inclusive channel and differential cross sections are presented. Inclusive channel and differential cross sections are presented. Scaling of the structure functions with data at 32 GeV/c is observed in the dominant X-region for each reaction and in some cases over the full X-region. Polarisation and spin density matrix measurements are given where obtainable. In particular a significant polarisation for forward produced Lambda s is observed.
Dillon, Joshua V.; Langmore, Ian; Tran, Dustin; Brevdo, Eugene; Vasudevan, Srinivas; Moore, Dave; Patton, Brian; Alemi, Alex; Hoffman, Matt; Saurous, Rif A.
2017-01-01
The TensorFlow Distributions library implements a vision of probability theory adapted to the modern deep-learning paradigm of end-to-end differentiable computation. Building on two basic abstractions, it offers flexible building blocks for probabilistic computation. Distributions provide fast, numerically stable methods for generating samples and computing statistics, e.g., log density. Bijectors provide composable volume-tracking transformations with automatic caching. Together these enable...
One-loop tensor Feynman integral reduction with signed minors
DEFF Research Database (Denmark)
Fleischer, Jochem; Riemann, Tord; Yundin, Valery
2012-01-01
of the formalism is the immediate evaluation of complete contractions of the tensor integrals with external momenta. This leads to the problem of evaluating sums over products of signed minors with scalar products of chords. Chords are differences of external momenta. These sums may be evaluated analytically......We present an algebraic approach to one-loop tensor integral reduction. The integrals are presented in terms of scalar one- to four-point functions. The reduction is worked out explicitly until five-point functions of rank five. The numerical C++ package PJFry evaluates tensor coefficients in terms...
Tensor hypercontraction. II. Least-squares renormalization
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
The tensor distribution function.
Leow, A D; Zhu, S; Zhan, L; McMahon, K; de Zubicaray, G I; Meredith, M; Wright, M J; Toga, A W; Thompson, P M
2009-01-01
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Diffusion tensor smoothing through weighted Karcher means
Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie
2014-01-01
Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264
On energy-momentum tensors of gravitational field
International Nuclear Information System (INIS)
Nikishov, A.I.
2001-01-01
The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru
Talking about relations: Factors influencing the production of relational descriptions
Directory of Open Access Journals (Sweden)
Adriana eBaltaretu
2016-02-01
Full Text Available In a production experiment (Experiment 1 and an acceptability rating one (Experiment 2, we assessed two factors, spatial position and salience, which may influence the production of relational descriptions (such as the ball between the man and the drawer. In Experiment 1, speakers were asked to refer unambiguously to a target object (a ball. In Experiment 1a, we addressed the role of spatial position, more specifically if speakers mention the entity positioned leftmost in the scene as (first relatum. The results showed a preference to start with the left entity, however, only as a trend, which leaves room for other factors that could influence spatial reference. Thus, in the following studies, we varied salience systematically, by making one of the relatum candidates animate (Experiment 1b, and by adding attention capture cues, first subliminally by priming one relatum candidate with a flash (Experiment 1c, then explicitly by using salient colors for objects (Experiment 1d. Results indicate that spatial position played a dominant role. Entities on the left were mentioned more often as (first relatum than those on the right (Experiment 1a, 1b, 1c, 1d. Animacy affected reference production in one out of three studies (in Experiment 1d. When salience was manipulated by priming visual attention or by using salient colors, there were no significant effects (Experiment 1c, 1d. In the acceptability rating study (Experiment 2, participants expressed their preference for specific relata, by ranking descriptions on the basis of how good they thought the descriptions fitted the scene. Results show that participants preferred most the description that had an animate entity as the first mentioned relatum. The relevance of these results for models of reference production is discussed.
An introduction to diffusion tensor image analysis.
O'Donnell, Lauren J; Westin, Carl-Fredrik
2011-04-01
Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses. Copyright © 2011 Elsevier Inc. All rights reserved.
Dolgov, Sergey; Khoromskij, Boris N.; Litvinenko, Alexander; Matthies, Hermann G.
2015-01-01
We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some
Coordinate independent expression for transverse trace-free tensors
International Nuclear Information System (INIS)
Conboye, Rory
2016-01-01
The transverse and trace-free (TT) part of the extrinsic curvature represents half of the dynamical degrees of freedom of the gravitational field in the 3 + 1 formalism. As such, it is part of the freely specifiable initial data for numerical relativity. Though TT tensors in three-space possess only two component degrees of freedom, they cannot ordinarily be given solely by two scalar potentials. Such expressions have been derived, however, in coordinate form, for all TT tensors in flat space which are also translationally or axially symmetric (Conboye and Murchadha 2014 Class. Quantum Grav. 31 085019). Since TT tensors are conformally covariant, these also give TT tensors in conformally flat space. In this article, the work above has been extended by giving a coordinate-independent expression for these TT tensors. The translational and axial symmetry conditions have also been generalized to invariance along any hypersurface orthogonal Killing vector. (paper)
Exploring the tensor networks/AdS correspondence
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Physics, Indian Institute of Science,560012 Bangalore (India); Gao, Zhe-Shen [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing, 210093 (China); Liu, Si-Nong [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China)
2016-08-11
In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we assume that wavefunctions admitting such semi-classical gravitational interpretation are composed of tensors close to, but not exactly perfect tensors. Computing corrections to the connected two point correlation functions, we find that the leading contribution is given by structures related to geodesics connecting the operators inserted at the boundary physical dofs. Such considerations admit generalizations at least to three point functions. This is highly suggestive of the emergence of the analogues of Witten diagrams in the tensor network. The perturbations alone however do not give the right entanglement spectrum. Using the Coxeter construction, we also constructed the tensor network counterpart of the BTZ black hole, by orbifolding the discrete lattice on which the network resides. We found that the construction naturally reproduces some of the salient features of the BTZ black hole, such as the appearance of RT surfaces that could wrap the horizon, depending on the size of the entanglement region A.
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.
Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S
2017-05-01
Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.
Tensor Train Neighborhood Preserving Embedding
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2018-05-01
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.
Notes on super Killing tensors
Energy Technology Data Exchange (ETDEWEB)
Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)
2016-03-14
The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Related regulation of quality control of industrial products
International Nuclear Information System (INIS)
1983-04-01
This book introduce related regulation of quality control of industrial products, which includes regulations of industrial products quality control, enforcement ordinance of industrial products quality control, enforcement regulation of quality control of industrial products, designated items with industrial production quality indication, industrial production quality test, and industrial production quality test organization and management tips of factory quality by grade.
Tensor squeezed limits and the Higuchi bound
Energy Technology Data Exchange (ETDEWEB)
Bordin, Lorenzo [SISSA, via Bonomea 265, 34136, Trieste (Italy); Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Noreña, Jorge, E-mail: lbordin@sissa.it, E-mail: creminel@ictp.it, E-mail: mehrdadm@ias.edu, E-mail: jorge.norena@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile)
2016-09-01
We point out that tensor consistency relations—i.e. the behavior of primordial correlation functions in the limit a tensor mode has a small momentum—are more universal than scalar consistency relations. They hold in the presence of multiple scalar fields and as long as anisotropies are diluted exponentially fast. When de Sitter isometries are approximately respected during inflation this is guaranteed by the Higuchi bound, which forbids the existence of light particles with spin: de Sitter space can support scalar hair but no curly hair. We discuss two indirect ways to look for the violation of tensor consistency relations in observations, as a signature of models in which inflation is not a strong isotropic attractor, such as solid inflation: (a) graviton exchange contribution to the scalar four-point function; (b) quadrupolar anisotropy of the scalar power spectrum due to super-horizon tensor modes. This anisotropy has a well-defined statistics which can be distinguished from cases in which the background has a privileged direction.
Tensor valuations and their applications in stochastic geometry and imaging
Kiderlen, Markus
2017-01-01
The purpose of this volume is to give an up-to-date introduction to tensor valuations and their applications. Starting with classical results concerning scalar-valued valuations on the families of convex bodies and convex polytopes, it proceeds to the modern theory of tensor valuations. Product and Fourier-type transforms are introduced and various integral formulae are derived. New and well-known results are presented, together with generalizations in several directions, including extensions to the non-Euclidean setting and to non-convex sets. A variety of applications of tensor valuations to models in stochastic geometry, to local stereology and to imaging are also discussed.
Walbrecht, Verena Maria; Kortner, Sandra
In this master thesis the measurement of the Higgs boson production in the $H\\to~ZZ^*~\\to 4~\\ell$ decay channel ($\\ell=e,\\mu$) is performed together with the measurement of the tensor structure of the Higgs boson couplings to $Z$ bosons. The results are based on the Run~II dataset of LHC's proton-proton collisions at a centre-of-mass energy of 13~TeV, with the ATLAS detector and corresponding to a total integrated luminosity of $14.78$~fb$^{-1}$. Special emphasis is given to the estimation of the reducible background contribution. Based on the signal and background estimations, there are $32.0\\pm3.2$ Higgs boson candidates expected after the final event selection, while $44$ candidates are observed. The difference is compatible at the level of about $2$ standard derivations with the Standard Model predictions. All selected candidates are used in the study of the tensor structure of the $HZZ$ coupling between the Higgs boson and the two $Z$ bosons. For this study a dedicated signal model is introduced to desc...
Product Stigmaticity : Understanding, Measuring and Managing Product-Related Stigma
Vaes, K.
2014-01-01
Stigma-free Product Design. Many of the products intended to relieve us from discomforting or unsafe situations and many medical and assistive devices are experienced as unpleasant and uncomfortable. On top of their discomfort, product users may also experience social unease from the people around
Endoscopic Anatomy of the Tensor Fold and Anterior Attic.
Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela
2018-02-01
Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.
Typesafe Abstractions for Tensor Operations
Chen, Tongfei
2017-01-01
We propose a typesafe abstraction to tensors (i.e. multidimensional arrays) exploiting the type-level programming capabilities of Scala through heterogeneous lists (HList), and showcase typesafe abstractions of common tensor operations and various neural layers such as convolution or recurrent neural networks. This abstraction could lay the foundation of future typesafe deep learning frameworks that runs on Scala/JVM.
Indicial tensor manipulation on MACSYMA
International Nuclear Information System (INIS)
Bogen, R.A.; Pavelle, R.
1977-01-01
A new computational tool for physical calculations is described. It is the first computer system capable of performing indicial tensor calculus (as opposed to component tensor calculus). It is now operational on the symbolic manipulation system MACSYMA. The authors outline the capabilities of the system and describe some of the physical problems considered as well as others being examined at this time. (Auth.)
The tensor bi-spectrum in a matter bounce
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L., E-mail: debika@physics.iitm.ac.in, E-mail: sreenath@lsu.edu, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)
2015-11-01
Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations, just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter h{sub NL} that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.
Killing-Yano tensors and Nambu mechanics
International Nuclear Information System (INIS)
Baleanu, D.
1998-01-01
Killing-Yano tensors were introduced in 1952 by Kentaro-Yano from mathematical point of view. The physical interpretation of Killing-Yano tensors of rank higher than two was unclear. We found that all Killing-Yano tensors η i 1 i 2 . .. i n with covariant derivative zero are Nambu tensors. We found that in the case of flat space case all Killing-Yano tensors are Nambu tensors. In the case of Taub-NUT and Kerr-Newmann metric Killing-Yano tensors of order two generate Nambu tensors of rank 3
International Nuclear Information System (INIS)
Ley, J.; Dueweke, C.; Emmerich, R.; Imig, A.; Paetz gen Schieck, H.; Golak, J.; Witala, H.; Epelbaum, E.; Deltuva, A.; Fonseca, A.C.; Gloeckle, W.; Meissner, U.-G.; Nogga, A.; Sauer, P.U.
2006-01-01
We measured the cross sections and tensor analyzing powers of the 1 H(d-vector,pp)n breakup reaction at E d =19 MeV in four symmetric constant relative energy (SCRE) configurations. The data are compared with theoretical predictions from four different approaches: the first based on high-precision (semi)phenomenological potentials alone or, the second, combined with model three-nucleon forces, and the third based on chiral forces up to next-to-next-to-leading order (NNLO) in the chiral expansion. In these cases the Coulomb interaction is not included. In addition, a fourth approach consists in a comparison with predictions based on CD Bonn including the Δ excitation and the Coulomb force. In all cases the measured cross sections are significantly below the theoretical values, whereas the magnitudes of the tensor analyzing powers agree within the error bars in three of the four cases. The apparent discrepancies in the breakup cross sections are similar to the known differences for the space-star breakup. This adds to the data base of unsolved low-energy discrepancies (puzzles)
Interplay between tensor force and deformation in even–even nuclei
Energy Technology Data Exchange (ETDEWEB)
Bernard, Rémi N., E-mail: rbernard@ugr.es; Anguiano, Marta
2016-09-15
In this work we study the effect of the nuclear tensor force on properties related with deformation. We focus on isotopes in the Mg, Si, S, Ar, Sr and Zr chains within the Hartree–Fock–Bogoliubov theory using the D1ST2a Gogny interaction. Contributions to the tensor energy in terms of saturated and unsaturated subshells are analyzed. Like–particle and proton–neutron parts of the tensor term are independently examinated. We found that the tensor term may considerably modify the potential energy landscapes and change the ground state shape. We analyze too how the pairing characteristics of the ground state change when the tensor force is included.
Two-perfect fluid interpretation of an energy tensor
International Nuclear Information System (INIS)
Ferrando, J.J.; Morales, J.A.; Portilla, M.
1990-01-01
There are many topics in General Relativity where matter is represented by a mixture of two fluids. In fact, some astrophysical and cosmological situations need to be described by an energy tensor made up of the sum of two or more perfect fluids rather than that with only one. The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained
MATLAB tensor classes for fast algorithm prototyping.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M
2018-04-01
This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and
The influence of product- and person-related factors on consumer hedonic responses to soy products
Fenko, Anna; Backhaus, Birte W.; van Hoof, Joris Jasper
2015-01-01
Consumers in Western countries increasingly appreciate health benefits of soy products. However, several barriers prevent full acceptance of these products. This study investigates the effects of product-related factors (perceived familiarity and expected healthiness) and person-related factors
Efficient tensor completion for color image and video recovery: Low-rank tensor train
Bengua, Johann A.; Phien, Ho N.; Tuan, Hoang D.; Do, Minh N.
2016-01-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via tensor tra...
Exact tensor network ansatz for strongly interacting systems
Zaletel, Michael P.
It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.
International Nuclear Information System (INIS)
Smirnov, Yu.F.; Tolstoi, V.N.; Kharitonov, Yu.I.
1993-01-01
The tree technique for the quantum algebra su q (2) developed in an earlier study is used to construct the q analog of the algebra of irreducible tensor operators. The adjoint action of the algebra su q (2) on irreducible tensor operators is discussed, and the adjoint R matrix is introduced. A set of expressions is obtained for the matrix elements of various irreducible tensor operators and combinations of them. As an application, the recursion relations for the Clebsch-Gordan and Racah coefficients of the algebra su q (2) are derived. 16 refs
An introduction to tensors and group theory for physicists
Jeevanjee, Nadir
2015-01-01
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part...
9 CFR 101.3 - Biological products and related terms.
2010-01-01
... as required by the regulations. (e) Released product. A finished product released for marketing after... total quantity of completed product which has been thoroughly mixed in a single container and identified... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products and related terms...
Tensor analysis and elementary differential geometry for physicists and engineers
Nguyen-Schäfer, Hung
2017-01-01
This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum m...
Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences.
Middleton, Dana M; Li, Jonathan Y; Lee, Hui J; Chen, Steven; Dickson, Patricia I; Ellinwood, N Matthew; White, Leonard E; Provenzale, James M
2017-08-01
Purpose The purpose of this study was to investigate a novel tensor shape plot analysis technique of diffusion tensor imaging data as a means to assess microstructural differences in brain tissue. We hypothesized that this technique could distinguish white matter regions with different microstructural compositions. Methods Three normal canines were euthanized at seven weeks old. Their brains were imaged using identical diffusion tensor imaging protocols on a 7T small-animal magnetic resonance imaging system. We examined two white matter regions, the internal capsule and the centrum semiovale, each subdivided into an anterior and posterior region. We placed 100 regions of interest in each of the four brain regions. Eigenvalues for each region of interest triangulated onto tensor shape plots as the weighted average of three shape metrics at the plot's vertices: CS, CL, and CP. Results The distribution of data on the plots for the internal capsule differed markedly from the centrum semiovale data, thus confirming our hypothesis. Furthermore, data for the internal capsule were distributed in a relatively tight cluster, possibly reflecting the compact and parallel nature of its fibers, while data for the centrum semiovale were more widely distributed, consistent with the less compact and often crossing pattern of its fibers. This indicates that the tensor shape plot technique can depict data in similar regions as being alike. Conclusion Tensor shape plots successfully depicted differences in tissue microstructure and reflected the microstructure of individual brain regions. This proof of principle study suggests that if our findings are reproduced in larger samples, including abnormal white matter states, the technique may be useful in assessment of white matter diseases.
Tensor Networks and Quantum Error Correction
Ferris, Andrew J.; Poulin, David
2014-07-01
We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.
Anisotropic diffusion tensor applied to temporal mammograms
DEFF Research Database (Denmark)
Karemore, Gopal; Brandt, Sami; Sporring, Jon
2010-01-01
changes related to specific effects like Hormonal Replacement Therapy (HRT) and aging. Given effect-grouped patient data, we demonstrated how anisotropic diffusion tensor and its coherence features computed in an anatomically oriented breast coordinate system followed by statistical learning...
Correlation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature
Osborn, H
2000-01-01
An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of $O(d-1,2)$, for two point functions of vector currents is derived in detail and extended to the energy momentu...
The Einstein tensor characterizing some Riemann spaces
International Nuclear Information System (INIS)
Rahman, M.S.
1993-07-01
A formal definition of the Einstein tensor is given. Mention is made of how this tensor plays a role of expressing certain conditions in a precise form. The cases of reducing the Einstein tensor to a zero tensor are studied on its merit. A lucid account of results, formulated as theorems, on Einstein symmetric and Einstein recurrent spaces is then presented. (author). 5 refs
Colored Tensor Models - a Review
Directory of Open Access Journals (Sweden)
Razvan Gurau
2012-04-01
Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.
Bryant, P L; Harwell, C R; Mrse, A A; Emery, E F; Gan, Z; Caldwell, T; Reyes, A P; Kuhns, P; Hoyt, D W; Simeral, L S; Hall, R W; Butler, L G
2001-12-05
Experimental and ab initio molecular orbital techniques are developed for study of aluminum species with large quadrupole coupling constants to test structural models for methylaluminoxanes (MAO). The techniques are applied to nitrogen- and oxygen-containing complexes of aluminum and to solid MAO isolated from active commercial MAO preparations. (Aminato)- and (propanolato)aluminum clusters with 3-, 4-, and 6-coordinate aluminum sites are studied with three (27)Al NMR techniques optimized for large (27)Al quadrupole coupling constants: field-swept, frequency-stepped, and high-field MAS NMR. Four-membered (aminato)aluminum complexes with AlN(4) coordination yield slightly smaller C(q) values than similar AlN(2)C(2) sites: 12.2 vs 15.8 MHz. Planar 3-coordinate AlN(2)C sites have the largest C(q) values, 37 MHz. In all cases, molecular orbital calculations of the electric field gradient tensors yields C(q) and eta values that match with experiment, even for a large hexameric (aminato)aluminum cage. A D(3d) symmetry hexaaluminum oxane cluster, postulated as a model for MAO, yields a calculated C(q) of -23.7 MHz, eta = 0.7474, and predicts a spectrum that is too broad to match the field-swept NMR of methylaluminoxane, which shows at least three sites, all with C(q) values greater than 15 MHz but less than 21 MHz. Thus, the proposed hexaaluminum cluster, with its strained four-membered rings, is not a major component of MAO. However, calculations for dimers of the cage complex, either edge-bridged or face-bridged, show a much closer match to experiment. Also, MAO preparations differ, with a gel form of MAO having significantly larger (27)Al C(q) values than a nongel form, a conclusion reached on the basis of (27)Al NMR line widths in field-swept NMR spectra acquired from 13 to 24 T.
The Gibbs entropy production in general relativity
International Nuclear Information System (INIS)
Henneaux, M.
1983-01-01
The entropy production is analyzed in the case of homogeneous cosmological models of the Bianchi type. It is shown to vanish for class-A models and to be undefined for class-B ones, because of an ambiguity in the measure on the space of the true gravitational degrees of freedom. How this results extend to the full Einstein theory is discussed
Gibbs entropy production in general relativity
International Nuclear Information System (INIS)
Henneaux, M.
1983-01-01
The entropy production is analyzed in the case of homogeneous cosmological models of the Bianchi type. It is shown to vanish for class-A models and to be undefined for class-B ones, because of an ambiguity in the measure on the space of the true gravitational degrees of freedom. How this results extends to the full Einstein theory is discussed
Physical states in the canonical tensor model from the perspective of random tensor networks
Energy Technology Data Exchange (ETDEWEB)
Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)
2015-01-07
Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.
Manufacturers Mergers and Product Variety in Vertically Related Markets
Chrysovalantou Milliou; Joel Sandonis
2014-01-01
We study final product manufacturersâ€™ incentives to introduce new products into the market and how they are affected by a merger among them. We show that when manufacturers distribute their products through multi-product retailers, a manufacturers merger, although it leads to an increase in the wholesale prices, it can enhance product variety. The merger generated product variety efficiencies though arise only when vertical relations are present: when manufacturers sell directly their produ...
Tensor modes on the string theory landscape
International Nuclear Information System (INIS)
Westphal, Alexander
2012-06-01
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
Tensor modes on the string theory landscape
Energy Technology Data Exchange (ETDEWEB)
Westphal, Alexander
2012-06-15
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
Tensor Completion Algorithms in Big Data Analytics
Song, Qingquan; Ge, Hancheng; Caverlee, James; Hu, Xia
2017-01-01
Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data an...
Ryu-Takayanagi formula for symmetric random tensor networks
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.
An Introduction to Tensors for Students of Physics and Engineering
Kolecki, Joseph C.
2002-01-01
Tensor analysis is the type of subject that can make even the best of students shudder. My own post-graduate instructor in the subject took away much of the fear by speaking of an implicit rhythm in the peculiar notation traditionally used, and helped us to see how this rhythm plays its way throughout the various formalisms. Prior to taking that class, I had spent many years "playing" on my own with tensors. I found the going to be tremendously difficult but was able, over time, to back out some physical and geometrical considerations that helped to make the subject a little more transparent. Today, it is sometimes hard not to think in terms of tensors and their associated concepts. This article, prompted and greatly enhanced by Marlos Jacob, whom I've met only by e-mail, is an attempt to record those early notions concerning tensors. It is intended to serve as a bridge from the point where most undergraduate students "leave off" in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and higher vector products. The reader must be prepared to do some mathematics and to think. For those students who wish to go beyond this humble start, I can only recommend my professor's wisdom: find the rhythm in the mathematics and you will fare pretty well.
Atomic-batched tensor decomposed two-electron repulsion integrals
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-01
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
Development of the Tensoral Computer Language
Ferziger, Joel; Dresselhaus, Eliot
1996-01-01
The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.
Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature
Loveridge, Lee C.
2004-01-01
Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.
Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry
2015-03-01
The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.
STRUCTURE TENSOR IMAGE FILTERING USING RIEMANNIAN L1 AND L∞ CENTER-OF-MASS
Directory of Open Access Journals (Sweden)
Jesus Angulo
2014-06-01
Full Text Available Structure tensor images are obtained by a Gaussian smoothing of the dyadic product of gradient image. These images give at each pixel a n×n symmetric positive definite matrix SPD(n, representing the local orientation and the edge information. Processing such images requires appropriate algorithms working on the Riemannian manifold on the SPD(n matrices. This contribution deals with structure tensor image filtering based on Lp geometric averaging. In particular, L1 center-of-mass (Riemannian median or Fermat-Weber point and L∞ center-of-mass (Riemannian circumcenter can be obtained for structure tensors using recently proposed algorithms. Our contribution in this paper is to study the interest of L1 and L∞ Riemannian estimators for structure tensor image processing. In particular, we compare both for two image analysis tasks: (i structure tensor image denoising; (ii anomaly detection in structure tensor images.
Correlation functions of the energy-momentum tensor on spaces of constant curvature
International Nuclear Information System (INIS)
Osborn, H.; Shore, G.M.
2000-01-01
An analysis of one- and two-point functions of the energy-momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy-momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of O(d-1,2), for two-point functions of vector currents is derived in detail and extended to the energy-momentum tensor by analogy. It is demonstrated that, at non-coincident points, the two-point functions are not related to a in any direct fashion and there is no straightforward demonstration obtainable in this framework of irreversibility under renormalisation group flow of any function of the couplings for four-dimensional field theories which reduces to a at fixed points
Fundamental study on REV based on crack tensor at the Mizunami Underground Research Laboratory
International Nuclear Information System (INIS)
Tanno, Takeo; Sato, Toshinori; Sanada, Hiroyuki; Hikima, Ryoichi; Kumasaka, Hiroo; Tada, Hiroyuki
2013-01-01
The crack tensor model which is a kind of equivalent continuum model has been studied in rock mechanical investigation in the MIU. The fractured rock mass is modeled as the elastic continuum model with this crack tensor. In this study, this crack tensor based on the geological observation in the MIU project was calculated, and Representative Elementary Volume (REV) in the ventilation shaft and -300 m access/research gallery was studied based on the relative error of this crack tensor. As a result, the convergence of the relative error was faster in the -300 m access/research gallery than in the ventilation shaft. (author)
Link prediction via generalized coupled tensor factorisation
DEFF Research Database (Denmark)
Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.
2012-01-01
and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....
Papapetrou energy-momentum tensor for Chern-Simons modified gravity
International Nuclear Information System (INIS)
Guarrera, David; Hariton, A. J.
2007-01-01
We construct a conserved, symmetric energy-momentum (pseudo-)tensor for Chern-Simons modified gravity, thus demonstrating that the theory is Lorentz invariant. The tensor is discussed in relation to other gravitational energy-momentum tensors and analyzed for the Schwarzschild, Reissner-Nordstrom, and Friedmann-Robertson-Walker solutions. To our knowledge this is the first confirmation that the Reissner-Nordstrom and Friedmann-Robertson-Walker metrics are solutions of the modified theory
A Givental-like formula and bilinear identities for tensor models
Energy Technology Data Exchange (ETDEWEB)
Dartois, Stéphane [LIPN, Institut Galilée, CNRS UMR 7030, Université Paris 13,F-93430, Villetaneuse (France); Laboratoire de Physique Théorique, CNRS UMR 8627, Université Paris 11,91405 Orsay Cedex (France)
2015-08-26
In this paper we express some simple random tensor models in a Givental-like fashion i.e. as differential operators acting on a product of generic 1-Hermitian matrix models. Finally we derive Hirota’s equations for these tensor models. Our decomposition is a first step towards integrability of such models.
Angular dependence of resonant inelastic x-ray scattering : A spherical tensor expansion
Juhin, Amelie; Brouder, Christian; de Groot, Frank
A spherical tensor expansion is carried out to express the resonant inelastic scattering cross-section as a sum of products of fundamental spectra with tensors involving wavevectors and polarization vectors of incident and scattered photons. The expression presented in this paper differs from that
Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV
DEFF Research Database (Denmark)
Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel
2005-01-01
A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...
Spectral Tensor-Train Decomposition
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....
Confinement through tensor gauge fields
International Nuclear Information System (INIS)
Salam, A.; Strathdee, J.
1977-12-01
Using the 0(3,2)-symmetric de Sitter solution of Einstein's equation describing a strongly interacting tensor field it is shown that hadronic bags confining quarks can be represented as de Sitter ''micro-universes'' with radii given 1/R 2 =lambdak 2 /6. Here k 2 and lambda are the strong coupling and the ''cosmological'' constant which apear in the Einstein equation used. Surprisingly the energy spectrum for the two-body hadronic states is the same as that for a harmonic oscillator potential, though the wave functions are completely different. The Einstein equation can be extended to include colour for the tensor fields
Tensors and second quantization
Graaf, de J.
2010-01-01
Starting from a pair of vector spaces (formula) an inner product space and (formula), the space of linear mappings (formula), we construct a six-tuple (formula). Here (formula) is again an inner product space and (formula) the space of its linear mappings. It is required that (formula), as linear
Thermodynamic Product Relations for Generalized Regular Black Hole
International Nuclear Information System (INIS)
Pradhan, Parthapratim
2016-01-01
We derive thermodynamic product relations for four-parametric regular black hole (BH) solutions of the Einstein equations coupled with a nonlinear electrodynamics source. The four parameters can be described by the mass (m), charge (q), dipole moment (α), and quadrupole moment (β), respectively. We study its complete thermodynamics. We compute different thermodynamic products, that is, area product, BH temperature product, specific heat product, and Komar energy product, respectively. Furthermore, we show some complicated function of horizon areas that is indeed mass-independent and could turn out to be universal.
Effect on Tensor Correlations on Gamow- Teller States in 90Zr and 208Pb
International Nuclear Information System (INIS)
Bai, C. L.; Sagawa, H.; Zhang, H. Q.
2009-01-01
The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF-RPA) model. The Gamow-Teller (GT) strength function of 9 0Z r and 2 08P b are calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA. A microscopic origin of the quenching of GT sum rule is discussed in relation with the coupling to giant spin-quadrupole excitations by the tensor interactions.(author)
Decorated tensor network renormalization for lattice gauge theories and spin foam models
International Nuclear Information System (INIS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-01-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions. (paper)
Decorated tensor network renormalization for lattice gauge theories and spin foam models
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Tensor calculus for physics a concise guide
Neuenschwander, Dwight E
2015-01-01
Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
Complete algebraic reduction of one-loop tensor Feynman integrals
International Nuclear Information System (INIS)
Fleischer, J.; Riemann, T.
2011-01-01
We set up a new, flexible approach for the tensor reduction of one-loop Feynman integrals. The 5-point tensor integrals up to rank R=5 are expressed by 4-point tensor integrals of rank R-1, such that the appearance of the inverse 5-point Gram determinant is avoided. The 4-point tensor coefficients are represented in terms of 4-point integrals, defined in d dimensions, 4-2ε≤d≤4-2ε+2(R-1), with higher powers of the propagators. They can be further reduced to expressions which stay free of the inverse 4-point Gram determinants but contain higher-dimensional 4-point integrals with only the first power of scalar propagators, plus 3-point tensor coefficients. A direct evaluation of the higher-dimensional 4-point functions would avoid the appearance of inverse powers of the Gram determinants completely. The simplest approach, however, is to apply here dimensional recurrence relations in order to reduce them to the familiar 2- to 4-point functions in generic dimension d=4-2ε, introducing thereby coefficients with inverse 4-point Gram determinants up to power R for tensors of rank R. For small or vanishing Gram determinants--where this reduction is not applicable--we use analytic expansions in positive powers of the Gram determinants. Improving the convergence of the expansions substantially with Pade approximants we close up to the evaluation of the 4-point tensor coefficients for larger Gram determinants. Finally, some relations are discussed which may be useful for analytic simplifications of Feynman diagrams.
Fauzi, Wan Nor Farhana Wan Mohd; Idrus, Nor'ashiqin Mohd; Masri, Rohaidah; Sarmin, Nor Haniza
2014-07-01
The nonabelian tensor product was originated in homotopy theory as well as in algebraic K-theory. The nonabelian tensor square is a special case of the nonabelian tensor product where the product is defined if the two groups act on each other in a compatible way and their action are taken to be conjugation. In this paper, the computation of nonabelian tensor square of a Bieberbach group, which is a torsion free crystallographic group, of dimension five with dihedral point group of order eight is determined. Groups, Algorithms and Programming (GAP) software has been used to assist and verify the results.
Reciprocal mass tensor : a general form
International Nuclear Information System (INIS)
Roy, C.L.
1978-01-01
Using the results of earlier treatment of wave packets, a general form of reciprocal mass tensor has been obtained. The elements of this tensor are seen to be dependent on momentum as well as space coordinates of the particle under consideration. The conditions under which the tensor would reduce to the usual space-independent form, are discussed and the impact of the space-dependence of this tensor on the motion of Bloch electrons, is examined. (author)
A new deteriorated energy-momentum tensor
International Nuclear Information System (INIS)
Duff, M.J.
1982-01-01
The stress-tensor of a scalar field theory is not unique because of the possibility of adding an 'improvement term'. In supersymmetric field theories the stress-tensor will appear in a super-current multiplet along with the sypersymmetry current. The general question of the supercurrent multiplet for arbitrary deteriorated stress tensors and their relationship to supercurrent multiplets for models with gauge antisymmetric tensors is answered for various models of N = 1, 2 and 4 supersymmetry. (U.K.)
Tensor-based spatiotemporal saliency detection
Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen
2018-03-01
This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.
Tensor categories and the mathematics of rational and logarithmic conformal field theory
International Nuclear Information System (INIS)
Huang, Yi-Zhi; Lepowsky, James
2013-01-01
We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establishes the logarithmic operator product expansion for logarithmic intertwining operators. We review the main ideas in the construction of the tensor product bifunctors and the associativity isomorphisms. For rational and logarithmic conformal field theories, we review the precise results that yield braided tensor categories, and in the rational case, modular tensor categories as well. In the case of rational conformal field theory, we also briefly discuss the construction of the modular tensor categories for the Wess–Zumino–Novikov–Witten models and, especially, a recent discovery concerning the proof of the fundamental rigidity property of the modular tensor categories for this important special case. In the case of logarithmic conformal field theory, we mention suitable categories of modules for the triplet W-algebras as an example of the applications of our general construction of the braided tensor category structure. (review)
Efficient Tensor Strategy for Recommendation
Directory of Open Access Journals (Sweden)
Aboagye Emelia Opoku
2017-07-01
Full Text Available The era of big data has witnessed the explosion of tensor datasets, and large scale Probabilistic Tensor Factorization (PTF analysis is important to accommodate such increasing trend of data. Sparsity, and Cold-Start are some of the inherent problems of recommender systems in the era of big data. This paper proposes a novel Sentiment-Based Probabilistic Tensor Analysis technique senti-PTF to address the problems. The propose framework first applies a Natural Language Processing technique to perform sentiment analysis taking advantage of the huge sums of textual data generated available from the social media which are predominantly left untouched. Although some current studies do employ review texts, many of them do not consider how sentiments in reviews influence recommendation algorithm for prediction. There is therefore this big data text analytics gap whose modeling is computationally expensive. From our experiments, our novel machine learning sentiment-based tensor analysis is computationally less expensive, and addresses the cold-start problem, for optimal recommendation prediction.
Weyl tensors for asymmetric complex curvatures
International Nuclear Information System (INIS)
Oliveira, C.G.
Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt
Spherical Tensor Calculus for Local Adaptive Filtering
Reisert, Marco; Burkhardt, Hans
In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.
Tensor glueball-meson mixing phenomenology
International Nuclear Information System (INIS)
Burakovsky, L.; Page, P.R.
2000-01-01
The overpopulated isoscalar tensor states are sifted using Schwinger-type mass relations. Two solutions are found: one where the glueball is the f J (2220), and one where the glueball is more distributed, with f 2 (1820) having the largest component. The f 2 (1565) and f J (1710) cannot be accommodated as glueball-(hybrid) meson mixtures in the absence of significant coupling to decay channels. f 2 '(1525)→ππ is in agreement with experiment. The f J (2220) decays neither flavour democratically nor is narrow. (orig.)
Tensor rank of the tripartite state |W>xn
International Nuclear Information System (INIS)
Yu Nengkun; Guo Cheng; Duan Runyao; Chitambar, Eric
2010-01-01
Tensor rank refers to the number of product states needed to express a given multipartite quantum state. Its nonadditivity as an entanglement measure has recently been observed. In this Brief Report, we estimate the tensor rank of multiple copies of the tripartite state |W>=(1/√(3))(|100>+|010>+|001>). Both an upper bound and a lower bound of this rank are derived. In particular, it is proven that the rank of |W> x 2 is 7, thus resolving a previously open problem. Some implications of this result are discussed in terms of transformation rates between |W> xn and multiple copies of the state |GHZ>=(1/√(2))(|000>+|111>).
International Nuclear Information System (INIS)
Anderson, Gregory W.; Blazek, Tomas
2005-01-01
E 6 is an attractive group for unification model building. However, the complexity of a rank 6 group makes it nontrivial to write down the structure of higher dimensional operators in an E 6 theory in terms of the states labeled by quantum numbers of the standard model gauge group. In this paper, we show the results of our computation of the Clebsch-Gordan coefficients for the products of the 27 with irreducible representations of higher dimensionality: 78, 351, 351 ' , 351, and 351 ' . Application of these results to E 6 model building involving higher dimensional operators is straightforward
Micromechanics based framework with second-order damage tensors
Desmorat, R.; Desmorat, B.; Olive, M.; Kolev, B.
2018-05-01
The harmonic product of tensors---leading to the concept of harmonic factorization---has been defined in a previous work (Olive et al, 2017). In the practical case of 3D crack density measurements on thin or thick walled structures, this mathematical tool allows us to factorize the harmonic (irreducible) part of the fourth-order damage tensor as an harmonic square: an exact harmonic square in 2D, an harmonic square over the set of so-called mechanically accessible directions for measurements in the 3D case. The corresponding micro-mechanics framework based on second---instead of fourth---order damage tensors is derived. An illustrating example is provided showing how the proposed framework allows for the modeling of the so-called hydrostatic sensitivity up to high damage levels.
A new Weyl-like tensor of geometric origin
Vishwakarma, Ram Gopal
2018-04-01
A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.
Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement
Directory of Open Access Journals (Sweden)
Mehmet Nergiz
2017-11-01
Full Text Available Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.
Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.
Li, Wei; Liu, Chunlei
2013-10-01
Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.
Mining Intention-Related Products on Online Q & A Community
Institute of Scientific and Technical Information of China (English)
段俊文; 陈毅恒; 刘挺; 丁效
2015-01-01
User generated content on social media has attracted much attention from service/product providers, as it contains plenty of potential commercial opportunities. However, previous work mainly focuses on user consumption intention (CI) identification, and little effort has been spent to mine intention-related products. In this paper, focusing on the Baby &Child Care domain, we propose a novel approach to mine intention-related products on online question and answer (Q&A) community. Making use of the question-answering pairs as data source, we first automatically extract candidate products based on dependency parser. And then by means of the collocation extraction model, we identify the real intention-related products from the candidate set. The experimental results on our carefully constructed evaluation dataset show that our approach achieves better performance than two natural baseline methods.
Tensor voting for robust color edge detection
Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec
2014-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...
Archive of Census Related Products (ACRP): 1992 Boundary Files
National Aeronautics and Space Administration — The 1992 Boundary Files portion of the Archive of Census Related Products (ACRP) consists of 1992 boundary data from the U.S. Census Bureau's Topologically...
Archive of Census Related Products (ACRP): 1990 Standard Extract Files
National Aeronautics and Space Administration — The 1990 Standard Extract Files portion of the Archive of Census Related Products (ACRP) contains population and housing data derived from the U.S. Census Bureau's...
Archive of Census Related Products (ACRP): 1980 SAS Transport Files
National Aeronautics and Space Administration — The 1980 SAS Transport Files portion of the Archive of Census Related Products (ACRP) contains housing and population demographics from the 1980 Summary Tape File...
Review of xenon-133 production and related problems
International Nuclear Information System (INIS)
Barrachina, M.; Ropero, M.
1980-01-01
A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs
Energy-momentum tensor of the gravitational field for material spheres
International Nuclear Information System (INIS)
Sokolov, S.N.
1990-01-01
Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed
Robust estimation of adaptive tensors of curvature by tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung
2005-03-01
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
Directory of Open Access Journals (Sweden)
Owen A. Williams
2017-01-01
DSEG θ is a powerful tool for characterising subtle brain change in SVD that has a negative impact on cognition and remains a significant predictor of cognitive change when other MRI markers of brain change are accounted for. DSEG provides an automatic segmentation of the whole cerebrum that is sensitive to a range of SVD related structural changes and successfully predicts cognitive change. Power analysis shows DSEG θ has potential as a monitoring tool in clinical trials. As such it may provide a marker of SVD severity from a single imaging modality (i.e. DTIs.
Tensor perturbations during inflation in a spatially closed Universe
Energy Technology Data Exchange (ETDEWEB)
Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, 104 Lavey Lab, University Park, PA 16802 (United States)
2017-05-01
In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited to the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.
Nonperturbative loop quantization of scalar-tensor theories of gravity
International Nuclear Information System (INIS)
Zhang Xiangdong; Ma Yongge
2011-01-01
The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.
On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity
Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia
2008-11-01
Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).
The Deployment of Product-Related Environmental Legislation into Product Requirements
Directory of Open Access Journals (Sweden)
Daniela C. A. Pigosso
2016-04-01
Full Text Available Environmental legislation is increasingly changing its focus from manufacturing-oriented to product-oriented instruments. Compliance with product-related environmental legislation is achieved by the incorporation of environmental requirements into the early phases of the product development process (PDP. Nevertheless, the deployment of product-related environmental legislation into product requirements is still a challenge. This study followed an inductive approach to propose a guideline to support the identification, analysis and deployment of product requirements based on product-related environmental legislation. The guideline is composed of nine steps, clustered into three groups according to their main objective: (A identification of environmental product-related legislation; (B identification of legislative topics to be considered for the deployment of requirements; and (C creation and validation of product requirements. The product requirements deployed are to be considered during the PDP. The guideline was evaluated in an expert consultation in a large manufacturing company, suggesting that it can be used to support the systematization and deployment of product-related environmental requirements.
Extended vector-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2017-01-01
Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.
Scalar-tensor linear inflation
Energy Technology Data Exchange (ETDEWEB)
Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)
2017-04-01
We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.
DEFF Research Database (Denmark)
Torry-Smith, Jonas; Mortensen, Niels Henrik; Achiche, Sofiane
2014-01-01
to the classification of product-related dependencies. Traditionally these dependencies have been described as appearing between the following product attributes: function, properties and structure. By analysing three mechatronic projects from industry we identified and classified 13 types of product......-related dependencies. Each product-related dependency is described and illustrated using the practical examples from the industrial projects. The value of the classification is evaluated by applying it to an industrial development setting not used for the analysis. The evaluation shows that delays in the project...
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
Tensor analysis and elementary differential geometry for physicists and engineers
Nguyen-Schäfer, Hung
2014-01-01
Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics, and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis, and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists, and practicing engineers.
Nature Relation Between Climatic Variables and Cotton Production
Directory of Open Access Journals (Sweden)
Zakaria M. Sawan
2014-08-01
Full Text Available This study investigated the effect of climatic variables on flower and boll production and retention in cotton (Gossypium barbadense. Also, this study investigated the relationship between climatic factors and production of flowers and bolls obtained during the development periods of the flowering and boll stage, and to determine the most representative period corresponding to the overall crop pattern. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 0600 h and minimum temperature. There was a negative correlation between flower and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.
Productivity loss at work; Health-related and work-related factors
Heuvel, S.G. van den; Geuskens, G.A.; Hooftman, W.E.; Koppes, L.L.J.; Bossche, S.N.J. van den
2010-01-01
Introduction Productivity loss is an increasing problem in an aging working population that is decreasing in numbers. The aim of this study is to identify work-related and health-related characteristics associated with productivity loss, due to either sickness absence or reduced performance at work.
Holographic duality from random tensor networks
Energy Technology Data Exchange (ETDEWEB)
Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)
2016-11-02
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main
Numerical evaluation of the tensor bispectrum in two field inflation
Energy Technology Data Exchange (ETDEWEB)
Raveendran, Rathul Nath [The Institute of Mathematical Sciences, HBNI, CIT Campus, Chennai, 600113 India (India); Sriramkumar, L., E-mail: rathulnr@imsc.res.in, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 India (India)
2017-07-01
We evaluate the dimensionless non-Gaussianity parameter h {sub NL}, that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural inflation. We compare the numerical results with the slow roll results which can be obtained analytically. In the context of double inflation, we also investigate the effects on h {sub NL} due to curved trajectories in the field space. We explicitly examine the validity of the consistency relation governing the tensor bispectrum in the squeezed limit. Lastly, we discuss the contribution to h {sub NL} due to the epoch of preheating in two field models.
Numerical evaluation of the tensor bispectrum in two field inflation
International Nuclear Information System (INIS)
Raveendran, Rathul Nath; Sriramkumar, L.
2017-01-01
We evaluate the dimensionless non-Gaussianity parameter h NL , that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural inflation. We compare the numerical results with the slow roll results which can be obtained analytically. In the context of double inflation, we also investigate the effects on h NL due to curved trajectories in the field space. We explicitly examine the validity of the consistency relation governing the tensor bispectrum in the squeezed limit. Lastly, we discuss the contribution to h NL due to the epoch of preheating in two field models.
All-at-once Optimization for Coupled Matrix and Tensor Factorizations
DEFF Research Database (Denmark)
Evrim, Acar Ataman; Kolda, Tamara G.; Dunlavy, Daniel M.
2011-01-01
.g., the person by person social network matrix or the restaurant by category matrix, and higher-order tensors, e.g., the "ratings" tensor of the form restaurant by meal by person. In this paper, we are particularly interested in fusing data sets with the goal of capturing their underlying latent structures. We...... formulate this problem as a coupled matrix and tensor factorization (CMTF) problem where heterogeneous data sets are modeled by fitting outer-product models to higher-order tensors and matrices in a coupled manner. Unlike traditional approaches solving this problem using alternating algorithms, we propose...... an all-at-once optimization approach called CMTF-OPT (CMTF-OPTimization), which is a gradient-based optimization approach for joint analysis of matrices and higher-order tensors. We also extend the algorithm to handle coupled incomplete data sets. Using numerical experiments, we demonstrate...
International Nuclear Information System (INIS)
Mace, R.L.
1996-01-01
We report on a new form for the dielectric tensor for a plasma containing superthermal particles. The individual particle components are modelled by 3-dimensional isotropic kappa, or generalized Lorentzian, distributions with arbitrary real-valued index κ. The new dielectric tensor is valid for arbitrary wavevectors. The dielectric tensor, which resembles Trubnikov's dielectric tensor for a relativistic plasma, is compared with the familiar Maxwellian form. When the dielectric tensor is used in the plasma dispersion relation for waves propagating parallel to the magnetic field it reproduces previously derived dispersion relations for various electromagnetic and electrostatic waves in plasmas modelled by Lorentzian particle distributions. Within the constraints of propagation parallel to the ambient magnetic field, we extend the above results to incorporate loss-cone Lorentzian particle distributions, which have important applications in laboratory mirror devices, as well as in space and astrophysical environments. (orig.)
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Lectures on tensor categories and modular functors
Bakalov, Bojko
2000-01-01
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some pro...
Price-related promotions for tobacco products on Twitter.
Jo, Catherine L; Kornfield, Rachel; Kim, Yoonsang; Emery, Sherry; Ribisl, Kurt M
2016-07-01
This cross-sectional study examined price-related promotions for tobacco products on Twitter. Through the Twitter Firehose, we obtained access to all public tweets posted between 6 December 2012 and 20 June 2013 that contained a keyword suggesting a tobacco-related product or behaviour (eg, cigarette, vaping) in addition to a keyword suggesting a price promotion (eg, coupon, discount). From this data set of 155 249 tweets, we constructed a stratified sampling frame based on the price-related keywords and randomly sampled 5000 tweets (3.2%). Tweets were coded for product type and promotion type. Non-English tweets and tweets unrelated to a tobacco or cessation price promotion were excluded, leaving an analytic sample of 2847 tweets. The majority of tweets (97.0%) mentioned tobacco products while 3% mentioned tobacco cessation products. E-cigarettes were the most frequently mentioned product (90.1%), followed by cigarettes (5.4%). The most common type of price promotion mentioned across all products was a discount. About a third of all e-cigarette-related tweets included a discount code. Banned or restricted price promotions comprised about 3% of cigarette-related tweets. This study demonstrates that the vast majority of tweets offering price promotions focus on e-cigarettes. Future studies should examine the extent to which Twitter users, particularly youth, notice or engage with these price promotion tweets. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Transposes, L-Eigenvalues and Invariants of Third Order Tensors
Qi, Liqun
2017-01-01
Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order t...
Spinors, tensors and the covariant form of Dirac's equation
International Nuclear Information System (INIS)
Chen, W.Q.; Cook, A.H.
1986-01-01
The relations between tensors and spinors are used to establish the form of the covariant derivative of a spinor, making use of the fact that certain bilinear combinations of spinors are vectors. The covariant forms of Dirac's equation are thus obtained and examples in specific coordinate systems are displayed. (author)
Quasilocal energy and the Bel-Robinson tensor
International Nuclear Information System (INIS)
Krishnasamy, Ilangkovan
1985-01-01
The general-relativistic field equations are examined from the point of view of a local inertial observer and a quasilocal definitions of energy-momentum is thereby obtained. This definition relates to the Bel-Robinson tensor and the approach is shown to be consistent with the result obtained from the definition of energy given by Hawking. (author)
Superenergy tensors in the Einstein-Cartan theory of gravitation
International Nuclear Information System (INIS)
Garecki, J.
1981-01-01
In this paper we study systematically a generalization of the notion of ''superenergy tensors'' which has been introduced previously in the framework of the General Theory of Relativity on the Einstein-Cartan Theory of Gravitation. It is shown, by means of expansion in the normal coordinate system that the generalization is analytically simple only for the Einstein formulation of conservation laws. (author)
Black holes in vector-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Minamitsuji, Masato, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: r.kase@rs.tus.ac.jp, E-mail: masato.minamitsuji@tecnico.ulisboa.pt, E-mail: shinji@rs.kagu.tus.ac.jp [Centro Multidisciplinar de Astrofisica—CENTRA, Departamento de Fisica, Instituto Superior Tecnico—IST, Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2017-08-01
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.
Emergent symmetries in the canonical tensor model
Obster, Dennis; Sasakura, Naoki
2018-04-01
The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.
The Bayesian way to relate rhythm perception and production
Sadakata, M.; Desain, P.W.M.; Honing, H.J.
2006-01-01
Measurement of the perception and production of simple rhythmic patterns have been shown not to be in line in some cases. In this study it is demonstrated that a Bayesian approach provides a new way of understanding this difference, by formalizing the perceptual competition between mental representations and assuming possible nonuniform a priori probabilities of the rhythmic categories. Thus we can relate the two kinds of information and predict perception data from production data. In this a...
Tensor fields on orbits of quantum states and applications
Energy Technology Data Exchange (ETDEWEB)
Volkert, Georg Friedrich
2010-07-19
On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C{sub 0}-principal bundle H{sub 0} {yields} P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)
Tensor fields on orbits of quantum states and applications
International Nuclear Information System (INIS)
Volkert, Georg Friedrich
2010-01-01
On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C 0 -principal bundle H 0 → P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)
Evaluation of relational database products for the VAX
International Nuclear Information System (INIS)
Kannan, K.L.
1985-11-01
Four commercially available database products for the VAX/VMS operating system were evaluated for relative performance and ease of use. The products were DATATRIEVE, INGRES, Rdb, and S1032. Performance was measured in terms of elapsed time, CPU time, direct I/O counts, buffered I/O counts, and page faults. East of use is more subjective and has not been quantified here; however, discussion and tables of features as well as query syntax are included. This report describes the environment in which these products were evaluated and the characteristics of the databases used. All comparisons must be interpreted in the context of this setting
Evaluation of relational database products for the VAX
Energy Technology Data Exchange (ETDEWEB)
Kannan, K.L.
1985-11-01
Four commercially available database products for the VAX/VMS operating system were evaluated for relative performance and ease of use. The products were DATATRIEVE, INGRES, Rdb, and S1032. Performance was measured in terms of elapsed time, CPU time, direct I/O counts, buffered I/O counts, and page faults. East of use is more subjective and has not been quantified here; however, discussion and tables of features as well as query syntax are included. This report describes the environment in which these products were evaluated and the characteristics of the databases used. All comparisons must be interpreted in the context of this setting.
Incorporating anthropometry into design of ear-related products.
Liu, Bor-Shong
2008-01-01
To achieve mass customization and collaborative product design, human factors and ergonomics should play a key development role. The purpose of this study was to provide product designers with the anthropometic dimensions of outer ears for different demographic data, including gender and age. The second purpose was to compare the dimensions of various ear-related products (i.e., earphone, bluetooth earphone and ear-cup earphone) with the anthropometic database and recommend appropriate solutions for design. Two hundred subjects aged 20-59 was selected for this study and divided into four age stratifications. Further, three different dimensions of the outer ear (i.e., the earhole length, the ear connection length and the length of the pinna) were measured by superimposed grid photographic technique. The analysis of variance (ANOVA) was used to investigate the effects of gender, and age on ear dimensions. The results showed that all ear dimensions had significant gender effects. A comparison between the anthropometric dimensions and those of current products revealed that most current ear-related products need to be redesigned using anthropometric data. The shapes of earhole and pinna are not circular. Consequently, ear products need to be elongated so that users may feel more comfortably and not have the product slip off easily.
Applications of tensor functions in creep mechanics
International Nuclear Information System (INIS)
Betten, J.
1991-01-01
Within this contribution a short survey is given of some recent advances in the mathematical modelling of materials behaviour under creep conditions. The mechanical behaviour of anisotropic solids requires a suitable mathematical modelling. The properties of tensor functions with several argument tensors constitute a rational basis for a consistent mathematical modelling of complex material behaviour. This paper presents certain principles, methods, and recent successfull applications of tensor functions in solid mechanics. The rules for specifying irreducible sets of tensor invariants and tensor generators for material tensors of rank two and four are also discussed. Furthermore, it is very important that the scalar coefficients in constitutive and evolutional equations are determined as functions of the integrity basis and experimental data. It is explained in detail that these coefficients can be determined by using tensorial interpolation methods. Some examples for practical use are discussed. (orig./RHM)
Seamless warping of diffusion tensor fields
DEFF Research Database (Denmark)
Xu, Dongrong; Hao, Xuejun; Bansal, Ravi
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...
Theoretical study of the relativistic molecular rotational g-tensor
Energy Technology Data Exchange (ETDEWEB)
Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)
2014-11-21
An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.
Theoretical study of the relativistic molecular rotational g-tensor
International Nuclear Information System (INIS)
Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.
2014-01-01
An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found
The Topology of Symmetric Tensor Fields
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
On improving the efficiency of tensor voting
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim
2011-01-01
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor v...
The Riemann-Lovelock Curvature Tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D
The 1/ N Expansion of Tensor Models with Two Symmetric Tensors
Gurau, Razvan
2018-06-01
It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.
Illness related wage and productivity losses: Valuing 'presenteeism'.
Zhang, Wei; Sun, Huiying; Woodcock, Simon; Anis, Aslam
2015-12-01
One source of productivity loss due to illness is the reduced "quantity" or "quality" of labor input while working, often referred to as presenteeism. Illness-related presenteeism has been found to be potentially more costly than absenteeism. To value presenteeism, existing methods use wages as a proxy for marginal productivity at the firm level. However, wage may not equal marginal productivity in some scenarios. One instance is when a job involves team production and perfect substitutes for workers are not readily available. Using a Canadian linked employer-employee survey (2001-2005), we test whether relative wage equals relative marginal productivity among team workers and non-team workers with different frequencies of presenteeism (reduction at work due to illness). For the pooled cross-sectional estimates (2001, 2003, 2005) we obtain 13,755 observations with 6842 unique workplaces. There are 6490 observations for the first differences estimates from the odd years and 5263 observations for the first differences estimates from 2001 to 2002 and 2003 to 2004. We find that in both small and large firms, team workers with frequent reductions at work are less productive but earn similarly compared with non-team workers without reductions. We also find that in small firms, workers with occasional work reductions are more productive than workers without reductions, but the reverse is true in large firms. The study findings partially support the literature stating that productivity loss resulting from employee presenteeism could exceed wages if team work is involved. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Chevreton tensor and Einstein-Maxwell spacetimes conformal to Einstein spaces
International Nuclear Information System (INIS)
Bergqvist, Goeran; Eriksson, Ingemar
2007-01-01
In this paper, we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure radiation type and that it restricts the spacetimes to Petrov type N or O. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on a closed form, we settle by giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a C-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally C-spaces, but none of them are conformal to Einstein spaces
Characteristics of the Residual Stress tensor when filter width is larger than the Ozmidov scale
de Bragança Alves, Felipe Augusto; de Bruyn Kops, Stephen
2017-11-01
In stratified turbulence, the residual stress tensor is statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. We present approximations to the residual stress tensor that are derived analytically. These approximations are evaluated by filtering data from direct numerical simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved on up to 8192 × 8192 × 4096 grid points along with an isotropic homogeneous case resolved on 81923 grid points. It is found that the best possible scaling of the strain rate tensor yields a residual stress tensor (RST) that is less well statistically aligned with the exact RST than a randomly generated tensor. It is also found that, while a scaling of the strain rate tensor can dissipate the right amount of energy, it produces incorrect anisotropic dissipation, removing energy from the wrong components of the velocity vector. We find that a combination of the strain rate tensor and a tensor related to energy redistribution caused by a Newtonian fluid viscous stress yields an excellent tensorial basis for modelling the RST.
Dictionary-Based Tensor Canonical Polyadic Decomposition
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
New results for algebraic tensor reduction of Feynman integrals
Energy Technology Data Exchange (ETDEWEB)
Fleischer, Jochem [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Yundin, Valery [Copenhagen Univ. (Denmark). Niels Bohr International Academy and Discovery Center
2012-02-15
We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2{epsilon}. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)
New results for algebraic tensor reduction of Feynman integrals
International Nuclear Information System (INIS)
Fleischer, Jochem; Yundin, Valery
2012-02-01
We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2ε. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)
Partition-based Collaborative Tensor Factorization for POI Recommendation
Institute of Scientific and Technical Information of China (English)
Wenjing Luan; Guanjun Liu; Changjun Jiang; Liang Qi
2017-01-01
The rapid development of location-based social networks (LBSNs) provides people with an opportunity of better understanding their mobility behavior which enables them to decide their next location.For example,it can help travelers to choose where to go next,or recommend salesmen the most potential places to deliver advertisements or sell products.In this paper,a method for recommending points of interest (POIs) is proposed based on a collaborative tensor factorization (CTF) technique.Firstly,a generalized objective function is constructed for collaboratively factorizing a tensor with several feature matrices.Secondly,a 3-mode tensor is used to model all users' check-in behaviors,and three feature matrices are extracted to characterize the time distribution,category distribution and POI correlation,respectively.Thirdly,each user's preference to a POI at a specific time can be estimated by using CTF.In order to further improve the recommendation accuracy,PCTF (Partitionbased CTF) is proposed to fill the missing entries of a tensor after clustering its every mode.Experiments on a real checkin database show that the proposed method can provide more accurate location recommendation.
The tensor network theory library
Al-Assam, S.; Clark, S. R.; Jaksch, D.
2017-09-01
In this technical paper we introduce the tensor network theory (TNT) library—an open-source software project aimed at providing a platform for rapidly developing robust, easy to use and highly optimised code for TNT calculations. The objectives of this paper are (i) to give an overview of the structure of TNT library, and (ii) to help scientists decide whether to use the TNT library in their research. We show how to employ the TNT routines by giving examples of ground-state and dynamical calculations of one-dimensional bosonic lattice system. We also discuss different options for gaining access to the software available at www.tensornetworktheory.org.
Dirac tensor with heavy photon
Energy Technology Data Exchange (ETDEWEB)
Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2012-01-15
For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)
Relational dynamics in the multi-helices knowledge production system
DEFF Research Database (Denmark)
Thai, Thi Minh; Hjortsø, Carsten Nico Portefée
-level dynamics are characterized by political ambidexterity that enables the state to maintain control by privileging traditional science and education constituencies, and at the same time support the transition of the knowledge production system towards international methodology and quality standards through......Drawing on the triple helix framework and organizational institutionalism, this article applies a qualitative research approach to analyze structures, institutional logics, power relations that shape inter-organizational relations and the structuration of a knowledge production system...... in an emerging economy. Findings highlight the emergence of a fifth-helices knowledge production system includes the state, science and education, industry, international actors, and society. The system comprises two major segments, one associated with the traditional command economy and characterized...
Age-Related Differences in Idiom Production in Adulthood
Conner, Peggy S.; Hyun, Jungmoon; O'Connor Wells, Barbara; Anema, Inge; Goral, Mira; Monereau-Merry, Marie-Michelle; Rubino, Daniel; Kuckuk, Raija; Obler, Loraine K.
2011-01-01
To investigate whether idiom production was vulnerable to age-related difficulties, we asked 40 younger (ages 18-30) and 40 older healthy adults (ages 60-85) to produce idiomatic expressions in a story-completion task. Younger adults produced significantly more correct idiom responses (73%) than did older adults (60%). When older adults generated…
Elicited Production of Relative Clauses in Children with Williams Syndrome
Zukowski, Andrea
2009-01-01
Relative clauses have been implicated alternately as a strength and a weakness in the language of people with Williams Syndrome (WS). To clarify the facts, an elicited production test was administered to 10 people with WS (age 10-16 years), 10 typically developing children (age 4-7 years), and 12 typically developing adults. Nearly every WS…
Raman scattering tensors of tyrosine.
Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T
1998-01-01
Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).
Impact of product-related factors on immunogenicity of biotherapeutics.
Singh, Satish Kumar
2011-02-01
All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties. Copyright © 2010 Wiley-Liss, Inc.
Poisson-Jacobi reduction of homogeneous tensors
International Nuclear Information System (INIS)
Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P
2004-01-01
The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N
Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor
International Nuclear Information System (INIS)
Senovilla, Jose M M
2010-01-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved. (fast track communication)
Advertising, marketing and purchase behavior for energy-related products
Energy Technology Data Exchange (ETDEWEB)
Tiedemann, K.; Nelson, D.
1998-07-01
Energy conservation programs have relied heavily on incentives and regulatory standards to reduce residential energy consumption. However, in the changing market environment characterized by competitive pressures, alternative mechanisms such as marketing and promotions may increase substantially in importance compared to the demand-side management programs which have been the focus of most research. This paper describes the role of marketing and promotions in encouraging energy efficiency at the household level in British Columbia. The paper examines three related issues: first, the purchase process for energy-related products; second, the criteria used by customers in making purchase decisions; and third, the impact and effectiveness of alternative marketing tools. A key finding is the energy-related purchases do not fall into the impulse purchase category. There are two reasons for this: first, most of these products require installation and this requires a high level of commitment on the part of the purchaser; second, many energy-related products require a significant outlay of funds and this reduces impulse buying.
Tensor models, Kronecker coefficients and permutation centralizer algebras
Geloun, Joseph Ben; Ramgoolam, Sanjaye
2017-11-01
We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
Tensor Network Quantum Virtual Machine (TNQVM)
Energy Technology Data Exchange (ETDEWEB)
2016-11-18
There is a lack of state-of-the-art quantum computing simulation software that scales on heterogeneous systems like Titan. Tensor Network Quantum Virtual Machine (TNQVM) provides a quantum simulator that leverages a distributed network of GPUs to simulate quantum circuits in a manner that leverages recent results from tensor network theory.
The Scalar-Tensor Theory of Gravitation
International Nuclear Information System (INIS)
Ibanez, J
2003-01-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical
The stress energy tensor of a locally supersymmetric quantum field on a curved spacetime
International Nuclear Information System (INIS)
Koehler, M.
1995-04-01
For an analogon of the free Wess-Zumino model on Ricci flat spacetimes, the relation between a conserved 'supercurrent' and the point-separated improved energy momentum tensor is investigated and a similar relation as on Minkowski space is established. The expectation value of the latter in any globally Hadamard product state is found to be a priori finite in the coincidence limit if the theory is massive. On arbitrary globally hyperbolic spacetimes the 'supercurrent' is shown to be a well defined operator valued distribution on the GNS Hilbertspace of any globally Hadamard product state. Viewed as a new field, all n-point distributions exist, giving a new example for a Wightman field on that manifold. Moreover, it is shown that this field satisfies a new wave front set spectrum condition in a nontrivial way. (orig.)
Differential invariants for higher-rank tensors. A progress report
International Nuclear Information System (INIS)
Tapial, V.
2004-07-01
We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)
Beyond Low Rank: A Data-Adaptive Tensor Completion Method
Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning
2017-01-01
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...
Unique characterization of the Bel-Robinson tensor
International Nuclear Information System (INIS)
Bergqvist, G; Lankinen, P
2004-01-01
We prove that a completely symmetric and trace-free rank-4 tensor is, up to sign, a Bel-Robinson-type tensor, i.e., the superenergy tensor of a tensor with the same algebraic symmetries as the Weyl tensor, if and only if it satisfies a certain quadratic identity. This may be seen as the first Rainich theory result for rank-4 tensors
Tensor completion and low-n-rank tensor recovery via convex optimization
International Nuclear Information System (INIS)
Gandy, Silvia; Yamada, Isao; Recht, Benjamin
2011-01-01
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers
On the energy-momentum tensor in non-linear σ-models with torsion
International Nuclear Information System (INIS)
Dorn, H.; Otto, H.J.
1987-10-01
We study the renormalization properties of the energy-momentum tensor in a σ-model with torsion. Our normal product version contains besides the classical expression and the trace anomaly an off diagonal term proportional to the squared torsion. Specialized to a group manifold this term is crucial to reproduce the correct perturbative expansion of the energy-momentum tensor in Sugawara form. (orig.)
Anisotropic Conductivity Tensor Imaging of In Vivo Canine Brain Using DT-MREIT.
Jeong, Woo Chul; Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
We present in vivo images of anisotropic electrical conductivity tensor distributions inside canine brains using diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT). The conductivity tensor is represented as a product of an ion mobility tensor and a scale factor of ion concentrations. Incorporating directional mobility information from water diffusion tensors, we developed a stable process to reconstruct anisotropic conductivity tensor images from measured magnetic flux density data using an MRI scanner. Devising a new image reconstruction algorithm, we reconstructed anisotropic conductivity tensor images of two canine brains with a pixel size of 1.25 mm. Though the reconstructed conductivity values matched well in general with those measured by using invasive probing methods, there were some discrepancies as well. The degree of white matter anisotropy was 2 to 4.5, which is smaller than previous findings of 5 to 10. The reconstructed conductivity value of the cerebrospinal fluid was about 1.3 S/m, which is smaller than previous measurements of about 1.8 S/m. Future studies of in vivo imaging experiments with disease models should follow this initial trial to validate clinical significance of DT-MREIT as a new diagnostic imaging modality. Applications in modeling and simulation studies of bioelectromagnetic phenomena including source imaging and electrical stimulation are also promising.
Weyl curvature tensor in static spherical sources
International Nuclear Information System (INIS)
Ponce de Leon, J.
1988-01-01
The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed
On Lovelock analogs of the Riemann tensor
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement.
Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh
2017-08-01
Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
Nuclear and related techniques in animal production and health
International Nuclear Information System (INIS)
1986-01-01
The international symposium was attended by about 130 participants from 45 countries and included 83 scientific presentations of which 42 were posters. This volume covers four principal and interrelated topics: adaptation of animals to the environment, and animal reproduction, health and nutrition. Within each topic, consideration is given to those nuclear and related techniques currently employed in investigative research and their usefulness in studying animal production systems. Progress towards new areas of application and new techniques is also covered, particularly the development and practicability of immunoassay and related biotechnological methods for the diagnosis of livestock diseases. A separate abstract was prepared for each of the papers in this volume
Decomposing one-relator products of cyclic groups into free products with amalgamation
International Nuclear Information System (INIS)
Benyash-Krivets, V V
1998-01-01
The problem of the decomposition of one-relator products of cyclics into non-trivial free products with amalgamation is considered. Two theorems are proved, one of which is as follows. Let G= 2n =R m (a,b)=1>, where n≥0, m≥2, and R(a,b) is a cyclically reduced word containing b in the free group on a and b. Then G is a non-trivial free product with amalgamation. One consequence of this theorem is a proof of the conjecture of Fine, Levin, and Rosenberger that each two-generator one-relator group with torsion is a non-trivial free product with amalgamation
Projecting productivity losses for cancer-related mortality 2011 - 2030.
Pearce, Alison; Bradley, Cathy; Hanly, Paul; O'Neill, Ciaran; Thomas, Audrey Alforque; Molcho, Michal; Sharp, Linda
2016-10-18
When individuals stop working due to cancer this represents a loss to society - the loss of productivity. The aim of this analysis was to estimate productivity losses associated with premature mortality from all adult cancers and from the 20 highest mortality adult cancers in Ireland in 2011, and project these losses until 2030. An incidence-based method was used to estimate the cost of cancer deaths between 2011 and 2030 using the Human Capital Approach. National data were used for cancer, population and economic inputs. Both paid work and unpaid household activities were included. Sensitivity analyses estimated the impact of assumptions around future cancer mortality rates, retirement ages, value of unpaid work, wage growth and discounting. The 233,000 projected deaths from all invasive cancers in Ireland between 2011 and 2030 will result in lost productivity valued at €73 billion; €13 billion in paid work and €60 billion in household activities. These losses represent approximately 1.4 % of Ireland's GDP annually. The most costly cancers are lung (€14.4 billion), colorectal and breast cancer (€8.3 billion each). However, when viewed as productivity losses per cancer death, testis (€364,000 per death), cervix (€155,000 per death) and brain cancer (€136,000 per death) are most costly because they affect working age individuals. An annual 1 % reduction in mortality reduces productivity losses due to all invasive cancers by €8.5 billion over 20 years. Society incurs substantial losses in productivity as a result of cancer-related mortality, particularly when household production is included. These estimates provide valuable evidence to inform resource allocation decisions in cancer prevention and control.
Asthma-related productivity losses in Alberta, Canada
Directory of Open Access Journals (Sweden)
Nguyen X Thanh
2009-03-01
Full Text Available Nguyen X Thanh, Arto Ohinmaa, Charles YanInstitute of Health Economics, Edmonton, Alberta, CanadaObjectives: To estimate the number and cost of asthma-related productivity loss days due to absenteeism and presenteeism (at work but not fully functioning in Alberta in 2005.Methods: Using data from the 2005 Canadian Community Health Survey, this study focused on people of working age (18–64 years, who reported having an asthma diagnosis. Total asthma-related disability days, including in-bed days and activity-restricted days, were estimated by multiplying the difference in the means of total disability days between asthmatics and nonasthmatics adjusted for sociodemographic characteristics and other health conditions by a multiple linear regression, with the number of asthmatics in the population. Number of productivity loss days was a sum between the number of in-bed days (absenteeism and the number of activity-restricted days multiplied by a reduction in functional level (presenteeism, adjusted for five working days per week. Other data from Alberta or Canadian published literature, such as a reduction in functional level of 20%–30%, a labor participation rate of 73%, and an average wage of $158 per day in 2005, were also used for analyses.Results: The prevalence of asthma was estimated at 8.5% among approximately 2.1 million people of working age in Alberta in 2005. The difference in the means of total disability days between asthmatics and nonasthmatics was 0.487 (95% CI: 0.286–0.688 in a period of two weeks or 12.7 (7.5–17.9 in one year. With the reduction in functional level of 20%–30%, the number of asthma-related productivity loss days was estimated from 442 (259–624 to 533 (313–753 thousand, respectively. The corresponding cost was from $70 ($41–$99 to $84 ($49–$119 million. Of these, the presenteeism accounted for 42% to 52%.Conclusions: The results suggest that an improvement in the controlling of asthma could have a
The total position-spread tensor: Spin partition
International Nuclear Information System (INIS)
El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry; Brea, Oriana; Fertitta, Edoardo; Bendazzoli, Gian Luigi
2015-01-01
The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H n (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system
Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited
Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.
The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.
Projectors and seed conformal blocks for traceless mixed-symmetry tensors
International Nuclear Information System (INIS)
Costa, Miguel S.; Hansen, Tobias; Penedones, João; Trevisani, Emilio
2016-01-01
In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length l_1 of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in l_1 for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.
Projectors and seed conformal blocks for traceless mixed-symmetry tensors
Energy Technology Data Exchange (ETDEWEB)
Costa, Miguel S. [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Theory Division, Department of Physics, CERN, CH-1211 Genève 23 (Switzerland); Hansen, Tobias [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Penedones, João [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Theory Division, Department of Physics, CERN, CH-1211 Genève 23 (Switzerland); Fields and Strings Laboratory, Institute of Physics, EPFL, CH-1015 Lausanne (Switzerland); Trevisani, Emilio [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2016-07-05
In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length l{sub 1} of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in l{sub 1} for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.
Scale transformations, the energy-momentum tensor, and the equation of state
International Nuclear Information System (INIS)
Carruthers, P.
1989-01-01
The Equation of State (EOS) relates diagonal elements of the energy-momentum tensor θ μν . The first moment of the energy-momentum tensor generates scale transformations. The virial theorem, a consequence of the behavior of the energy density under scale transformations, allows one to eliminate the kinetic energy in terms of the potential terms. The trace theorem for the energy-momentum tensor expresses ε-3p in terms of ensemble averages of scale-breaking operators, allowing a new approach to the EOS. 10 refs
Projectors and seed conformal blocks for traceless mixed-symmetry tensors
Costa, Miguel S.; Penedones, João; Trevisani, Emilio
2016-01-01
In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length $l_1$ of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in $l_1$ for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.
Complete stress tensor determination by microearthquake analysis
Slunga, R.
2010-12-01
Jones 1984 found that half of the shallow strike-slip EQ in California had at least one M>2 foreshock. By the Gutenberg law this means at least 3-20 M>0 (low b-value 0.4-0.8). deformations within the crust. This was confirmed by observations in Iceland after 1990 when anew seismic network in Iceland operated by IMO started. Like the Parkfield project in California the SIL network in Iceland was established in an area predicted (Einarsson et al 1981, Stefansson and Halldorsson 1988) to be struck by major EQs within decades of years. The area of main interest have a detection threshold of M=0. A physical approach was chosen to the earthquake warning problem (Stefansson et al 1993) and therefore all microearthquakes were analyzed for FPS by the spectral amplitude method (Slunga 1981). As the shear slip is caused by the in situ stress it is logical to investigate what bounds the FPS puts on the stress tensor. McKenzie 1969 assumed that the earthquake takes place in a crust containing only one fracture, the fault plane. He found that in s uch a case only very weak constraints could be put on the stress. This was widely accepted t o be valid also for microearthquakes in the real crust and lead to methods (Angelier 1978, G ephart and Forsythe 1984 etc) to put four constraints on the stress tensor by assuming that the same stress tensor is causing the slip on four or more different fractures. Another and more realistic approach is to assume that the crust have frequent fractures with almost all orientations. In such a case one can rely on Coulomb's failure criterion for isotropic mat erial (gives four constraints) instead of the weaker Bolt's criterion (giving only one const raint). One obvious fifth constraint is to require the vertical stress to equal the lithosta tic pressure. A sixth constraint is achieved by requiring that the deviatoric elastic energy is minimized. The water pressure is also needed for the fourth constraint by Coulomb (CFS=0 ). It can be related to
The tensor part of the Skyrme energy density functional. I. Spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)
2007-04-15
agreement of the single-particle spectra in doubly-magic nuclei is deteriorated, which can be traced back to features of the single-particle spectra that are not related to the tensor terms. We conclude that the currently used central and spin-orbit parts of the Skyrme energy density functional are not flexible enough to allow for the presence of large tensor terms. (authors)
Technology diffusion of energy-related products in residential markets
Energy Technology Data Exchange (ETDEWEB)
Davis, L.J.; Bruneau, C.L.
1987-05-01
Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.
World uranium exploration, resources, production and related activities
International Nuclear Information System (INIS)
Hanly, A.
2014-01-01
A Nuclear Energy Series publication entitled “World Uranium Exploration, Resources, Production and Related Activities” (WUERPRA) will soon be published by the IAEA. The objective of the publication is to provide a comprehensive compilation of historic uranium exploration, resources, production and related activities based primarily on information from the 1966 to 2009 editions of the publication “Uranium Resources, Production and Demand”, a joint publication of the International Atomic Energy Agency and the Nuclear Energy Agency/Organization for Economic Cooperation and Development commonly known as the ‘Red Book’. This has been supplemented by historic information from other reliable sources. The publications also include, where enough information was available, descriptions of the relative potential for discovery of new uranium resources on a per country basis. To recover complete historic information it is frequently necessary to refer to earlier editions of the Red Book, many of which may not be readily available. This publication aims to provide one comprehensive source for much of this type of information which will reduce the effort required to prepare future editions of the Red Book, as well as make the historic Red Book information, together with select related information from other sources, more readily available to all users with an interest in uranium. WUERPRA comprises 6 volumes containing 164 country reports, each organized by region; Volume 1: Africa (53 countries); Volume 2: Central, Eastern and Southeastern Europe (25 countries); Volume 3: Southeastern Asia, Pacific, East Asia (18 countries); Volume 4: Western Europe (22 countries); Volume 5: Middle East, Central and Southern Asia (19 countries), and; Volume 6: North America, Central America and South America (27 countries). The report also contains information on countries that have not reported to the Red Book. The poster will summarize select major highlights from each volume
Conservation laws and stress-energy-momentum tensors for systems with background fields
Energy Technology Data Exchange (ETDEWEB)
Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Koeln (Germany); Tucker, Robin W., E-mail: r.tucker@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)
2012-10-15
This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.
Tensor network method for reversible classical computation
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
On improving the efficiency of tensor voting.
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim
2011-11-01
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
International Nuclear Information System (INIS)
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
One-loop tensor Feynman integral reduction with signed minors
International Nuclear Information System (INIS)
Fleischer, J.; Yundin, V.
2011-12-01
We present an algebraic approach to one-loop tensor integral reduction. The integrals are presented in terms of scalar one- to four-point functions. The reduction is worked out explicitly until five-point functions of rank five. The numerical C++ package PJFry evaluates tensor coefficients in terms of a basis of scalar integrals, which is provided by an external library, e.g. QCDLoop. We shortly describe installation and use of PJFry. Examples for numerical results are shown, including a special treatment for small or vanishing inverse four-point Gram determinants. An extremely efficient application of the formalism is the immediate evaluation of complete contractions of the tensor integrals with external momenta. This leads to the problem of evaluating sums over products of signed minors with scalar products of chords. Chords are differences of external momenta. These sums may be evaluated analytically in a systematic way. The final expressions for the numerical evaluation are then compact combinations of the contributing basic scalar functions. (orig.)
One-loop tensor Feynman integral reduction with signed minors
Energy Technology Data Exchange (ETDEWEB)
Fleischer, J. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Yundin, V. [Copenhagen Univ. (Denmark). Niels Bohr International Academy and Discovery Center
2011-12-15
We present an algebraic approach to one-loop tensor integral reduction. The integrals are presented in terms of scalar one- to four-point functions. The reduction is worked out explicitly until five-point functions of rank five. The numerical C++ package PJFry evaluates tensor coefficients in terms of a basis of scalar integrals, which is provided by an external library, e.g. QCDLoop. We shortly describe installation and use of PJFry. Examples for numerical results are shown, including a special treatment for small or vanishing inverse four-point Gram determinants. An extremely efficient application of the formalism is the immediate evaluation of complete contractions of the tensor integrals with external momenta. This leads to the problem of evaluating sums over products of signed minors with scalar products of chords. Chords are differences of external momenta. These sums may be evaluated analytically in a systematic way. The final expressions for the numerical evaluation are then compact combinations of the contributing basic scalar functions. (orig.)
Sparse tensor spherical harmonics approximation in radiative transfer
International Nuclear Information System (INIS)
Grella, K.; Schwab, Ch.
2011-01-01
The stationary monochromatic radiative transfer equation is a partial differential transport equation stated on a five-dimensional phase space. To obtain a well-posed problem, boundary conditions have to be prescribed on the inflow part of the domain boundary. We solve the equation with a multi-level Galerkin FEM in physical space and a spectral discretization with harmonics in solid angle and show that the benefits of the concept of sparse tensor products, known from the context of sparse grids, can also be leveraged in combination with a spectral discretization. Our method allows us to include high spectral orders without incurring the 'curse of dimension' of a five-dimensional computational domain. Neglecting boundary conditions, we find analytically that for smooth solutions, the convergence rate of the full tensor product method is retained in our method up to a logarithmic factor, while the number of degrees of freedom grows essentially only as fast as for the purely spatial problem. For the case with boundary conditions, we propose a splitting of the physical function space and a conforming tensorization. Numerical experiments in two physical and one angular dimension show evidence for the theoretical convergence rates to hold in the latter case as well.
Fragmentation of tensor polarized deuterons into cumulative pions
International Nuclear Information System (INIS)
Afanas'ev, S.; Arkhipov, V.; Bondarev, V.
1998-01-01
The tensor analyzing power T 20 of the reaction d polarized + A → π - (0 0 ) + X has been measured in the fragmentation of 9 GeV tensor polarized deuterons into pions with momenta from 3.5 to 5.3 GeV/c on hydrogen, beryllium and carbon targets. This kinematic range corresponds to the region of cumulative hadron production with the cumulative variable x c from 1.08 to 1.76. The values of T 20 have been found to be small and consistent with positive values. This contradicts the predictions based on a direct mechanism assuming NN collision between a high momentum nucleon in the deuteron and a target nucleon (NN → NNπ)
Bruijnis, M.R.N.; Meijboom, F.L.B.; Stassen, E.N.
2016-01-01
The aim of this chapter is to analyse the importance of longevity in relation to the welfare of production animals. I hypothesize that the concept of longevity helps to support the moral intuition that premature culling of animals is a moral wrong. The analysis shows that the interpretation of the
Closed String Thermodynamics and a Blue Tensor Spectrum
Brandenberger, Robert H; Patil, Subodh P
2014-01-01
The BICEP-2 team has reported the detection of primordial cosmic microwave background B-mode polarization, with hints of a suppression of power at large angular scales relative to smaller scales. Provided that the B-mode polarization is due to primordial gravitational waves, this might imply a blue tilt of the primordial gravitational wave spectrum. Such a tilt would be incompatible with standard inflationary models, although it was predicted some years ago in the context of a mechanism that thermally generates the primordial perturbations through a Hagedorn phase of string cosmology. The purpose of this note is to encourage greater scrutiny of the data with priors informed by a model that is immediately falsifiable, but which \\textit{predicts} features that might be favoured by the data-- namely a blue tensor tilt with an induced and complimentary red tilt to the scalar spectrum, with a naturally large tensor to scalar ratio that relates to both.
Covariant conserved currents for scalar-tensor Horndeski theory
Schmidt, J.; Bičák, J.
2018-04-01
The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory.
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Scalable Tensor Factorizations with Missing Data
DEFF Research Database (Denmark)
Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.
2010-01-01
of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP...... is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...
Surface tensor estimation from linear sections
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel
From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....
Surface tensor estimation from linear sections
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel
2015-01-01
From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....
Scalable tensor factorizations for incomplete data
DEFF Research Database (Denmark)
Acar, Evrim; Dunlavy, Daniel M.; KOlda, Tamara G.
2011-01-01
to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP...... experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 × 1000 × 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP...
Tensor decomposition in electronic structure calculations on 3D Cartesian grids
International Nuclear Information System (INIS)
Khoromskij, B.N.; Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.
2009-01-01
In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h 3 ) convergence in the grid-size h=O(n -1 ). Moreover, this requires O(3rn+r 3 ) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH 4 molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10 -6 hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.
Composite antisymmetric tensor bosons in a four-fermion interaction model
International Nuclear Information System (INIS)
Dmitrasinovic, V.
2000-01-01
We discuss the phenomenological consequences of the U A (1) symmetry-breaking two-flavour four-fermion antisymmetric (AS) Lorentz tensor interaction Lagrangians. We use the recently developed methods that respect the 'duality' symmetry of this interaction. Starting from the Fierz transform of the two-flavour 't Hooft interaction (a four-fermion Lagrangian with AS tensor interaction terms augmented by Nambu and Jona-Lasinio (NJL)-type Lorentz scalar interaction responsible for dynamical symmetry breaking and quark mass generation), we find the following. (a) Four antisymmetric tensor and four AS pseudotensor bosons exist which satisfy a mass relation previously derived for scalar and pseudoscalar mesons from the 't Hooft interaction. (b) Antisymmetric tensor bosons mix with vector bosons via one-fermion-loop effective couplings so that both kinds of bosons have their masses shifted and the fermions (quarks) acquire anomalous magnetic moment form factors that explicitly violate chiral symmetry. (c) The mixing of massive AS tensor fields with vector fields leads to two sets of spin-1 states. The second set of spin-1 mesons is heavy and has not been observed. Moreover, at least one member of this second set is tachyonic, under standard assumptions about the source and strength of the AS tensor interaction. The tachyonic state also shows up as a pole in the space-like region of the electromagnetic form factors. (d) The mixing of axial-vector fields with antisymmetric tensor bosons is proportional to the (small) isospin-breaking up-down quark mass difference, so the mixing-induced mass shift is negligible. (e) The AS tensor version of the Veneziano-Witten U A (1) symmetry-breaking interaction does not lead to tachyons, or any AS tensor field propagation to leading order in N C . (author)
Compact stars in vector-tensor-Horndeski theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada)
2017-01-15
In this paper, we will analyze a theory of modified gravity, in which the field content of general relativity will be increased to include a vector field. We will use the Horndeski formalism to non-minimally couple this vector field to the metric. As we will be using the Horndeski formalism, this theory will not contain Ostrogradsky ghost degree of freedom. We will analyze compact stars using this vector-tensor-Horndeski theory. (orig.)
Local transformations of units in scalar-tensor cosmology
International Nuclear Information System (INIS)
Catena, R.; Pietroni, M.; Scarabello, L.; Padua Univ.
2006-10-01
The physical equivalence of Einstein and Jordan frame in Scalar Tensor theories has been explained by Dicke in 1962: they are related by a local transformation of units. We discuss this point in a cosmological framework. Our main result is the construction of a formalism in which all the physical observables are frame-invariant. The application of this approach to CMB codes is at present under analysis. (orig.)
Structural properties of the self-conjugate SU(3) tensor operators
International Nuclear Information System (INIS)
Lohe, M.A.; Biedenharn, L.C.; Louck, J.D.
1977-01-01
Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns
Tucker tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-04-20
Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments
TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow
Hafner, Danijar; Davidson, James; Vanhoucke, Vincent
2017-01-01
We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...
Reconstruction of convex bodies from surface tensors
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus
. The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available...... tensors up to rank s. This is used to establish consistency of the developed reconstruction algorithm....
Reconstruction of convex bodies from surface tensors
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus
2016-01-01
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...
Energy-momentum tensor in scalar QED
International Nuclear Information System (INIS)
Joglekar, S.D.; Misra, A.
1988-01-01
We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE
Unsupervised Tensor Mining for Big Data Practitioners.
Papalexakis, Evangelos E; Faloutsos, Christos
2016-09-01
Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.
Correlators in tensor models from character calculus
Directory of Open Access Journals (Sweden)
A. Mironov
2017-11-01
Full Text Available We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.
Loop optimization for tensor network renormalization
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
An introduction to linear algebra and tensors
Akivis, M A; Silverman, Richard A
1978-01-01
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Effects of tensor forces in nuclei
International Nuclear Information System (INIS)
Tanihata, Isao
2013-01-01
Recent studies of nuclei far from the stability line have revealed drastic changes in nuclear orbitals and reported the appearance of new magic numbers and the disappearance of magic numbers observed at the stability line. One of the important reasons for such changes is considered to be because of the effect of tensor forces on nuclear structure. Although the role of tensor forces in binding very light nuclei such as deuterons and 4 He has been known, direct experimental evidence for the effect on nuclear structure is scarce. In this paper, I review known effects of tensor forces in nuclei and then discuss the recently raised question of s–p wave mixing in a halo nucleus of 11 Li. Following these reviews, the development of a new experiment to see the high-momentum components due to the tensor forces is discussed and some of the new data are presented. (paper)
Transcriptional regulation of genes related to progesterone production.
Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru
2015-01-01
Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.
The energy–momentum tensor(s in classical gauge theories
Directory of Open Access Journals (Sweden)
Daniel N. Blaschke
2016-11-01
Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David
2013-08-07
Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).
Estimation of Uncertainties of Full Moment Tensors
2017-10-06
For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year
Superconformal tensor calculus in five dimensions
International Nuclear Information System (INIS)
Fujita, Tomoyuki; Ohashi, Keisuke
2001-01-01
We present a full superconformal tensor calculus in five spacetime dimensions in which the Weyl multiplet has 32 Bose plus 32 Fermi degrees of freedom. It is derived using dimensional reduction from the 6D superconformal tensor calculus. We present two types of 32+32 Weyl multiplets, a vector multiplet, linear multiplet, hypermultiplet and nonlinear multiplet. Their superconformal transformation laws and the embedding and invariant action formulas are given. (author)
Goldsborough, Peter
2016-01-01
Deep learning is a branch of artificial intelligence employing deep neural network architectures that has significantly advanced the state-of-the-art in computer vision, speech recognition, natural language processing and other domains. In November 2015, Google released $\\textit{TensorFlow}$, an open source deep learning software library for defining, training and deploying machine learning models. In this paper, we review TensorFlow and put it in context of modern deep learning concepts and ...
Diffusion tensor MRI: clinical applications
International Nuclear Information System (INIS)
Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose
2005-01-01
Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)
Mixed symmetry tensors in the worldline formalism
Energy Technology Data Exchange (ETDEWEB)
Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)
2016-05-10
We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.
Productivity loss at work; health-related and work-related factors.
van den Heuvel, Swenne G; Geuskens, Goedele A; Hooftman, Wendela E; Koppes, Lando L J; van den Bossche, Seth N J
2010-09-01
Productivity loss is an increasing problem in an aging working population that is decreasing in numbers. The aim of this study is to identify work-related and health-related characteristics associated with productivity loss, due to either sickness absence or reduced performance at work. In this cross-sectional study, data of the Netherlands Working Conditions Survey of 2007 were used, which includes a national representative sample of 22,759 employees aged 15 to 64 years. Demographic characteristics, health-related and work-related factors were assessed with a questionnaire. Logistic regression analyses were carried out to study the relationship of work-related and health-related factors with low performance at work and sickness absence in the past 12 months. Poor general health, the number of longstanding health conditions, and most types of longstanding health conditions were associated with productivity loss. Health-related factors were in general stronger associated with sickness absence than with low performance at work. Performance: poor health OR 1.54 CI 1.38-1.71, >1 health conditions OR 1.21 CI 1.09-1.35; sickness absence: poor health OR 2.62 CI 2.33-2.93, >1 health conditions OR 2.47 CI 2.21-2.75. Of the different types of longstanding health conditions, only psychological complaints and to a small extent musculoskeletal symptoms, were associated with low performance (respectively OR 1.54 CI 1.27-1.87; OR 1.09 CI 1.00-1.18). Low performance at work was less likely among employees with high physically demanding work (shift work OR 0.70 CI 0.63-0.76, using force OR 0.78 CI 0.72-0.84, and repetitive movements OR 0.74 CI 0.70-0.79). Psychosocial factors were stronger associated with low performance at work than with sickness absence (performance: job autonomy OR 1.28 CI 1.21-1.37, job demands OR 1.23 CI 1.16-1.31, emotionally demanding work OR 1.73 CI 1.62-1.85; sickness absence: job autonomy ns, job demands OR 1.09 CI 1.03-1.17, emotionally demanding work OR
MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.
Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K
2015-04-01
Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.
On the concircular curvature tensor of Riemannian manifolds
International Nuclear Information System (INIS)
Rahman, M.S.; Lal, S.
1990-06-01
Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs
DEFF Research Database (Denmark)
Knudsen, Mette Præst; Schleimer, Stephanie
should be hired. For the latter case, these employees’ individual careers must be developed internally once hired. The paper therefore carries important implication for the innovation management literature and related human resource practices at different organizational levels.......This study examines how manufacturing firms should organize their human resources by maximizing the value of individual employees for different forms of innovations. In particular, it examines the hiring, developing, and structural organization of human resources for optimizing different innovation...... the value of human resource hiring and developing practices for new product development success; organizations will find it more beneficial to invest predominantly in employees with the highest possible educational level, whilst for product-related service innovations; employees with more general skills...
Risk communication related to animal products derived from biotechnology.
McCrea, D
2005-04-01
Previous chapters of this review have dealt with the key considerations related to the application of biotechnology in veterinary science and animal production. This article explores the theory and practice of risk communication and sets out the basic principles for good risk communication when dealing with new technologies, uncertainty, and cautious and sceptical consumers. After failure to communicate with consumers and stakeholders about the risk to human health from bovine spongiform encephalopathy (BSE) in the 1990s, Government Agencies in the United Kingdom have made significant improvements in risk communication. The official inquiry that followed the BSE crisis concluded that a policy of openness was the correct approach, and this article emphasises the importance of consultation, consistency and transparency. There are, however, many different factors that affect public perception of risk (religious, political, social, cultural, etc.) and developing effective risk communication strategies must take all of these complex issues into consideration.
Long term energy-related environmental issues of copper production
Energy Technology Data Exchange (ETDEWEB)
Alvarado, S. [University of Chile, Santiago (Chile). Dept. of Mechanical Engineering; Maldonado, P.; Barrios, A.; Jaques, I. [University of Chile, Santiago (Chile). Energy Research Program
2002-02-01
Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO{sub 2}/ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO{sub 2}/t of refined copper content (56% lower than in 1994). CO{sub 2} emissions have been estimated considering both fuel and electricity process requirements. (author)
Long term energy-related environmental issues of copper production
International Nuclear Information System (INIS)
Alvarado, S.; Maldonado, P.; Barrios, A.; Jaques, I.
2002-01-01
Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO 2 /ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO 2 /t of refined copper content (56% lower than in 1994). CO 2 emissions have been estimated considering both fuel and electricity process requirements. (author)
Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio
2017-07-01
The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.
On the (1,1)-tensor bundle with Cheeger–Gromoll type metric
Indian Academy of Sciences (India)
The main purpose of the present paper is to construct Riemannian almost product structures on the (1, 1)-tensor bundle equipped with Cheeger–Gromoll type metric over a Riemannian manifold and present some results concerning these structures. Keywords. Almost product structure; Cheeger–Gromoll type metric; metric ...
Marin Quintero, Maider J.
2013-01-01
The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…
Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.
Tensor network state correspondence and holography
Singh, Sukhwinder
2018-01-01
In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.
Tweeting Earthquakes using TensorFlow
Casarotti, E.; Comunello, F.; Magnoni, F.
2016-12-01
The use of social media is emerging as a powerful tool for disseminating trusted information about earthquakes. Since 2009, the Twitter account @INGVterremoti provides constant and timely details about M2+ seismic events detected by the Italian National Seismic Network, directly connected with the seismologists on duty at Istituto Nazionale di Geofisica e Vulcanologia (INGV). Currently, it updates more than 150,000 followers. Nevertheless, since it provides only the manual revision of seismic parameters, the timing (approximately between 10 and 20 minutes after an event) has started to be under evaluation. Undeniably, mobile internet, social network sites and Twitter in particular require a more rapid and "real-time" reaction. During the last 36 months, INGV tested the tweeting of the automatic detection of M3+ earthquakes, studying the reliability of the information both in term of seismological accuracy that from the point of view of communication and social research. A set of quality parameters (i.e. number of seismic stations, gap, relative error of the location) has been recognized to reduce false alarms and the uncertainty of the automatic detection. We present an experiment to further improve the reliability of this process using TensorFlow™ (an open source software library originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization).
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
Eckart frame vibration-rotation Hamiltonians: Contravariant metric tensor
International Nuclear Information System (INIS)
Pesonen, Janne
2014-01-01
Eckart frame is a unique embedding in the theory of molecular vibrations and rotations. It is defined by the condition that the Coriolis coupling of the reference structure of the molecule is zero for every choice of the shape coordinates. It is far from trivial to set up Eckart kinetic energy operators (KEOs), when the shape of the molecule is described by curvilinear coordinates. In order to obtain the KEO, one needs to set up the corresponding contravariant metric tensor. Here, I derive explicitly the Eckart frame rotational measuring vectors. Their inner products with themselves give the rotational elements, and their inner products with the vibrational measuring vectors (which, in the absence of constraints, are the mass-weighted gradients of the shape coordinates) give the Coriolis elements of the contravariant metric tensor. The vibrational elements are given as the inner products of the vibrational measuring vectors with themselves, and these elements do not depend on the choice of the body-frame. The present approach has the advantage that it does not depend on any particular choice of the shape coordinates, but it can be used in conjunction with all shape coordinates. Furthermore, it does not involve evaluation of covariant metric tensors, chain rules of derivation, or numerical differentiation, and it can be easily modified if there are constraints on the shape of the molecule. Both the planar and non-planar reference structures are accounted for. The present method is particular suitable for numerical work. Its computational implementation is outlined in an example, where I discuss how to evaluate vibration-rotation energies and eigenfunctions of a general N-atomic molecule, the shape of which is described by a set of local polyspherical coordinates
Susceptibility tensor imaging (STI) of the brain.
Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu
2017-04-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Susceptibility Tensor Imaging (STI) of the Brain
Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu
2016-01-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169
Off-shell N = 2 tensor supermultiplets
International Nuclear Information System (INIS)
Wit, Bernard de; Saueressig, Frank
2006-01-01
A multiplet calculus is presented for an arbitrary number n of N = 2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity enables the derivation of a large class of supergravity Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkaehler or quaternion-Kaehler target spaces with at least n abelian isometries. It is demonstrated how to use the calculus for the construction of Lagrangians containing higher-derivative couplings of tensor multiplets. For the application of the c-map between vector and tensor supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this map is proposed. Various other implications of the results are discussed. As an example an elegant derivation of the classification of 4-dimensional quaternion-Kaehler manifolds with two commuting isometries is given
Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning
2015-01-01
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio
2014-06-01
Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.
Energy-momentum tensor in the fermion-pairing model
International Nuclear Information System (INIS)
Kawati, S.; Miyata, H.
1980-01-01
The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory
(Ln-bar, g)-spaces. Ordinary and tensor differentials
International Nuclear Information System (INIS)
Manoff, S.; Dimitrov, B.
1998-01-01
Different types of differentials as special cases of differential operators acting on tensor fields over (L n bar, g)-spaces are considered. The ordinary differential, the covariant differential as a special case of the covariant differential operator, and the Lie differential as a special case of the Lie differential operator are investigated. The tensor differential and its special types (Covariant tensor differential, and Lie tensor differential) are determined and their properties are discussed. Covariant symmetric and antisymmetric (external) tensor differentials, Lie symmetric, and Lie antisymmetric (external) tensor differentials are determined and considered over (L n bar, g)-spaces
DEFF Research Database (Denmark)
Ferraz, Mariana; Pigosso, Daniela Cristina Antelmi; Teixeira, Cláudia Echevenguá
2013-01-01
Environmental legislation is increasingly changing its focus from end-of-pipe approaches to a life cycle perspective. Therefore, manufacturing companies are increasingly identifying the need of deploying and incorporating product-related environmental requirements into the product development...... process. This paper presents twelve guidelines, clustered into three groups, to support companies in the identification, analysis and deployment of product requirements from product-related environmental legislation....
Zsigmond, Ferge
2014-11-30
On 10th of July 2014 the European Court of Justice made in his decisions in relation to the cases D. (C-358/13) and G. (C-181/14) an interpretation, that the concept of 'medicinal product' according to the law of the European Union does not include the materials, which are - as not covering substances, such as those at issue in the main proceedings, which produce effects that merely modify physiological functions but which are not such as to have any beneficial effects, either immediately or in the long term, on human health, are consumed solely to induce a state of intoxication and are, as such, harmful to human health. The Court made his interpretation after the request for preliminary ruling from the Bundesgerichtshof (the High Court of Justice in Germany). The Court had to decide in two criminal procedures, whether for the retail of mixtures including syntetic canabinoids, such as complements of marihuana, due the fact that they are "unsafe medicinal products", a criminal proceeding can be initiated or not. The Ordinary Courts had two persons (D. and G.) for selling the unsafe medicinal products sentenced to one year and nine months imprisonment, and suspension (D.), and sentenced (G.) to four years and six months imprisonment and fined with a charge of two hundred thousand Euro. The retail of herb mixtures containing, inter alia, synthetic cannabinoids, did not fall under the German law on narcotic drugs at the material time, resulting that the German Authorities could not initiate a criminal procedure.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Federated Tensor Factorization for Computational Phenotyping
Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian
2017-01-01
Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165
Tensor calculus for engineers and physicists
de Souza Sánchez Filho, Emil
2016-01-01
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...
Exploring extra dimensions through inflationary tensor modes
Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas
2018-03-01
Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.
On an uninterpretated tensor in Dirac's theory
International Nuclear Information System (INIS)
Costa de Beauregard, O.
1989-01-01
Franz, in 1935, deduced systematically from the Dirac equation 10 tensorial equations, 5 with a mechanical interpretation, 5 with an electromagnetic interpretation, which are also consequences of Kemmer's formalism for spins 1 and 0; Durand, in 1944, operating similarly with the second order Dirac equation, obtained, 10 equations, 5 of which expressing the divergences of the Gordon type tensors. Of these equations, together with the tensors they imply, some are easily interpreted by reference to the classical theories, some other remain uniterpreted. Recently (1988) we proposed a theory of the coupling between Einstein's gravity field and the 5 Franz mechanical equations, yielding as a bonus the complete interpretation of the 5 Franz mechanical equations. This is an incitation to reexamine the 5 electromagnetic equations. We show here that two of these, together with one of the Durand equations, implying the same tensor, remain uninterpreted. This is proposed as a challenge to the reader's sagacity [fr
The Riemann-Lovelock curvature tensor
International Nuclear Information System (INIS)
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)
Aspects of the Antisymmetric Tensor Field
Lahiri, Amitabha
1991-02-01
With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.
Diffusion tensor imaging in spinal cord compression
International Nuclear Information System (INIS)
Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin
2012-01-01
Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression
Generating scale-invariant tensor perturbations in the non-inflationary universe
International Nuclear Information System (INIS)
Li, Mingzhe
2014-01-01
It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.
Generating scale-invariant tensor perturbations in the non-inflationary universe
Directory of Open Access Journals (Sweden)
Mingzhe Li
2014-09-01
Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.
Reconstruction of convex bodies from surface tensors
DEFF Research Database (Denmark)
Kousholt, Astrid; Kiderlen, Markus
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...
Improving Tensor Based Recommenders with Clustering
DEFF Research Database (Denmark)
Leginus, Martin; Dolog, Peter; Zemaitis, Valdas
2012-01-01
Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD),...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...
Tensor modes in pure natural inflation
Nomura, Yasunori; Yamazaki, Masahito
2018-05-01
We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.
Genes related to xylose fermentation and methods of using same for enhanced biofuel production
Wohlbach, Dana J.; Gasch, Audrey P.
2014-08-05
The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.
Late inspiral and merger of binary black holes in scalar–tensor theories of gravity
International Nuclear Information System (INIS)
Healy, James; Bode, Tanja; Laguna, Pablo; Shoemaker, Deirdre M; Haas, Roland; Pazos, Enrique; Yunes, Nicolás
2012-01-01
Gravitational wave observations will probe nonlinear gravitational interactions and thus enable strong tests of Einstein’s theory of general relativity. We present a numerical relativity study of the late inspiral and merger of binary black holes in scalar–tensor theories of gravity. We consider binaries inside a scalar field bubble, including in some cases a potential. We demonstrate how an evolving scalar field is able to trigger detectable differences between gravitational waves in scalar–tensor gravity and the corresponding waves in general relativity. (fast track communication)
Relating French Immersion Teacher Practices to Better Student Oral Production
Haj-Broussard, Michelle; Olson Beal, Heather K.; Boudreaux, Nicole
2017-01-01
This study examined seven Louisiana kindergarten immersion teachers' practices to evaluate students' oral target language production and compare the oral production elicited when different instructional practices were used over a single semester. Three rounds of three 20-minute observations in three different contexts--circle time, direct…
Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.
Johansson, Nina; Persson, Karl O; Quehl, Paul; Norbeck, Joakim; Larsson, Christer
2014-11-01
We have previously shown that ethylene production in Saccharomyces cerevisiae expressing the ethylene-forming enzyme (EFE) from Pseudomonas syringae is strongly influenced by variations in the mode of cultivation as well as the choice of nitrogen source. Here, we have studied the influence of nitrogen metabolism on the production of ethylene further. Using ammonium, glutamate, glutamate/arginine, and arginine as nitrogen sources, it was found that glutamate (with or without arginine) correlates with a high ethylene production, most likely linked to an observed increase in 2-oxoglutarate levels. Arginine as a sole nitrogen source caused a reduced ethylene production. A reduction of arginine levels, accomplished using an arginine auxotrophic ARG4-deletion strain in the presence of limiting amounts of arginine or through CAR1 overexpression, did however not correlate with an increased ethylene production. As expected, arginine was necessary for ethylene production as ethylene production in the ARG4-deletion strain ceased at the time when arginine was depleted. In conclusion, our data suggest that high levels of 2-oxoglutarate and a limited amount of arginine are required for successful ethylene production in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Some political issues related to future special nuclear materials production
International Nuclear Information System (INIS)
Peaslee, A.T. Jr.
1981-08-01
The Federal Government must take action to assure the future adequate supply of special nuclear materials for nuclear weapons. Existing statutes permit the construction of advanced defense production reactors and the reprocessing of commercial spent fuel for the production of special materials. Such actions would not only benefit the US nuclear reactor manufacturers, but also the US electric utilities that use nuclear reactors
MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS
Directory of Open Access Journals (Sweden)
Maria Rosa Prado
2015-10-01
Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.
Milk kefir: composition, microbial cultures, biological activities, and related products.
Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R
2015-01-01
In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.
Tucker Tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander; Keyes, David E.; Khoromskaia, Venera; Khoromskij, Boris N.; Matthies, Hermann G.
2018-01-01
in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence
Economic values of pork production related traits in Finland
Directory of Open Access Journals (Sweden)
T. SERENIUS
2008-12-01
Full Text Available The objective of the present study was to estimate economic values for sow efficiency and meat production traits in the Finnish pork production system including the consideration for subsidies. Economic values were estimated by developing a bio-economic model that describes the Finnish production system. Genetic improvement estimates for meat production traits were also developed in order to evaluate how much genetic gain is reduced due to selection for meat quality. Results showed that the highest economic values, when expressed in genetic standard deviations, were obtained for total number of piglets born (2.07 per piglet, feed conversion ratio (2.07 per feed unit per kg, and lean meat percentage (1.69 per %. Economic values for litter size, piglet mortality, sows length of productive life, and lean meat percentage increased when subsidies were not accounted for in the bio-economic model. Results show further that meat quality should have 1520 percent weight in the Finnish production trait index in order to prevent its deterioration. When the selection weights are 1520% for meat quality, the expected loss in genetic gain is approximately 3 percent for other production traits when compared to selection indices where meat quality traits are not included.;
Tensor completion for PDEs with uncertain coefficients and Bayesian Update
Litvinenko, Alexander
2017-03-05
In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.
Tensor completion for PDEs with uncertain coefficients and Bayesian Update
Litvinenko, Alexander
2017-01-01
In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.
Concatenated image completion via tensor augmentation and completion
Bengua, Johann A.; Tuan, Hoang D.; Phien, Ho N.; Do, Minh N.
2016-01-01
This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor,...
Groups of automorphisms of the canonical commutation and anticommutation relations
International Nuclear Information System (INIS)
Grosse, H.; Pittner, L.
1987-01-01
Observables of supersymmetric quantum mechanics are coded by taking the antisymmetric tensor product with anticommuting parameters. Next we define superunitary transformations, which mix bosonic and fermionic degrees of freedom, in order to construct automorphisms of the canonical (anti-) commutation relations. Conversely, every automorphism of the C(A)CR is implemented by an essentially unique superunitary transformation. 12 refs. (Author)
Quality Assurance of Software Used In Aircraft Or Related Products
1993-02-01
This advisory circular (AC) provides an acceptable means, but not the only means, to show compliance with the quality assurance requirements of Federal Aviation Regulations (FAR) Part 21, Certification Procedures for Products and Parts, as applicable...
Product-related Environmental Performance Indicators: a systematic literature review
DEFF Research Database (Denmark)
Issa, Isabela I.; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.
2013-01-01
Ecodesign is a proactive environmental management approach employed in the product development process (PDP) which aims to minimize the environmental impacts caused during products’ life-cycle, improving its environmental performance. The establishment of measurable environmental performance...
A South African perspective on livestock production in relation to ...
African Journals Online (AJOL)
quality protein sources for human consumption, ruminant production systems are targeted as they are perceived to produce large quantities of GHG. Livestock is also accused of using large quantities of water, an allegation that is based on ...
Norm of the Riemannian Curvature Tensor
Indian Academy of Sciences (India)
We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...
Abelian tensor models on the lattice
Chaudhuri, Soumyadeep; Giraldo-Rivera, Victor I.; Joseph, Anosh; Loganayagam, R.; Yoon, Junggi
2018-04-01
We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains (L =2 ,3 ,4 ,5 ) and observe that the spectral statistics exhibits strong evidence in favor of quasi-many-body localization.
Higher-order tensors in diffusion imaging
Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.
2014-01-01
Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion
Visualization and processing of tensor fields
Weickert, Joachim
2007-01-01
Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.
Dark energy in scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Curvature tensor copies in affine geometry
International Nuclear Information System (INIS)
Srivastava, P.P.
1981-01-01
The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt
Positivity of linear maps under tensor powers
Energy Technology Data Exchange (ETDEWEB)
Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Reeb, David, E-mail: reeb.qit@gmail.com [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover (Germany)
2016-01-15
We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.
Primordial tensor modes from quantum corrected inflation
DEFF Research Database (Denmark)
Joergensen, Jakob; Sannino, Francesco; Svendsen, Ole
2014-01-01
. Finally we confront these theories with the Planck and BICEP2 data. We demonstrate that the discovery of primordial tensor modes by BICEP2 require the presence of sizable quantum departures from the $\\phi^4$-Inflaton model for the non-minimally coupled scenario which we parametrize and quantify. We...
From stochastic completion fields to tensor voting
Almsick, van M.A.; Duits, R.; Franken, E.M.; Haar Romenij, ter B.M.; Olsen, O.F.; Florack, L.M.J.; Kuijper, A.
2005-01-01
Several image processing algorithms imitate the lateral interaction of neurons in the visual striate cortex V1 to account for the correlations along contours and lines. Here we focus on two methodologies: tensor voting by Guy and Medioni, and stochastic completion fields by Mumford, Williams and
Positivity of linear maps under tensor powers
International Nuclear Information System (INIS)
Müller-Hermes, Alexander; Wolf, Michael M.; Reeb, David
2016-01-01
We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task
Dark energy in scalar-tensor theories
International Nuclear Information System (INIS)
Moeller, J.
2007-12-01
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Tensors in image processing and computer vision
De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong
2009-01-01
Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.
Tensor B mode and stochastic Faraday mixing
Giovannini, Massimo
2014-01-01
This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...
Tensor operators in R-matrix approach
International Nuclear Information System (INIS)
Bytsko, A.G.; Rossijskaya Akademiya Nauk, St. Petersburg
1995-12-01
The definitions and some properties (e.g. the Wigner-Eckart theorem, the fusion procedure) of covariant and contravariant q-tensor operators for quasitriangular quantum Lie algebras are formulated in the R-matrix language. The case of U q (sl(n)) (in particular, for n=2) is discussed in more detail. (orig.)
Tensors, differential forms, and variational principles
Lovelock, David
1989-01-01
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques, with large number of problems, from routine manipulative exercises to technically difficult assignments.
Development of functional food products in relation to obesity
Monika Choudhary; Kiran Grover
2012-01-01
Abstract:The development of new eating habits, as well as actual trends in production and consumption,has a health, environmental and social impact. The entire world is fighting diseases characteristic of the modern age such as obesity, osteoporosis, cancer, diabetes, allergies, and dental problems. With a global increase in the prevalence of obesity, both nutrition and exercise play key roles in its prevention and treatment. Natural product (nutraceutical) interventions are currently being i...
Probabilistic analysis and related topics
Bharucha-Reid, A T
1979-01-01
Probabilistic Analysis and Related Topics, Volume 2 focuses on the integrability, continuity, and differentiability of random functions, as well as functional analysis, measure theory, operator theory, and numerical analysis.The selection first offers information on the optimal control of stochastic systems and Gleason measures. Discussions focus on convergence of Gleason measures, random Gleason measures, orthogonally scattered Gleason measures, existence of optimal controls without feedback, random necessary conditions, and Gleason measures in tensor products. The text then elaborates on an
Tensor algebra and tensor analysis for engineers with applications to continuum mechanics
Itskov, Mikhail
2015-01-01
This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir
2016-08-01
In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.
The nonabelian tensor square of a bieberbach group with ...
African Journals Online (AJOL)
The main objective of this paper is to compute the nonabelian tensor square of one Bieberbach group with elementary abelian 2-group point group of dimension three by using the computational method of the nonabelian tensor square for polycyclic groups. The finding of the computation showed that the nonabelian tensor ...
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Tensor based structure estimation in multi-channel images
DEFF Research Database (Denmark)
Schou, Jesper; Dierking, Wolfgang; Skriver, Henning
2000-01-01
. In the second part tensors are used for representing the structure information. This approach has the advantage, that tensors can be averaged either spatially or by applying several images, and the resulting tensor provides information of the average strength as well as orientation of the structure...
Relativistic particles with spin and antisymmetric tensor fields
International Nuclear Information System (INIS)
Sandoval Junior, L.
1990-09-01
A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)
Road detection in SAR images using a tensor voting algorithm
Shen, Dajiang; Hu, Chun; Yang, Bing; Tian, Jinwen; Liu, Jian
2007-11-01
In this paper, the problem of the detection of road networks in Synthetic Aperture Radar (SAR) images is addressed. Most of the previous methods extract the road by detecting lines and network reconstruction. Traditional algorithms such as MRFs, GA, Level Set, used in the progress of reconstruction are iterative. The tensor voting methodology we proposed is non-iterative, and non-sensitive to initialization. Furthermore, the only free parameter is the size of the neighborhood, related to the scale. The algorithm we present is verified to be effective when it's applied to the road extraction using the real Radarsat Image.
Nonuniversal scalar-tensor theories and big bang nucleosynthesis
International Nuclear Information System (INIS)
Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth
2009-01-01
We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.
Nonuniversal scalar-tensor theories and big bang nucleosynthesis
Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth
2009-05-01
We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.
Locally extracting scalar, vector and tensor modes in cosmological perturbation theory
International Nuclear Information System (INIS)
Clarkson, Chris; Osano, Bob
2011-01-01
Cosmological perturbation theory relies on the decomposition of perturbations into so-called scalar, vector and tensor modes. This decomposition is non-local and depends on unknowable boundary conditions. The non-locality is particularly important at second and higher order because perturbative modes are sourced by products of lower order modes, which must be integrated over all space in order to isolate each mode. However, given a trace-free rank-2 tensor, a locally defined scalar mode may be trivially derived by taking two divergences, which knocks out the vector and tensor degrees of freedom. A similar local differential operation will return a pure vector mode. This means that scalar and vector degrees of freedom have local descriptions. The corresponding local extraction of the tensor mode is unknown however. We give it here. The operators we define are useful for defining gauge-invariant quantities at second order. We perform much of our analysis using an index-free 'vector-calculus' approach which makes manipulating tensor equations considerably simpler. (papers)
Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus
2017-07-01
Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can