WorldWideScience

Sample records for relative temporal representations

  1. Dissociating the Representation of Action- and Sound-Related Concepts in Middle Temporal Cortex

    Science.gov (United States)

    Kiefer, Markus; Trumpp, Natalie; Herrnberger, Barbel; Sim, Eun-Jin; Hoenig, Klaus; Pulvermuller, Friedemann

    2012-01-01

    Modality-specific models of conceptual memory propose close links between concepts and the sensory-motor systems. Neuroimaging studies found, in different subject groups, that action-related and sound-related concepts activated different parts of posterior middle temporal gyrus (pMTG), suggesting a modality-specific representation of conceptual…

  2. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  3. Representation and management of temporal and uncertain knowledge

    International Nuclear Information System (INIS)

    Chen, Ziqiang

    1993-01-01

    This thesis contributes to the investigation of uncertain temporal knowledge representation and management, especially for process verification and supervisor systems design. The evolution of process behaviour is time dependent and information describing this temporal evolution is uncertain/imprecise. In Artificial Intelligence, time and uncertainty have been, since long-time, considered as two of the most difficult research fields. Furthermore, these two fields, even different, may be present in an interactive way. We now try to deal with this special kind of uncertainty: temporal uncertainty. Integrating time and uncertainty brings out study issues of temporal information representation, events ordering and temporal reasoning under uncertainty. The investigation of these problems has been guided by preserving the intrinsic properties of time. The main contribution of this thesis can be summarised as follows: (1) unified representation of uncertainty and imprecision over temporal information; (2) formal structuring of time under uncertainty; (3) formalising fuzzy temporal reasoning system; (4) modelling temporal evolution of process, providing associated reasoning mechanism to verify the process evolution, modelling fuzzy temporal Petri nets; (5) design and implementation of SURTEL, a programming tool for dealing with uncertain temporal information and knowledge. (author) [fr

  4. Temporal Representation in Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  5. Medial temporal lobe damage impairs representation of simple stimuli

    Directory of Open Access Journals (Sweden)

    David E Warren

    2010-05-01

    Full Text Available Medial temporal lobe damage in humans is typically thought to produce a circumscribed impairment in the acquisition of new enduring memories, but recent reports have documented deficits even in short-term maintenance. We examined possible maintenance deficits in a population of medial temporal lobe amnesics, with the goal of characterizing their impairments as either representational drift or outright loss of representation over time. Patients and healthy comparisons performed a visual search task in which the similarity of various lures to a target was varied parametrically. Stimuli were simple shapes varying along one of several visual dimensions. The task was performed in two conditions, one presenting a sample target simultaneously with the search array and the other imposing a delay between sample and array. Eye-movement data collected during search revealed that the duration of fixations to items varied with lure-target similarity for all participants, i.e., fixations were longer for items more similar to the target. In the simultaneous condition, patients and comparisons exhibited an equivalent effect of similarity on fixation durations. However, imposing a delay modulated the effect differently for the two groups: in comparisons, fixation duration to similar items was exaggerated; in patients, the original effect was diminished. These findings indicate that medial temporal lobe lesions subtly impair short-term maintenance of even simple stimuli, with performance reflecting not the complete loss of the maintained representation but rather a degradation or progressive drift of the representation over time.

  6. Graded representations of emotional expressions in the left superior temporal sulcus

    Directory of Open Access Journals (Sweden)

    Christopher P Said

    2010-03-01

    Full Text Available Perceptual categorization is a fundamental cognitive process that gives meaning to an often graded sensory environment. Previous research has subdivided the visual pathway into posterior regions that processes the physical properties of a stimulus, and frontal regions that process more abstract properties such as category information. The superior temporal sulcus (STS is known to be involved in face and emotion perception, but the nature of its processing remains unknown. Here, we used targeted fMRI measurements of the STS to investigate whether its representations of facial expressions are categorical or noncategorical. Multivoxel pattern analysis showed that even though subjects were performing a categorization task, the left STS contained graded, noncategorical representations. In the right STS, representations showed evidence for both stimulus-related gradations and a categorical boundary.

  7. Atypical language representation in children with intractable temporal lobe epilepsy.

    Science.gov (United States)

    Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem

    2016-05-01

    This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The loss of short-term visual representations over time: decay or temporal distinctiveness?

    Science.gov (United States)

    Mercer, Tom

    2014-12-01

    There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Semantic representations in the temporal pole predict false memories.

    Science.gov (United States)

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  11. Semantic representations in the temporal pole predict false memories

    Science.gov (United States)

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  12. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  13. A Similarity-Based Approach for Audiovisual Document Classification Using Temporal Relation Analysis

    Directory of Open Access Journals (Sweden)

    Ferrane Isabelle

    2011-01-01

    Full Text Available Abstract We propose a novel approach for video classification that bases on the analysis of the temporal relationships between the basic events in audiovisual documents. Starting from basic segmentation results, we define a new representation method that is called Temporal Relation Matrix (TRM. Each document is then described by a set of TRMs, the analysis of which makes events of a higher level stand out. This representation has been first designed to analyze any audiovisual document in order to find events that may well characterize its content and its structure. The aim of this work is to use this representation to compute a similarity measure between two documents. Approaches for audiovisual documents classification are presented and discussed. Experimentations are done on a set of 242 video documents and the results show the efficiency of our proposals.

  14. Different brain circuits underlie motor and perceptual representations of temporal intervals

    DEFF Research Database (Denmark)

    Bueti, Doemnica; Walsh, Vincent; Frith, Christopher

    2008-01-01

    V5/MT. Our findings point to a role for the parietal cortex as an interface between sensory and motor processes and suggest that it may be a key node in translation of temporal information into action. Furthermore, we discuss the potential importance of the extrastriate cortex in processing visual......In everyday life, temporal information is used for both perception and action, but whether these two functions reflect the operation of similar or different neural circuits is unclear. We used functional magnetic resonance imaging to investigate the neural correlates of processing temporal...... information when either a motor or a perceptual representation is used. Participants viewed two identical sequences of visual stimuli and used the information differently to perform either a temporal reproduction or a temporal estimation task. By comparing brain activity evoked by these tasks and control...

  15. Doctor, Teacher, and Stethoscope: Neural Representation of Different Types of Semantic Relations.

    Science.gov (United States)

    Xu, Yangwen; Wang, Xiaosha; Wang, Xiaoying; Men, Weiwei; Gao, Jia-Hong; Bi, Yanchao

    2018-03-28

    Concepts can be related in many ways. They can belong to the same taxonomic category (e.g., "doctor" and "teacher," both in the category of people) or be associated with the same event context (e.g., "doctor" and "stethoscope," both associated with medical scenarios). How are these two major types of semantic relations coded in the brain? We constructed stimuli from three taxonomic categories (people, manmade objects, and locations) and three thematic categories (school, medicine, and sports) and investigated the neural representations of these two dimensions using representational similarity analyses in human participants (10 men and nine women). In specific regions of interest, the left anterior temporal lobe (ATL) and the left temporoparietal junction (TPJ), we found that, whereas both areas had significant effects of taxonomic information, the taxonomic relations had stronger effects in the ATL than in the TPJ ("doctor" and "teacher" closer in ATL neural activity), with the reverse being true for thematic relations ("doctor" and "stethoscope" closer in TPJ neural activity). A whole-brain searchlight analysis revealed that widely distributed regions, mainly in the left hemisphere, represented the taxonomic dimension. Interestingly, the significant effects of the thematic relations were only observed after the taxonomic differences were controlled for in the left TPJ, the right superior lateral occipital cortex, and other frontal, temporal, and parietal regions. In summary, taxonomic grouping is a primary organizational dimension across distributed brain regions, with thematic grouping further embedded within such taxonomic structures. SIGNIFICANCE STATEMENT How are concepts organized in the brain? It is well established that concepts belonging to the same taxonomic categories (e.g., "doctor" and "teacher") share neural representations in specific brain regions. How concepts are associated in other manners (e.g., "doctor" and "stethoscope," which are thematically

  16. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  17. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  18. Visual representation of spatiotemporal structure

    Science.gov (United States)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  19. Body representation difficulties in children and adolescents with autism may be due to delayed development of visuo-tactile temporal binding

    Directory of Open Access Journals (Sweden)

    Danielle Ropar

    2018-01-01

    Full Text Available Recent research suggests visuo-tactile binding is temporally extended in autism spectrum disorders (ASD, although it is not clear whether this specifically underlies altered body representation in this population. In the current study children and adolescents with ASD, and typically developing controls, placed their hand into mediated reality system (MIRAGE and saw two identical live video images of their own right hand. One image was in the proprioceptively correct location (veridical hand and the other was displaced to either side. While visuo-tactile feedback was applied via brushstroke to the participant’s (unseen right finger, they viewed one hand image receiving synchronous brushstrokes and the other receiving brushstrokes with a temporal delay (60, 180 and 300 ms. After brushing, both images disappeared from view and participants pointed to a target, with direction of movement indicating which hand was embodied. ASD participants, like younger mental aged-matched controls, showed reduced embodiment of the spatially incongruent, but temporally congruent, hand compared to chronologically age-matched controls at shorter temporal delays. This suggests development of visuo-tactile integration may be delayed in ASD. Findings are discussed in relation to atypical body representation in ASD and how this may contribute to social and sensory difficulties within this population. Keywords: Autism spectrum disorder, Temporal binding window, Visuo-tactile processing, Embodied action

  20. Full-fledged temporal processing: bridging the gap between deep linguistic processing and temporal extraction

    Directory of Open Access Journals (Sweden)

    Francisco Costa

    2013-07-01

    Full Text Available The full-fledged processing of temporal information presents specific challenges. These difficulties largely stem from the fact that the temporal meaning conveyed by grammatical means interacts with many extra-linguistic factors (world knowledge, causality, calendar systems, reasoning. This article proposes a novel approach to this problem, based on a hybrid strategy that explores the complementarity of the symbolic and probabilistic methods. A specialized temporal extraction system is combined with a deep linguistic processing grammar. The temporal extraction system extracts eventualities, times and dates mentioned in text, and also temporal relations between them, in line with the tasks of the recent TempEval challenges; and uses machine learning techniques to draw from different sources of information (grammatical and extra-grammatical even if it is not explicitly known how these combine to produce the final temporal meaning being expressed. In turn, the deep computational grammar delivers richer truth-conditional meaning representations of input sentences, which include a principled representation of temporal information, on which higher level tasks, including reasoning, can be based. These deep semantic representations are extended and improved according to the output of the aforementioned temporal extraction module. The prototype implemented shows performance results that increase the quality of the temporal meaning representations and are better than the performance of each of the two components in isolation.

  1. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss.

    Science.gov (United States)

    Brooks, Cassandra J; Chan, Yu Man; Anderson, Andrew J; McKendrick, Allison M

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.

  2. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss

    Science.gov (United States)

    Brooks, Cassandra J.; Chan, Yu Man; Anderson, Andrew J.; McKendrick, Allison M.

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information. PMID:29867415

  3. Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing.

    Directory of Open Access Journals (Sweden)

    Luigi Acerbi

    Full Text Available Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior and of the error (the loss function. The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

  4. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  5. Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views.

    Science.gov (United States)

    Orlov, Tanya; Zohary, Ehud

    2018-01-17

    We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on

  6. Narcissism and relational representations among psychiatric outpatients.

    Science.gov (United States)

    Kealy, David; Ogrodniczuk, John S; Joyce, Anthony S; Steinberg, Paul I; Piper, William E

    2015-06-01

    Pathological narcissism is associated with maladaptive interpersonal behavior, although less is known regarding the internal relational representations of narcissistic patients. The authors examined the relationship between pathological narcissism and two constructs that reflect internal representations of relational patterns: quality of object relations and attachment style. Patients attending a psychiatric day treatment program (N = 218) completed measures of narcissism, general psychiatric distress, and attachment style in terms of attachment avoidance and anxiety. A semistructured interview was used to assess quality of object relations. Multiple regression analysis was conducted, controlling for general psychiatric distress. Pathological narcissism was associated with anxious attachment, but not with avoidant attachment. Narcissism was also associated with lower levels of quality of object relations. The implications of these results are discussed in terms of internal representations of self-other relations.

  7. tOWL: a temporal Web Ontology Language.

    Science.gov (United States)

    Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    2012-02-01

    Through its interoperability and reasoning capabilities, the Semantic Web opens a realm of possibilities for developing intelligent systems on the Web. The Web Ontology Language (OWL) is the most expressive standard language for modeling ontologies, the cornerstone of the Semantic Web. However, up until now, no standard way of expressing time and time-dependent information in OWL has been provided. In this paper, we present a temporal extension of the very expressive fragment SHIN(D) of the OWL Description Logic language, resulting in the temporal OWL language. Through a layered approach, we introduce three extensions: 1) concrete domains, which allow the representation of restrictions using concrete domain binary predicates; 2) temporal representation , which introduces time points, relations between time points, intervals, and Allen's 13 interval relations into the language; and 3) timeslices/fluents, which implement a perdurantist view on individuals and allow for the representation of complex temporal aspects, such as process state transitions. We illustrate the expressiveness of the newly introduced language by using an example from the financial domain.

  8. Amodal Semantic Representations Depend on both Anterior Temporal Lobes: Evidence from Repetitive Transcranial Magnetic Stimulation

    Science.gov (United States)

    Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon

    2010-01-01

    The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…

  9. Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.

    Science.gov (United States)

    Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben

    2017-05-08

    A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Relational versus absolute representation in categorization.

    Science.gov (United States)

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  11. [Neural representations of facial identity and its associative meaning].

    Science.gov (United States)

    Eifuku, Satoshi

    2012-07-01

    Since the discovery of "face cells" in the early 1980s, single-cell recording experiments in non-human primates have made significant contributions toward the elucidation of neural mechanisms underlying face perception and recognition. In this paper, we review the recent progress in face cell studies, including the recent remarkable findings of the face patches that are scattered around the anterior temporal cortical areas of monkeys. In particular, we focus on the neural representations of facial identity within these areas. The identification of faces requires both discrimination of facial identities and generalization across facial views. It has been indicated by some laboratories that the population of face cells found in the anterior ventral inferior temporal cortex of monkeys represent facial identity in a manner which is facial view-invariant. These findings suggest a relatively distributed representation that operates for facial identification. It has also been shown that certain individual neurons in the medial temporal lobe of humans represent view-invariant facial identity. This finding suggests a relatively sparse representation that may be employed for memory formation. Finally, we summarize our recent study, showing that the population of face cells in the anterior ventral inferior temporal cortex of monkeys that represent view-invariant facial identity, can also represent learned paired associations between an abstract picture and a particular facial identity, extending our understanding of the function of the anterior ventral inferior temporal cortex in the recognition of associative meanings of faces.

  12. Representing and querying now-relative relational medical data.

    Science.gov (United States)

    Anselma, Luca; Piovesan, Luca; Stantic, Bela; Terenziani, Paolo

    2018-03-01

    Temporal information plays a crucial role in medicine. Patients' clinical records are intrinsically temporal. Thus, in Medical Informatics there is an increasing need to store, support and query temporal data (particularly in relational databases), in order, for instance, to supplement decision-support systems. In this paper, we show that current approaches to relational data have remarkable limitations in the treatment of "now-relative" data (i.e., data holding true at the current time). This can severely compromise their applicability in general, and specifically in the medical context, where "now-relative" data are essential to assess the current status of the patients. We propose a theoretically grounded and application-independent relational approach to cope with now-relative data (which can be paired, e.g., with different decision support systems) overcoming such limitations. We propose a new temporal relational representation, which is the first relational model coping with the temporal indeterminacy intrinsic in now-relative data. We also propose new temporal algebraic operators to query them, supporting the distinction between possible and necessary time, and Allen's temporal relations between data. We exemplify the impact of our approach, and study the theoretical and computational properties of the new representation and algebra. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Semantics of Temporal Models with Multiple Temporal Dimensions

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    ending up with lexical data models. In particular we look upon the representations by sets of normalised tables, by sets of 1NF tables and by sets of N1NF/nested tables. At each translation step we focus on how the temporal semantic is consistently maintained. In this way we recognise the requirements...... for representation of temporal properties in different models and the correspondence between the models. The results rely on the assumptions that the temporal dimensions are interdependent and ordered. Thus for example the valid periods of existences of a property in a mini world are dependent on the transaction...... periods in which the corresponding recordings are valid. This is not the normal way of looking at temporal dimensions and we give arguments supporting our assumption....

  14. Temporal binding function of dorsal CA1 is critical for declarative memory formation.

    Science.gov (United States)

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-09-19

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.

  15. Orthogonality relations and supercharacter formulas of U(m|n) representations

    International Nuclear Information System (INIS)

    Alfaro, J.; Medina, R.; Urrutia, L.F.

    1997-01-01

    In this paper we obtain the orthogonality relations for the supergroup U(m|n), which are remarkably different from the ones for the U(N) case. We extend our results for ordinary representations, obtained some time ago, to the case of complex conjugated and mixed representations. Our results are expressed in terms of the Young tableaux notation for irreducible representations. We use the supersymmetric Harish - Chandra - Itzykson endash Zuber integral and the character expansion technique as mathematical tools for deriving these relations. As a byproduct we also obtain closed expressions for the supercharacters and dimensions of some particular irreducible U(m|n) representations. A new way of labeling the U(m|n) irreducible representations in terms of m+n numbers is proposed. Finally, as a corollary of our results, new identities among the dimensions of the irreducible representations of the unitary group U(N) are presented. copyright 1997 American Institute of Physics

  16. Learning connective-based word representations for implicit discourse relation identification

    DEFF Research Database (Denmark)

    Braud, Chloé Elodie; Denis, Pascal

    2016-01-01

    We introduce a simple semi-supervised ap-proach to improve implicit discourse relation identification. This approach harnesses large amounts of automatically extracted discourse connectives along with their arguments to con-struct new distributional word representations. Specifically, we represen...... their simplicity, these connective-based rep-resentations outperform various off-the-shelf word embeddings, and achieve state-of-the-art performance on this problem.......We introduce a simple semi-supervised ap-proach to improve implicit discourse relation identification. This approach harnesses large amounts of automatically extracted discourse connectives along with their arguments to con-struct new distributional word representations. Specifically, we represent...... words in the space of discourse connectives as a way to directly encode their rhetorical function. Experiments on the Penn Discourse Treebank demonstrate the effectiveness of these task-tailored repre-sentations in predicting implicit discourse re-lations. Our results indeed show that, despite...

  17. Parental representations and dimensions of personality: empirical relations and assessment implications.

    Science.gov (United States)

    Pincus, A L; Ruiz, M A

    1997-04-01

    Research on the relations between parental representations, personality traits, and psychopathology was discussed with reference to their integration for clinical personality assessment. Empirical results linking parental representations assessed by the Structural Analysis of Social Behavior and the Five-Factor Model of personality traits in a young adult population supported the position that parental representations significantly relate to adult personality. Individuals whose parental representations were generally affiliative described themselves as less prone to emotional distress (lower neuroticism); more interpersonally oriented and experiencing of positive emotions (higher extraversion); more peaceable and trustworthy (higher agreeableness); and more dutiful, resourceful, and dependable (higher conscientiousness). Parental representations colored by autonomy granting and autonomy taking were related to higher levels of openness to experience but lower levels of conscientiousness and extraversion in self-descriptions. Assessment implications and an integrative assessment strategy were presented along with a clinical case example.

  18. The immediate and chronic influence of spatio-temporal metaphors on the mental representations of time in English, Mandarin, and Mandarin-English speakers

    Directory of Open Access Journals (Sweden)

    Vicky T. Lai

    2013-04-01

    Full Text Available In this paper we examine whether experience with spatial metaphors for time has an influence on people’s representation of time. In particular we ask whether spatiotemporal metaphors can have both chronic and immediate effects on temporal thinking. In Study 1, we examine the prevalence of ego-moving representations for time in Mandarin speakers, English speakers, and Mandarin-English (ME bilinguals. As predicted by observations in linguistic analyses, we find that Mandarin speakers are less likely to take an ego-moving perspective than are English speakers. Further, we find that ME bilinguals tested in English are less likely to take an ego-moving perspective than are English monolinguals (an effect of L1 on meaning-making in L2, and also that ME bilinguals tested in Mandarin are more likely to take an ego-moving perspective than are Mandarin monolinguals (an effect of L2 on meaning-making in L1. These findings demonstrate that habits of metaphor use in one language can influence temporal reasoning in another language, suggesting the metaphors can have a chronic effect on patterns in thought. In Study 2 we test Mandarin speakers using either horizontal or vertical metaphors in the immediate context of the task. We find that Mandarin speakers are more likely to construct front-back representations of time when understanding front-back metaphors, and more likely to construct up-down representations of time when understanding up-down metaphors. These findings demonstrate that spatiotemporal metaphors can also have an immediate influence on temporal reasoning. Taken together, these findings demonstrate that the metaphors we use to talk about time have both immediate and long-term consequences for how we conceptualize and reason about this fundamental domain of experience.

  19. Language, Perception, and the Schematic Representation of Spatial Relations

    Science.gov (United States)

    Amorapanth, Prin; Kranjec, Alexander; Bromberger, Bianca; Lehet, Matthew; Widick, Page; Woods, Adam J.; Kimberg, Daniel Y.; Chatterjee, Anjan

    2012-01-01

    Schemas are abstract nonverbal representations that parsimoniously depict spatial relations. Despite their ubiquitous use in maps and diagrams, little is known about their neural instantiation. We sought to determine the extent to which schematic representations are neurally distinguished from language on the one hand, and from rich perceptual…

  20. Querying temporal databases via OWL 2 QL

    CSIR Research Space (South Africa)

    Klarman, S

    2014-06-01

    Full Text Available SQL:2011, the most recently adopted version of the SQL query language, has unprecedentedly standardized the representation of temporal data in relational databases. Following the successful paradigm of ontology-based data access, we develop a...

  1. An exploration of the relations between external representations and working memory.

    Directory of Open Access Journals (Sweden)

    Jiajie Zhang

    Full Text Available It is commonly hypothesized that external representations serve as memory aids and improve task performance by means of expanding the limited capacity of working memory. However, very few studies have directly examined this memory aid hypothesis. By systematically manipulating how information is available externally versus internally in a sequential number comparison task, three experiments were designed to investigate the relation between external representations and working memory. The experimental results show that when the task requires information from both external representations and working memory, it is the interaction of information from the two sources that determines task performance. In particular, when information from the two sources does not match well, external representations hinder instead of enhance task performance. The study highlights the important role the coordination among different representations plays in distributed cognition. The general relations between external representations and working memory are discussed.

  2. Spacetime representation of topological phononics

    Science.gov (United States)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  3. Temporal distribution of alcohol related facial fractures.

    Science.gov (United States)

    Lee, Kai H; Qiu, Michael; Sun, Jiandong

    2017-11-01

    This study aimed to address 2 important aspects of temporal pattern in alcohol-related facial fractures: (1) comparison of temporal pattern of alcohol-related facial fracture (alcohol group) presentation with non-alcohol-related fracture (non-alcohol group) presentation; (2) temporal pattern of patient demographic characteristics, injury characteristics, and surgical management in the alcohol group presentation. This study retrospectively examined the Victorian admitted episodes data set (VAED) for the years 2010 to 2013. VAED is a standardized set of data collected during all hospital presentations in Victoria. The study found higher incidence of alcohol-related facial fracture presentations during weekends and during the summer and spring months compared with non-alcohol-related fractures (statistically significant). Alcohol-related facial fractures are more likely to involve male patients in the 20- to 29-year age group, occur as a result of interpersonal violence, and require shorter hospital stays during weekend admissions (statistically significant). No statistically significant relationship has been observed in seasonal variation across all variables. This study found distinct characteristics in temporal distribution of alcohol-related facial fractures. These characteristics are, in particular, significant in weekend trauma admissions. Such information is important in workforce planning, resource distribution, and implementation of injury prevention programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Attachment-related mental representations: introduction to the special issue.

    Science.gov (United States)

    Thompson, Ross A

    2008-12-01

    Bowlby's concept of mental working models of self, attachment figures, and the social world has been theoretically generative as a bridge between early relational experience and the beliefs and expectations that color later relationships. Contemporary attachment researchers, following his example, are applying new knowledge of children's conceptual development to their study of attachment-related mental representations in children and adults. The contributors to this special issue highlight recent advances in how the mental representations arising from attachment security should be conceptualized and studied, and identify a number of important directions for future work. This paper introduces the special issue by summarizing the major ideas of Bowlby and his followers concerning the nature and development of mental working models, points of theoretical clarity and uncertainty, and challenges in assessing these representations, as well as profiling each of the contributions to this issue.

  5. Representations and Relations

    Czech Academy of Sciences Publication Activity Database

    Koťátko, Petr

    2014-01-01

    Roč. 21, č. 3 (2014), s. 282-302 ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

  6. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  7. The Relative Lie Algebra Cohomology of the Weil Representation

    Science.gov (United States)

    Ralston, Jacob

    We study the relative Lie algebra cohomology of so(p,q) with values in the Weil representation piof the dual pair Sp(2k, R) x O(p,q ). Using the Fock model defined in Chapter 2, we filter this complex and construct the associated spectral sequence. We then prove that the resulting spectral sequence converges to the relative Lie algebra cohomology and has E0 term, the associated graded complex, isomorphic to a Koszul complex, see Section 3.4. It is immediate that the construction of the spectral sequence of Chapter 3 can be applied to any reductive subalgebra g ⊂ sp(2k(p + q), R). By the Weil representation of O( p,|q), we mean the twist of the Weil representation of the two-fold cover O(pq)[special character omitted] by a suitable character. We do this to make the center of O(pq)[special character omitted] act trivially. Otherwise, all relative Lie algebra cohomology groups would vanish, see Proposition 4.10.2. In case the symplectic group is large relative to the orthogonal group (k ≥ pq), the E 0 term is isomorphic to a Koszul complex defined by a regular sequence, see 3.4. Thus, the cohomology vanishes except in top degree. This result is obtained without calculating the space of cochains and hence without using any representation theory. On the other hand, in case k BMR], this author wrote with his advisor John Millson and Nicolas Bergeron of the University of Paris.

  8. Relative contributions of visual and auditory spatial representations to tactile localization.

    Science.gov (United States)

    Noel, Jean-Paul; Wallace, Mark

    2016-02-01

    Spatial localization of touch is critically dependent upon coordinate transformation between different reference frames, which must ultimately allow for alignment between somatotopic and external representations of space. Although prior work has shown an important role for cues such as body posture in influencing the spatial localization of touch, the relative contributions of the different sensory systems to this process are unknown. In the current study, we had participants perform a tactile temporal order judgment (TOJ) under different body postures and conditions of sensory deprivation. Specifically, participants performed non-speeded judgments about the order of two tactile stimuli presented in rapid succession on their ankles during conditions in which their legs were either uncrossed or crossed (and thus bringing somatotopic and external reference frames into conflict). These judgments were made in the absence of 1) visual, 2) auditory, or 3) combined audio-visual spatial information by blindfolding and/or placing participants in an anechoic chamber. As expected, results revealed that tactile temporal acuity was poorer under crossed than uncrossed leg postures. Intriguingly, results also revealed that auditory and audio-visual deprivation exacerbated the difference in tactile temporal acuity between uncrossed to crossed leg postures, an effect not seen for visual-only deprivation. Furthermore, the effects under combined audio-visual deprivation were greater than those seen for auditory deprivation. Collectively, these results indicate that mechanisms governing the alignment between somatotopic and external reference frames extend beyond those imposed by body posture to include spatial features conveyed by the auditory and visual modalities - with a heavier weighting of auditory than visual spatial information. Thus, sensory modalities conveying exteroceptive spatial information contribute to judgments regarding the localization of touch. Copyright © 2016

  9. Order-based representation in random networks of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Goded Shahaf

    2008-11-01

    Full Text Available The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.

  10. Comments related to infinite wedge representations

    OpenAIRE

    Grieve, Nathan

    2016-01-01

    We study the infinite wedge representation and show how it is related to the universal extension of $g[t,t^{-1}]$ the loop algebra of a complex semi-simple Lie algebra $g$. We also give an elementary proof of the boson-fermion correspondence. Our approach to proving this result is based on a combinatorial construction with partitions combined with an application of the Murnaghan-Nakayama rule.

  11. Human action recognition using trajectory-based representation

    Directory of Open Access Journals (Sweden)

    Haiam A. Abdul-Azim

    2015-07-01

    Full Text Available Recognizing human actions in video sequences has been a challenging problem in the last few years due to its real-world applications. A lot of action representation approaches have been proposed to improve the action recognition performance. Despite the popularity of local features-based approaches together with “Bag-of-Words” model for action representation, it fails to capture adequate spatial or temporal relationships. In an attempt to overcome this problem, a trajectory-based local representation approaches have been proposed to capture the temporal information. This paper introduces an improvement of trajectory-based human action recognition approaches to capture discriminative temporal relationships. In our approach, we extract trajectories by tracking the detected spatio-temporal interest points named “cuboid features” with matching its SIFT descriptors over the consecutive frames. We, also, propose a linking and exploring method to obtain efficient trajectories for motion representation in realistic conditions. Then the volumes around the trajectories’ points are described to represent human actions based on the Bag-of-Words (BOW model. Finally, a support vector machine is used to classify human actions. The effectiveness of the proposed approach was evaluated on three popular datasets (KTH, Weizmann and UCF sports. Experimental results showed that the proposed approach yields considerable performance improvement over the state-of-the-art approaches.

  12. Markup of temporal information in electronic health records.

    Science.gov (United States)

    Hyun, Sookyung; Bakken, Suzanne; Johnson, Stephen B

    2006-01-01

    Temporal information plays a critical role in the understanding of clinical narrative (i.e., free text). We developed a representation for marking up temporal information in a narrative, consisting of five elements: 1) reference point, 2) direction, 3) number, 4) time unit, and 5) pattern. We identified 254 temporal expressions from 50 discharge summaries and represented them using our scheme. The overall inter-rater reliability among raters applying the representation model was 75 percent agreement. The model can contribute to temporal reasoning in computer systems for decision support, data mining, and process and outcomes analyses by providing structured temporal information.

  13. Cortical mechanisms of person representation: recognition of famous and personally familiar names.

    Science.gov (United States)

    Sugiura, Motoaki; Sassa, Yuko; Watanabe, Jobu; Akitsuki, Yuko; Maeda, Yasuhiro; Matsue, Yoshihiko; Fukuda, Hiroshi; Kawashima, Ryuta

    2006-06-01

    Personally familiar people are likely to be represented more richly in episodic, emotional, and behavioral contexts than famous people, who are usually represented predominantly in semantic context. To reveal cortical mechanisms supporting this differential person representation, we compared cortical activation during name recognition tasks between personally familiar and famous names, using an event-related functional magnetic resonance imaging (fMRI). Normal subjects performed familiar- or unfamiliar-name detection tasks during visual presentation of personally familiar (Personal), famous (Famous), and unfamiliar (Unfamiliar) names. The bilateral temporal poles and anterolateral temporal cortices, as well as the left temporoparietal junction, were activated in the contrasts Personal-Unfamiliar and Famous-Unfamiliar to a similar extent. The bilateral occipitotemporoparietal junctions, precuneus, and posterior cingulate cortex showed activation in the contrasts Personal-Unfamiliar and Personal-Famous. Together with previous findings, differential activation in the occipitotemporoparietal junction, precuneus, and posterior cingulate cortex between personally familiar and famous names is considered to reflect differential person representation. The similar extent of activation for personally familiar and famous names in the temporal pole and anterolateral temporal cortex is consistent with the associative role of the anterior temporal cortex in person identification, which has been conceptualized as a person identity node in many models of person identification. The left temporoparietal junction was considered to process familiar written names. The results illustrated the neural correlates of the person representation as a network of discrete regions in the bilateral posterior cortices, with the anterior temporal cortices having a unique associative role.

  14. Temporal Order Judgment Reveals How Number Magnitude Affects Visuospatial Attention

    Science.gov (United States)

    Casarotti, Marco; Michielin, Marika; Zorzi, Marco; Umilta, Carlo

    2007-01-01

    The existence of spatial components in the mental representation of number magnitude has raised the question regarding the relation between numbers and spatial attention. We present six experiments in which this relation was examined using a temporal order judgment task to index attentional allocation. Results demonstrate that one important…

  15. Cross-cultural differences in mental representations of time: evidence from an implicit nonlinguistic task.

    Science.gov (United States)

    Fuhrman, Orly; Boroditsky, Lera

    2010-11-01

    Across cultures people construct spatial representations of time. However, the particular spatial layouts created to represent time may differ across cultures. This paper examines whether people automatically access and use culturally specific spatial representations when reasoning about time. In Experiment 1, we asked Hebrew and English speakers to arrange pictures depicting temporal sequences of natural events, and to point to the hypothesized location of events relative to a reference point. In both tasks, English speakers (who read left to right) arranged temporal sequences to progress from left to right, whereas Hebrew speakers (who read right to left) arranged them from right to left, replicating previous work. In Experiments 2 and 3, we asked the participants to make rapid temporal order judgments about pairs of pictures presented one after the other (i.e., to decide whether the second picture showed a conceptually earlier or later time-point of an event than the first picture). Participants made responses using two adjacent keyboard keys. English speakers were faster to make "earlier" judgments when the "earlier" response needed to be made with the left response key than with the right response key. Hebrew speakers showed exactly the reverse pattern. Asking participants to use a space-time mapping inconsistent with the one suggested by writing direction in their language created interference, suggesting that participants were automatically creating writing-direction consistent spatial representations in the course of their normal temporal reasoning. It appears that people automatically access culturally specific spatial representations when making temporal judgments even in nonlinguistic tasks. Copyright © 2010 Cognitive Science Society, Inc.

  16. The Impact of Merger Status and Relative Representation on Identification with a Merger Group

    Directory of Open Access Journals (Sweden)

    Filip Boen

    2005-12-01

    Full Text Available This experiment tested to what extent identification with a new merger group is determined by the status of that merger group and by the relative representation of the pre-merger ingroup. One hundred university students were assigned to a team of 'inductive' thinkers, and were later merged with a team of 'deductive' thinkers to form a team of 'analyst' thinkers. The status of the merger group (low, high and the relative representation of the ingroup into the novel merger group (low, high were manipulated. Participants identified more with the merger group in the high than in the low status condition, and they identified more in the high than in the low representation condition. The predicted interaction between relative representation and merger status was not significant. However, relative representation did interact with participants' pre-merger identification: Pre- and post-merger identification were positively related when the ingroup was highly represented, but 'negatively' when the ingroup was lowly represented.

  17. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    Science.gov (United States)

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely

  18. Temporally Adrift and Permanently Liminal: Relations, Dystalgia and a U.S. University as Site of Transition and Frontier

    Directory of Open Access Journals (Sweden)

    Frank G. Karioris

    2016-04-01

    Full Text Available This article seeks to explore temporal reconceptualizations and forms of nostalgia that first-year university men are experiencing and creating. It will explore the ways that time can be conceived of in relation to the present and a future that is not-yet-existent. The article takes as its starting point ethnographic fieldwork in the 21st century at a private, Catholic university in the U.S. and, in particular, men in an all-male residence hall. In focusing on this hall, it means to locate and localize the thinking in the context of the 21st century as well as within the U.S., including ne-oliberalism as a social and economic method of relating. Through the exploration of these men's envisioning of themselves as their future selves and the way they review the self that is now, this article makes a claim that they are - through both their actions, ways of relating, and the societal positioning - multiply liminal. Further, it will explore the way that through this temporal representation they are endowing themselves as permanently liminal both currently and in the future. The article situates these men amidst the university as an institution, as well as seeking to elucidate the importance of this temporal creation as a building of forms of transition and frontier.

  19. A model relating Eulerian spatial and temporal velocity correlations

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  20. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    Science.gov (United States)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  1. VISUALIZATION OF SPATIO-TEMPORAL RELATIONS IN MOVEMENT EVENT USING MULTI-VIEW

    Directory of Open Access Journals (Sweden)

    K. Zheng

    2017-09-01

    Full Text Available Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  2. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    Directory of Open Access Journals (Sweden)

    Jonathan Smallwood

    Full Text Available When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN, it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  3. Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration

    Directory of Open Access Journals (Sweden)

    M. Herrmann

    2011-07-01

    Full Text Available Atmospheric datasets coming from long term reanalyzes of low spatial resolution are used for different purposes. Wind over the sea is, for example, a major ingredient of oceanic simulations. However, the shortcomings of those datasets prevent them from being used without an adequate corrective preliminary treatment. Using a regional climate model (RCM to perform a dynamical downscaling of those large scale reanalyzes is one of the methods used in order to produce fields that realistically reproduce atmospheric chronology and where those shortcomings are corrected. Here we assess the influence of the configuration of the RCM used in this framework on the representation of wind speed spatial and temporal variability and intense wind events on a daily timescale. Our RCM is ALADIN-Climate, the reanalysis is ERA-40, and the studied area is the Mediterranean Sea.

    First, the dynamical downscaling significantly reduces the underestimation of daily wind speed, in average by 9 % over the whole Mediterranean. This underestimation has been corrected both globally and locally, and for the whole wind speed spectrum. The correction is the strongest for periods and regions of strong winds. The representation of spatial variability has also been significantly improved. On the other hand, the temporal correlation between the downscaled field and the observations decreases all the more that one moves eastwards, i.e. further from the atmospheric flux entry. Nonetheless, it remains ~0.7, the downscaled dataset reproduces therefore satisfactorily the real chronology.

    Second, the influence of the choice of the RCM configuration has an influence one order of magnitude smaller than the improvement induced by the initial downscaling. The use of spectral nudging or of a smaller domain helps to improve the realism of the temporal chronology. Increasing the resolution very locally (both spatially and temporally improves the representation of spatial

  4. Learning Combinations of Multiple Feature Representations for Music Emotion Prediction

    DEFF Research Database (Denmark)

    Madsen, Jens; Jensen, Bjørn Sand; Larsen, Jan

    2015-01-01

    Music consists of several structures and patterns evolving through time which greatly influences the human decoding of higher-level cognitive aspects of music like the emotions expressed in music. For tasks, such as genre, tag and emotion recognition, these structures have often been identified...... and used as individual and non-temporal features and representations. In this work, we address the hypothesis whether using multiple temporal and non-temporal representations of different features is beneficial for modeling music structure with the aim to predict the emotions expressed in music. We test...

  5. Representations for implicit constitutive relations describing non-dissipative response of isotropic materials

    Science.gov (United States)

    Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.

    2017-12-01

    A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.

  6. MOTHERS' AND FATHERS' PRENATAL REPRESENTATIONS IN RELATION TO MARITAL DISTRESS AND DEPRESSIVE SYMPTOMS.

    Science.gov (United States)

    Ahlqvist-Björkroth, Sari; Korja, Riikka; Junttila, Niina; Savonlahti, Elina; Pajulo, Marjukka; Räihä, Hannele; Aromaa, Minna

    2016-07-01

    Marital distress, parental depression, and weak quality of parental representations are all known risk factors for parent-child relationships. However, the relation between marital distress, depressive symptoms, and parents' prenatal representation is uncertain, especially regarding fathers. The present study aimed to explore how mothers' and fathers' prenatal experience of marital distress and depressive symptoms affects the organization of their prenatal representations in late pregnancy. Participants were 153 pregnant couples from a Finnish follow-up study called "Steps to the Healthy Development and Well-being of Children" (H. Lagström et al., ). Marital distress (Revised Dyadic Adjustment Scale; D.M. Busby, C. Christensen, D. Crane, & J. Larson, 1995) and depressive symptoms (Edinburgh Postnatal Depression Scale) were assessed at 20 gestational weeks, and prenatal representations (Working Model of the Child Interview; D. Benoit, K.C.H. Parker, & C.H. Zeanah, 1997; C.H. Zeanah, D. Benoit, M. Barton, & L. Hirshberg, 1996) were assessed between 29 and 32 gestational weeks. The mothers' risks of distorted representations increased significantly when they had at least minor depressive symptoms. Marital distress was associated with the fathers' prenatal representations, although the association was weak; fathers within the marital distress group had less balanced representations. Coexisting marital distress and depressive symptoms were only associated with the mothers' representations; lack of marital distress and depressive symptoms increased the likelihood for mothers to have balanced representations. The results imply that marital distress and depressive symptoms are differently related to the organizations of mothers' and fathers' prenatal representations. © 2016 Michigan Association for Infant Mental Health.

  7. The role of national identity representation in the relation between in-group identification and out-group derogation: Ethnic versus civic representation

    OpenAIRE

    Meeus, Joke; Duriez, Bart; Vanbeselaere, Norbert; Boen, Filip

    2010-01-01

    Two studies investigated whether the content of in-group identity affects the relation between in-group identification and ethnic prejudice. The first study among university students, tested whether national identity representations (i.e. ethnic vs. civic) moderate or mediate the relation between Flemish in-group identification and ethnic prejudice. A moderation hypothesis is supported when those higher in identification who subscribe to a more ethnic representation display higher ethnic prej...

  8. Competition and Cooperation among Relational Memory Representations.

    Science.gov (United States)

    Schwarb, Hillary; Watson, Patrick D; Campbell, Kelsey; Shander, Christopher L; Monti, Jim M; Cooke, Gillian E; Wang, Jane X; Kramer, Arthur F; Cohen, Neal J

    2015-01-01

    Mnemonic processing engages multiple systems that cooperate and compete to support task performance. Exploring these systems' interaction requires memory tasks that produce rich data with multiple patterns of performance sensitive to different processing sub-components. Here we present a novel context-dependent relational memory paradigm designed to engage multiple learning and memory systems. In this task, participants learned unique face-room associations in two distinct contexts (i.e., different colored buildings). Faces occupied rooms as determined by an implicit gender-by-side rule structure (e.g., male faces on the left and female faces on the right) and all faces were seen in both contexts. In two experiments, we use behavioral and eye-tracking measures to investigate interactions among different memory representations in both younger and older adult populations; furthermore we link these representations to volumetric variations in hippocampus and ventromedial PFC among older adults. Overall, performance was very accurate. Successful face placement into a studied room systematically varied with hippocampal volume. Selecting the studied room in the wrong context was the most typical error. The proportion of these errors to correct responses positively correlated with ventromedial prefrontal volume. This novel task provides a powerful tool for investigating both the unique and interacting contributions of these systems in support of relational memory.

  9. A 15-Year Review of Trends in Representation of Female Subjects in Islamic Bioethics Research.

    Science.gov (United States)

    Hussain, Zeenat; Kuzian, Edyta; Hussain, Naveed

    2017-02-01

    Gender representation in Islamic bioethics research in the twenty-first century has not been studied. To study temporal trends in representation of female subjects in Islamic bioethics research, PubMed-listed publications on Islamic bioethics from years 2000 to 2014 were reviewed for gender participation in human subjects' research. There were temporal trends of increasing publications of Islamic bioethics-related human subjects' research (64 papers over 15 years; R 2  = 0.72; p < 0.0004). Female subjects were well represented with a trend toward increasing participation. This was true for women from Muslim-majority countries even in non-gender-focused studies over the past 15 years.

  10. The representational dynamics of task and object processing in humans

    Science.gov (United States)

    Bankson, Brett B; Harel, Assaf

    2018-01-01

    Despite the importance of an observer’s goals in determining how a visual object is categorized, surprisingly little is known about how humans process the task context in which objects occur and how it may interact with the processing of objects. Using magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and multivariate techniques, we studied the spatial and temporal dynamics of task and object processing. Our results reveal a sequence of separate but overlapping task-related processes spread across frontoparietal and occipitotemporal cortex. Task exhibited late effects on object processing by selectively enhancing task-relevant object features, with limited impact on the overall pattern of object representations. Combining MEG and fMRI data, we reveal a parallel rise in task-related signals throughout the cerebral cortex, with an increasing dominance of task over object representations from early to higher visual areas. Collectively, our results reveal the complex dynamics underlying task and object representations throughout human cortex. PMID:29384473

  11. Representations of the algebra Uq'(son) related to quantum gravity

    International Nuclear Information System (INIS)

    Klimyk, A.U.

    2002-01-01

    The aim of this paper is to review our results on finite dimensional irreducible representations of the nonstandard q-deformation U q ' (so n ) of the universal enveloping algebra U(so(n)) of the Lie algebra so(n) which does not coincide with the Drinfeld-Jimbo quantum algebra U q (so n ).This algebra is related to algebras of observables in quantum gravity and to algebraic geometry.Irreducible finite dimensional representations of the algebra U q ' (so n ) for q not a root of unity and for q a root of unity are given

  12. A Relational Encoding of a Conceptual Model with Multiple Temporal Dimensions

    Science.gov (United States)

    Gubiani, Donatella; Montanari, Angelo

    The theoretical interest and the practical relevance of a systematic treatment of multiple temporal dimensions is widely recognized in the database and information system communities. Nevertheless, most relational databases have no temporal support at all. A few of them provide a limited support, in terms of temporal data types and predicates, constructors, and functions for the management of time values (borrowed from the SQL standard). One (resp., two) temporal dimensions are supported by historical and transaction-time (resp., bitemporal) databases only. In this paper, we provide a relational encoding of a conceptual model featuring four temporal dimensions, namely, the classical valid and transaction times, plus the event and availability times. We focus our attention on the distinctive technical features of the proposed temporal extension of the relation model. In the last part of the paper, we briefly show how to implement it in a standard DBMS.

  13. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    Science.gov (United States)

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  14. Apples are not the only fruit: The effects of concept typicality on semantic representation in the anterior temporal lobe

    Directory of Open Access Journals (Sweden)

    Anna M. Woollams

    2012-04-01

    Full Text Available Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, a variable known as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of age of acquisition and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in semantic dementia, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the age of acquisition or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation.

  15. Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.

    Science.gov (United States)

    Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida

    2014-03-01

    Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a

  16. Neuronal representations of stimulus associations develop in the temporal lobe during learning.

    Science.gov (United States)

    Messinger, A; Squire, L R; Zola, S M; Albright, T D

    2001-10-09

    Visual stimuli that are frequently seen together become associated in long-term memory, such that the sight of one stimulus readily brings to mind the thought or image of the other. It has been hypothesized that acquisition of such long-term associative memories proceeds via the strengthening of connections between neurons representing the associated stimuli, such that a neuron initially responding only to one stimulus of an associated pair eventually comes to respond to both. Consistent with this hypothesis, studies have demonstrated that individual neurons in the primate inferior temporal cortex tend to exhibit similar responses to pairs of visual stimuli that have become behaviorally associated. In the present study, we investigated the role of these areas in the formation of conditional visual associations by monitoring the responses of individual neurons during the learning of new stimulus pairs. We found that many neurons in both area TE and perirhinal cortex came to elicit more similar neuronal responses to paired stimuli as learning proceeded. Moreover, these neuronal response changes were learning-dependent and proceeded with an average time course that paralleled learning. This experience-dependent plasticity of sensory representations in the cerebral cortex may underlie the learning of associations between objects.

  17. The Representation and Execution of Articulatory Timing in First and Second Language Acquisition.

    Science.gov (United States)

    Redford, Melissa A; Oh, Grace E

    2017-07-01

    The early acquisition of language-specific temporal patterns relative to the late development of speech motor control suggests a dissociation between the representation and execution of articulatory timing. The current study tested for such a dissociation in first and second language acquisition. American English-speaking children (5- and 8-year-olds) and Korean-speaking adult learners of English repeatedly produced real English words in a simple carrier sentence. The words were designed to elicit different language-specific vowel length contrasts. Measures of absolute duration and variability in single vowel productions were extracted to evaluate the realization of contrasts (representation) and to index speech motor abilities (execution). Results were mostly consistent with a dissociation. Native English-speaking children produced the same language-specific temporal patterns as native English-speaking adults, but their productions were more variable than the adults'. In contrast, Korean-speaking adult learners of English typically produced different temporal patterns than native English-speaking adults, but their productions were as stable as the native speakers'. Implications of the results are discussed with reference to different models of speech production.

  18. Temporal networks

    CERN Document Server

    Saramäki, Jari

    2013-01-01

    The concept of temporal networks is an extension of complex networks as a modeling framework to include information on when interactions between nodes happen. Many studies of the last decade examine how the static network structure affect dynamic systems on the network. In this traditional approach  the temporal aspects are pre-encoded in the dynamic system model. Temporal-network methods, on the other hand, lift the temporal information from the level of system dynamics to the mathematical representation of the contact network itself. This framework becomes particularly useful for cases where there is a lot of structure and heterogeneity both in the timings of interaction events and the network topology. The advantage compared to common static network approaches is the ability to design more accurate models in order to explain and predict large-scale dynamic phenomena (such as, e.g., epidemic outbreaks and other spreading phenomena). On the other hand, temporal network methods are mathematically and concept...

  19. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  20. Logical knowledge representation of regulatory relations in biomedical pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Hansen, Jens Ulrik

    2010-01-01

    Knowledge on regulatory relations, in for example regulatory pathways in biology, is used widely in experiment design by biomedical researchers and in systems biology. The knowledge has typically either been represented through simple graphs or through very expressive differential equation...... simulations of smaller parts of a pathway. In this work we suggest a knowledge representation of the most basic relations in regulatory processes regulates, positively regulates and negatively regulates in logics based on a semantic analysis. We discuss the usage of these relations in biology and in articial...... intelligence for hypothesis development in drug discovery....

  1. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    Science.gov (United States)

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  2. Sleep enforces the temporal order in memory.

    Directory of Open Access Journals (Sweden)

    Spyridon Drosopoulos

    Full Text Available BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively or in a backward direction (cueing with C and B and asking for B and A, respectively. Memory was better for forward than backward associations (p<0.01. Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB transitions (p<0.01, which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in

  3. CNTRO: A Semantic Web Ontology for Temporal Relation Inferencing in Clinical Narratives.

    Science.gov (United States)

    Tao, Cui; Wei, Wei-Qi; Solbrig, Harold R; Savova, Guergana; Chute, Christopher G

    2010-11-13

    Using Semantic-Web specifications to represent temporal information in clinical narratives is an important step for temporal reasoning and answering time-oriented queries. Existing temporal models are either not compatible with the powerful reasoning tools developed for the Semantic Web, or designed only for structured clinical data and therefore are not ready to be applied on natural-language-based clinical narrative reports directly. We have developed a Semantic-Web ontology which is called Clinical Narrative Temporal Relation ontology. Using this ontology, temporal information in clinical narratives can be represented as RDF (Resource Description Framework) triples. More temporal information and relations can then be inferred by Semantic-Web based reasoning tools. Experimental results show that this ontology can represent temporal information in real clinical narratives successfully.

  4. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    Science.gov (United States)

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  5. Some modifications of temporal relation in the sentence with the temporal clause

    Directory of Open Access Journals (Sweden)

    Antonić Ivana N.

    2013-01-01

    Full Text Available The subject matter of this paper is the modification of temporal relation in the complex sentence with the temporal clause. At the functional different Serbian language corpus the author notices the next types of modified temporality: excepted locational simultaneity complete or partial, and excepted locationalorientational posteriority formalized by the structure V SAMO/JEDINO/OSIM/SEM/IZUZEV(ONDA KAD VSub, and excepted locational simultaneity/excepted terminativity formalized by the structure V SAMO DOK (Neg VSub; sutuational locational simultaneity complete or partial formalized by the structure V U SITUACIJI / U SLUČAJU KAD VSub, with the posibility to be exceptivly modified in the structure V IZUZEV U SITUACIJI / U SLUČAJU KAD VSub; situational-concessive locational simultaneity complete or partial formalized by the structure V (ČAK I (ONDA KAD VSub; situational-conditional locational-orientational posteriority formalized by the structure V TEK (ONDA KAD VSub, and situational-conditional orientational posteriority formalized by the structure V TEK POŠTO VSub or V TEK NAKON ŠTO VSub and situational-conditional orientational quantified posteriority formalized by the structure V Quant TEK POŠTO VSub, and finaly situational-conditional terminativity formalized by the structure (Neg V SVE DOK Neg VSub. It can ocure sporadically supstitutiv temporality formalized by the structure V DetTemp (UMESTO KAD VSub, and consecutive-adversative temporality formalized by the structure KAD VSub A (ONDA V. [Projekat Ministarstva nauke Republike Srbije, br. 178004: Sintaksička, semantička i pragmatička istraživanja standardnog srpskog jezika

  6. Factorizations and physical representations

    International Nuclear Information System (INIS)

    Revzen, M; Khanna, F C; Mann, A; Zak, J

    2006-01-01

    A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the decomposition of M into prime numbers. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related representations termed q 1 q 2 representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter representation each quantum number varies in a subspace that is associated with one of the prime numbers that make up M

  7. Age-related changes in visual temporal order judgment performance: Relation to sensory and cognitive capacities.

    Science.gov (United States)

    Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry

    2010-08-06

    Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging periodicity-tagged segregation of competing speech in rooms

    Directory of Open Access Journals (Sweden)

    Mark eSayles

    2015-01-01

    Full Text Available The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once, in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation. Brainstem circuits help segregate these complex acoustic mixtures into auditory objects. Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0 modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous.We examine the ability of 129 single units in the ventral cochlear nucleus of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels’ spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels’ spectral energy into two streams (corresponding to the two vowels, on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging

  9. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  10. Temporal Organization of Sound Information in Auditory Memory.

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  11. Temporal context and the organisational impairment of memory search in schizophrenia.

    Science.gov (United States)

    Polyn, Sean M; McCluey, Joshua D; Morton, Neal W; Woolard, Austin A; Luksik, Andrew S; Heckers, Stephan

    2015-01-01

    An influential theory of schizophrenic deficits in executive function suggests that patients have difficulty maintaining and utilising an internal contextual representation, whose function is to ensure that stimuli are processed in a task-appropriate manner. In basic research on episodic memory, retrieved-context theories propose that an internal contextual representation is critically involved in memory search, facilitating the retrieval of task-appropriate memories. This contextual machinery is thought to give rise to temporal organisation during free recall: the tendency for successive recall responses to correspond to items from nearby positions on the study list. If patients with schizophrenia have a generalised contextual deficit, then this leads to the prediction that these patients will exhibit reduced temporal organisation in free recall. Using a combination of classic and recently developed organisational measures, we characterised recall organisation in 75 patients with schizophrenia and 72 nondisordered control participants performing a multi-trial free-recall task. Patients with schizophrenia showed diminished temporal organisation, as well as diminished subjective organisation of their recall sequences relative to control participants. The two groups showed similar amounts of semantic organisation during recall. The observation of reduced temporal organisation in the patient group is consistent with the proposal that the memory deficit in schizophrenia can be characterised as a deficit in contextual processing.

  12. Entry format for representation of analytical relations on the ES computer

    International Nuclear Information System (INIS)

    Katan, I.B.; Sal'nikova, O.V.; Blokhin, A.I.

    1981-01-01

    Structure and description of an input format for representation of analytical relations on the ES compUter as well as dictionaries of key words and system identificators for thermal-physical and hydraulic data are presented. It is shown that the format considered can be the basis at the formation of library of analytical relations [ru

  13. Representation of activity in images using geospatial temporal graphs

    Science.gov (United States)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl

    2018-05-01

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  14. A Social Representations Perspective on Information Systems Implementation

    DEFF Research Database (Denmark)

    Gal, Uri; Berente, Nicholas

    2008-01-01

    Abstract: Purpose - The purpose of this paper is to advocate a "social representations" approach to the study of socio-cognitive processes during information systems (IS) implementation as an alternative to the technological frames framework. Design/methodology/approach - The paper demonstrates how......, it may lead to symptomatic explanations of IS implementation. Alternatively, using the theory of social representations can offer more fundamental causal explanations of IS implementation processes. Research limitations/implications - IS researchers are encouraged to use a social representations approach...... social representations theory can improve research outcomes by applying it to three recent studies that employed the technological frames framework. Findings - It is found that because the technological frames framework is overly technologically centered, temporally bounded, and individually focused...

  15. Building spatio-temporal database model based on ontological approach using relational database environment

    International Nuclear Information System (INIS)

    Mahmood, N.; Burney, S.M.A.

    2017-01-01

    Everything in this world is encapsulated by space and time fence. Our daily life activities are utterly linked and related with other objects in vicinity. Therefore, a strong relationship exist with our current location, time (including past, present and future) and event through with we are moving as an object also affect our activities in life. Ontology development and its integration with database are vital for the true understanding of the complex systems involving both spatial and temporal dimensions. In this paper we propose a conceptual framework for building spatio-temporal database model based on ontological approach. We have used relational data model for modelling spatio-temporal data content and present our methodology with spatio-temporal ontological accepts and its transformation into spatio-temporal database model. We illustrate the implementation of our conceptual model through a case study related to cultivated land parcel used for agriculture to exhibit the spatio-temporal behaviour of agricultural land and related entities. Moreover, it provides a generic approach for designing spatiotemporal databases based on ontology. The proposed model is capable to understand the ontological and somehow epistemological commitments and to build spatio-temporal ontology and transform it into a spatio-temporal data model. Finally, we highlight the existing and future research challenges. (author)

  16. How the past weighs on the present: social representations of history and their role in identity politics.

    Science.gov (United States)

    Liu, James H; Hilton, Denis J

    2005-12-01

    Socially shared representations of history have been important in creating, maintaining and changing a people's identity. Their management and negotiation are central to interethnic and international relations. We present a narrative framework to represent how collectively significant events become (selectively) incorporated in social representations that enable positioning of ethnic, national and supranational identities. This perspective creates diachronic (temporal) links between the functional (e.g. realistic conflict theory), social identity, and cognitive perspectives on intergroup relations. The charters embedded in these representations condition nations with similar interests to adopt different political stances in dealing with current events, and can influence the perceived stability and legitimacy of social orders. They are also instrumental in determining social identity strategies for reacting to negative social comparisons, and can influence the relationships between national and ethnic identities.

  17. Committee Representation and Medicare Reimbursements-An Examination of the Resource-Based Relative Value Scale.

    Science.gov (United States)

    Gao, Y Nina

    2018-04-06

    The Resource-Based Relative Value Scale Update Committee (RUC) submits recommended reimbursement values for physician work (wRVUs) under Medicare Part B. The RUC includes rotating representatives from medical specialties. To identify changes in physician reimbursements associated with RUC rotating seat representation. Relative Value Scale Update Committee members 1994-2013; Medicare Part B Relative Value Scale 1994-2013; Physician/Supplier Procedure Summary Master File 2007; Part B National Summary Data File 2000-2011. I match service and procedure codes to specialties using 2007 Medicare billing data. Subsequently, I model wRVUs as a function of RUC rotating committee representation and level of code specialization. An annual RUC rotating seat membership is associated with a statistically significant 3-5 percent increase in Medicare expenditures for codes billed to that specialty. For codes that are performed by a small number of physicians, the association between reimbursement and rotating subspecialty representation is positive, 0.177 (SE = 0.024). For codes that are performed by a large number of physicians, the association is negative, -0.183 (SE = 0.026). Rotating representation on the RUC is correlated with overall reimbursement rates. The resulting differential changes may exacerbate existing reimbursement discrepancies between generalist and specialist practitioners. © Health Research and Educational Trust.

  18. Blocks of tame representation type and related algebras

    CERN Document Server

    Erdmann, Karin

    1990-01-01

    This monograph studies algebras that are associated to blocks of tame representation type. Over the past few years, a range of new results have been obtained and a comprehensive account of these is provided here to- gether with some new proofs of known results. Some general theory of algebras is also presented, as a means of understanding the subject. The book is addressed to researchers and graduate students interested in the links between representations of finite-dimensional algebras and modular group representation theory. The basic properties of modules and finite-dimensional algebras are assumed known.

  19. Statistical, Spatial and Temporal Mapping of 911 Emergencies in Ecuador

    Directory of Open Access Journals (Sweden)

    Danilo Corral-De-Witt

    2018-01-01

    Full Text Available A public safety answering point (PSAP receives alerts and attends to emergencies that occur in its responsibility area. The analysis of the events related to a PSAP can give us relevant information in order to manage them and to improve the performance of the first response institutions (FRIs associated to every PSAP. However, current emergency systems are growing dramatically in terms of information heterogeneity and the volume of attended requests. In this work, we propose a system for statistical, spatial, and temporal analysis of incidences registered in a PSAP by using simple, yet robust and compact, event representations. The selected and designed temporal analysis tools include seasonal representations and nonparametric confidence intervals (CIs, which dissociate the main seasonal components and the transients. The spatial analysis tools include a straightforward event location over Google Maps and the detection of heat zones by means of bidimensional geographic Parzen windows with automatic width control in terms of the scales and the number of events in the region of interest. Finally, statistical representations are used for jointly analyzing temporal and spatial data in terms of the “time–space slices”. We analyzed the total number of emergencies that were attended during 2014 by seven FRIs articulated in a PSAP at the Ecuadorian 911 Integrated Security Service. Characteristic weekly patterns were observed in institutions such as the police, health, and transit services, whereas annual patterns were observed in firefighter events. Spatial and spatiotemporal analysis showed some expected patterns together with nontrivial differences among different services, to be taken into account for resource management. The proposed analysis allows for a flexible analysis by combining statistical, spatial and temporal information, and it provides 911 service managers with useful and operative information.

  20. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  1. Toward a clinic of temporality?

    Science.gov (United States)

    Rivasseau Jonveaux, Thérèse; Batt, Martine; Trognon, Alain

    2017-12-01

    The discovery of time cells has expanded our knowledge in the field of spatial and temporal information coding and the key role of the hippocampus. The internal clock model complemented with the attentional gate model allows a more in-depth understanding of the perception of time. The motor representation of duration is ensured by the basal ganglia, while the cerebellum synchronizes short duration for the movement. The right prefrontal cortex seemingly intervenes in the handling of temporal information in working memory. The temporal lobe ensures the comparison of durations, especially the right lobe for the reference durations and the medial lobe for the reproduction of durations in episodic memory. During normal aging, the hypothesis of slowing of the temporal processor is evoked when noting the perception of the acceleration of the passage of time that seemingly occurs with advancing age. The various studies pertaining specifically to time cognition, albeit heterogeneous in terms of methodology, attest to the wide-ranging disturbances of this cognitive field during the course of numerous disorders, whether psychiatric - depression and schizophrenia notably - or neurological. Hence, perturbations in temporality are observed in focal brain lesions and in subcortical disorders, such as Parkinson's disease or Huntington's chorea. Alzheimer's disease represents a particularly fertile field of exploration with regard to time cognition and temporality. The objectified deconstruction of temporal experience provides insights into the very processes of temporality and their nature: episodic, semantic and procedural. In addition to exploration based on elementary stimuli, one should also consider the time lived, i.e. that of the subject, to better understand cognition as it relates to time. While the temporal dimension permeates the whole cognitive field, it remains largely neglected: integration of a genuine time cognition and temporality clinic in daily practice remains

  2. Are temporal concepts embodied? A challenge for cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Alexander eKranjec

    2010-12-01

    Full Text Available Is time an embodied concept? People often talk and think about temporal concepts in terms of space. This observation, along with linguistic and experimental behavioral data documenting a close conceptual relation between space and time, is often interpreted as evidence that temporal concepts are embodied. However, there is little neural data supporting the idea that our temporal concepts are grounded in sensorimotor representations. This lack of evidence may be because it is still unclear how an embodied concept of time should be expressed in the brain. The present paper sets out to characterize the kinds of evidence that would support or challenge embodied accounts of time. Of main interest are theoretical issues concerning (1 whether space, as a mediating concept for time, is itself best understood as embodied and (2 whether embodied theories should attempt to bypass space by investigating temporal conceptual grounding in neural systems that instantiate time perception.

  3. Verbal memory after temporal lobe epilepsy surgery in children: Do only mesial structures matter?

    Science.gov (United States)

    Law, Nicole; Benifla, Mony; Rutka, James; Smith, Mary Lou

    2017-02-01

    Previous findings have been mixed regarding verbal memory outcome after left temporal lobectomy in children, and there are few studies comparing verbal memory change after lateral versus mesial temporal lobe resections. We compared verbal memory outcome associated with sparing or including the mesial structures in children who underwent left or right temporal lobe resection. We also investigated predictors of postsurgical verbal memory change. We retrospectively assessed verbal memory change approximately 1 year after unilateral temporal lobe epilepsy surgery using a list learning task. Participants included 23 children who underwent temporal lobe surgery with sparing of the mesial structures (13 left), and 40 children who had a temporal lobectomy that included resection of mesial structures (22 left). Children who underwent resection from the left lateral and mesial temporal lobe were the only group to show decline in verbal memory. Furthermore, when we considered language representation in the left temporal resection group, patients with left language representation and spared mesial structures showed essentially no change in verbal memory from preoperative to follow-up, whereas those with left language representation and excised mesial structures showed a decline. Postoperative seizure status had no effect on verbal memory change in children after left temporal lobe surgery. Finally, we found that patients with intact preoperative verbal memory experienced a significant decline compared to those with below average preoperative verbal memory. Our findings provide evidence of significant risk factors for verbal memory decline in children, specific to left mesial temporal lobe epilepsy. Children who undergo left temporal lobe surgery that includes mesial structures may be most vulnerable for verbal memory decline, especially when language representation is localized to the left hemisphere and when preoperative verbal memory is intact. Wiley Periodicals, Inc.

  4. Automatic temporal expectancy: a high-density event-related potential study.

    Directory of Open Access Journals (Sweden)

    Giovanni Mento

    Full Text Available How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual stimuli (S1 and S2 interspersed with an Inter-Stimulus Interval (ISI that was manipulated according to an oddball probabilistic distribution. In the standard condition (70% of trials, the ISI lasted 1,500 ms, while in the two alternative, deviant conditions (15% each, it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity revealed activation of sensorial cortical areas and the supplementary motor area (SMA, respectively. In particular, since the SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy.

  5. Traces of times past : Representations of temporal intervals in memory

    NARCIS (Netherlands)

    Taatgen, Niels; van Rijn, Hedderik

    2011-01-01

    Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin,

  6. Relations between maternal attachment representations and the quality of mother-infant interaction in preterm and full-term infants.

    Science.gov (United States)

    Korja, Riikka; Ahlqvist-Björkroth, Sari; Savonlahti, Elina; Stolt, Suvi; Haataja, Leena; Lapinleimu, Helena; Piha, Jorma; Lehtonen, Liisa

    2010-06-01

    The aim of the study was to assess the relationship between maternal representations and the quality of mother-infant interaction in a group of preterm and full-term infants. The study groups consisted of 38 mothers and their preterm infants (quality of mother-infant interaction was studied using the Parent-Child Early Relational Assessment (PCERA) method at 6 and 12 months of the infant's corrected age. The results showed that maternal representations are related to the quality of mother-infant interaction in a parallel manner in preterm and full-term infants and their mothers. Furthermore, distorted representations were more strongly related to a higher number of areas of concern in mother-infant interaction than other representation classifications. Our results underline the importance of combined assessment of the subjective experiences of the mother and the quality of mother-infant interaction in clinical follow-up. This is the first study to describe the relation between maternal attachment representations and the quality of mother-infant interaction involving preterm infants. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning

    Directory of Open Access Journals (Sweden)

    Pasi Nieminen

    2012-05-01

    Full Text Available Previous physics education research has raised the question of “hidden variables” behind students’ success in learning certain concepts. In the context of the force concept, it has been suggested that students’ reasoning ability is one such variable. Strong positive correlations between students’ preinstruction scores for reasoning ability (measured by Lawson’s Classroom Test of Scientific Reasoning and their learning of forces [measured by the Force Concept Inventory (FCI] have been reported in high school and university introductory courses. However, there is no published research concerning the relation between students’ ability to interpret multiple representations consistently (i.e., representational consistency and their learning of forces. To investigate this, we collected 131 high school students’ pre- and post-test data of the Representational Variant of the Force Concept Inventory (for representational consistency and the FCI. The students’ Lawson pretest data were also collected. We found that the preinstruction level of students’ representational consistency correlated strongly with student learning gain of forces. The correlation (0.51 was almost equal to the correlation between Lawson prescore and learning gain of forces (0.52. Our results support earlier findings which suggest that scientific reasoning ability is a hidden variable behind the learning of forces. In addition, we suggest that students’ representational consistency may also be such a factor, and that this should be recognized in physics teaching.

  8. Loop space representation of quantum general relativity and the group of loops

    International Nuclear Information System (INIS)

    Gambini, R.

    1991-01-01

    The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)

  9. A representation of the exchange relation for affine Toda field theory

    International Nuclear Information System (INIS)

    Corrigan, E.; Dorey, P.E.

    1991-01-01

    Vertex operators are constructed providing representations of the exchange relations containing either the S-matrix of a real coupling (simply-laced) affine Toda field theory, or its minimal counterpart. One feature of the construction is that the bootstrap relations for the S-matrices follow automatically from those for the conserved quantities, via an algebraic interpretation of the fusing of two particles to form a single bound state. (orig.)

  10. Temporal lobe structures and facial emotion recognition in schizophrenia patients and nonpsychotic relatives.

    Science.gov (United States)

    Goghari, Vina M; Macdonald, Angus W; Sponheim, Scott R

    2011-11-01

    Temporal lobe abnormalities and emotion recognition deficits are prominent features of schizophrenia and appear related to the diathesis of the disorder. This study investigated whether temporal lobe structural abnormalities were associated with facial emotion recognition deficits in schizophrenia and related to genetic liability for the disorder. Twenty-seven schizophrenia patients, 23 biological family members, and 36 controls participated. Several temporal lobe regions (fusiform, superior temporal, middle temporal, amygdala, and hippocampus) previously associated with face recognition in normative samples and found to be abnormal in schizophrenia were evaluated using volumetric analyses. Participants completed a facial emotion recognition task and an age recognition control task under time-limited and self-paced conditions. Temporal lobe volumes were tested for associations with task performance. Group status explained 23% of the variance in temporal lobe volume. Left fusiform gray matter volume was decreased by 11% in patients and 7% in relatives compared with controls. Schizophrenia patients additionally exhibited smaller hippocampal and middle temporal volumes. Patients were unable to improve facial emotion recognition performance with unlimited time to make a judgment but were able to improve age recognition performance. Patients additionally showed a relationship between reduced temporal lobe gray matter and poor facial emotion recognition. For the middle temporal lobe region, the relationship between greater volume and better task performance was specific to facial emotion recognition and not age recognition. Because schizophrenia patients exhibited a specific deficit in emotion recognition not attributable to a generalized impairment in face perception, impaired emotion recognition may serve as a target for interventions.

  11. Spatiotemporal Dynamics of Cortical Representations during and after Stimulus Presentation

    Directory of Open Access Journals (Sweden)

    Marieke Esther van de Nieuwenhuijzen

    2016-05-01

    Full Text Available Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within the next 110 ms, activation spread out to include the temporal lobe before returning to residing mainly in the occipital lobe again. After stimulus offset, a peak in information was observed, comparable to the peak after stimulus onset. Moreover, similar processes, albeit not identical, seemed to underlie both peaks. Information about the categorical identity of the stimulus remained present until 677 ms after stimulus offset, during which period the stimulus had to be retained in working memory. Activation patterns initially resembled those observed during stimulus presentation. After about 200 ms, however, this representation changed and class-specific activity became more equally distributed over the four lobes. These results show that, although there are common processes underlying stimulus representation both during and after stimulus presentation, these representations change depending on the specific stage of perception and maintenance.

  12. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    Science.gov (United States)

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  13. Spectral Approaches to Learning Predictive Representations

    Science.gov (United States)

    2012-09-01

    representation and a value function. In practice, we would like to be able to find a good set of features, without prior knowledge of the system model. Kolter ...http://www.cs.ucr.edu/ eamonn/TSDMA/index.html. 7.1 [55] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares temporal

  14. The role of auditory spectro-temporal modulation filtering and the decision metric for speech intelligibility prediction

    DEFF Research Database (Denmark)

    Chabot-Leclerc, Alexandre; Jørgensen, Søren; Dau, Torsten

    2014-01-01

    Speech intelligibility models typically consist of a preprocessing part that transforms stimuli into some internal (auditory) representation and a decision metric that relates the internal representation to speech intelligibility. The present study analyzed the role of modulation filtering...... in the preprocessing of different speech intelligibility models by comparing predictions from models that either assume a spectro-temporal (i.e., two-dimensional) or a temporal-only (i.e., one-dimensional) modulation filterbank. Furthermore, the role of the decision metric for speech intelligibility was investigated...... subtraction. The results suggested that a decision metric based on the SNRenv may provide a more general basis for predicting speech intelligibility than a metric based on the MTF. Moreover, the one-dimensional modulation filtering process was found to be sufficient to account for the data when combined...

  15. Event-related potentials to event-related words: grammatical class and semantic attributes in the representation of knowledge.

    Science.gov (United States)

    Barber, Horacio A; Kousta, Stavroula-Thaleia; Otten, Leun J; Vigliocco, Gabriella

    2010-05-21

    A number of recent studies have provided contradictory evidence on the question of whether grammatical class plays a role in the neural representation of lexical knowledge. Most of the previous studies comparing the processing of nouns and verbs, however, confounded word meaning and grammatical class by comparing verbs referring to actions with nouns referring to objects. Here, we recorded electrical brain activity from native Italian speakers reading single words all referring to events (e.g., corsa [the run]; correre [to run]), thus avoiding confounding nouns and verbs with objects and actions. We manipulated grammatical class (noun versus verb) as well as semantic attributes (motor versus sensory events). Activity between 300 and 450ms was more negative for nouns than verbs, and for sensory than motor words, over posterior scalp sites. These grammatical class and semantic effects were not dissociable in terms of latency, duration, or scalp distribution. In a later time window (450-110ms) and at frontal regions, grammatical class and semantic effects interacted; motor verbs were more positive than the other three word categories. We suggest that the lack of a temporal and topographical dissociation between grammatical class and semantic effects in the time range of the N400 component is compatible with an account in which both effects reflect the same underlying process related to meaning retrieval, and we link the later effect with working memory operations associated to the experimental task. Copyright 2010 Elsevier B.V. All rights reserved.

  16. 3D City Models with Different Temporal Characteristica

    DEFF Research Database (Denmark)

    Bodum, Lars

    2005-01-01

    traditional static city models and those models that are built for realtime applications. The difference between the city models applies both to the spatial modelling and also when using the phenomenon time in the models. If the city models are used in visualizations without any variation in time or when......-built dynamic or a model suitable for visualization in realtime, it is required that modelling is done with level-of-detail and simplification of both the aesthetics and the geometry. If a temporal characteristic is combined with a visual characteristic, the situation can easily be seen as a t/v matrix where t...... is the temporal characteristic or representation and v is the visual characteristic or representation....

  17. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  18. Human object-similarity judgments reflect and transcend the primate-IT object representation

    Directory of Open Access Journals (Sweden)

    Marieke eMur

    2013-03-01

    Full Text Available Primate inferior temporal (IT cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and nonhuman animals and between man-made and natural objects. Human IT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions.

  19. Spatiotemporal representation of cardiac vectorcardiogram (VCG signals

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2012-03-01

    Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac

  20. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Science.gov (United States)

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  1. Sparse distributed representation of odors in a large-scale olfactory bulb circuit.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments, through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of these synchronized spiking patterns also modulated by the sniff cycle.

  2. The Voronoi spatio-temporal data structure

    Science.gov (United States)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal

  3. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    OpenAIRE

    Akiko Nishio; Naokazu Goda; Hidehiko Komatsu

    2012-01-01

    The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT) cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task...

  4. ASPECTUAL INFLUENCE ON TEMPORAL RELATIONS: A CASE STUDY OF THE EXPERIENTIAL GUO IN MANDARINE

    Directory of Open Access Journals (Sweden)

    Jiun-Shiung Wu

    2009-12-01

    Full Text Available This paper examines how the temporal relation between a clause containing the experiential guo and an adjacent clause is determined. Mandarin is a language not morphologically marked for tenses (e.g., Lin 2006, and therefore, tenses cannot help in determining temporal relations in Mandarin. However, Mandarin has a rich aspectual system. This paper argues that the experiential guo indirectly influences temporal relations via rhetorical relations by either specifying a default rhetorical relation, or by constraining the circumstances under which a certain rhetorical relation can connect a clause with guo to an adjacent clause. This paper also argues that the default rhetorical relation and the constraints are determined by the aspectual properties of the experiential marker. Other information, such as discourse connectors, lexical information, etc., can override the default rhetorical relation indicated by guo and specifies a rhetorical relation. Therefore, this paper concludes that in Mandarin aspect markers can indirectly affect temporal relations by means of rhetorical relations, a result consistent with Wu’s (2005b paper on the perfective marker le in Mandarin, and Wu’s (2007b, 2004 work on the progressive marker zai and the durative marker zhe.

  5. Correlation between memory, proton magnetic resonance spectroscopy, and interictal epileptiform discharges in temporal lobe epilepsy related to mesial temporal sclerosis.

    Science.gov (United States)

    Mantoan, Marcele Araújo Silva; Caboclo, Luís Otávio Sales Ferreira; de Figueiredo Ferreira Guilhoto, Laura Maria; Lin, Katia; da Silva Noffs, Maria Helena; de Souza Silva Tudesco, Ivanda; Belzunces, Erich; Carrete, Henrique; Bussoletti, Renato Tavares; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2009-11-01

    The aim of the study described here was to examine the relationship between memory function, proton magnetic resonance spectroscopy ((1)H-MRS) abnormalities, and interictal epileptiform discharge (IED) lateralization in patients with temporal lobe epilepsy (TLE) related to unilateral mesial temporal sclerosis. We assessed performance on tests of memory function and intelligence quotient (IQ) in 29 right-handed outpatients and 24 controls. IEDs were assessed on 30-minute-awake and 30-minute-sleep EEG samples. Patients had (1)H-MRS at 1.5 T. There was a negative correlation between IQ (P=0.031) and Rey Auditory Verbal Learning Test results (P=0.022) and epilepsy duration; between(1)H-MRS findings and epilepsy duration (P=0.027); and between N-acetylaspartate (NAA) levels and IEDs (P=0.006) in contralateral mesial temporal structures in the left MTS group. (1)H-MRS findings, IEDs, and verbal function were correlated. These findings suggest that IEDs and NAA/(Cho+Cr) ratios reflecting neural metabolism are closely related to verbal memory function in mesial temporal sclerosis. Higher interictal activity on the EEG was associated with a decline in total NAA in contralateral mesial temporal structures.

  6. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    Directory of Open Access Journals (Sweden)

    Akiko Nishio

    2012-10-01

    Full Text Available The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task. We found that there exist neurons in the lower bank of the superior temporal sulcus that selectively responded to specific stimuli. The selectivity was largely maintained when the object shape or illumination condition was changed. In contrast, neural selectivity was lost when the pixels of objects were randomly rearranged. In the former manipulation of the stimuli, gloss perceptions were maintained, whereas in the latter manipulation, gloss perception was dramatically changed. These results indicate that these IT neurons selectively responded to gloss, not to the irrelevant local image features or average luminance or color. Next, to understand how the responses of gloss selective neurons are related to perceived gloss, responses of gloss selective neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I found that responses of most gloss selective neurons can be explained by linear combinations of two parameters that are shown to be important for gloss perception. This result suggests that the responses of gloss selective neurons of IT cortex are closely related to gloss perception.

  7. A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation

    International Nuclear Information System (INIS)

    Chuan-Mei, Xie; Shao-Long, Wan; Hong-Yi, Fan

    2010-01-01

    Based on the displacement-squeezing related squeezed coherent state representation |z) g and using the technique of integration within an ordered product of operators, this paper finds a generalized Fresnel operator, whose matrix element in the coordinate representation leads to a generalized Collins formula (Huygens–Fresnel integration transformation describing optical diffraction). The generalized Fresnel operator is derived by a quantum mechanical mapping from z to sz - rz * in the |z) g representation, while |z) g in phase space is graphically denoted by an ellipse. (classical areas of phenomenology)

  8. Embodiment, Virtual Space, Temporality and Interpersonal Relations in Online Writing

    Science.gov (United States)

    Adams, Catherine; van Manen, Max

    2006-01-01

    In this paper we discuss how online seminar participants experience dimensions of embodiment, virtual space, interpersonal relations, and temporality; and how interacting through reading-writing, by means of online technologies, creates conditions, situations, and actions of pedagogical influence and relational affectivities. We investigate what…

  9. General Temporal Knowledge for Planning and Data Mining

    Science.gov (United States)

    Morris, Robert; Khatib, Lina

    2001-01-01

    We consider the architecture of systems that combine temporal planning and plan execution and introduce a layer of temporal reasoning that potential1y improves both the communication between humans and such systems, and the performance of the temporal planner itself. In particular, this additional layer simultaneously supports more flexibility in specifying and maintaining temporal constraints on plans within an uncertain and changing execution environment, and the ability to understand and trace the progress of plan execution. It is shown how a representation based on single set of abstractions of temporal information can be used to characterize the reasoning underlying plan generation and execution interpretation. The complexity of such reasoning is discussed.

  10. IgG4-Related Disease of Bilateral Temporal Bones.

    Science.gov (United States)

    Li, Lilun; Ward, Bryan; Cocks, Margaret; Kheradmand, Amir; Francis, Howard W

    2017-03-01

    IgG4-related disease (IgG4-RD) is an idiopathic inflammatory condition that causes pseudotumor formation in single or multiple organs, including those of the head and neck. Temporal bone involvement is rare, with only 3 cases of unilateral temporal bone IgG4-RD described in the literature. We report the first known case of IgG4-RD of bilateral temporal bones and describe its clinical presentation, diagnosis, and treatment. The patient was a 52-year-old man with latent tuberculosis (TB) who presented with a 10-year history of bilateral profound hearing loss and vestibular dysfunction. Computed tomography and magnetic resonance imaging demonstrated bilateral labyrinthine destruction with invasion of the posterior fossa. Immunoglobulin level testing showed elevated total serum IgG levels with normal IgG4 levels. Bilateral mastoidectomies were performed, with biopsy samples demonstrating IgG4 staining with IgG4-positive plasma cells up to 40/HPF (high power field) on the right and 20/HPF on the left, consistent with bilateral IgG4-RD. IgG4-RD of bilateral temporal bones presents with chronic and progressive bilateral hearing loss and vestibular dysfunction. Clinical presentation and radiologic findings are nonspecific, and definitive diagnosis must be made with histopathology and immunostaining. Corticosteroids are therapeutic, but surgical resection may be necessary for temporal bone IgG4-RD to improve long-term remission.

  11. Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception.

    Science.gov (United States)

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Liu, Yongjian; Liang, Changhong; Sun, Pei

    2015-02-01

    Previous studies have shown that audiovisual integration improves identification performance and enhances neural activity in heteromodal brain areas, for example, the posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG). Furthermore, it has also been demonstrated that attention plays an important role in crossmodal integration. In this study, we considered crossmodal integration in audiovisual facial perception and explored its effect on the neural representation of features. The audiovisual stimuli in the experiment consisted of facial movie clips that could be classified into 2 gender categories (male vs. female) or 2 emotion categories (crying vs. laughing). The visual/auditory-only stimuli were created from these movie clips by removing the auditory/visual contents. The subjects needed to make a judgment about the gender/emotion category for each movie clip in the audiovisual, visual-only, or auditory-only stimulus condition as functional magnetic resonance imaging (fMRI) signals were recorded. The neural representation of the gender/emotion feature was assessed using the decoding accuracy and the brain pattern-related reproducibility indices, obtained by a multivariate pattern analysis method from the fMRI data. In comparison to the visual-only and auditory-only stimulus conditions, we found that audiovisual integration enhanced the neural representation of task-relevant features and that feature-selective attention might play a role of modulation in the audiovisual integration. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks.

    Science.gov (United States)

    Lee, Wang Wei; Kukreja, Sunil L; Thakor, Nitish V

    2017-01-01

    This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications.

  13. Normalization of relative and incomplete temporal expressions in clinical narratives.

    Science.gov (United States)

    Sun, Weiyi; Rumshisky, Anna; Uzuner, Ozlem

    2015-09-01

    To improve the normalization of relative and incomplete temporal expressions (RI-TIMEXes) in clinical narratives. We analyzed the RI-TIMEXes in temporally annotated corpora and propose two hypotheses regarding the normalization of RI-TIMEXes in the clinical narrative domain: the anchor point hypothesis and the anchor relation hypothesis. We annotated the RI-TIMEXes in three corpora to study the characteristics of RI-TMEXes in different domains. This informed the design of our RI-TIMEX normalization system for the clinical domain, which consists of an anchor point classifier, an anchor relation classifier, and a rule-based RI-TIMEX text span parser. We experimented with different feature sets and performed an error analysis for each system component. The annotation confirmed the hypotheses that we can simplify the RI-TIMEXes normalization task using two multi-label classifiers. Our system achieves anchor point classification, anchor relation classification, and rule-based parsing accuracy of 74.68%, 87.71%, and 57.2% (82.09% under relaxed matching criteria), respectively, on the held-out test set of the 2012 i2b2 temporal relation challenge. Experiments with feature sets reveal some interesting findings, such as: the verbal tense feature does not inform the anchor relation classification in clinical narratives as much as the tokens near the RI-TIMEX. Error analysis showed that underrepresented anchor point and anchor relation classes are difficult to detect. We formulate the RI-TIMEX normalization problem as a pair of multi-label classification problems. Considering only RI-TIMEX extraction and normalization, the system achieves statistically significant improvement over the RI-TIMEX results of the best systems in the 2012 i2b2 challenge. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Attention-spreading based on hierarchical spatial representations for connected objects.

    Science.gov (United States)

    Kasai, Tetsuko

    2010-01-01

    Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.

  15. On Automatic Music Genre Recognition by Sparse Representation Classification using Auditory Temporal Modulations

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Noorzad, Pardis

    2012-01-01

    A recent system combining sparse representation classification (SRC) and a perceptually-based acoustic feature (ATM) \\cite{Panagakis2009,Panagakis2009b,Panagakis2010c}, outperforms by a significant margin the state of the art in music genre recognition, e.g., \\cite{Bergstra2006}. With genre so...... to reproduce the results of \\cite{Panagakis2009}. First, we find that classification results are consistent for features extracted from different analyses. Second, we find that SRC accuracy improves when we pose the sparse representation problem with inequality constraints. Finally, we find that only when we...

  16. Can representational trajectory reveal the nature of an internal model of gravity?

    Science.gov (United States)

    De Sá Teixeira, Nuno; Hecht, Heiko

    2014-05-01

    The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

  17. Social Representations of Latin American History and (PostColonial Relations in Brazil, Chile and Mexico

    Directory of Open Access Journals (Sweden)

    Julia Alves Brasil

    2018-01-01

    Full Text Available Social representations of history play an important role in defining the identity of national and supranational groups such as Latin America, and also influencing present-day intergroup relations. In this paper, we discuss a study that aimed to analyse and compare social representations of Latin American history among Brazilian, Chilean, and Mexican participants. We conducted a survey with 213 university students, aged 18 to 35 years old, from these three countries, through an online questionnaire with open-ended questions about important events and people in the region's history. Despite the reference to different historical events and the existence of national specificities, several common topics were noteworthy across the three samples. There was a centrality of events involving political issues, conflicts and revolutions, as well as a recency effect and a sociocentric bias, replicating previous research about social representations of world history in different countries. There was also a strong prominence of colonization and independence issues in all samples. Through an emphasis on a common narrative of struggle and overcoming difficulties, the participants’ social representations of Latin American history may favour mobilization and resistance, challenging the stability and legitimacy of the existing social order. Furthermore, the findings are discussed in terms of their potential connections with present-day intergroup relations within Latin America, and between Latin America and other parts of the world.

  18. Positive autobiographical memory retrieval reduces temporal discounting

    Science.gov (United States)

    Lempert, Karolina M; Speer, Megan E; Delgado, Mauricio R

    2017-01-01

    Abstract People generally prefer rewards sooner rather than later. This phenomenon, temporal discounting, underlies many societal problems, including addiction and obesity. One way to reduce temporal discounting is to imagine positive future experiences. Since there is overlap in the neural circuitry associated with imagining future experiences and remembering past events, here we investigate whether recalling positive memories can also promote more patient choice. We found that participants were more patient after retrieving positive autobiographical memories, but not when they recalled negative memories. Moreover, individuals were more impulsive after imagining novel positive scenes that were not related to their memories, showing that positive imagery alone does not drive this effect. Activity in the striatum and temporo parietal junction during memory retrieval predicted more patient choice, suggesting that to the extent that memory recall is rewarding and involves perspective-taking, it influences decision-making. Furthermore, representational similarity in the ventromedial prefrontal cortex between memory recall and decision phases correlated with the behavioral effect across participants. Thus, we have identified a novel manipulation for reducing temporal discounting—remembering the positive past—and have begun to characterize the psychological and neural mechanisms behind it. PMID:28655195

  19. Positive autobiographical memory retrieval reduces temporal discounting.

    Science.gov (United States)

    Lempert, Karolina M; Speer, Megan E; Delgado, Mauricio R; Phelps, Elizabeth A

    2017-10-01

    People generally prefer rewards sooner rather than later. This phenomenon, temporal discounting, underlies many societal problems, including addiction and obesity. One way to reduce temporal discounting is to imagine positive future experiences. Since there is overlap in the neural circuitry associated with imagining future experiences and remembering past events, here we investigate whether recalling positive memories can also promote more patient choice. We found that participants were more patient after retrieving positive autobiographical memories, but not when they recalled negative memories. Moreover, individuals were more impulsive after imagining novel positive scenes that were not related to their memories, showing that positive imagery alone does not drive this effect. Activity in the striatum and temporo parietal junction during memory retrieval predicted more patient choice, suggesting that to the extent that memory recall is rewarding and involves perspective-taking, it influences decision-making. Furthermore, representational similarity in the ventromedial prefrontal cortex between memory recall and decision phases correlated with the behavioral effect across participants. Thus, we have identified a novel manipulation for reducing temporal discounting-remembering the positive past-and have begun to characterize the psychological and neural mechanisms behind it. © The Author (2017). Published by Oxford University Press.

  20. Lost time: Bindings do not represent temporal order information.

    Science.gov (United States)

    Moeller, Birte; Frings, Christian

    2018-06-04

    Many accounts of human action control assume bindings between features of stimuli and responses of individual events. One widely accepted assumption about these bindings is that they do not contain temporal-order representations regarding the integrated elements. Even though several theories either explicitly or implicitly include it, this assumption has never been tested directly. One reason for this lack of evidence is likely that typical stimulus-response binding paradigms are inapt for such a test. Adapting a new paradigm of response-response binding to include order switches between response integration and retrieval, we were able to analyze possible representation of order information in bindings for the first time. Binding effects were identical for intact and switched response orders, indicating that bindings indeed include no temporal-order information.

  1. A Probabilistic Framework for Constructing Temporal Relations in Replica Exchange Molecular Trajectories.

    Science.gov (United States)

    Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva

    2018-05-23

    Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).

  2. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    Science.gov (United States)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a

  3. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  4. Temporal Organization of Sound Information in Auditory Memory

    OpenAIRE

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed ...

  5. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    Science.gov (United States)

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  6. The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko

    2014-01-01

    When people are asked to indicate the vanishing location of a moving target, errors in the direction of motion (representational momentum) and in the direction of gravity (representational gravity) are usually found. These errors possess a temporal course wherein the memory for the location of the target drifts downwards with increasing temporal intervals between target's disappearance and participant's responses (representational trajectory). To assess if representational trajectory is a body-referenced or a world-referenced phenomenon. A behavioral localization method was employed with retention times between 0 and 1400 ms systematically imposed after the target's disappearance. The target could move horizontally (rightwards or leftwards) or vertically (upwards or downwards). Body posture was varied in a counterbalanced order between sitting upright and lying on the side (left lateral decubitus position). In the upright task, the memory for target location drifted downwards with time in the direction of gravity. This time course did not emerge for the decubitus task, where idiotropic dominance was found. The dynamic visual representation of gravity is neither purely body-referenced nor world-referenced. It seems to be modulated instead by the relationship between the idiotropic vector and physical gravity.

  7. Continuous carryover of temporal context dissociates response bias from perceptual influence for duration.

    Directory of Open Access Journals (Sweden)

    Martin Wiener

    Full Text Available Recent experimental evidence suggests that the perception of temporal intervals is influenced by the temporal context in which they are presented. A longstanding example is the time-order-error, wherein the perception of two intervals relative to one another is influenced by the order in which they are presented. Here, we test whether the perception of temporal intervals in an absolute judgment task is influenced by the preceding temporal context. Human subjects participated in a temporal bisection task with no anchor durations (partition method. Intervals were demarcated by a Gaussian blob (visual condition or burst of white noise (auditory condition that persisted for one of seven logarithmically spaced sub-second intervals. Crucially, the order in which stimuli were presented was first-order counterbalanced, allowing us to measure the carryover effect of every successive combination of intervals. The results demonstrated a number of distinct findings. First, the perception of each interval was biased by the prior response, such that each interval was judged similarly to the preceding trial. Second, the perception of each interval was also influenced by the prior interval, such that perceived duration shifted away from the preceding interval. Additionally, the effect of decision bias was larger for visual intervals, whereas auditory intervals engendered greater perceptual carryover. We quantified these effects by designing a biologically-inspired computational model that measures noisy representations of time against an adaptive memory prior while simultaneously accounting for uncertainty, consistent with a Bayesian heuristic. We found that our model could account for all of the effects observed in human data. Additionally, our model could only accommodate both carryover effects when uncertainty and memory were calculated separately, suggesting separate neural representations for each. These findings demonstrate that time is susceptible to

  8. Representations of temporal information in short-term memory: Are they modality-specific?

    Science.gov (United States)

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Portuguese Cinema, Trans-temporality and the Myth

    Directory of Open Access Journals (Sweden)

    Sara Castelo Branco

    2016-02-01

    Full Text Available Eduardo Lourenço has focused some of his research on the historical-mythical relationship of the Portuguese with their country, claiming that they have been living in a kind of hyper-identity, incorporating an obsession with the past, which co-exists with a waiting utopian by future, as is demonstrates the Sebastianism myth. Focused on the representations of trans-temporality, identity, collective memory and myth, The Portuguese Cinema, Trans-temporality and the Myth, concentrated especially in Eduardo Lourenço's work to propose a research on how the identity myths – created and disseminated by Portuguese literature over the centuries – earned imagistic representations in the twentieth and twenty-first century’s, through a cinema that built or deconstructed these historical and patriotic mythological, inscribing image capacities to continually rebuild one mythologized common heritage.

  10. Temporal discounting rates and their relation to exercise behavior in older adults.

    Science.gov (United States)

    Tate, Linda M; Tsai, Pao-Feng; Landes, Reid D; Rettiganti, Mallikarjuna; Lefler, Leanne L

    2015-12-01

    As our nation's population ages, the rates of chronic illness and disability are expected to increase significantly. Despite the knowledge that exercise may prevent chronic disease and promote health among older adults, many still are inactive. Factors related to exercise behaviors have been explored in recent years. However, temporal discounting is a motivational concept that has not been explored in regard to exercise in older adults. Temporal discounting is a decision making process by which an individual chooses a smaller more immediate reward over a larger delayed reward. The aim of this study was to determine if temporal discounting rates vary between exercising and non-exercising older adults. This study used cross-sectional survey of 137 older adults living in the community. Older adults were recruited from 11 rural Arkansas churches. The Kirby delay-discounting Monetary Choice Questionnaire was used to collect discounting rates and then bivariate analysis was performed to compare temporal discounting rate between the exercisers and non-exercisers. Finally, multivariate analysis was used to compare discounting rate controlling for other covariates. The results indicated that exercising older adults display lower temporal discounting rates than non-exercising older adults. After controlling for education, exercisers still have lower temporal discounting rates than non-exercisers (phealth conditions relate to lack of exercise especially in older adults. This research suggests that if we can find appropriate incentives for discounting individuals, some type of immediate reward, then potentially we can design programs to engage and retain older adults in exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The impact of experiential avoidance on the relations between illness representations, pain catastrophising and pain interference in chronic pain.

    Science.gov (United States)

    Karademas, Evangelos C; Karekla, Maria; Flouri, Magdalini; Vasiliou, Vasilis S; Kasinopoulos, Orestis; Papacostas, Savvas S

    2017-12-01

    The aim of this study was to examine the effects of experiential avoidance (EA) on the indirect relationship of chronic pain patients' illness representations to pain interference, through pain catastrophising Design and main outcome measure: The sample consisted of 162 patients diagnosed with an arthritis-related or a musculoskeletal disorder. The effects of EA on the pathway between illness representations, pain catastrophising and pain interference were examined with PROCESS, a computational tool for SPSS Results: After controlling for patient and illness-related variables and pain severity, the 'illness representations-pain catastrophising-pain interference' pathway was interrupted at the higher levels of EA. The reason was that, at the high levels of EA, either the relation of illness representations to pain catastrophising or the relation of pain catastrophising to pain interference was not statistically significant. The findings indicate that EA is not a generalised negative response to highly aversive conditions, at least as far as the factors examined in this study are concerned. EA may rather reflect a coping reaction, the impact of which depends on its specific interactions with the other aspects of the self-regulation mechanism. At least in chronic pain, EA should become the focus of potential intervention only when its interaction with the illness-related self-regulation mechanism results in negative outcomes.

  12. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  13. Sad facial cues inhibit temporal attention: evidence from an event-related potential study.

    Science.gov (United States)

    Kong, Xianxian; Chen, Xiaoqiang; Tan, Bo; Zhao, Dandan; Jin, Zhenlan; Li, Ling

    2013-06-19

    We examined the influence of different emotional cues (happy or sad) on temporal attention (short or long interval) using behavioral as well as event-related potential recordings during a Stroop task. Emotional stimuli cued short and long time intervals, inducing 'sad-short', 'sad-long', 'happy-short', and 'happy-long' conditions. Following the intervals, participants performed a numeric Stroop task. Behavioral results showed the temporal attention effects in the sad-long, happy-long, and happy-short conditions, in which valid cues quickened the reaction times, but not in the sad-short condition. N2 event-related potential components showed sad cues to have decreased activity for short intervals compared with long intervals, whereas happy cues did not. Taken together, these findings provide evidence for different modulation of sad and happy facial cues on temporal attention. Furthermore, sad cues inhibit temporal attention, resulting in longer reaction time and decreased neural activity in the short interval by diverting more attentional resources.

  14. Working memory for conjunctions relies on the medial temporal lobe.

    Science.gov (United States)

    Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-04-26

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.

  15. The structure of affective action representations: temporal binding of affective response codes.

    Science.gov (United States)

    Eder, Andreas B; Müsseler, Jochen; Hommel, Bernhard

    2012-01-01

    Two experiments examined the hypothesis that preparing an action with a specific affective connotation involves the binding of this action to an affective code reflecting this connotation. This integration into an action plan should lead to a temporary occupation of the affective code, which should impair the concurrent representation of affectively congruent events, such as the planning of another action with the same valence. This hypothesis was tested with a dual-task setup that required a speeded choice between approach- and avoidance-type lever movements after having planned and before having executed an evaluative button press. In line with the code-occupation hypothesis, slower lever movements were observed when the lever movement was affectively compatible with the prepared evaluative button press than when the two actions were affectively incompatible. Lever movements related to approach and avoidance and evaluative button presses thus seem to share a code that represents affective meaning. A model of affective action control that is based on the theory of event coding is discussed.

  16. Phenomenal characteristics associated with projecting oneself back into the past and forward into the future: influence of valence and temporal distance.

    Science.gov (United States)

    D'Argembeau, Arnaud; Van der Linden, Martial

    2004-12-01

    As humans, we frequently engage in mental time travel, reliving past experiences and imagining possible future events. This study examined whether similar factors affect the subjective experience associated with remembering the past and imagining the future. Participants mentally "re-experienced" or "pre-experienced" positive and negative events that differed in their temporal distance from the present (close versus distant), and then rated the phenomenal characteristics (i.e., sensorial, contextual, and emotional details) associated with their representations. For both past and future, representations of positive events were associated with a greater feeling of re-experiencing (or pre-experiencing) than representations of negative events. In addition, representations of temporally close events (both past and future) contained more sensorial and contextual details, and generated a stronger feeling of re-experiencing (or pre-experiencing) than representations of temporally distant events. It is suggested that the way we both remember our past and imagine our future is constrained by our current goals.

  17. Promoting a Shared Representation of Workers' Activities to Improve Integrated Prevention of Work-Related Musculoskeletal Disorders

    Directory of Open Access Journals (Sweden)

    Yves Roquelaure

    2016-06-01

    Full Text Available Effective and sustainable prevention of work-related musculoskeletal disorders (WR-MSDs remains a challenge for preventers and policy makers. Coordination of stakeholders involved in the prevention of WR-MSDs is a key factor that requires greater reflection on common knowledge and shared representation of workers' activities among stakeholders. Information on workers' strategies and operational leeway should be the core of common representations, because it places workers at the center of the “work situation system” considered by the intervention models. Participatory ergonomics permitting debates among stakeholders about workers' activity and strategies to cope with the work constraints in practice could help them to share representations of the “work situation system” and cooperate. Sharing representation therefore represents a useful tool for prevention, and preventers should provide sufficient space and time for dialogue and discussion of workers' activities among stakeholders during the conception, implementation, and management of integrated prevention programs.

  18. Bayesian spatio-temporal modelling of tobacco-related cancer mortality in Switzerland

    Directory of Open Access Journals (Sweden)

    Verena Jürgens

    2013-05-01

    Full Text Available Tobacco smoking is a main cause of disease in Switzerland; lung cancer being the most common cancer mortality in men and the second most common in women. Although disease-specific mortality is decreasing in men, it is steadily increasing in women. The four language regions in this country might play a role in this context as they are influenced in different ways by the cultural and social behaviour of neighbouring countries. Bayesian hierarchical spatio-temporal, negative binomial models were fitted on subgroup-specific death rates indirectly standardized by national references to explore age- and gender-specific spatio-temporal patterns of mortality due to lung cancer and other tobacco-related cancers in Switzerland for the time period 1969-2002. Differences influenced by linguistic region and life in rural or urban areas were also accounted for. Male lung cancer mortality was found to be rather homogeneous in space, whereas women were confirmed to be more affected in urban regions. Compared to the German-speaking part, female mortality was higher in the French-speaking part of the country, a result contradicting other reports of similar comparisons between France and Germany. The spatio-temporal patterns of mortality were similar for lung cancer and other tobacco-related cancers. The estimated mortality maps can support the planning in health care services and evaluation of a national tobacco control programme. Better understanding of spatial and temporal variation of cancer of the lung and other tobacco-related cancers may help in allocating resources for more effective screening, diagnosis and therapy. The methodology can be applied to similar studies in other settings.

  19. Modeling the Effect of Religion on Human Empathy Based on an Adaptive Temporal-Causal Network Model

    OpenAIRE

    van Ments, L.I.; Roelofsma, P.H.M.P.; Treur, J.

    2018-01-01

    Religion is a central aspect of many individuals’ lives around the world, and its influence on human behaviour has been extensively studied from many different perspectives. The current study integrates a number of these perspectives into one adaptive temporal-causal network model describing the mental states involved, their mutual relations, and the adaptation of some of these relations over time due to learning. By first developing a conceptual representation of a network model based on lit...

  20. Desiderata for computable representations of electronic health records-driven phenotype algorithms.

    Science.gov (United States)

    Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Denny, Joshua C; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A

    2015-11-01

    Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. © The Author 2015. Published by Oxford University Press on behalf of the American Medical

  1. Simple Ontology of Manipulation Actions based on Hand-Object Relations

    DEFF Research Database (Denmark)

    Wörgötter, Florentin; Aksoy, E. E.; Krüger, Norbert

    2013-01-01

    and time. For this we use as temporal anchor points those moments where two objects (or hand and object) touch or un-touch each other during a manipulation. We show that by this one can define a relatively small tree-like manipulation ontology. We find less than 30 fundamental manipulations. The temporal...... and encoded. Examples of manipulations recognition and execution by a robot based on this representation are given at the end of this study....

  2. Back to basics: homogeneous representations of multi-rate synchronous dataflow graphs

    NARCIS (Netherlands)

    de Groote, Robert; Holzenspies, P.K.F.; Kuper, Jan; Broersma, Haitze J.

    2013-01-01

    Exact temporal analyses of multi-rate synchronous dataflow (MRSDF) graphs, such as computing the maximum achievable throughput, or sufficient buffer sizes required to reach a minimum throughput, require a homogeneous representation called a homogeneous synchronous dataflow (HSDF) graph. The size of

  3. Impaired representation of geometric relationships in humans with damage to the hippocampal formation.

    Science.gov (United States)

    Finke, Carsten; Ostendorf, Florian; Braun, Mischa; Ploner, Christoph J

    2011-01-01

    The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.

  4. A conceptual lemon: theta burst stimulation to the left anterior temporal lobe untangles object representation and its canonical color.

    Science.gov (United States)

    Chiou, Rocco; Sowman, Paul F; Etchell, Andrew C; Rich, Anina N

    2014-05-01

    Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.

  5. Cognition and procedure representational requirements for predictive human performance models

    Science.gov (United States)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  6. A Representation of the Relative Entropy with Respect to a Diffusion Process in Terms of Its Infinitesimal Generator

    Directory of Open Access Journals (Sweden)

    Oliver Faugeras

    2014-12-01

    Full Text Available In this paper we derive an integral (with respect to time representation of the relative entropy (or Kullback–Leibler Divergence R(μ||P, where μ and P are measures on C([0,T];Rd. The underlying measure P is a weak solution to a martingale problem with continuous coefficients. Our representation is in the form of an integral with respect to its infinitesimal generator. This representation is of use in statistical inference (particularly involving medical imaging. Since R(μ||P governs the exponential rate of convergence of the empirical measure (according to Sanov’s theorem, this representation is also of use in the numerical and analytical investigation of finite-size effects in systems of interacting diffusions.

  7. The Schrödinger representation and its relation to the holomorphic representation in linear and affine field theory

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2012-01-01

    We establish a precise isomorphism between the Schrödinger representation and the holomorphic representation in linear and affine field theory. In the linear case, this isomorphism is induced by a one-to-one correspondence between complex structures and Schrödinger vacua. In the affine case we obtain similar results, with the role of the vacuum now taken by a whole family of coherent states. In order to establish these results we exhibit a rigorous construction of the Schrödinger representation and use a suitable generalization of the Segal-Bargmann transform. Our construction is based on geometric quantization and applies to any real polarization and its pairing with any Kähler polarization.

  8. Temporal resolution for the perception of features and conjunctions.

    Science.gov (United States)

    Bodelón, Clara; Fallah, Mazyar; Reynolds, John H

    2007-01-24

    The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.

  9. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection.

    Science.gov (United States)

    Zhao, Baojun; Zhao, Boya; Tang, Linbo; Han, Yuqi; Wang, Wenzheng

    2018-03-04

    With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP).

  10. The Past Is Present: Representations of Parents, Friends, and Romantic Partners Predict Subsequent Romantic Representations.

    Science.gov (United States)

    Furman, Wyndol; Collibee, Charlene

    2018-01-01

    This study examined how representations of parent-child relationships, friendships, and past romantic relationships are related to subsequent romantic representations. Two-hundred 10th graders (100 female; M age  = 15.87 years) from diverse neighborhoods in a Western U.S. city were administered questionnaires and were interviewed to assess avoidant and anxious representations of their relationships with parents, friends, and romantic partners. Participants then completed similar questionnaires and interviews about their romantic representations six more times over the next 7.5 years. Growth curve analyses revealed that representations of relationships with parents, friends, and romantic partners each uniquely predicted subsequent romantic representations across development. Consistent with attachment and behavioral systems theory, representations of romantic relationships are revised by representations and experiences in other relationships. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  11. Spatio-temporal gap analysis of OBIS-SEAMAP project data: assessment and way forward.

    Directory of Open Access Journals (Sweden)

    Connie Y Kot

    Full Text Available The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for

  12. [The representation of care in the cultural image of nursing].

    Science.gov (United States)

    Vieira, M J

    1999-12-01

    We analyzed Sergipan nurses' life stories, related to the cultural image of Nursing perceived in their professional choice, in order to assist students in this professional identification. Subjects were divided into four chronological groups, from retired nurses to those who had been graduated for 5 years, all of whom chose Nursing as their preferred career. We used the Social Representation approach in the cultural systems to analyze the life stories. Findings were analyzed through categories and themes, and it was presented by graphics and tables. Care was identified as a permanent cultural trace and it was verbalized using words from charity, religion to scientific Nursing and professionalism, to describe scientific knowledge and humanism, with temporal configuration.

  13. Identities for the electron forms 2 and their 3D representation

    International Nuclear Information System (INIS)

    Minogin, Vladimir G.

    2012-01-01

    New type of identities for products of the electron forms 2 (Fs2) and the bilinear forms (BFs) are derived. The identities are found for both temporal Fs2 describing the electron energy and quasi energy densities and spatial Fs2 describing the linear momentum and quasi linear momentum densities. The identities allow one to transform the quasi energy densities into the energy densities as well as the quasi linear momentum densities into the linear momentum densities. It is shown that by choosing any one of the 16 electron temporal or spatial Fs2 one can represent the remaining 15 temporal or spatial Fs2 as combinations of a chosen form 2 (F2) and the derivatives of a number of BFs. Any one of such 16 sets of identities can be considered as a specific form of an irreducible representation for the temporal or spatial Fs2. Similar to the bilinear identities for BFs the derived identities can be used for reduction different physical quantities describing the electron to the forms defined by the basic physical observables. As an example we consider transformation of the electron energy density to a new fundamental form that presents the energy density through the linear momentum density. - Highlights: ► New type of identities connecting electron forms 2 and bilinear forms is derived.► Identities are found for temporal and spatial forms 2. ► Irreducible representation of the identities is derived. ► New forms of the electron energy density are presented.

  14. The representation of object viewpoint in human visual cortex.

    Science.gov (United States)

    Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit

    2009-04-01

    Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.

  15. The role of multisensory interplay in enabling temporal expectations.

    Science.gov (United States)

    Ball, Felix; Michels, Lara E; Thiele, Carsten; Noesselt, Toemme

    2018-01-01

    Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested - in a series of experiments - whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (d ' ) and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on d ' but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory

  16. Figure-ground representation and its decay in primary visual cortex.

    Science.gov (United States)

    Strother, Lars; Lavell, Cheryl; Vilis, Tutis

    2012-04-01

    We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.

  17. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.

    Science.gov (United States)

    Cecere, Roberto; Gross, Joachim; Willis, Ashleigh; Thut, Gregor

    2017-05-24

    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory-visual (AV) or visual-auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV-VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV-VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AV maps = VA maps versus AV maps ≠ VA maps The tRSA results favored the AV maps ≠ VA maps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how

  18. Dynamics of trimming the content of face representations for categorization in the brain.

    Directory of Open Access Journals (Sweden)

    Nicola J van Rijsbergen

    2009-11-01

    Full Text Available To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1 over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2 concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g., the eyes to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g., the wide opened eyes in 'fear'; the detailed mouth in 'happy'. Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300.

  19. Neural overlap of L1 and L2 semantic representations in speech: A decoding approach.

    Science.gov (United States)

    Van de Putte, Eowyn; De Baene, Wouter; Brass, Marcel; Duyck, Wouter

    2017-11-15

    Although research has now converged towards a consensus that both languages of a bilingual are represented in at least partly shared systems for language comprehension, it remains unclear whether both languages are represented in the same neural populations for production. We investigated the neural overlap between L1 and L2 semantic representations of translation equivalents using a production task in which the participants had to name pictures in L1 and L2. Using a decoding approach, we tested whether brain activity during the production of individual nouns in one language allowed predicting the production of the same concepts in the other language. Because both languages only share the underlying semantic representation (sensory and lexical overlap was maximally avoided), this would offer very strong evidence for neural overlap in semantic representations of bilinguals. Based on the brain activation for the individual concepts in one language in the bilateral occipito-temporal cortex and the inferior and the middle temporal gyrus, we could accurately predict the equivalent individual concepts in the other language. This indicates that these regions share semantic representations across L1 and L2 word production. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection

    Directory of Open Access Journals (Sweden)

    Baojun Zhao

    2018-03-01

    Full Text Available With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP.

  1. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    OpenAIRE

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also...

  2. Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation

    Science.gov (United States)

    Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).

  3. Impaired representation of geometric relationships in humans with damage to the hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Carsten Finke

    Full Text Available The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.

  4. Value Representations

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves

    2011-01-01

    Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...

  5. Young Children's Representations of Groups of Objects: The Relationship between Abstraction and Representation.

    Science.gov (United States)

    Kato, Yasuhiko; Kamii, Constance; Ozaki, Kyoko; Nagahiro, Mariko

    2002-01-01

    Interviews 60 Japanese children between the ages of 3 and 7 years to investigate the relationship between levels of abstraction and representation. Indicates that abstraction and representation are closely related. Implies that educators need to focus more on the mental relationships children make because the meaning children can give to…

  6. Mediator of moderators: temporal stability of intention and the intention-behavior relation.

    Science.gov (United States)

    Sheeran, Paschal; Abraham, Charles

    2003-02-01

    Intention certainty, past behavior, self-schema, anticipated regret, and attitudinal versus normative control all have been found to moderate intention-behavior relations. It is argued that moderation occurs because these variables produce "strong" intentions. Stability of intention over time is a key index of intention strength. Consequently, it was hypothesized that temporal stability of intention would mediate moderation by these other moderators. Participants (N = 185) completed questionnaire measures of theory of planned behavior constructs and moderator variables at two time points and subsequently reported their exercise behavior. Findings showed that all of the moderators, including temporal stability, were associated with significant improvements in consistency between intention and behavior. Temporal stability also mediated the effects of the other moderators, supporting the study hypothesis. Copyright 2003 Society for Personality and Social Psychology, Inc.

  7. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.

    Science.gov (United States)

    Jahn, Kelly N; Stevenson, Ryan A; Wallace, Mark T

    Despite significant improvements in speech perception abilities following cochlear implantation, many prelingually deafened cochlear implant (CI) recipients continue to rely heavily on visual information to develop speech and language. Increased reliance on visual cues for understanding spoken language could lead to the development of unique audiovisual integration and visual-only processing abilities in these individuals. Brain imaging studies have demonstrated that good CI performers, as indexed by auditory-only speech perception abilities, have different patterns of visual cortex activation in response to visual and auditory stimuli as compared with poor CI performers. However, no studies have examined whether speech perception performance is related to any type of visual processing abilities following cochlear implantation. The purpose of the present study was to provide a preliminary examination of the relationship between clinical, auditory-only speech perception tests, and visual temporal acuity in prelingually deafened adult CI users. It was hypothesized that prelingually deafened CI users, who exhibit better (i.e., more acute) visual temporal processing abilities would demonstrate better auditory-only speech perception performance than those with poorer visual temporal acuity. Ten prelingually deafened adult CI users were recruited for this study. Participants completed a visual temporal order judgment task to quantify visual temporal acuity. To assess auditory-only speech perception abilities, participants completed the consonant-nucleus-consonant word recognition test and the AzBio sentence recognition test. Results were analyzed using two-tailed partial Pearson correlations, Spearman's rho correlations, and independent samples t tests. Visual temporal acuity was significantly correlated with auditory-only word and sentence recognition abilities. In addition, proficient CI users, as assessed via auditory-only speech perception performance, demonstrated

  8. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Cells

    Directory of Open Access Journals (Sweden)

    Jonathan C.W. Edwards

    2016-09-01

    input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin and local (representation-as-input. The key implications are that representations in brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of ‘gnostic’ cell types.

  9. On Representation in Information Theory

    Directory of Open Access Journals (Sweden)

    Joseph E. Brenner

    2011-09-01

    Full Text Available Semiotics is widely applied in theories of information. Following the original triadic characterization of reality by Peirce, the linguistic processes involved in information—production, transmission, reception, and understanding—would all appear to be interpretable in terms of signs and their relations to their objects. Perhaps the most important of these relations is that of the representation-one, entity, standing for or representing some other. For example, an index—one of the three major kinds of signs—is said to represent something by being directly related to its object. My position, however, is that the concept of symbolic representations having such roles in information, as intermediaries, is fraught with the same difficulties as in representational theories of mind. I have proposed an extension of logic to complex real phenomena, including mind and information (Logic in Reality; LIR, most recently at the 4th International Conference on the Foundations of Information Science (Beijing, August, 2010. LIR provides explanations for the evolution of complex processes, including information, that do not require any entities other than the processes themselves. In this paper, I discuss the limitations of the standard relation of representation. I argue that more realistic pictures of informational systems can be provided by reference to information as an energetic process, following the categorial ontology of LIR. This approach enables naïve, anti-realist conceptions of anti-representationalism to be avoided, and enables an approach to both information and meaning in the same novel logical framework.

  10. Drawings as Representations of Children's Conceptions

    Science.gov (United States)

    Ehrlen, Karin

    2009-01-01

    Drawings are often used to obtain an idea of children's conceptions. Doing so takes for granted an unambiguous relation between conceptions and their representations in drawings. This study was undertaken to gain knowledge of the relation between children's conceptions and their representation of these conceptions in drawings. A theory of…

  11. Research on Process-oriented Spatio-temporal Data Model

    Directory of Open Access Journals (Sweden)

    XUE Cunjin

    2016-02-01

    Full Text Available According to the analysis of the present status and existing problems of spatio-temporal data models developed in last 20 years,this paper proposes a process-oriented spatio-temporal data model (POSTDM,aiming at representing,organizing and storing continuity and gradual geographical entities. The dynamic geographical entities are graded and abstracted into process objects series from their intrinsic characteristics,which are process objects,process stage objects,process sequence objects and process state objects. The logical relationships among process entities are further studied and the structure of UML models and storage are also designed. In addition,through the mechanisms of continuity and gradual changes impliedly recorded by process objects,and the modes of their procedure interfaces offered by the customized ObjcetStorageTable,the POSTDM can carry out process representation,storage and dynamic analysis of continuity and gradual geographic entities. Taking a process organization and storage of marine data as an example,a prototype system (consisting of an object-relational database and a functional analysis platform is developed for validating and evaluating the model's practicability.

  12. Decoding visual object categories from temporal correlations of ECoG signals.

    Science.gov (United States)

    Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu

    2014-04-15

    How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Aging affects hemispheric asymmetry in the neural representation of speech sounds.

    Science.gov (United States)

    Bellis, T J; Nicol, T; Kraus, N

    2000-01-15

    Hemispheric asymmetries in the processing of elemental speech sounds appear to be critical for normal speech perception. This study investigated the effects of age on hemispheric asymmetry observed in the neurophysiological responses to speech stimuli in three groups of normal hearing, right-handed subjects: children (ages, 8-11 years), young adults (ages, 20-25 years), and older adults (ages > 55 years). Peak-to-peak response amplitudes of the auditory cortical P1-N1 complex obtained over right and left temporal lobes were examined to determine the degree of left/right asymmetry in the neurophysiological responses elicited by synthetic speech syllables in each of the three subject groups. In addition, mismatch negativity (MMN) responses, which are elicited by acoustic change, were obtained. Whereas children and young adults demonstrated larger P1-N1-evoked response amplitudes over the left temporal lobe than over the right, responses from elderly subjects were symmetrical. In contrast, MMN responses, which reflect an echoic memory process, were symmetrical in all subject groups. The differences observed in the neurophysiological responses were accompanied by a finding of significantly poorer ability to discriminate speech syllables involving rapid spectrotemporal changes in the older adult group. This study demonstrates a biological, age-related change in the neural representation of basic speech sounds and suggests one possible underlying mechanism for the speech perception difficulties exhibited by aging adults. Furthermore, results of this study support previous findings suggesting a dissociation between neural mechanisms underlying those processes that reflect the basic representation of sound structure and those that represent auditory echoic memory and stimulus change.

  14. Understanding Basic Temporal Relations in Primary School Pupils with Hearing Impairments.

    Science.gov (United States)

    Dulcić, Adinda; Bakota, Koraljka; Saler, Zrinka

    2015-09-01

    Time can be observed as a subjective, as well as an objective phenomenon which is a component of our life, and due to its communicational needs, it is standardized by temporal signs and symbols. The aim of this study was to determine the understanding of basic temporal relations of pupils with hearing impairments. We assumed that the knowledge of basic time relations is a precondition for the acquisition of knowledge that is connected with the understanding of the syllabus in regular school programs. Three groups of pupils have been examined: pupils with hearing impairments who attend the primary school of SUVAG Polyclinic under special condition, integrated hearing impaired pupils with minor additional difficulties who attend regular primary schools in Zagreb with a prolonged expert procedure and pupils of the control group. The subjects have been examined with a measuring instrument constructed by the expert team of the Polyclinic Suvag. Twenty nine subjects have been questioned, chronologically aged between 10 and 12.

  15. Morphing between expressions dissociates continuous from categorical representations of facial expression in the human brain

    Science.gov (United States)

    Harris, Richard J.; Young, Andrew W.; Andrews, Timothy J.

    2012-01-01

    Whether the brain represents facial expressions as perceptual continua or as emotion categories remains controversial. Here, we measured the neural response to morphed images to directly address how facial expressions of emotion are represented in the brain. We found that face-selective regions in the posterior superior temporal sulcus and the amygdala responded selectively to changes in facial expression, independent of changes in identity. We then asked whether the responses in these regions reflected categorical or continuous neural representations of facial expression. Participants viewed images from continua generated by morphing between faces posing different expressions such that the expression could be the same, could involve a physical change but convey the same emotion, or could differ by the same physical amount but be perceived as two different emotions. We found that the posterior superior temporal sulcus was equally sensitive to all changes in facial expression, consistent with a continuous representation. In contrast, the amygdala was only sensitive to changes in expression that altered the perceived emotion, demonstrating a more categorical representation. These results offer a resolution to the controversy about how facial expression is processed in the brain by showing that both continuous and categorical representations underlie our ability to extract this important social cue. PMID:23213218

  16. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. © The Author 2016. Published by Oxford University Press.

  17. Quantum group and Manin plane related to a coloured braid group representation

    International Nuclear Information System (INIS)

    Basu Mallick, B.

    1993-07-01

    By considering 'coloured' braid group representation we have obtained a quantum group, which reduces to the standards GL q (2) and GL pq (2) cases at some particular limits of the 'colour' parameters. In spite of quite complicated nature, all of these new quantum group relations can be expressed neatly in the Heisenberg-Weyl form, for a nontrivial choice of the basis elements. Furthermore, it is possible to associate invariant Manin planes, parametrized by the 'colour' variables, with such quantum group structure. (author). 26 refs

  18. Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.

    Science.gov (United States)

    Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris

    2016-05-04

    Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets

    Science.gov (United States)

    Sorokine, A.; Stewart, R. N.

    2017-10-01

    Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  20. The representations of Lie groups and geometric quantizations

    International Nuclear Information System (INIS)

    Zhao Qiang

    1998-01-01

    In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)

  1. Semantic and episodic memory in children with temporal lobe epilepsy: do they relate to literacy skills?

    Science.gov (United States)

    Lah, Suncica; Smith, Mary Lou

    2014-01-01

    Children with temporal lobe epilepsy are at risk for deficits in new learning (episodic memory) and literacy skills. Semantic memory deficits and double dissociations between episodic and semantic memory have recently been found in this patient population. In the current study we investigate whether impairments of these 2 distinct memory systems relate to literacy skills. 57 children with unilateral temporal lobe epilepsy completed tests of verbal memory (episodic and semantic) and literacy skills (reading and spelling accuracy, and reading comprehension). For the entire group, semantic memory explained over 30% of variance in each of the literacy domains. Episodic memory explained a significant, but rather small proportion (memory impairments (intact semantic/impaired episodic, intact episodic/impaired semantic) were compared, significant reductions in literacy skills were evident only in children with semantic memory impairments, but not in children with episodic memory impairments relative to the norms and to children with temporal lobe epilepsy who had intact memory. Our study provides the first evidence for differential relations between episodic and semantic memory impairments and literacy skills in children with temporal lobe epilepsy. As such, it highlights the urgent need to consider semantic memory deficits in management of children with temporal lobe epilepsy and undertake further research into the nature of reading difficulties of children with semantic memory impairments.

  2. Familiarity and recollection vs representational models of medial temporal lobe structures: A single-case study.

    Science.gov (United States)

    Lacot, Emilie; Vautier, Stéphane; Kőhler, Stefan; Pariente, Jérémie; Martin, Chris B; Puel, Michèle; Lotterie, Jean-Albert; Barbeau, Emmanuel J

    2017-09-01

    Although it is known that medial temporal lobe (MTL) structures support declarative memory, the fact these structures have different architectonics and circuitry suggests they may also play different functional roles. Selective lesions of MTL structures offer an opportunity to understand these roles. We report, in this study, on JMG, a patient who presents highly unusual lesions that completely affected all MTL structures except for the right hippocampus and parts of neighbouring medial parahippocampal cortex. We first demonstrate that JMG shows preserved recall for visual material on 5 experimental tasks. This finding suggests that his right hippocampus is functional, even though it appears largely disconnected from most of its MTL afferents. In contrast, JMG performed very poorly, as compared to control subjects, on 7 tasks of visual recognition memory for single items. Although he sometimes performed above chance, neither familiarity nor recollection appeared fully preserved. These results indicate that extrahippocampal structures, damaged bilaterally in JMG, perform critical operations for item recognition; and that the hippocampus cannot take over that role, including recollection, when these structures are largely damaged. Finally, in a set of 3 recognition memory tasks with scenes as stimuli, JMG performed at the level of control participants and obtained normal indices of familiarity and recollection. Overall, our findings suggest that the right hippocampus and remnants of parahippocampal cortex can support recognition memory for scenes in the absence of preserved item-recognition memory. The patterns of dissociations, which we report in the present study, provide support for a representational account of the functional organization of MTL structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Entire Sound Representations Are Time-Compressed in Sensory Memory: Evidence from MMN.

    Science.gov (United States)

    Tamakoshi, Seiji; Minoura, Nanako; Katayama, Jun'ichi; Yagi, Akihiro

    2016-01-01

    In order to examine the encoding of partial silence included in a sound stimulus in neural representation, time flow of the sound representations was investigated using mismatch negativity (MMN), an ERP component that reflects neural representation in auditory sensory memory. Previous work suggested that time flow of auditory stimuli is compressed in neural representations. The stimuli used were a full-stimulus of 170 ms duration, an early-gap stimulus with silence for a 20-50 ms segment (i.e., an omitted segment), and a late-gap stimulus with an omitted segment of 110-140 ms. Peak MMNm latencies from oddball sequences of these stimuli, with a 500 ms SOA, did not reflect time point of the physical gap, suggesting that temporal information can be compressed in sensory memory. However, it was not clear whether the whole stimulus duration or only the omitted segment duration is compressed. Thus, stimuli were used in which the gap was replaced by a tone segment with a 1/4 sound pressure level (filled), as well as the gap stimuli. Combinations of full-stimuli and one of four gapped or filled stimuli (i.e., early gap, late gap, early filled, and late filled) were presented in an oddball sequence (85 vs. 15%). If compression occurs only for the gap duration, MMN latency for filled stimuli should show a different pattern from those for gap stimuli. MMN latencies for the filled conditions showed the same pattern as those for the gap conditions, indicating that the whole stimulus duration rather than only gap duration is compressed in sensory memory neural representation. These results suggest that temporal aspects of silence are encoded in the same manner as physical sound.

  4. On the phase space representations. 1

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1978-01-01

    The Dirac representation theory deals usually with the amplitude formalism of the quantum theory. An introduction is given into a theory of some other representations, which are applicable in the density matrix formalism and can naturally be called phase space representations (PSR). They use terms of phase space variables (x and p simultaneously) and give a description, close to the classical phase space description. Definitions and algebraic properties are given in quantum mechanics for such PSRs as the Wigner representation, coherent state representation and others. Completeness relations of a matrix type are used as a starting point. The case of quantum field theory is also outlined

  5. Relative Contributions of Goal Representation and Kinematic Information to Self-Monitoring by Chimpanzees and Humans

    Science.gov (United States)

    Kaneko, Takaaki; Tomonaga, Masaki

    2012-01-01

    It is important to monitor feedback related to the intended result of an action while executing that action. This monitoring process occurs hierarchically; that is, sensorimotor processing occurs at a lower level, and conceptual representation of action goals occurs at a higher level. Although the hierarchical nature of self-monitoring may derive…

  6. Temporal cognition: Connecting subjective time to perception, attention, and memory.

    Science.gov (United States)

    Matthews, William J; Meck, Warren H

    2016-08-01

    Time is a universal psychological dimension, but time perception has often been studied and discussed in relative isolation. Increasingly, researchers are searching for unifying principles and integrated models that link time perception to other domains. In this review, we survey the links between temporal cognition and other psychological processes. Specifically, we describe how subjective duration is affected by nontemporal stimulus properties (perception), the allocation of processing resources (attention), and past experience with the stimulus (memory). We show that many of these connections instantiate a "processing principle," according to which perceived time is positively related to perceptual vividity and the ease of extracting information from the stimulus. This empirical generalization generates testable predictions and provides a starting-point for integrated theoretical frameworks. By outlining some of the links between temporal cognition and other domains, and by providing a unifying principle for understanding these effects, we hope to encourage time-perception researchers to situate their work within broader theoretical frameworks, and that researchers from other fields will be inspired to apply their insights, techniques, and theorizing to improve our understanding of the representation and judgment of time. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Social representations of female orgasm.

    Science.gov (United States)

    Lavie-Ajayi, Maya; Joffe, Hélène

    2009-01-01

    This study examines women's social representations of female orgasm. Fifty semi-structured interviews were conducted with British women. The data were thematically analysed and compared with the content of female orgasm-related writing in two women's magazines over a 30-year period. The results indicate that orgasm is deemed the goal of sex with emphasis on its physiological dimension. However, the women and the magazines graft onto this scientifically driven representation the importance of relational and emotive aspects of orgasm. For the women, particularly those who experience themselves as having problems with orgasm, the scientifically driven representations induce feelings of failure, but are also resisted. The findings highlight the role played by the social context in women's subjective experience of their sexual health.

  8. Temporal evolution of event-related desynchronization in acute stroke: A pilot study

    NARCIS (Netherlands)

    Tangwiriyasakul, Chayanin; Verhagen, Rens; Rutten, Wim; van Putten, Michel Johannes Antonius Maria

    2014-01-01

    Objective Assessment of event-related desynchronization (ERD) may assist in predicting recovery from stroke and rehabilitation, for instance in BCI applications. Here, we explore the temporal evolution of ERD during stroke recovery. Methods Ten stroke patients and eleven healthy controls were

  9. Special functions and the theory of group representations

    CERN Document Server

    Vilenkin, N Ja

    1968-01-01

    A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group SU(2), and the hypergeometric function and representations of the group SL(2,R), as well as many other classes of special functions.

  10. A searching and reporting system for relational databases using a graph-based metadata representation.

    Science.gov (United States)

    Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling

    2005-01-01

    Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.

  11. Temporal disconnectivity of the energy landscape in glassy systems

    Science.gov (United States)

    Lempesis, Nikolaos; Boulougouris, Georgios C.; Theodorou, Doros N.

    2013-03-01

    An alternative graphical representation of the potential energy landscape (PEL) has been developed and applied to a binary Lennard-Jones glassy system, providing insight into the unique topology of the system's potential energy hypersurface. With the help of this representation one is able to monitor the different explored basins of the PEL, as well as how - and mainly when - subsets of basins communicate with each other via transitions in such a way that details of the prior temporal history have been erased, i.e., local equilibration between the basins in each subset has been achieved. In this way, apart from detailed information about the structure of the PEL, the system's temporal evolution on the PEL is described. In order to gather all necessary information about the identities of two or more basins that are connected with each other, we consider two different approaches. The first one is based on consideration of the time needed for two basins to mutually equilibrate their populations according to the transition rate between them, in the absence of any effect induced by the rest of the landscape. The second approach is based on an analytical solution of the master equation that explicitly takes into account the entire explored landscape. It is shown that both approaches lead to the same result concerning the topology of the PEL and dynamical evolution on it. Moreover, a "temporal disconnectivity graph" is introduced to represent a lumped system stemming from the initial one. The lumped system is obtained via a specially designed algorithm [N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011), 10.1063/1.3663207]. The temporal disconnectivity graph provides useful information about both the lumped and the initial systems, including the definition of "metabasins" as collections of basins that communicate with each other via transitions that are fast relative to the observation time. Finally, the two examined

  12. The Effect of Visual, Spatial and Temporal Manipulations on Embodiment and Action

    Science.gov (United States)

    Ratcliffe, Natasha; Newport, Roger

    2017-01-01

    The feeling of owning and controlling the body relies on the integration and interpretation of sensory input from multiple sources with respect to existing representations of the bodily self. Illusion paradigms involving multisensory manipulations have demonstrated that while the senses of ownership and agency are strongly related, these two components of bodily experience may be dissociable and differentially affected by alterations to sensory input. Importantly, however, much of the current literature has focused on the application of sensory manipulations to external objects or virtual representations of the self that are visually incongruent with the viewer’s own body and which are not part of the existing body representation. The current experiment used MIRAGE-mediated reality to investigate how manipulating the visual, spatial and temporal properties of the participant’s own hand (as opposed to a fake/virtual limb) affected embodiment and action. Participants viewed two representations of their right hand inside a MIRAGE multisensory illusions box with opposing visual (normal or grossly distorted), temporal (synchronous or asynchronous) and spatial (precise real location or false location) manipulations applied to each hand. Subjective experiences of ownership and agency towards each hand were measured alongside an objective measure of perceived hand location using a pointing task. The subjective sense of agency was always anchored to the synchronous hand, regardless of physical appearance and location. Subjective ownership also moved with the synchronous hand, except when both the location and appearance of the synchronous limb were incongruent with that of the real limb. Objective pointing measures displayed a similar pattern, however movement synchrony was not sufficient to drive a complete shift in perceived hand location, indicating a greater reliance on the spatial location of the real hand. The results suggest that while the congruence of self

  13. The Effect of Visual, Spatial and Temporal Manipulations on Embodiment and Action

    Directory of Open Access Journals (Sweden)

    Natasha Ratcliffe

    2017-05-01

    Full Text Available The feeling of owning and controlling the body relies on the integration and interpretation of sensory input from multiple sources with respect to existing representations of the bodily self. Illusion paradigms involving multisensory manipulations have demonstrated that while the senses of ownership and agency are strongly related, these two components of bodily experience may be dissociable and differentially affected by alterations to sensory input. Importantly, however, much of the current literature has focused on the application of sensory manipulations to external objects or virtual representations of the self that are visually incongruent with the viewer’s own body and which are not part of the existing body representation. The current experiment used MIRAGE-mediated reality to investigate how manipulating the visual, spatial and temporal properties of the participant’s own hand (as opposed to a fake/virtual limb affected embodiment and action. Participants viewed two representations of their right hand inside a MIRAGE multisensory illusions box with opposing visual (normal or grossly distorted, temporal (synchronous or asynchronous and spatial (precise real location or false location manipulations applied to each hand. Subjective experiences of ownership and agency towards each hand were measured alongside an objective measure of perceived hand location using a pointing task. The subjective sense of agency was always anchored to the synchronous hand, regardless of physical appearance and location. Subjective ownership also moved with the synchronous hand, except when both the location and appearance of the synchronous limb were incongruent with that of the real limb. Objective pointing measures displayed a similar pattern, however movement synchrony was not sufficient to drive a complete shift in perceived hand location, indicating a greater reliance on the spatial location of the real hand. The results suggest that while the

  14. Innovations in individual feature history management - The significance of feature-based temporal model

    Science.gov (United States)

    Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.

    2008-01-01

    A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.

  15. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    Science.gov (United States)

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  16. Illness representations of type 2 diabetes patients are associated with perceptions of diabetes threat in relatives

    NARCIS (Netherlands)

    van Esch, S.C.M.; Nijkamp, M.D.; Cornel, M.C.; Snoek, F.J.

    2014-01-01

    In the fight against the type 2 diabetes epidemic, patients might be asked to discuss familial susceptibility to type 2 diabetes in their family. Illness representations of patients (N = 546) were assessed to explore their impact on perceived type 2 diabetes threat in relatives. Reporting high type

  17. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  18. Power, privilege and disadvantage: Intersectionality theory and political representation

    Directory of Open Access Journals (Sweden)

    Eline Severs

    2017-06-01

    Full Text Available This article critically reviews the extant literature on social group representation and clarifies the advantages of intersectionality theory for studying political representation. It argues that the merit of intersectionality theory can be found in its ontology of power. Intersectionality theory is founded on a relational conception of political power that locates the constitution of power relations within social interactions, such as political representation. As such, intersectionality theory pushes scholarship beyond studying representation inequalities —that are linked to presumably stable societal positions— to also consider the ways in which political representation (recreates positions of privilege and disadvantage.

  19. Focal versus distributed temporal cortex activity for speech sound category assignment

    Science.gov (United States)

    Bouton, Sophie; Chambon, Valérian; Tyrand, Rémi; Seeck, Margitta; Karkar, Sami; van de Ville, Dimitri; Giraud, Anne-Lise

    2018-01-01

    Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision. PMID:29363598

  20. Unsupervised learning of a steerable basis for invariant image representations

    Science.gov (United States)

    Bethge, Matthias; Gerwinn, Sebastian; Macke, Jakob H.

    2007-02-01

    There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of 'steerability' and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the average bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. 'complex cells') from sequences of natural images.

  1. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  2. Coping efficiently with now-relative medical data.

    Science.gov (United States)

    Stantic, Bela; Terenziani, Paolo; Sattar, Abdul

    2008-11-06

    In Medical Informatics, there is an increasing awareness that temporal information plays a crucial role, so that suitable database approaches are needed to store and support it. Specifically, most clinical data are intrinsically temporal, and a relevant part of them are now-relative (i.e., they are valid at the current time). Even if previous studies indicate that the treatment of now-relative data has a crucial impact on efficiency, current approaches have several limitations. In this paper we propose a novel approach, which is based on a new representation of now, and on query transformations. We also experimentally demonstrate that our approach outperforms its best competitors in the literature to the extent of a factor of more than ten, both in number of disk accesses and of CPU usage.

  3. Deep supervised, but not unsupervised, models may explain IT cortical representation.

    Directory of Open Access Journals (Sweden)

    Seyed-Mahdi Khaligh-Razavi

    2014-11-01

    Full Text Available Inferior temporal (IT cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total, testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network. We compared the representational dissimilarity matrices (RDMs of the model representations with the RDMs obtained from human IT (measured with fMRI and monkey IT (measured with cell recording for the same set of stimuli (not used in training the models. Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining

  4. Mental representation of arm motion dynamics in children and adolescents.

    Directory of Open Access Journals (Sweden)

    Lionel Crognier

    Full Text Available Motor imagery, i.e., a mental state during which an individual internally represents an action without any overt motor output, is a potential tool to investigate action representation during development. Here, we took advantage of the inertial anisotropy phenomenon to investigate whether children can generate accurate motor predictions for movements with varying dynamics. Children (9 and 11 years, adolescents (14 years and young adults (21 years carried-out actual and mental arm movements in two different directions in the horizontal plane: rightwards (low inertia and leftwards (high inertia. We recorded and compared actual and mental movement times. We found that actual movement times were greater for leftward than rightward arm movements in all groups. For mental movements, differences between leftward versus rightward movements were observed in the adults and adolescents, but not among the children. Furthermore, significant differences between actual and mental times were found at 9 and 11 years of age in the leftward direction. The ratio R/L (rightward direction/leftward direction, which indicates temporal differences between low inertia and high inertia movements, was inferior to 1 at all ages, except for the mental movements at 9 years of age, indicating than actual and mental movements were shorter for the rightward than leftward direction. Interestingly, while the ratio R/L of actual movements was constant across ages, it gradually decreased with age for mental movements. The ratio A/M (actual movement/mental movement, which indicates temporal differences between actual and mental movements, was near to 1 in the adults' groups, denoting accurate mental timing. In children and adolescents, an underestimation of mental movement times appeared for the leftward movements only. However, this overestimation gradually decreased with age. Our results showed a refinement in the motor imagery ability during development. Action representation

  5. Knowledge Representation and Management. From Ontology to Annotation. Findings from the Yearbook 2015 Section on Knowledge Representation and Management.

    Science.gov (United States)

    Charlet, J; Darmoni, S J

    2015-08-13

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A comprehensive review of medical informatics literature was performed to select some of the most interesting papers of KRM published in 2014. Four articles were selected, two focused on annotation and information retrieval using an ontology. The two others focused mainly on ontologies, one dealing with the usage of a temporal ontology in order to analyze the content of narrative document, one describing a methodology for building multilingual ontologies. Semantic models began to show their efficiency, coupled with annotation tools.

  6. The post-birthday world: consequences of temporal landmarks for temporal self-appraisal and motivation.

    Science.gov (United States)

    Peetz, Johanna; Wilson, Anne E

    2013-02-01

    Much as physical landmarks help structure our representation of space, temporal landmarks such as birthdays and significant calendar dates structure our perception of time, such that people may organize or categorize their lives into "chunks" separated by these markers. Categories on the temporal landscape may vary depending on what landmarks are salient at a given time. We suggest these landmarks have implications for identity and motivation. The present research examined consequences of salient temporal landmarks for perceptions of the self across time and motivation to pursue successful future selves. Studies 1 and 2 show that temporally extended selves are perceived as less connected to, and more dissimilar from, the current self when an intervening landmark event has been made salient. Study 3 addresses the proposed mechanism, demonstrating that intervening landmarks lead people to categorize pre- and postlandmark selves into separate categories more often than when the same time period contains no salient landmarks. Finally, we examined whether landmark-induced mental contrasting of present state and future desired state could increase goal-pursuit motivation (in an effort to bridge the gap between inferior present and better future states). Studies 4-6 demonstrate that landmark-induced discrepancies between current health and hoped-for future health increased participants' motivation to exercise and increased the likelihood that they acted in line with their future-oriented goals. (c) 2013 APA, all rights reserved.

  7. A dissociation between selective attention and conscious awareness in the representation of temporal order information.

    Science.gov (United States)

    Eimer, Martin; Grubert, Anna

    2015-09-01

    Previous electrophysiological studies have shown that attentional selection processes are highly sensitive to the temporal order of task-relevant visual events. When two successively presented colour-defined target stimuli are separated by a stimulus onset asynchrony (SOA) of only 10 ms, the onset latencies of N2pc components to these stimuli (which reflect their attentional selection) precisely match their objective temporal separation. We tested whether such small onset differences are accessible to conscious awareness by instructing participants to report the category (letter or digit) of the first of two target-colour items that were separated by an SOA of 10, 20, or 30 ms. Performance was at chance level for the 10 ms SOA, demonstrating that temporal order information which is available to attentional control processes cannot be utilized for conscious temporal order judgments. These results provide new evidence that selective attention and conscious awareness are functionally separable, and support the hypothesis that attention and awareness operate at different stages of cognitive processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Refinement of learned skilled movement representation in motor cortex deep output layer

    Science.gov (United States)

    Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho

    2017-01-01

    The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433

  9. The initial representation in reasoning towards an interpretation of conditional sentences.

    Science.gov (United States)

    Schroyens, Walter; Braem, Senne

    2011-02-01

    All accounts of human reasoning (whether presented at the symbolic or subsymbolic level) have to reckon with the temporal organization of the human processing systems and the ephemeral nature of the representations it uses. We present three new empirical tests for the hypothesis that people commence the interpretational process by constructing a minimal initial representation. In the case of if A then C the initial representation captures the occurrence of the consequent, C, within the context of the antecedent, A. Conditional inference problems are created by a categorical premise that affirms or denies A or C. The initial representation allows an inference when the explicitly represented information matches (e.g., the categorical premise A affirms the antecedent "A") but not when it mismatches (e.g., "not-A" denies A). Experiments 1 and 2 confirmed that people tend to accept the conclusion that "nothing follows" for the denial problems, as indeed they do not have a determinate initial-model conclusion. Experiment 3 demonstrated the other way round that the effect of problem type (affirmation versus denial) is reduced when we impede the possibility of inferring a determinate conclusion on the basis of the initial representation of both the affirmation and the denial problems.

  10. Transformations and representations supporting spatial perspective taking

    Science.gov (United States)

    Yu, Alfred B.; Zacks, Jeffrey M.

    2018-01-01

    Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning. PMID:29545731

  11. SPATIO-TEMPORAL DATA MODEL FOR INTEGRATING EVOLVING NATION-LEVEL DATASETS

    Directory of Open Access Journals (Sweden)

    A. Sorokine

    2017-10-01

    Full Text Available Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc. and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets. Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  12. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  13. Event-related potentials reveal the relations between feature representations at different levels of abstraction.

    Science.gov (United States)

    Hannah, Samuel D; Shedden, Judith M; Brooks, Lee R; Grundy, John G

    2016-11-01

    In this paper, we use behavioural methods and event-related potentials (ERPs) to explore the relations between informational and instantiated features, as well as the relation between feature abstraction and rule type. Participants are trained to categorize two species of fictitious animals and then identify perceptually novel exemplars. Critically, two groups are given a perfectly predictive counting rule that, according to Hannah and Brooks (2009. Featuring familiarity: How a familiar feature instantiation influences categorization. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 63, 263-275. Retrieved from http://doi.org/10.1037/a0017919), should orient them to using abstract informational features when categorizing the novel transfer items. A third group is taught a feature list rule, which should orient them to using detailed instantiated features. One counting-rule group were taught their rule before any exposure to the actual stimuli, and the other immediately after training, having learned the instantiations first. The feature-list group were also taught their rule after training. The ERP results suggest that at test, the two counting-rule groups processed items differently, despite their identical rule. This not only supports the distinction that informational and instantiated features are qualitatively different feature representations, but also implies that rules can readily operate over concrete inputs, in contradiction to traditional approaches that assume that rules necessarily act on abstract inputs.

  14. Negative Numbers in the 18th and 19th Centuries: Phenomenology and Representations

    Science.gov (United States)

    Maz-Machado, Alexander; Rico-Romero, Luis

    2009-01-01

    This article presents a categorization of the phenomena and representations used to introduce negative numbers in mathematics books published in Spain during the 18th and 19th centuries. Through a content analysis of fourteen texts which were selected for the study, we distinguished four phenomena typologies: physical, accounting, temporal and…

  15. Classification and Weakly Supervised Pain Localization using Multiple Segment Representation.

    Science.gov (United States)

    Sikka, Karan; Dhall, Abhinav; Bartlett, Marian Stewart

    2014-10-01

    Automatic pain recognition from videos is a vital clinical application and, owing to its spontaneous nature, poses interesting challenges to automatic facial expression recognition (AFER) research. Previous pain vs no-pain systems have highlighted two major challenges: (1) ground truth is provided for the sequence, but the presence or absence of the target expression for a given frame is unknown, and (2) the time point and the duration of the pain expression event(s) in each video are unknown. To address these issues we propose a novel framework (referred to as MS-MIL) where each sequence is represented as a bag containing multiple segments, and multiple instance learning (MIL) is employed to handle this weakly labeled data in the form of sequence level ground-truth. These segments are generated via multiple clustering of a sequence or running a multi-scale temporal scanning window, and are represented using a state-of-the-art Bag of Words (BoW) representation. This work extends the idea of detecting facial expressions through 'concept frames' to 'concept segments' and argues through extensive experiments that algorithms such as MIL are needed to reap the benefits of such representation. The key advantages of our approach are: (1) joint detection and localization of painful frames using only sequence-level ground-truth, (2) incorporation of temporal dynamics by representing the data not as individual frames but as segments, and (3) extraction of multiple segments, which is well suited to signals with uncertain temporal location and duration in the video. Extensive experiments on UNBC-McMaster Shoulder Pain dataset highlight the effectiveness of the approach by achieving competitive results on both tasks of pain classification and localization in videos. We also empirically evaluate the contributions of different components of MS-MIL. The paper also includes the visualization of discriminative facial patches, important for pain detection, as discovered by our

  16. Declarative Programming with Temporal Constraints, in the Language CG

    Directory of Open Access Journals (Sweden)

    Lorina Negreanu

    2015-01-01

    Full Text Available Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment’s evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach.

  17. Declarative Programming with Temporal Constraints, in the Language CG.

    Science.gov (United States)

    Negreanu, Lorina

    2015-01-01

    Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment's evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach.

  18. Preschoolers’ Self-Regulation Moderates Relations between Mothers’ Representations and Children’s Adjustment to School

    Science.gov (United States)

    Sher-Censor, Efrat; Khafi, Tamar Y.; Yates, Tuppett M.

    2016-01-01

    Consistent with models of environmental sensitivity (Pluess, 2015), research suggests that the effects of parents’ behaviors on child adjustment are stronger among children who struggle to regulate their thoughts, feelings, and behaviors compared to children with better self-regulation. This study extended prior research by assessing maternal representations of the child, which presumably underlie mothers’ parenting behaviors, to evaluate the moderating influence of preschoolers’ self-regulation on relations between mothers’ representations and changes in children’s negative and positive developmental adjustment outcomes from preschool to first grade. Participants were 187 mothers and their preschoolers. Mothers’ representations were assessed via the coherence of their verbal narratives regarding their preschooler and teachers reported on preschoolers’ self-regulation. In preschool and first grade, examiners rated children’s externalizing behavior problems and ego-resilience, and teachers rated children’s externalizing behavior problems and peer acceptance. Consistent with the environmental sensitivity framework, the coherence of mothers’ narratives predicted changes in adjustment among children with self-regulation difficulties, but not among children with better self-regulation. Preschoolers with self-regulation difficulties whose mothers produced incoherent narratives showed increased externalizing behavior problems, decreased ego-resilience and lower peer acceptance across the transition to school. In contrast, preschoolers with better self-regulation did not evidence such effects when their mothers produced incoherent narratives. The implications of these findings for understanding and supporting children’s adjustment during the early school years are discussed. PMID:27598254

  19. The acquisition of face and person identity information following anterior temporal lobectomy.

    Science.gov (United States)

    Moran, Maria; Seidenberg, Michael; Sabsevitz, Dave; Swanson, Sara; Hermann, Bruce

    2005-05-01

    Thirty unilateral anterior temporal lobectomy (ATL) subjects (15 right and 15 left) and 15 controls were presented a multitrial learning task in which unfamiliar faces were paired with biographical information (occupation, city location, and a person's name). Face recognition hits were similar between groups, but the right ATL group committed more false-positive errors to face foils. Both left and right ATL groups were impaired relative to controls in acquiring biographical information, but the deficit was more pronounced for the left ATL group. Recall levels also varied for the different types of biographical information; occupation was most commonly recalled followed by city name and person name. In addition, city and person name recall was more likely when occupation was also recalled. Overall, recall of biographical information was positively correlated with clinical measures of anterograde episodic memory. Findings are discussed in terms of the role of the temporal lobe and associative learning ability in the successful acquisition of new face semantic (biographical) representations.

  20. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    OpenAIRE

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference b...

  1. Numerical Magnitude Representations Influence Arithmetic Learning

    Science.gov (United States)

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  2. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  3. Integral Representations of the Catalan Numbers and Their Applications

    Directory of Open Access Journals (Sweden)

    Feng Qi

    2017-08-01

    Full Text Available In the paper, the authors survey integral representations of the Catalan numbers and the Catalan–Qi function, discuss equivalent relations between these integral representations, supply alternative and new proofs of several integral representations, collect applications of some integral representations, and present sums of several power series whose coefficients involve the Catalan numbers.

  4. L-functions and the oscillator representation

    CERN Document Server

    Rallis, Stephen

    1987-01-01

    These notes are concerned with showing the relation between L-functions of classical groups (*F1 in particular) and *F2 functions arising from the oscillator representation of the dual reductive pair *F1 *F3 O(Q). The problem of measuring the nonvanishing of a *F2 correspondence by computing the Petersson inner product of a *F2 lift from *F1 to O(Q) is considered. This product can be expressed as the special value of an L-function (associated to the standard representation of the L-group of *F1) times a finite number of local Euler factors (measuring whether a given local representation occurs in a given oscillator representation). The key ideas used in proving this are (i) new Rankin integral representations of standard L-functions, (ii) see-saw dual reductive pairs and (iii) Siegel-Weil formula. The book addresses readers who specialize in the theory of automorphic forms and L-functions and the representation theory of Lie groups. N

  5. Constructing catalogue of temporal situations

    Directory of Open Access Journals (Sweden)

    Violetta Koseska-Toszewa

    2015-11-01

    Full Text Available Constructing catalogue of temporal situations The paper is aiming to create a common basis for description, comparing, and analysis natural languages. As a subject of comparison we have chosen temporal structures of some languages. For such a choice there exists a perfect tool, describing basic temporal phenomena, namely an ordering of states and events in time, certainty and uncertainty, independency of histories of separate objects, necessity and possibility. This tool is supported by the Petri nets formalism, which seems to be well suited for expressing the above mentioned phenomena. Petri nets are built form three primitive notions: of states, of events that begin or end the states, and so-called flow relation indicating succession of states and events. This simple constituents give rise to many possibilities of representing temporal phenomena; it turns out that such representations are sufficient for many (clearly, not necessarily all temporal situations appearing in natural languages. In description formalisms used till now there is no possibility of expressing such reality phenomena as temporal dependencies in compound statement, or combination of temporality and modality. Moreover, using these formalisms one cannot distinguish between two different sources of uncertainty of the speaker while describing the reality: one, due to the lack of knowledge of the speaker what is going on in outside world, the second, due to objective impossibility of foreseen ways in which some conflict situations will be (or already have been resolved. Petri net formalism seems to be perfectly suited for such differentiations. There are two main description principles that encompassed this paper. First, that assigns meaning to names of grammatical structures in different languages may lead to misunderstanding. Two grammatical structures with apparently close names may describe different reality. Additionally, some grammatical terms used in one language may be

  6. Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory.

    Science.gov (United States)

    Eskandar, E N; Optican, L M; Richmond, B J

    1992-10-01

    1. In the companion paper we reported on the activity of neurons in the inferior temporal (IT) cortex during a sequential pattern matching task. In this task a sample stimulus was followed by a test stimulus that was either a match or a nonmatch. Many of the neurons encoded information about the patterns of both current and previous stimuli in the temporal modulation of their responses. 2. A simple information processing model of visual memory can be formed with just four steps: 1) encode the current stimulus; 2) recall the code of a remembered stimulus; 3) compare the two codes; 4) and decide whether they are similar or different. The analysis presented in the first paper suggested that some IT neurons were performing the comparison step of visual memory. 3. We propose that IT neurons participate in the comparison of temporal waveforms related to vision and memory by multiplying them together. This product could form the basis of a crosscorrelation-based comparison. 4. We tested our hypothesis by fitting a simple multiplicative model to data from IT neurons. The model generated waveforms in separate memory and visual channels. The waveforms arising from the two channels were then multiplied on a point by point basis to yield the output waveform. The model was fitted to the actual neuronal data by a gradient descent method to find the best fit waveforms that also had the lowest total energy. 5. The multiplicative model fit the neuronal responses quite well. The multiplicative model made consistently better predictions of the actual response waveforms than did an additive model. Furthermore, the fit was better when the actual relationship between the responses and the sample and test stimuli were preserved than when that relationship was randomized. 6. We infer from the superior fit of the multiplicative model that IT neurons are multiplying temporally modulated waveforms arising from separate visual and memory systems in the comparison step of visual memory.

  7. [The effect of goal framing on the activation of affective representations].

    Science.gov (United States)

    Takehashi, Hiroki; Karasawa, Kaori

    2007-10-01

    Guided by regulatory focus theory, this study examined the effects of goal framing on the subjective experience of affect and the accessibility of affective representations. Study I examined lay persons' beliefs concerning the relationship between goal framing and certain kinds of affective experiences. The results indicated that a promotion focus was associated with happiness and disappointment, whereas a prevention focus was associated with relaxation and tension. Study 2 examined the effect of goal framing on the activation of affective representations, and found that a promotion focus activated both gain-related representations (happy and disappointment) and loss-related representations (relaxation and tension), whereas a prevention focus activated only loss-related representations. These results suggest that goal framing activates particular affective representations, and the activated affective representations may influence the interpretation of positive or negative experiences. The discussion considered the function of the activation of affective representations as a mediator between goal framing and its cognitive and behavioral consequences.

  8. Court representation in Russia before 1917 (historical aspect

    Directory of Open Access Journals (Sweden)

    Konstantin V. Ilyashenko

    2015-12-01

    Full Text Available Objective basing on the research and analysis of the legislation historical legal sources and other materials to study the process of formation and development of the institution of legal representation in Russia before 1917. Methods the theoretical basis of research is the works of Russian scientists on various aspects of formation development and functioning of the institution of legal representation in Russia from ancient times till 1917. The methodological basis of the research is general scientific methods historical formallogical system and general logical methods analysis synthesis induction and deduction synthesis analogy abstraction. Historicallegal formallegal logicallegal comparative legal methods were applied in the study. The author used the retrospective approach to the study of the issues of legal representation in Russia. Results basing on analysis of normative legal acts regulating relations in the sphere of judicial representation and various doctrinal sources the author has examined the process of the formation and development of the legal representation institution in Russia before 1917 raised the question of providing legal assistance in prerevolutionary Russia. An analogy is drawn between the prerevolutionary legal regulation of the legal representation institution and the modern legislation regulating this legal institution. The conclusion is made about the inadequacy of prerevolutionary legislation regulating relations in the sphere of judicial representation as well as the modern legal regulation of relations in this sphere. It is established that the judicial reform of 1864 improved regulation in this sphere but still did not solve all the problems in this area. The relevance of the study is due to the topicality and the constitutional importance of legal representation for the entire Russian society the need to examine the origins of this legal phenomenon as well as the fact that the institution of legal representation

  9. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  10. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    Science.gov (United States)

    Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip

    2011-01-01

    Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Student Teachers' Knowledge about Chemical Representations

    Science.gov (United States)

    Taskin, Vahide; Bernholt, Sascha; Parchmann, Ilka

    2017-01-01

    Chemical representations serve as a communication tool not only in exchanges between scientists but also in chemistry lessons. The goals of the present study were to measure the extent of student teachers' knowledge about chemical representations, focusing on chemical formulae and structures in particular, and to explore which factors related to…

  12. XML representation and management of temporal information for web-based cultural heritage applications

    Directory of Open Access Journals (Sweden)

    Fabio Grandi

    2006-01-01

    Full Text Available In this paper we survey the recent activities and achievements of our research group in the deployment of XMLrelated technologies in Cultural Heritage applications concerning the encoding of temporal semantics in Web documents. In particular we will review "The Valid Web", which is an XML/XSL infrastructure we defined and implemented for the definition and management of historical information within multimedia documents available on the Web, and its further extension to the effective encoding of advanced temporal features like indeterminacy, multiple granularities and calendars, enabling an efficient processing in a user-friendly Web-based environment. Potential uses of the developed infrastructures include a broad range of applications in the cultural heritage domain, where the historical perspective is relevant, with potentially positive impacts on E-Education and E-Science.

  13. Cohen-Macaulay representations

    CERN Document Server

    Leuschke, Graham J

    2012-01-01

    This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Au...

  14. An Axiomatic Representation of System Dynamics

    CERN Document Server

    Baianu, I

    2004-01-01

    An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.

  15. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  16. Representations of race relations in the classroom: the black in the everyday school life

    Directory of Open Access Journals (Sweden)

    Wilma de Nazaré Baía Coelho

    2015-11-01

    Full Text Available This paper presents some preliminaries results of a research that investigates the representations about race, color, Difference, Prejudgment and Racial Discrimination of the school’s agents teachers, employees and students on the quotidian of the History’s, Portuguese’s and Art’s classes of the first two year of the secondary education of a Belém-PA’s private school, in order to understand the place of the black people in the school pedagogic practices, regarding the obligation of touching racial subjects as established by the low 10.639/2003. Using the methodological and theoretic approach of Pierre Bourdieu and Roger Chartier, we analyzed the representations obtained by the non-participative observation in those classes. We realized that teachers almost didn’t know anything about the low 10.639/2003 and about the ethnic and racial question on Brazil, what brings as result the reproduction of racial prejudgment and discrimination by the students. Our analysis aims, from understanding the problems with teacher development, to understand the problems related to the ethnic and racial question at school and propose solutions.

  17. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  18. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    OpenAIRE

    Valli, I; Stone, J; Mechelli, A; Bhattacharyya, S; Raffin, M; Allen, P; Fusar-Poli, P; Lythgoe, D; O'Gorman, R; Seal, M; McGuire, P

    2011-01-01

    In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis.

  19. Spatially variant morphological restoration and skeleton representation.

    Science.gov (United States)

    Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan

    2006-11-01

    The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.

  20. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  1. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  2. SLE local martingales in logarithmic representations

    International Nuclear Information System (INIS)

    Kytölä, Kalle

    2009-01-01

    A space of local martingales of SLE-type growth processes forms a representation of Virasoro algebra, but apart from a few simplest cases, not much is known about this representation. The purpose of this paper is to exhibit examples of representations where L 0 is not diagonalizable—a phenomenon characteristic of logarithmic conformal field theory. Furthermore, we observe that the local martingales bear a close relation to the fusion product of the boundary changing fields. Our examples reproduce first of all many familiar logarithmic representations at certain rational values of the central charge. In particular we discuss the case of SLE κ=6 describing the exploration path in critical percolation and its relation to the question of operator content of the appropriate conformal field theory of zero central charge. In this case one encounters logarithms in a probabilistically transparent way, through conditioning on a crossing event. But we also observe that some quite natural SLE variants exhibit logarithmic behavior at all values of κ, thus at all central charges and not only at specific rational values

  3. 28 CFR 301.304 - Representation of claimant.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Representation of claimant. 301.304 Section 301.304 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION Compensation for Work-Related Physical Impairment or Death § 301.304 Representation...

  4. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  5. Visual search of cyclic spatio-temporal events

    Science.gov (United States)

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  6. Mental Representation and Motor Imagery Training

    Directory of Open Access Journals (Sweden)

    Thomas eSchack

    2014-05-01

    Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  7. Space-by-time manifold representation of dynamic facial expressions for emotion categorization

    Science.gov (United States)

    Delis, Ioannis; Chen, Chaona; Jack, Rachael E.; Garrod, Oliver G. B.; Panzeri, Stefano; Schyns, Philippe G.

    2016-01-01

    Visual categorization is the brain computation that reduces high-dimensional information in the visual environment into a smaller set of meaningful categories. An important problem in visual neuroscience is to identify the visual information that the brain must represent and then use to categorize visual inputs. Here we introduce a new mathematical formalism—termed space-by-time manifold decomposition—that describes this information as a low-dimensional manifold separable in space and time. We use this decomposition to characterize the representations used by observers to categorize the six classic facial expressions of emotion (happy, surprise, fear, disgust, anger, and sad). By means of a Generative Face Grammar, we presented random dynamic facial movements on each experimental trial and used subjective human perception to identify the facial movements that correlate with each emotion category. When the random movements projected onto the categorization manifold region corresponding to one of the emotion categories, observers categorized the stimulus accordingly; otherwise they selected “other.” Using this information, we determined both the Action Unit and temporal components whose linear combinations lead to reliable categorization of each emotion. In a validation experiment, we confirmed the psychological validity of the resulting space-by-time manifold representation. Finally, we demonstrated the importance of temporal sequencing for accurate emotion categorization and identified the temporal dynamics of Action Unit components that cause typical confusions between specific emotions (e.g., fear and surprise) as well as those resolving these confusions. PMID:27305521

  8. Spatio-temporal variability in ontogenetic guild structure of an intertidal fish assemblage in central Chile Variabilidad espacio-temporal en la estructura de gremios ontogenéticos de un ensamble de peces intermareales de Chile central

    Directory of Open Access Journals (Sweden)

    PATRICIA A BERRÍOS

    2011-12-01

    Full Text Available Species resource use can vary throughout ontogeny, potentially affecting community dynamics. This can be particularly important for species facing high variability in environmental conditions and going through several orders of magnitude in size, as intertidal fishes. However, the influence of the resulting ontogenetic changes in guild membership on the spatio-temporal structure of fish assemblages remains virtually unknown. Here we assessed the spatial and temporal variability in the ontogenetic feeding guild (OFG structure of the fish assemblage inhabiting the temperate rocky intertidal zone along central Chilean coast. This was done applying principal component analysis (PCA and randomization tests (R-test on the relative OFG composition of fish assemblages, obtained from seasonal samples from ten pools located at two heights in the intertidal zone in three localities between 33° and 34° S. Overall, the PCA and R-tests suggest that spatial variability dominated over temporal variability in OFG structure, mainly due to a higher representation of omnivore species at high intertidal pools in two of the three sampled localities. However, phenology-related changes in the representation of fish size-classes (i.e. carnivore recruitment in spring-summer along with ontogenetic differences in habitat selection (e.g., selection for low intertidal pools by bigger-sized carnivore OFG contributed to both spatial and temporal differentiation in OFG structure. Finally, the relative representation of each OFG correlated with that of their dominant species, without evidence for density compensation. This suggests low levels of functional redundancy among species in each OFG, highlighting the vulnerability of assemblage functioning to size-biased disturbances as fishing.El uso de los recursos puede variar a través de la ontogenia, afectando potencialmente las dinámicas comunitarias. Esto puede ser de particular importancia en especies que enfrentan alta

  9. Occurrences of yawn and swallow are temporally related.

    Science.gov (United States)

    Abe, Kimiko; Weisz, Sarah E M; Dunn, Rachelle L; DiGioacchino, Martina C; Nyentap, Jennifer A; Stanbouly, Seta; Theurer, Julie A; Bureau, Yves; Affoo, Rebecca H; Martin, Ruth E

    2015-02-01

    Yawning is a stereotyped motor behavior characterized by deep inhalation and associated dilation of the respiratory tract, pronounced jaw opening, and facial grimacing. The frequency of spontaneous yawning varies over the diurnal cycle, peaking after waking and before sleep. Yawning can also be elicited by seeing or hearing another yawn, or by thinking about yawning, a phenomenon known as "contagious yawning". Yawning is mediated by a distributed network of brainstem and supratentorial brain regions, the components of which are shared with other airway behaviors including respiration, swallowing, and mastication. Nevertheless, the possibility of behavioral coordination between yawning and other brainstem-mediated functions has not been examined. Here we show, with a double-blind methodology, a greater-than-fivefold increase in rest (saliva) swallowing rate during the 10-s period immediately following contagious yawning elicited in 14 adult humans through the viewing of videotaped yawn stimuli. Sixty-five percent of yawns were followed by a swallow within 10 s and swallows accounted for 26 % of all behaviors produced during this post-yawn period. This novel finding of a tight temporal coupling between yawning and swallowing provides preliminary evidence that yawning and swallowing are physiologically related, thus extending current models of upper airway physiology and neurophysiology. Moreover, our finding suggests the possibility that yawning plays a role in eliciting rest swallowing, a view not considered in previous theories of yawning. As such, the present demonstration of a temporal association between yawning and swallowing motivates a re-examination of the longstanding question, "Why do we yawn?".

  10. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    Science.gov (United States)

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  11. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    Science.gov (United States)

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hippocampal Temporal-Parietal Junction Interaction in the Production of Psychotic Symptoms: A Framework for Understanding the Schizophrenic Syndrome

    Directory of Open Access Journals (Sweden)

    Cynthia Gayle Wible

    2012-06-01

    Full Text Available A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ, posterior superior temporal sulcus (PSTS and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs and cognitive deficits. Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia. Hippocampal activity is highly related to activity in the TPJ and may be a source of over-excitation of the TPJ and surrounding regions. Strong evidence for this comes from in-vivo recordings in humans during psychotic episodes. The TPJ and PSTS play a key role in the perception (and production of dynamic social, emotional and attentional gestures for the self and others (e.g., body/face/eye gestures, audiovisual speech, prosody. The single cell representation of dynamic gestures is multimodal (auditory, visual, tactile, matching the predominant hallucinatory categories in schizophrenia. Inherent in the single cell perceptual signal of dynamic gesture representations is a computation of intention, agency, and anticipation or expectancy (for the self and others. The neurons are also tuned or biased to detect threat related emotions. Abnormal over-activation in this system could produce the conscious hallucination of a voice (audiovisual speech, person or a touch. Over-activation could interfere with attentional/emotional gesture perception and production (negative symptoms. It could produce the unconscious feeling of being watched, followed or of a social situation unfolding along with accompanying perception of intent and agency inherent in those representations (delusions. Cognitive disturbances in attention, predictive social processing, agency, working memory, and a bias toward the perception of threat would also be predicted.

  13. Modelling the effect of religion on human empathy based on an adaptive temporal-causal network model.

    Science.gov (United States)

    van Ments, Laila; Roelofsma, Peter; Treur, Jan

    2018-01-01

    Religion is a central aspect of many individuals' lives around the world, and its influence on human behaviour has been extensively studied from many different perspectives. The current study integrates a number of these perspectives into one adaptive temporal-causal network model describing the mental states involved, their mutual relations, and the adaptation of some of these relations over time due to learning. By first developing a conceptual representation of a network model based on the literature, and then formalizing this model into a numerical representation, simulations can be done for almost any kind of religion and person, showing different behaviours for persons with different religious backgrounds and characters. The focus was mainly on the influence of religion on human empathy and dis-empathy, a topic very relevant today. The developed model could be valuable for many uses, involving support for a better understanding, and even prediction, of the behaviour of religious individuals. It is illustrated for a number of different scenarios based on different characteristics of the persons and of the religion.

  14. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    Science.gov (United States)

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.

    Science.gov (United States)

    Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul

    2015-09-01

    An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.

  16. Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers

    Science.gov (United States)

    Thompson, Clarissa A.; Siegler, Robert S.

    2010-01-01

    We investigated the relation between children's numerical-magnitude representations and their memory for numbers. Results of three experiments indicated that the more linear children's magnitude representations were, the more closely their memory of the numbers approximated the numbers presented. This relation was present for preschoolers and…

  17. Changes in the representation of women and minorities in biomedical careers.

    Science.gov (United States)

    Myers, Samuel L; Fealing, Kaye Husbands

    2012-11-01

    To examine how efforts and policies to increase diversity affect the relative representation of women and of minority groups within medicine and related science fields. The authors of this report used data from the Current Population Survey March Supplement (a product of the U.S. Census Bureau and the Bureau of Labor Statistics that tracks race, ethnicity, and employment) to compute the representation ratios of persons employed in biology, chemistry, and medicine from 1968 to 2009 (inclusive). They derived the representation ratios by computing the ratio of the conditional probability that a member of a given group is employed in a specific skilled science field to the overall probability of employment in that field. Their analysis tested for differences in representation ratios among racial, gender, and ethnic groups and across time among those employed as biologists, chemists, and medical doctors. Representation ratios rose for white females, whose percentage increase in medicine was larger than for any other racial/ethnic group. The representation ratios fell for Hispanics in biology, chemistry, and medicine. The representation ratio rose for African Americans, whose highest percentage increase occurred in biology. Asian Americans, who had the highest representation ratios in all three disciplines, saw a decline in their relative representation in medicine. The authors have demonstrated that all groups do not benefit equally from diversity initiatives and that competition across related fields can confound efforts to increase diversity in medicine.

  18. Symposium on Singularities, Representation of Algebras, and Vector Bundles

    CERN Document Server

    Trautmann, Günther

    1987-01-01

    It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.

  19. Minimal representations and Freudenthal triple systems

    International Nuclear Information System (INIS)

    Olive, D.

    2004-01-01

    Unitary representations of noncompact Lie groups have long been sought in physics. The first nice concrete construction was found by Dirac in connection with the anti-de Sitter group. Some subsequent generalizations will be described, in particular the minimal representation thought to be relevant to realising duality in supergravity superstring theories. A relation to Freudenthal triple systems will be described. (author)

  20. Representations for Supporting Students' Context Awareness

    DEFF Research Database (Denmark)

    Demetriadis, Stavros N.; Papadopoulos, Pantelis M.

    2005-01-01

    The context of the specific situation where knowledge is applied affects significantly the problem solving process by forcing people to negotiate and reconsider the priorities of their mental representations and problem solving operators, in relation to this process. In this work we argue...... that students’ context awareness can significantly be enhanced by the use of appropriate external representations which guide them to activate context inducing cognitive processes. By embedding such representations in a case based learning environment we expect to guide students’ processing of the rich...... in contextual information material, in a way that improves both their context awareness and metacontextual competence. After presenting a context model, we discuss the design of such representations based on this model and explain why we expect that their use in a learning situation would enhance context...

  1. Social representations about cancer

    Directory of Open Access Journals (Sweden)

    Andreja Cirila Škufca

    2003-09-01

    Full Text Available In this article we are presenting the results of the comparison study on social representations and causal attributions about cancer. We compared a breast cancer survivors group and control group without own experience of cancer of their own. Although social representations about cancer differ in each group, they are closely related to the concept of suffering, dying and death. We found differences in causal attribution of cancer. In both groups we found a category of risky behavior, which attributes a responsibility for a disease to an individual. Besides these factors we found predominate stress and psychological influences in cancer survivors group. On the other hand control group indicated factors outside the ones control e.g. heredity and environmental factors. Representations about a disease inside person's social space are important in co-shaping the individual process of coping with own disease. Since these representations are not always coherent with the knowledge of modern medicine their knowledge and appreciation in the course of treatment is of great value. We find the findingss of applied social psychology important as starting points in the therapeutic work with patients.

  2. Activation in the Right Inferior Parietal Lobule Reflects the Representation of Musical Structure beyond Simple Pitch Discrimination

    Science.gov (United States)

    Royal, Isabelle; Vuvan, Dominique T.; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle

    2016-01-01

    Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination. PMID:27195523

  3. Spatially generalizable representations of facial expressions: Decoding across partial face samples.

    Science.gov (United States)

    Greening, Steven G; Mitchell, Derek G V; Smith, Fraser W

    2018-04-01

    A network of cortical and sub-cortical regions is known to be important in the processing of facial expression. However, to date no study has investigated whether representations of facial expressions present in this network permit generalization across independent samples of face information (e.g., eye region vs mouth region). We presented participants with partial face samples of five expression categories in a rapid event-related fMRI experiment. We reveal a network of face-sensitive regions that contain information about facial expression categories regardless of which part of the face is presented. We further reveal that the neural information present in a subset of these regions: dorsal prefrontal cortex (dPFC), superior temporal sulcus (STS), lateral occipital and ventral temporal cortex, and even early visual cortex, enables reliable generalization across independent visual inputs (faces depicting the 'eyes only' vs 'eyes removed'). Furthermore, classification performance was correlated to behavioral performance in STS and dPFC. Our results demonstrate that both higher (e.g., STS, dPFC) and lower level cortical regions contain information useful for facial expression decoding that go beyond the visual information presented, and implicate a key role for contextual mechanisms such as cortical feedback in facial expression perception under challenging conditions of visual occlusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  5. Uncertainty representation of grey numbers and grey sets.

    Science.gov (United States)

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  6. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    Science.gov (United States)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  7. Gender Representation Trends and Relations at the United States Naval Academy

    National Research Council Canada - National Science Library

    Lewis, Joshua R; Lewis, Shannon F

    2005-01-01

    .... Representation of women has increased to the current high of around 16%. Further, the data revealed similarities and differences between men and women in terms of their non-gender characteristics...

  8. Parotid radiosensitivity changes: a temporal relation to glandular circadian rhythms

    International Nuclear Information System (INIS)

    El-Mofty, S.K.; Hovenga, T.L.; Russell, J.E.; Simmons, D.J.

    1982-01-01

    The radiosensitivity of the rat parotid gland to X-radiation increased considerably towards the end of the daily light span (0800-2000 hours) and to a lesser extent before the onset of that period. The major sensitivity peak occurred at 1600 hours and coincides with a diurnal nadir in the rates of protein and RNA synthesis. The minor peak occurred at 0400 hours and was temporally related to a daily period of maximal secretory activity. It is suggested that suboptimal repair and secretion-linked cellular perturbations might contribute to the pathogenesis of the circadian increases in radiosensitivity of parotid cells. (author)

  9. The Role of Medial Temporal Lobe Regions in Incidental and Intentional Retrieval of Item and Relational Information in Aging.

    Science.gov (United States)

    Wang, Wei-Chun; Giovanello, Kelly S

    2016-06-01

    Considerable neuropsychological and neuroimaging work indicates that the medial temporal lobes are critical for both item and relational memory retrieval. However, there remain outstanding issues in the literature, namely the extent to which medial temporal lobe regions are differentially recruited during incidental and intentional retrieval of item and relational information, and the extent to which aging may affect these neural substrates. The current fMRI study sought to address these questions; participants incidentally encoded word pairs embedded in sentences and incidental item and relational retrieval were assessed through speeded reading of intact, rearranged, and new word-pair sentences, while intentional item and relational retrieval were assessed through old/new associative recognition of a separate set of intact, rearranged, and new word pairs. Results indicated that, in both younger and older adults, anterior hippocampus and perirhinal cortex indexed incidental and intentional item retrieval in the same manner. In contrast, posterior hippocampus supported incidental and intentional relational retrieval in both age groups and an adjacent cluster in posterior hippocampus was recruited during both forms of relational retrieval for older, but not younger, adults. Our findings suggest that while medial temporal lobe regions do not differentiate between incidental and intentional forms of retrieval, there are distinct roles for anterior and posterior medial temporal lobe regions during retrieval of item and relational information, respectively, and further indicate that posterior regions may, under certain conditions, be over-recruited in healthy aging. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Visual perception and verbal descriptions as sources for generating mental representations: Evidence from representational neglect.

    Science.gov (United States)

    Denis, Michel; Beschin, Nicoletta; Logie, Robert H; Della Sala, Sergio

    2002-03-01

    In the majority of investigations of representational neglect, patients are asked to report information derived from long-term visual knowledge. In contrast, studies of perceptual neglect involve reporting the contents of relatively novel scenes in the immediate environment. The present study aimed to establish how representational neglect might affect (a) immediate recall of recently perceived, novel visual layouts, and (b) immediate recall of novel layouts presented only as auditory verbal descriptions. These conditions were contrasted with reports from visual perception and a test of immediate recall of verbal material. Data were obtained from 11 neglect patients (9 with representational neglect), 6 right hemisphere lesion control patients with no evidence of neglect, and 15 healthy controls. In the perception, memory following perception, and memory following layout description conditions, the neglect patients showed poorer report of items depicted or described on the left than on the right of each layout. The lateralised error pattern was not evident in the non-neglect patients or healthy controls, and there was no difference among the three groups on immediate verbal memory. One patient showed pure representational neglect, with ceiling performance in the perception condition, but with lateralised errors for memory following perception or following verbal description. Overall, the results indicate that representational neglect does not depend on the presence of perceptual neglect, that visual perception and visual mental representations are less closely linked than has been thought hitherto, and that visuospatial mental representations have similar functional characteristics whether they are derived from visual perception or from auditory linguistic descriptive inputs.

  11. Wavelets for Sparse Representation of Music

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft; Harbo, Anders La-Cour

    2004-01-01

    We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...

  12. Career representations in high school pupils and students in relation to gender characteristics

    Directory of Open Access Journals (Sweden)

    A.M. Sheveleva

    2013-07-01

    Full Text Available We describe a study of career representations in school and university students in relation to gender characteristics. The sample consisted of 36 students of XI grade and 40 students of I year of high school. We tested the hypothesis about relationship of career representations with gen-der characteristics of the subjects and their stage of professional development. The methods we used were “career anchors” by E. Schein, “Psychological gender” by S. Bem, survey “Professional career ideals" by A.M. Sheveleva. The statistical significance level of results was 0.05. It was re-vealed that, despite both school pupils and students preferred achievements, wealth and social recognition as the content of the ideal career, there are differences between the samples. Pupils are more focused on the “General managerial competence” and “Security/stability”, the students –on “Service/dedication to a cause” and “Technical/functional competence”. Regardless of sex, school pupils with an increase of masculinity have enhanced value of ”Pure challenge” orienta-tion and lowered value of the “Mode of Life” ideal career. The female students with increased femininity have higher importance of such content ideal career as “Experience Acquisition” and “Professional Path”, the value of career orientation “Autonomy/independence” is increased.

  13. [Social and cultural representations in epilepsy awareness].

    Science.gov (United States)

    Arborio, Sophie

    2015-01-01

    Representations relating to epilepsy have evolved over the centuries, but the manifestations of epilepsy awaken archaic images linked to death, violence and disgust. Indeed, the generalised epileptic seizure symbolises a rupture with the surrounding environment, "informs it", through the loss of social codes which it causes. The social and cultural context, as well as medical knowledge, influences the representations of the disease. As a result, popular knowledge is founded on the social and cultural representations of a given era, in a given society. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Linear Temporal Logic-based Mission Planning

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-06-01

    Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.

  15. Representation of acoustic signals in the eighth nerve of the Tokay gecko: I. Pure tones.

    Science.gov (United States)

    Sams-Dodd, F; Capranica, R R

    1994-06-01

    A systematic study of the encoding properties of 146 auditory nerve fibers in the Tokay gecko (Gekko gecko, L) was conducted with respect to pure tones and two-tone rate suppression. Our aim was a comprehensive understanding of the peripheral encoding of simple tonal stimuli and their representation by temporal synchronization and spike rate codes as a prelude to subsequent studies of more complex signals. Auditory nerve fibers in the Tokay gecko have asymmetrical, V-shaped excitatory tuning curves with best excitatory frequencies that range from 200-5100 Hz and thresholds between 4-35 dB SPL. A low-frequency excitatory 'tail' extends far into the low-frequency range and two-tone suppression is present only on the high frequency side of the tuning curve. The response properties to pure tones at different loci within a tuning curve can differ greatly, due to evident interactions between the representations of temporal, spectral and intensity stimulus features. For frequencies below 1250 Hz, pure tones are encoded by both temporal synchronization and spike rate codes, whereas above this frequency a fiber's ability to encode the waveform periodicity is lost and only a rate code predominates. These complimentary representations within a tuning curve raise fundamental issues which need to be addressed in interpreting how more complex, bioacoustic communication signals are represented in the peripheral and central auditory system. And since auditory nerve fibers in the Tokay gecko exhibit tonal sensitivity, selective frequency tuning, and iso-intensity and iso-frequency contours that seem comparable to similar measures in birds and mammals, these issues likely apply to most higher vertebrates in general. The simpler wiring diagram of the reptilian auditory system, coupled with the Tokay gecko's remarkable vocalizations, make this animal a good evolutionary model in which to experimentally explore the encoding of more complex sounds of communicative significance.

  16. [Social Representations Related to Anemia in Children Under Three years in Awajún and Wampis Communities of Peru].

    Science.gov (United States)

    Mayca-Pérez, Julio; Medina-Ibañez, Armando; Velásquez-Hurtado, José E; Llanos-Zavalaga, Luis F

    2017-01-01

    To understand the social representations of the Awajún and Wampis communities related to the symptoms and treatment of anemia in children younger than 3 years, as well as the relationship of these representations with the symbolism, constructs, and type of diet of these populations. This qualitative study was conducted from June to August 2015 in the districts of Río Santiago, Cenepa, and Nieva (Amazon region, Peru), and included in-depth interviews (IDIs) of health personnel, community authorities, parents, and focus groups (FGs) for mothers. A total of 38 IDIs and 13 FGs were conducted. The evaluated populations had limited awareness about anemia and health personnel, but anemia with symptoms were correlated with social representations and cultural manifestations. This behavior was reflected in the parents' choice of treatments that were not necessarily the same as those indicated by the health personnel, and these social groups preferred the consumption of certain foods that were considered to cure the "putsumat". Visiting a health care center or using micronutrients was not their first treatment option. Social representations and traditional practices still exist, and include interpretative systems in health, disease, and disease management. The logic, meaning, and coherence of these practices depend on the cultural group considered. The "putsumat" or "putsuju" is an interpretive model for anemia, and the symptoms in children include pallor, thinness, and fatigue; this model is based on the cultural system of the Awajún and Wampis populations.

  17. Temporal and extra-temporal hypoperfusion in medial temporal lobe epilepsy evaluated by arterial-spin-labeling based MRI

    International Nuclear Information System (INIS)

    Shen Lianfang; Zhang Zhiqiang; Lu Guangming; Yuan Cuiping; Wang Zhengge; Wang Haoxue; Huang Wei; Wei Fangyuan; Chen Guanghui; Tan Qifu

    2012-01-01

    Objective: To evaluate the feasibility of the lateralization of unilateral medial temporal lobe epilepsy (mTLE) by using arterial-spin-labeling (ASL) based perfusion MR imaging and investigate the changes of perfusion in the regions related to mTLE network and the relationship between the perfusion and the clinical status. Methods: Twenty-five patients with left-sided and 23 with right-sided mTLE were enrolled, and 30 healthy volunteers were recruited. The cerebral blood flow (CBF) of related region was measured based on pulsed-ASL sequence on Siemens 3 T scanner. The CBF of the mTLE group were compared with that in the controls by using ANOVA analysis. The asymmetric indices of CBF in the medial temporal lobe were calculated as the lesion side compared with the normal side in matched region in mTLE group. Results: Compared with the volunteers, the patients with mTLE showed the decrease of CBF in the bilateral medial and lateral temporal, the frontal and parietal regions relating to the default-mode network and more serious in lesion side. The CBF values of the medial temporal lobe were negatively correlated with the epilepsy duration (r=-0.51, P<0.01). The asymmetric index of CBF as-0.01 has a 76.0% (19/25) sensitivity and a 78.3% (18/23) specificity to distinguish the lesion side. Conclusions: The decrease of CBF in the temporal and extra-temporal region by ASL-based MRI suggests the functional abnormalities in the network involved by mTLE. The ASL technique is a useful tool for lateralizing the unilateral mTLE. (authors)

  18. Speckle suppression via sparse representation for wide-field imaging through turbid media.

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Chung, Euiheon; Choi, Wonshik; Lee, Heung-No

    2014-06-30

    Speckle suppression is one of the most important tasks in the image transmission through turbid media. Insufficient speckle suppression requires an additional procedure such as temporal ensemble averaging over multiple exposures. In this paper, we consider the image recovery process based on the so-called transmission matrix (TM) of turbid media for the image transmission through the media. We show that the speckle left unremoved in the TM-based image recovery can be suppressed effectively via sparse representation (SR). SR is a relatively new signal reconstruction framework which works well even for ill-conditioned problems. This is the first study to show the benefit of using the SR as compared to the phase conjugation (PC) a de facto standard method to date for TM-based imaging through turbid media including a live cell through tissue slice.

  19. Cognitive representations of peripheral neuropathy and self-reported foot-care behaviour of people at high risk of diabetes-related foot complications

    DEFF Research Database (Denmark)

    Perrin, B. M.; Swerissen, H.; Payne, C. B.

    2014-01-01

    Aim: The aim of this study was to explore the cognitive representations of peripheral neuropathy and self-reported foot-care behaviour in an Australian sample of people with diabetes and peripheral neuropathy. Methods: This cross-sectional study was undertaken with 121 participants with diabetes...... and peripheral neuropathy. Cognitive representations of peripheral neuropathy were measured by the Patients' Interpretation of Neuropathy questionnaire and two aspects of self-foot-care behaviour were measured using a self-report questionnaire. Hierarchical cluster analysis using the average linkage method...... was used to identify distinct illness schemata related to peripheral neuropathy. Results: Three clusters of participants were identified who exhibited distinct illness schemata related to peripheral neuropathy. One cluster had more misperceptions about the nature of peripheral neuropathy, one cluster...

  20. Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach

    Science.gov (United States)

    Gauvin, Laetitia; Panisson, André; Cattuto, Ciro

    2014-01-01

    The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule. PMID:24497935

  1. Representations for the extreme zeros of orthogonal polynomials

    NARCIS (Netherlands)

    van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.

    2009-01-01

    We establish some representations for the smallest and largest zeros of orthogonal polynomials in terms of the parameters in the three-terms recurrence relation. As a corollary we obtain representations for the endpoints of the true interval of orthogonality. Implications of these results for the

  2. Spatial and temporal relations in conditioned reinforcement and observing behavior.

    Science.gov (United States)

    Bowe, C A; Dinsmoor, J A

    1983-03-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Experiment 2, pigeons that were allowed to produce combined spatial and temporal information did not acquire the perch pressing any faster or maintain it at a higher level than pigeons allowed to produce only temporal information. Later, when perching produced only spatial information, the time spent depressing the perch eventually declined. The results are not those implied by the statement that information concerning biologically important events is reinforcing but are consistent with an interpretation in terms of the acquisition of reinforcing properties by a stimulus associated with a higher density of primary reinforcement.

  3. Interparental conflict and adolescents' self-representations: The role of emotional insecurity.

    Science.gov (United States)

    Silva, Carla Sofia; Calheiros, Maria Manuela; Carvalho, Helena

    2016-10-01

    Adolescents' signs of emotional insecurity in the context of interparental conflict (IC) - emotional reactivity, internal representations (i.e., constructive/destructive; spillover) and behavioral responses (i.e., withdrawal; inhibition; involvement) - were examined as mediators in the relation between IC and adolescents' self-representations. Self-reported measures were filled out by 221 Portuguese adolescents (59.3% girls; Mage = 12.91), attending public elementary and secondary schools. IC predicted less favorable self-representations. Adolescents' emotional reactivity and withdrawal mediated the relation between IC and emotional and physical appearance self-representations, while conflict spillover representations and constructive family representations mediated associations between IC and instrumental self-representations. This study emphasizes the importance of interparental conflict and adolescent emotional insecurity in the construction of their self-representations, having important theoretical and practical implications. It highlights the value of analyzing the specific role of several emotional insecurity dimensions, and informs practitioners' work aimed at promoting constructive conflict and adaptive emotional regulation skills. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  4. Join Operations in Temporal Databases

    DEFF Research Database (Denmark)

    Gao, D.; Jensen, Christian Søndergaard; Snodgrass, R.T.

    2005-01-01

    Joins are arguably the most important relational operators. Poor implementations are tantamount to computing the Cartesian product of the input relations. In a temporal database, the problem is more acute for two reasons. First, conventional techniques are designed for the evaluation of joins...... with equality predicates rather than the inequality predicates prevalent in valid-time queries. Second, the presence of temporally varying data dramatically increases the size of a database. These factors indicate that specialized techniques are needed to efficiently evaluate temporal joins. We address...... this need for efficient join evaluation in temporal databases. Our purpose is twofold. We first survey all previously proposed temporal join operators. While many temporal join operators have been defined in previous work, this work has been done largely in isolation from competing proposals, with little...

  5. Statistical representation of sound textures in the impaired auditory system

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2015-01-01

    Many challenges exist when it comes to understanding and compensating for hearing impairment. Traditional methods, such as pure tone audiometry and speech intelligibility tests, offer insight into the deficiencies of a hearingimpaired listener, but can only partially reveal the mechanisms...... that underlie the hearing loss. An alternative approach is to investigate the statistical representation of sounds for hearing-impaired listeners along the auditory pathway. Using models of the auditory periphery and sound synthesis, we aimed to probe hearing impaired perception for sound textures – temporally...

  6. Group-sparse representation with dictionary learning for medical image denoising and fusion.

    Science.gov (United States)

    Li, Shutao; Yin, Haitao; Fang, Leyuan

    2012-12-01

    Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.

  7. Effects of the activation of self-esteem and perceived temporal distance on the preparation for an examination(2): Temporal changes in performance prediction

    OpenAIRE

    藤島, 喜嗣; Yoshitsugu, FUJISHIMA; 昭和女子大学大学院生活機構研究科

    2012-01-01

    Self-esteem is a global representation of the self that varies in its level of activation. Self-esteem should have an influence on future prediction depending on its activation level. According to the construal level theory, temporal distance moderates the influence of the activated self-esteem. Undergraduates (n=89) participated in a panel survey on predictions about their examination performance, in which their level of self-esteem activation was manipulated. Contrary to the hypothesis, the...

  8. MULTI-TEMPORAL ANALYSIS OF LANDSCAPES AND URBAN AREAS

    Directory of Open Access Journals (Sweden)

    E. Nocerino

    2012-07-01

    Full Text Available This article presents a 4D modelling approach that employs multi-temporal and historical aerial images to derive spatio-temporal information for scenes and landscapes. Such imagery represent a unique data source, which combined with photo interpretation and reality-based 3D reconstruction techniques, can offer a more complete modelling procedure because it adds the fourth dimension of time to 3D geometrical representation and thus, allows urban planners, historians, and others to identify, describe, and analyse changes in individual scenes and buildings as well as across landscapes. Particularly important to this approach are historical aerial photos, which provide data about the past that can be collected, processed, and then integrated as a database. The proposed methodology employs both historical (1945 and more recent (1973 and 2000s aerial images from the Trentino region in North-eastern Italy in order to create a multi-temporal database of information to assist researchers in many disciplines such as topographic mapping, geology, geography, architecture, and archaeology as they work to reconstruct building phases and to understand landscape transformations (Fig. 1.

  9. Google chemtrails: a methodology to analyze topic representation in search engine results

    OpenAIRE

    Ballatore, Andrea

    2015-01-01

    Search engine results influence the visibility of different viewpoints in political, cultural, and scientific debates. Treating search engines as editorial products with intrinsic biases can help understand the structure of information flows in new media. This paper outlines an empirical methodology to analyze the representation of topics in search engines, reducing the spatial and temporal biases in the results. As a case study, the methodology is applied to 15 popular conspiracy theories, e...

  10. Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis.

    Science.gov (United States)

    Giard, M H; Lavikahen, J; Reinikainen, K; Perrin, F; Bertrand, O; Pernier, J; Näätänen, R

    1995-01-01

    Abstract The present study analyzed the neural correlates of acoustic stimulus representation in echoic sensory memory. The neural traces of auditory sensory memory were indirectly studied by using the mismatch negativity (MMN), an event-related potential component elicited by a change in a repetitive sound. The MMN is assumed to reflect change detection in a comparison process between the sensory input from a deviant stimulus and the neural representation of repetitive stimuli in echoic memory. The scalp topographies of the MMNs elicited by pure tones deviating from standard tones by either frequency, intensity, or duration varied according to the type of stimulus deviance, indicating that the MMNs for different attributes originate, at least in part, from distinct neural populations in the auditory cortex. This result was supported by dipole-model analysis. If the MMN generator process occurs where the stimulus information is stored, these findings strongly suggest that the frequency, intensity, and duration of acoustic stimuli have a separate neural representation in sensory memory.

  11. Only time will tell - why temporal information is essential for our neuroscientific understanding of semantics.

    Science.gov (United States)

    Hauk, Olaf

    2016-08-01

    Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.

  12. Knowledge representation and natural language processing

    Energy Technology Data Exchange (ETDEWEB)

    Weischedel, R.M.

    1986-07-01

    In principle, natural language and knowledge representation are closely related. This paper investigates this by demonstrating how several natural language phenomena, such as definite reference, ambiguity, ellipsis, ill-formed input, figures of speech, and vagueness, require diverse knowledge sources and reasoning. The breadth of kinds of knowledge needed to represent morphology, syntax, semantics, and pragmatics is surveyed. Furthermore, several current issues in knowledge representation, such as logic versus semantic nets, general-purpose versus special-purpose reasoners, adequacy of first-order logic, wait-and-see strategies, and default reasoning, are illustrated in terms of their relation to natural language processing and how natural language impact the issues.

  13. The endoscopic classification of representations orthogonal and symplectic groups

    CERN Document Server

    Arthur, James

    2013-01-01

    Within the Langlands program, endoscopy is a fundamental process for relating automorphic representations of one group with those of another. In this book, Arthur establishes an endoscopic classification of automorphic representations of orthogonal and symplectic groups G. The representations are shown to occur in families (known as global L-packets and A-packets), which are parametrized by certain self-dual automorphic representations of an associated general linear group GL(N). The central result is a simple and explicit formula for the multiplicity in the automorphic discrete spectrum of G

  14. Spatial and Temporal Dynamics of Mass Mortalities in Oysters Is Influenced by Energetic Reserves and Food Quality

    Science.gov (United States)

    Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D’orbcastel, Emmanuelle Roque

    2014-01-01

    Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality. PMID:24551106

  15. Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality.

    Directory of Open Access Journals (Sweden)

    Fabrice Pernet

    Full Text Available Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1 that has affected oysters (Crassostrea gigas every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality.

  16. Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality.

    Science.gov (United States)

    Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D'orbcastel, Emmanuelle Roque

    2014-01-01

    Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality.

  17. Action simulation: time course and representational mechanisms

    Science.gov (United States)

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  18. Temporalities in conlict: body and absence in the modern artistic practices in Argentina

    Directory of Open Access Journals (Sweden)

    Maria Luisa Ortega Galvez

    2012-01-01

    and ilmmakers in which the corporality (the absence of ones’ bodies plays an essential role. On one hand, we are going to talk about the violence victims’ (im- possibility of representation, and on the other hand, we are going to talk about the resigniication of the temporality through this kind of works.

  19. Visually defining and querying consistent multi-granular clinical temporal abstractions.

    Science.gov (United States)

    Combi, Carlo; Oliboni, Barbara

    2012-02-01

    The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e., high level patterns derived from several time-stamped raw data. In particular, we focus on the visual specification of consistent temporal abstractions with different granularities and on the visual composition of different temporal abstractions for querying clinical databases. Temporal abstractions on clinical data provide a concise and high-level description of temporal raw data, and a suitable way to support decision making. Granularities define partitions on the time line and allow one to represent time and, thus, temporal clinical information at different levels of detail, according to the requirements coming from the represented clinical domain. The visual representation of temporal information has been considered since several years in clinical domains. Proposed visualization techniques must be easy and quick to understand, and could benefit from visual metaphors that do not lead to ambiguous interpretations. Recently, physical metaphors such as strips, springs, weights, and wires have been proposed and evaluated on clinical users for the specification of temporal clinical abstractions. Visual approaches to boolean queries have been considered in the last years and confirmed that the visual support to the specification of complex boolean queries is both an important and difficult research topic. We propose and describe a visual language for the definition of temporal abstractions based on a set of intuitive metaphors (striped wall, plastered wall, brick wall), allowing the clinician to use different granularities. A new algorithm, underlying the visual language, allows the physician to specify only consistent abstractions, i.e., abstractions not containing contradictory conditions on

  20. Moments of Teaching and Learning in a Children's Hospital: Affects, Textures, and Temporalities

    Science.gov (United States)

    Ehret, Christian

    2018-01-01

    Although nonrepresentational theory has enriched anthropologists' understanding of affect in social and cultural life, it has a short history in education research, where representational paradigms dominate. This article develops nonrepresentational theories of moments, temporal textures, and affective pedagogies in order to evoke affects of…

  1. Application of commutator theorems to the integration of representations of Lie algebras and commutation relations

    International Nuclear Information System (INIS)

    Froehlich, J.

    1977-01-01

    Sufficient conditions on unbounded, symmetric operators A and B which imply that exp(itA)exp(isB)exp(-itA) satisfies the well known 'multiple commutator' formula are derived. This formula is then applied to prove new necessary and sufficient conditions for the integrability of representations of Lie algebras and canonical commutation relations and the commutativity of the spectral projections of two commuting, unbounded, self-adjoint operators. A classic theorem of Nelson's is obtained as a corollary. Our results are useful in relativistic quantum field theory. (orig.) [de

  2. Discrimination and the aim of proportional representation

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2008-01-01

    Many organizations, companies, and so on are committed to certain representational aims as regards the composition of their workforce. One motivation for such aims is the assumption that numerical underrepresentation of groups manifests discrimination against them. In this article, I articulate...... representational aims in a way that best captures this rationale. My main claim is that the achievement of such representational aims is reducible to the elimination of the effects of wrongful discrimination on individuals and that this very important concern is, in principle, compatible with the representation...... of discrimination against numerically overrepresented groups, or overlook the innocently different ambitions of some numerically underrepresented groups. In relation to the latter point, I appeal to the fact that many luck egalitarians think justice should be ambition sensitive (but endowment insensitive). Also...

  3. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    Science.gov (United States)

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  4. Specifying Geographic Information - Ontology, Knowledge Representation, and Formal Constraints

    DEFF Research Database (Denmark)

    Christensen, Jesper Vinther

    2007-01-01

    as in the private sector. The theoretical background is the establishment of a representational system, which ontologically comprises a representation of notions in the "real world" and notions which include the representation of these. Thus, the thesis leans towards a traditional division between modeling...... of domains and conceptualization of these. The thesis contributes a formalization of what is understood by domain models and conceptual models, when the focus is on geographic information. Moreover, it is shown how specifications for geographic information are related to this representational system...... of requirements and rules, building on terms from the domain and concept ontologies. In combination with the theoretical basis the analysis is used for developing an underlying model of notions, which defines the individual elements in a specification and the relations between them. In the chapters of the thesis...

  5. Anatomical variability in the cortical representation of first and second language.

    Science.gov (United States)

    Dehaene, S; Dupoux, E; Mehler, J; Cohen, L; Paulesu, E; Perani, D; van de Moortele, P F; Lehéricy, S; Le Bihan, D

    1997-12-01

    Functional magnetic resonance imaging was used to assess inter-subject variability in the cortical representation of language comprehension processes. Moderately fluent French-English bilinguals were scanned while they listened to stories in their first language (L1 = French) or in a second language (L2 = English) acquired at school after the age of seven. In all subjects, listening to L1 always activated a similar set of areas in the left temporal lobe, clustered along the left superior temporal sulcus. Listening to L2, however, activated a highly variable network of left and right temporal and frontal areas, sometimes restricted only to right-hemispheric regions. These results support the hypothesis that first language acquisition relies on a dedicated left-hemispheric cerebral network, while late second language acquisition is not necessarily associated with a reproducible biological substrate. The postulated contribution of the right hemisphere to L2 comprehension is found to hold only on average, individual subjects varying from complete right lateralization to standard left lateralization for L2.

  6. Public Library Representations and Internet Appropriations

    Directory of Open Access Journals (Sweden)

    Paula Sequeiros

    2013-11-01

    Full Text Available May the changes in the representations of the public library be propitiated by readers' appropriations of the Internet? To answer this question, a theoretically-driven and empirically-based research was developed in a public library in Portugal, combining the analysis of documents uses, the ethnography of space and Internet use, of social relations developed while reading, with the analysis of representations of the public library. No clear-cut association emerged between social-demographics or user profiles, and representations, in general. No disruptive Internet "impact" was found: Internet use may contribute to reinforce traditional representations of the library, while it may also update and democratise other representations. If the library and the Internet are represented as synonymous, the former does not make sense without the latter; but an Internet widespread and intensive use conflicts with the image of an institution dedicated to high-brow culture. Changes in uses of the public library are, instead, clearly associated with new types of readers, which in their turn reflect changes in urban social composition. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1401141

  7. Temporal dominance of emotions: Measuring dynamics of food-related emotions during consumption

    NARCIS (Netherlands)

    Jager, G.; Schlich, P.; Tijssen, I.O.J.M.; Yao, Y.J.; Visalli, M.; Graaf, de C.; Stieger, M.A.

    2014-01-01

    Mapping food-evoked emotions in addition to sensory profiling is topical. In sensory profiling, the Temporal Dominance of Sensation (TDS) method focuses on the assessment of the temporal evolution of dominant sensory attributes over time. We hypothesize that food-evoked emotions also show temporal

  8. UTP and Temporal Logic Model Checking

    Science.gov (United States)

    Anderson, Hugh; Ciobanu, Gabriel; Freitas, Leo

    In this paper we give an additional perspective to the formal verification of programs through temporal logic model checking, which uses Hoare and He Unifying Theories of Programming (UTP). Our perspective emphasizes the use of UTP designs, an alphabetised relational calculus expressed as a pre/post condition pair of relations, to verify state or temporal assertions about programs. The temporal model checking relation is derived from a satisfaction relation between the model and its properties. The contribution of this paper is that it shows a UTP perspective to temporal logic model checking. The approach includes the notion of efficiency found in traditional model checkers, which reduced a state explosion problem through the use of efficient data structures

  9. Role of working memory in transformation of visual and motor representations for use in mental simulation.

    Science.gov (United States)

    Gabbard, Carl; Lee, Jihye; Caçola, Priscila

    2013-01-01

    This study examined the role of visual working memory when transforming visual representations to motor representations in the context of motor imagery. Participants viewed randomized number sequences of three, four, and five digits, and then reproduced the sequence by finger tapping using motor imagery or actually executing the movements; movement duration was recorded. One group viewed the stimulus for three seconds and responded immediately, while the second group had a three-second view followed by a three-second blank screen delay before responding. As expected, delay group times were longer with each condition and digit load. Whereas correlations between imagined and executed actions (temporal congruency) were significant in a positive direction for both groups, interestingly, the delay group's values were significantly stronger. That outcome prompts speculation that delay influenced the congruency between motor representation and actual execution.

  10. Indeterministic Temporal Logic

    Directory of Open Access Journals (Sweden)

    Trzęsicki Kazimierz

    2015-09-01

    Full Text Available The questions od determinism, causality, and freedom have been the main philosophical problems debated since the beginning of temporal logic. The issue of the logical value of sentences about the future was stated by Aristotle in the famous tomorrow sea-battle passage. The question has inspired Łukasiewicz’s idea of many-valued logics and was a motive of A. N. Prior’s considerations about the logic of tenses. In the scheme of temporal logic there are different solutions to the problem. In the paper we consider indeterministic temporal logic based on the idea of temporal worlds and the relation of accessibility between them.

  11. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    DEFF Research Database (Denmark)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...

  12. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system

    DEFF Research Database (Denmark)

    Dicke, Ulrike; Ewert, Stephan D.; Dau, Torsten

    2007-01-01

    Periodic amplitude modulations AMs of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathw...... accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds....

  13. On the coordinate representation of NLO BFKL

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Papa, A.

    2007-01-01

    The 'non-Abelian' part of the quark contribution to the BFKL kernel in the next-to-leading order (NLO) is found in the coordinate representation by direct transfer of the contribution from the momentum representation where it was calculated before. The results obtained are used for the examination of conformal properties of the NLO BFKL kernel and of the relation between the BFKL and color dipole approaches

  14. Deployment of spatial attention towards locations in memory representations. An EEG study.

    Science.gov (United States)

    Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J

    2013-01-01

    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.

  15. Deployment of spatial attention towards locations in memory representations. An EEG study.

    Directory of Open Access Journals (Sweden)

    Marcin Leszczyński

    Full Text Available Recalling information from visual short-term memory (VSTM involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.

  16. The medial temporal lobes distinguish between within-item and item-context relations during autobiographical memory retrieval.

    Science.gov (United States)

    Sheldon, Signy; Levine, Brian

    2015-12-01

    During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.

  17. Mental Representation in The Thought of Sidney Blatt: Developmental Processes.

    Science.gov (United States)

    Auerbach, John S; Diamond, Diana

    2017-06-01

    Mental representation was a central construct in Sidney Blatt's contributions to psychology and psychoanalysis. This brief review demonstrates that Blatt's understanding of representation was always informed by basic psychoanalytic concepts like the centrality of early caregiver-infant relationships and of unconscious mental processes. Although Blatt's earlier writings were informed by psychoanalytic ego psychology and Piagetian cognitive developmental psychology, they focused nonetheless on how an individual uses bodily and relational experiences to construct an object world; they also consistently presented object representations as having significant unconscious dimensions. From the mid-1980s onward, Blatt's contributions, in dialogue with his many students, moved in an even more experiential/relational direction and manifested the influence of attachment theory, parent-infant interaction research, and intersubjectivity theory. They also incorporated contemporary cognitive psychology, with its emphasis on implicit or procedural, rather than explicit, dimensions as a means of accounting for aspects of object representations that are not in conscious awareness. Throughout his career, however, Blatt regarded mental representation as the construct that mediates between the child's earliest bodily and relational experiences and the mature adult's symbolic, most emotionally profound capacities.

  18. Bridging the Gap: Possible Roles and Contributions of Representational Momentum

    Directory of Open Access Journals (Sweden)

    Timothy L. Hubbard

    2006-01-01

    Full Text Available Memory for the position of a moving target is often displaced in the direction of anticipated motion, and this has been referred to as representational momentum. Such displacement might aid spatial localization by bridging the gap between perception and action, and might reflect a second-order isomorphism between subjective consequences of environmentally invariant physical principles and the functional architecture of mental representation that can be modulated by an observer’s expectations (e.g., that a moving target will change its heading or by the presence of nontarget stimuli (e.g., landmarks. Representational momentum and related types of displacement reflect properties of the world and properties of mental representation, and so a consideration of representational momentum and related types of displacement contribute an important component of contemporary psychophysics, and also broaden the reach of psychophysics to include numerous topics not usually considered within psychophysics (e.g., naive physics, boundary extension, flash-lag effect, aesthetics, mental imagery.

  19. The role of temporal fine structure information for the low pitch of high-frequency complex tones

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2011-01-01

    The fused low pitch evoked by complex tones containing only unresolved high-frequency components demonstrates the ability of the human auditory system to extract pitch using a temporal mechanism in the absence of spectral cues. However, the temporal features used by such a mechanism have been...... amplitude fluctuations, or temporal fine structure (TFS), of the conveyed signal can be processed. Using a pitch-matching paradigm, the present study found that the low pitch of inharmonic transposed tones with unresolved components was consistent with the timing between the most prominent TFS maxima...... coding as such, and that TFS representation might persist at higher frequencies than previously thought....

  20. Student Representation in University Decision Making: Good Reasons, a New Lens?

    Science.gov (United States)

    Luescher-Mamashela, Thierry M.

    2013-01-01

    This article outlines the main cases for and related objections against student representation in university governance found in the relevant literature, and proposes a way in which variations in student representation within institutions may be understood and justified. It contextualises the modern origins of student representation in the…

  1. Explaining Variability: Numerical Representations in 4- to 8-Year-Old Children

    Science.gov (United States)

    Friso-van den Bos, Ilona; Kolkman, Meijke E.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2014-01-01

    The present study aims to examine relations between number representations and various sources of individual differences within early stages of development of number representations. The mental number line has been found to develop from a logarithmic to a more linear representation. Sources under investigation are counting skills and executive…

  2. Tweet for health: using an online social network to examine temporal trends in weight loss-related posts.

    Science.gov (United States)

    Turner-McGrievy, Gabrielle M; Beets, Michael W

    2015-06-01

    Few studies have used social networking sites to track temporal trends in health-related posts, particularly around weight loss. To examine the temporal relationship of Twitter messages about weight loss over 1 year (2012). Temporal trends in #weightloss mentions and #fitness, #diet, and #health tweets which also had the word "weight" in them were examined using three a priori time periods: (1) holidays: pre-winter holidays, holidays, and post-holidays; (2) Season: winter and summer; and (3) New Year's: pre-New Year's and post-New Year's. Regarding #weightloss, there were 145 (95 % CI 79, 211) more posts/day during holidays and 143 (95 % CI 76, 209) more posts/day after holidays as compared to 480 pre-holiday posts/day; 232 (95 % CI 178, 286) more posts/day during the winter versus summer (441 posts/day); there was no difference in posts around New Year's. Examining social networks for trends in health-related posts may aid in timing interventions when individuals are more likely to be discussing weight loss.

  3. The Medial Temporal Lobe – Conduit of Parallel Connectivity: A model for Attention, Memory, and Perception.

    Directory of Open Access Journals (Sweden)

    Brian B. Mozaffari

    2014-11-01

    Full Text Available Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL – located deep in the hierarchy – serves as a bridge connecting supra to infra – MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL ‘bridge’ allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these ‘bridge’ predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC. In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  4. Maternal representations of their children in relation to feeding beliefs and practices among low-income mothers of young children.

    Science.gov (United States)

    Leung, Christy Y Y; Miller, Alison L; Lumeng, Julie C; Kaciroti, Niko A; Rosenblum, Katherine L

    2015-12-01

    Identifying maternal characteristics in relation to child feeding is important for addressing the current childhood obesity epidemic. The present study examines whether maternal representations of their children are associated with feeding beliefs and practices. Maternal representations refer to mothers' affective and cognitive perspectives regarding their children and their subjective experiences of their relationships with their children. This key maternal characteristic has not been examined in association with maternal feeding. Thus the purpose of the current study was to examine whether maternal representations of their children, reflected by Working Model of the Child Interview typologies (Balanced, Disengaged, or Distorted), were associated with maternal feeding beliefs (Authority, Confidence, and Investment) and practices (Pressure to Eat, Restriction, and Monitoring) among low-income mothers of young children, with maternal education examined as a covariate. Results showed that Balanced mothers were most likely to demonstrate high authority, Distorted mothers were least likely to demonstrate confidence, and Disengaged mothers were least likely to demonstrate investment in child feeding. Moreover, Balanced mothers were least likely to pressure their children to eat. Findings are discussed with regard to implications for the study of childhood obesity and for applied preventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Temporal networks

    Science.gov (United States)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  6. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    Science.gov (United States)

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  7. Distinct age-related differences in temporal discounting and risk taking in adolescents and young adults

    NARCIS (Netherlands)

    Water, E. de; Cillessen, A.H.N.; Scheres, A.P.J.

    2014-01-01

    Age-related differences in temporal discounting (TD) and risk taking, and their association, were examined in adolescents and young adults (n=337) aged 12-27years. Since monetary rewards are typically used in TD and risk-taking tasks, the association between monetary reward valuation and age and

  8. Multi-representation based on scientific investigation for enhancing students’ representation skills

    Science.gov (United States)

    Siswanto, J.; Susantini, E.; Jatmiko, B.

    2018-03-01

    This research aims to implementation learning physics with multi-representation based on the scientific investigation for enhancing students’ representation skills, especially on the magnetic field subject. The research design is one group pretest-posttest. This research was conducted in the department of mathematics education, Universitas PGRI Semarang, with the sample is students of class 2F who take basic physics courses. The data were obtained by representation skills test and documentation of multi-representation worksheet. The Results show gain analysis value of .64 which means some medium improvements. The result of t-test (α = .05) is shows p-value = .001. This learning significantly improves students representation skills.

  9. Using Distributed Representations to Disambiguate Biomedical and Clinical Concepts

    OpenAIRE

    Tulkens, Stéphan; Šuster, Simon; Daelemans, Walter

    2016-01-01

    In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no relational information, we obtain comparable performance to previous approaches on the MSH-WSD dataset, which is a well-known dataset in the bi...

  10. Representation in Memory.

    Science.gov (United States)

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  11. A novel biological 'twin-father' temporal paradox of General Relativity in a Gödel universe - Where reproductive biology meets theoretical physics.

    Science.gov (United States)

    Ashrafian, Hutan

    2018-03-01

    Several temporal paradoxes exist in physics. These include General Relativity's grandfather and ontological paradoxes and Special Relativity's Langevin-Einstein twin-paradox. General relativity paradoxes can exist due to a Gödel universe that follows Gödel's closed timelike curves solution to Einstein's field equations. A novel biological temporal paradox of General Relativity is proposed based on reproductive biology's phenomenon of heteropaternal fecundation. Herein, dizygotic twins from two different fathers are the result of concomitant fertilization during one menstrual cycle. In this case an Oedipus-like individual exposed to a Gödel closed timelike curve would sire a child during his maternal fertilization cycle. As a consequence of heteropaternal superfecundation, he would father his own dizygotic twin and would therefore generate a new class of autofraternal superfecundation, and by doing so creating a 'twin-father' temporal paradox. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Materials Driven Architectural Design and Representation

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This paper aims to outline a framework for a deeper connection between experimentally obtained material knowledge and architectural design. While materials and architecture in the process of realisation are tightly connected, architectural design and representation are often distanced from...... another role in relation to architectural production. It is, in this paper, the intention to point at material research as an active initiator in explorative approaches to architectural design methods and architectural representation. This paper will point at the inclusion of tangible and experimental...... material research in the early phases of architectural design and to that of the architectural set of tools and representation. The paper will through use of existing research and the author’s own material research and practice suggest a way of using a combination of digital drawing, digital fabrication...

  13. Attention and Representational Momentum

    OpenAIRE

    Hayes, Amy; Freyd, Jennifer J

    1995-01-01

    Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

  14. Non-verbal auditory cognition in patients with temporal epilepsy before and after anterior temporal lobectomy

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-11-01

    Full Text Available For patients with pharmaco-resistant temporal epilepsy, unilateral anterior temporal lobectomy (ATL - i.e. the surgical resection of the hippocampus, the amygdala, the temporal pole and the most anterior part of the temporal gyri - is an efficient treatment. There is growing evidence that anterior regions of the temporal lobe are involved in the integration and short-term memorization of object-related sound properties. However, non-verbal auditory processing in patients with temporal lobe epilepsy (TLE has raised little attention. To assess non-verbal auditory cognition in patients with temporal epilepsy both before and after unilateral ATL, we developed a set of non-verbal auditory tests, including environmental sounds. We could evaluate auditory semantic identification, acoustic and object-related short-term memory, and sound extraction from a sound mixture. The performances of 26 TLE patients before and/or after ATL were compared to those of 18 healthy subjects. Patients before and after ATL were found to present with similar deficits in pitch retention, and in identification and short-term memorisation of environmental sounds, whereas not being impaired in basic acoustic processing compared to healthy subjects. It is most likely that the deficits observed before and after ATL are related to epileptic neuropathological processes. Therefore, in patients with drug-resistant TLE, ATL seems to significantly improve seizure control without producing additional auditory deficits.

  15. A General Representation Theorem for Integrated Vector Autoregressive Processes

    DEFF Research Database (Denmark)

    Franchi, Massimo

    We study the algebraic structure of an I(d) vector autoregressive process, where d is restricted to be an integer. This is useful to characterize its polynomial cointegrating relations and its moving average representation, that is to prove a version of the Granger representation theorem valid...

  16. 76 FR 37291 - Representation Case Procedures

    Science.gov (United States)

    2011-06-27

    ... communications must include the following words on the Subject Line--``Request to Attend Public Meeting Regarding... NATIONAL LABOR RELATIONS BOARD 29 CFR Parts 101, 102, 103 RIN 3142-AAO8 Representation Case Procedures AGENCY: National Labor Relations Board. ACTION: Proposed rule; notice of meeting. SUMMARY: The...

  17. Representational constraints on children's suggestibility.

    Science.gov (United States)

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  18. Nonword Repetition: The Relative Contributions of Phonological Short-Term Memory and Phonological Representations in Children with Language and Reading Impairment

    Science.gov (United States)

    Rispens, Judith; Baker, Anne

    2012-01-01

    Purpose: This study investigates the relative contributions of phonological short-term memory and phonological representations to nonword repetition (NWR). This was evaluated in children with specific language impairment (SLI) and/or reading impairment (RI); it was also studied from a developmental perspective by comparing 2 groups of typically…

  19. Holistic face representation is highly orientation-specific.

    Science.gov (United States)

    Rosenthal, Gideon; Levakov, Gidon; Avidan, Galia

    2017-09-29

    It has long been argued that face processing requires disproportionate reliance on holistic processing (HP), relative to that required for nonface object recognition. Nevertheless, whether the holistic nature of face perception is achieved via a unique internal representation or by the employment of an automated attention mechanism is still debated. Previous studies had used the face inversion effect (FIE), a unique face-processing marker, or the face composite task, a gold standard paradigm measuring holistic processing, to examine the validity of these two different hypotheses, with some studies combining the two paradigms. However, the results of such studies remain inconclusive, particularly pertaining to the issue of the two proposed HP mechanisms-an internal representation as opposed to an automated attention mechanism. Here, using the complete composite paradigm design, we aimed to examine whether face rotation yields a nonlinear or a linear drop in HP, thus supporting an account that face processing is based either on an orientation-dependent internal representation or on automated attention. Our results reveal that even a relatively small perturbation in face orientation (30 deg away from upright) already causes a sharp decline in HP. These findings support the face internal representation hypothesis and the notion that the holistic processing of faces is highly orientation-specific.

  20. LGBT Representations on Facebook : Representations of the Self and the Content

    OpenAIRE

    Chu, Yawen

    2017-01-01

    The topic of LGBT rights has been increasingly discussed and debated over recent years. More and more scholars show their interests in the field of LGBT representations in media. However, not many studies involved LGBT representations in social media. This paper explores LGBT representations on Facebook by analysing posts on an open page and in a private group, including both representations of the self as the identity of sexual minorities, content that is displayed on Facebook and the simila...

  1. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  2. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1 Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2 The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3 The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  3. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Science.gov (United States)

    Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie

    2015-01-01

    Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  4. Object representations in visual memory: evidence from visual illusions.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  5. Spatial and temporal relations in conditioned reinforcement and observing behavior

    OpenAIRE

    Bowe, Craig A.; Dinsmoor, James A.

    1983-01-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Exp...

  6. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.

    Science.gov (United States)

    Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E

    2015-05-01

    As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights

  7. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    Science.gov (United States)

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  8. Hierarchical Representation Learning for Kinship Verification.

    Science.gov (United States)

    Kohli, Naman; Vatsa, Mayank; Singh, Richa; Noore, Afzel; Majumdar, Angshul

    2017-01-01

    Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. In this paper, first, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determine their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender and age and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d' , and perceptual information entropy. Utilizing the information obtained from the human study, a hierarchical kinship verification via representation learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as an output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. A new WVU kinship database is created, which consists of multiple images per subject to facilitate kinship verification. The results show that the proposed deep learning framework (KVRL-fcDBN) yields the state-of-the-art kinship verification accuracy on the WVU kinship database and on four existing benchmark data sets. Furthermore, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification.

  9. Assessment of representational competence in kinematics

    Science.gov (United States)

    Klein, P.; Müller, A.; Kuhn, J.

    2017-06-01

    A two-tier instrument for representational competence in the field of kinematics (KiRC) is presented, designed for a standard (1st year) calculus-based introductory mechanics course. It comprises 11 multiple choice (MC) and 7 multiple true-false (MTF) questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical) expressions (1st tier). Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier). Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N =83 and N =46 , respectively), including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR 20 =0.86 ). Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions) and for the scope of content covered (e.g., choice of coordinate systems). Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students' representational competency in kinematics (and of its potential change). Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen's d ) varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination). The introduced method of test combination analysis can be applied to any test comprising

  10. Assessment of representational competence in kinematics

    Directory of Open Access Journals (Sweden)

    P. Klein

    2017-06-01

    Full Text Available A two-tier instrument for representational competence in the field of kinematics (KiRC is presented, designed for a standard (1st year calculus-based introductory mechanics course. It comprises 11 multiple choice (MC and 7 multiple true-false (MTF questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical expressions (1st tier. Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier. Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N=83 and N=46, respectively, including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR20=0.86. Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions and for the scope of content covered (e.g., choice of coordinate systems. Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students’ representational competency in kinematics (and of its potential change. Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen’s d varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination. The introduced method of test combination analysis can be applied to any test

  11. Embodiment of intersubjective time: relational dynamics as attractors in the temporal coordination of interpersonal behaviors and experiences.

    Science.gov (United States)

    Laroche, Julien; Berardi, Anna Maria; Brangier, Eric

    2014-01-01

    This paper addresses the issue of "being together," and more specifically the issue of "being together in time." We provide with an integrative framework that is inspired by phenomenology, the enactive approach and dynamical systems theories. To do so, we first define embodiment as a living and lived phenomenon that emerges from agent-world coupling. We then show that embodiment is essentially dynamical and therefore we describe experiential, behavioral and brain dynamics. Both lived temporality and the temporality of the living appear to be complex, multiscale phenomena. Next we discuss embodied dynamics in the context of interpersonal interactions, and briefly review the empirical literature on between-persons temporal coordination. Overall, we propose that being together in time emerges from the relational dynamics of embodied interactions and their flexible co-regulation.

  12. Estimating the temporal distribution of exposure-related cancers

    International Nuclear Information System (INIS)

    Carter, R.L.; Sposto, R.; Preston, D.L.

    1993-09-01

    The temporal distribution of exposure-related cancers is relevant to the study of carcinogenic mechanisms. Statistical methods for extracting pertinent information from time-to-tumor data, however, are not well developed. Separation of incidence from 'latency' and the contamination of background cases are two problems. In this paper, we present methods for estimating both the conditional distribution given exposure-related cancers observed during the study period and the unconditional distribution. The methods adjust for confounding influences of background cases and the relationship between time to tumor and incidence. Two alternative methods are proposed. The first is based on a structured, theoretically derived model and produces direct inferences concerning the distribution of interest but often requires more-specialized software. The second relies on conventional modeling of incidence and is implemented through readily available, easily used computer software. Inferences concerning the effects of radiation dose and other covariates, however, are not always obtainable directly. We present three examples to illustrate the use of these two methods and suggest criteria for choosing between them. The first approach was used, with a log-logistic specification of the distribution of interest, to analyze times to bone sarcoma among a group of German patients injected with 224 Ra. Similarly, a log-logistic specification was used in the analysis of time to chronic myelogenous leukemias among male atomic-bomb survivors. We used the alternative approach, involving conventional modeling, to estimate the conditional distribution of exposure-related acute myelogenous leukemias among male atomic-bomb survivors, given occurrence between 1 October 1950 and 31 December 1985. All analyses were performed using Poisson regression methods for analyzing grouped survival data. (J.P.N.)

  13. Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.

    Science.gov (United States)

    Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J

    2014-02-01

    In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.

  14. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

    Science.gov (United States)

    Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.

    2016-05-01

    Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.

  15. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    Science.gov (United States)

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  16. Time-related patient data retrieval for the case studies from the pharmacogenomics research network

    Science.gov (United States)

    Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.

    2012-01-01

    There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712

  17. Time-related patient data retrieval for the case studies from the pharmacogenomics research network.

    Science.gov (United States)

    Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G

    2012-11-01

    There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.

  18. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    Science.gov (United States)

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to

  19. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Directory of Open Access Journals (Sweden)

    Tarek Hussein

    Full Text Available Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]. Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML anticipatory postural adjustment duration in RT (high temporal pressure than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of

  20. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Science.gov (United States)

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal

  1. Abnormalities of Early “Memory-Scanning” Event-Related Potentials in Patients with Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    A. Grippo

    1994-01-01

    Full Text Available We have recorded auditory event-related potentials (ERPs evoked by the “memory-scanning” (digit-probe identification/matching paradigm that was originally described by Sternberg (1966, in 17 patients with complex partial seizures (temporal lobe epilepsy and in 17 matched healthy control subjects. The patients, who had all complained spontaneously of memory difficulties, had significantly reduced scores on psychological tests of memory with relatively intact digit span and cognition. Their performance of the memory-scanning task was characterized by a higher error rate, longer reaction times and an increased slope of the reaction time/set size relationship. The associated ERPs in both patients and controls showed there were significant effects of memory load on several major components, but only a reduced amplitude of the N170 and a prolonged latency of the N290 waves distinguished the patients. In addition, the N170 wave in the patients decreased further as memory load increased. The prolonged N290 latency in the patients appeared to reflect the slowed processing time. This study has shown that ERPs generated by a short-term memory task are abnormal in patients with temporal lobe epilepsy who have neuropsychologically documented cognitive and memory deficits. Some of the significant waveform alterations occur earlier than those reported in previous ERP studies and provide electrophysiological support for the hypothesis that abnormalities of the early stages of short-term memory processing may contribute to the memory difficulties experienced by patients with temporal lobe epilepsy.

  2. Mastery of Content Representation (CoRes) Related TPACK High School Biology Teacher

    Science.gov (United States)

    Nasution, W. R.; Sriyati, S.; Riandi, R.; Safitri, M.

    2017-09-01

    The purpose of this study was to determine the mastery of Content Representation (CoRes) teachers related to the integration of technology and pedagogy in teaching Biology (TPACK). This research uses a descriptive method. The data were taken using instruments CoRes as the primary data and semi-structured interviews as supporting data. The subjects were biology teacher in class X MIA from four schools in Bandung. Teachers raised CoRes was analyzed using a scoring rubric CoRes with coding 1-3 then categorized into a group of upper, middle, or lower. The results showed that the two teachers in the lower category. This results means that the control of teachers in defining the essential concept in the CoRes has not been detailed and specific. Meanwhile, two other teachers were in the middle category. This means that the ability of teachers to determine the essential concepts in the CoRes are still inadequate so that still needs to be improved.

  3. Mental Representations Formed From Educational Website Formats

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth T. Cady; Kimberly R. Raddatz; Tuan Q. Tran; Bernardo de la Garza; Peter D. Elgin

    2006-10-01

    The increasing popularity of web-based distance education places high demand on distance educators to format web pages to facilitate learning. However, limited guidelines exist regarding appropriate writing styles for web-based distance education. This study investigated the effect of four different writing styles on reader’s mental representation of hypertext. Participants studied hypertext written in one of four web-writing styles (e.g., concise, scannable, objective, and combined) and were then administered a cued association task intended to measure their mental representations of the hypertext. It is hypothesized that the scannable and combined styles will bias readers to scan rather than elaborately read, which may result in less dense mental representations (as identified through Pathfinder analysis) relative to the objective and concise writing styles. Further, the use of more descriptors in the objective writing style will lead to better integration of ideas and more dense mental representations than the concise writing style.

  4. Social representations: a theoretical approach in health

    Directory of Open Access Journals (Sweden)

    Isaiane Santos Bittencourt

    2011-03-01

    Full Text Available Objective: To present the theory of social representations, placing its epistemology and knowing the basic concepts of its approach as a structural unit of knowledge for health studies. Justification: The use of this theory comes from the need to understand social eventsunder the lens of the meanings constructed by the community. Data Synthesis: This was a descriptive study of literature review, which used as a source of data collection the classical authors of social representations supported by articles from electronic search at Virtual Health Library (VHL. The definition and discussion of collected data enabled to introduce two themes, versed on the history and epistemology of representations and on the structuralapproach of representations in health studies. Conclusion: This review allowed highlight the importance of locating the objects of study with regard to contextual issues of individual and collective histories, valuing the plurality of relations, to come closer to reality that is represented by the subjects.

  5. Medial temporal lobe contributions to cued retrieval of items and contexts.

    Science.gov (United States)

    Hannula, Deborah E; Libby, Laura A; Yonelinas, Andrew P; Ranganath, Charan

    2013-10-01

    Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model-namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Medial Temporal Lobe Contributions to Cued Retrieval of Items and Contexts

    Science.gov (United States)

    Hannula, Deborah E.; Libby, Laura A.; Yonelinas, Andrew P.; Ranganath, Charan

    2013-01-01

    Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model – namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. PMID:23466350

  7. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J. A.; Goldblum, B. L., E-mail: bethany@nuc.berkeley.edu; Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Wender, S. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  8. Representation Elements of Spatial Thinking

    Science.gov (United States)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  9. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-01-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their…

  10. An Axiomatic, Unified Representation of Biosystems and Quantum Dynamics

    CERN Document Server

    Baianu, I

    2004-01-01

    An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.

  11. The Impact of Perceptual/Concurrent and Mnemonic Digits on Temporal Processing: A Congruency Effect of Numerical Magnitudes.

    Science.gov (United States)

    Fan, Zhao; Jing, Guomin; Ding, Xianfeng; Cheng, Xiaorong

    2016-01-01

    Task-irrelevant stimulus numbers can automatically modulate concurrent temporal tasks--leading to the phenomenon of number-time association (NTA). Recent research provides converging evidence that the NTA occurs at the stage of temporal memory. Specifically, a reference memory containing encoded duration information can be modified by perceptual/concurrent digits, i.e., a perceptual/concurrent digit-induced NTA. Here, with five experiments, we investigated whether another working memory (WM)-related mechanism was involved in the generation of NTAs and how this memory-induced NTA was related with the perception-induced NTA. We first explored whether similar NTA effects existed for mnemonic digits which disappeared before time encoding but were actively maintained in WM, i.e., a mnemonic digit-induced NTA. Experiments 1-3 demonstrated both types of NTAs. Further, we revealed a close relationship between the two types of NTAs in two contexts. First, the mnemonic digit-induced NTA also relied on a perceptual number-time co-occurrence at time encoding. We found that the mnemonic digits influenced subsequent temporal processing when a task-irrelevant constant number '5' was presented during target encoding, but not when a non-numerical symbol was presented, suggesting that temporal representations in the reference memory could be accessed and modified by both sensory and postsensory numerical magnitudes through this number-time co-occurrence. Second, the effects of perceptual and mnemonic digits on temporal reproduction could cancel each other out. A congruency effect for perceptual and mnemonic digits (relying on memorization requirement) was demonstrated in Experiments 4 and 5. Specifically, a typical NTA was observed when the magnitudes of memorized and the perceptual/concurrent digits were congruent (both were large or small numbers), but not when they were incongruent (one small and one large numbers). Taken together, our study sheds new light on the mechanism of

  12. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    Science.gov (United States)

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed

  13. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    Science.gov (United States)

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  14. A Neural Circuit Mechanism for the Involvements of Dopamine in Effort-Related Choices: Decay of Learned Values, Secondary Effects of Depletion, and Calculation of Temporal Difference Error

    Science.gov (United States)

    2018-01-01

    Abstract Dopamine has been suggested to be crucially involved in effort-related choices. Key findings are that dopamine depletion (i) changed preference for a high-cost, large-reward option to a low-cost, small-reward option, (ii) but not when the large-reward option was also low-cost or the small-reward option gave no reward, (iii) while increasing the latency in all the cases but only transiently, and (iv) that antagonism of either dopamine D1 or D2 receptors also specifically impaired selection of the high-cost, large-reward option. The underlying neural circuit mechanisms remain unclear. Here we show that findings i–iii can be explained by the dopaminergic representation of temporal-difference reward-prediction error (TD-RPE), whose mechanisms have now become clarified, if (1) the synaptic strengths storing the values of actions mildly decay in time and (2) the obtained-reward-representing excitatory input to dopamine neurons increases after dopamine depletion. The former is potentially caused by background neural activity–induced weak synaptic plasticity, and the latter is assumed to occur through post-depletion increase of neural activity in the pedunculopontine nucleus, where neurons representing obtained reward exist and presumably send excitatory projections to dopamine neurons. We further show that finding iv, which is nontrivial given the suggested distinct functions of the D1 and D2 corticostriatal pathways, can also be explained if we additionally assume a proposed mechanism of TD-RPE calculation, in which the D1 and D2 pathways encode the values of actions with a temporal difference. These results suggest a possible circuit mechanism for the involvements of dopamine in effort-related choices and, simultaneously, provide implications for the mechanisms of TD-RPE calculation. PMID:29468191

  15. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.

    Directory of Open Access Journals (Sweden)

    Charles F Cadieu

    2014-12-01

    Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.

  16. Conceptual representations in mind and brain: theoretical developments, current evidence and future directions.

    Science.gov (United States)

    Kiefer, Markus; Pulvermüller, Friedemann

    2012-07-01

    Conceptual representations in long-term memory crucially contribute to perception and action, language and thought. However, the precise nature of these conceptual memory traces is discussed controversially. In particular, the grounding of concepts in the sensory and motor brain systems is the focus of a current debate. Here, we review theoretical accounts of the structure and neural basis of conceptual memory and evaluate them in light of recent empirical evidence. Models of conceptual processing can be distinguished along four dimensions: (i) amodal versus modality-specific, (ii) localist versus distributed, (iii) innate versus experience-dependent, and (iv) stable versus flexible. A systematic review of behavioral and neuroimaging studies in healthy participants along with brain-damaged patients will then be used to evaluate the competing theoretical approaches to conceptual representations. These findings indicate that concepts are flexible, distributed representations comprised of modality-specific conceptual features. Conceptual features are stored in distinct sensory and motor brain areas depending on specific sensory and motor experiences during concept acquisition. Three important controversial issues are highlighted, which require further clarification in future research: the existence of an amodal conceptual representation in the anterior temporal lobe, the causal role of sensory and motor activation for conceptual processing and the grounding of abstract concepts in perception and action. We argue that an embodiment view of conceptual representations realized as distributed sensory and motor cell assemblies that are complemented by supramodal integration brain circuits may serve as a theoretical framework to guide future research on concrete and abstract concepts. Copyright © 2011 Elsevier Srl. All rights reserved.

  17. 22 CFR 226.17 - Certifications and representations.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certifications and representations. 226.17 Section 226.17 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Pre-award Requirements § 226.17 Certifications and...

  18. Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning

    Science.gov (United States)

    Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun

    2017-11-01

    The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.

  19. 15 CFR 785.5 - Representation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Representation. 785.5 Section 785.5 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE ADDITIONAL PROTOCOL REGULATIONS ENFORCEMENT § 785.5...

  20. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations

    International Nuclear Information System (INIS)

    Ferrie, Christopher; Emerson, Joseph

    2008-01-01

    Several finite-dimensional quasi-probability representations of quantum states have been proposed to study various problems in quantum information theory and quantum foundations. These representations are often defined only on restricted dimensions and their physical significance in contexts such as drawing quantum-classical comparisons is limited by the non-uniqueness of the particular representation. Here we show how the mathematical theory of frames provides a unified formalism which accommodates all known quasi-probability representations of finite-dimensional quantum systems. Moreover, we show that any quasi-probability representation is equivalent to a frame representation and then prove that any such representation of quantum mechanics must exhibit either negativity or a deformed probability calculus. (fast track communication)

  1. Quiver representations and quiver varieties

    CERN Document Server

    Jr, Alexander Kirillov

    2016-01-01

    This book is an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of Kac-Moody Lie algebras. The first part of the book is devoted to the classical theory of quivers of finite type. Here the exposition is mostly self-contained and all important proofs are presented in detail. The second part contains the more recent topics of quiver theory that are related to quivers of infinite type: Coxeter functor, tame and wild quivers, McKay correspondence, and representations of Euclidean quivers. In the third part, topics related to geometric aspects of quiver theory are discussed, such as quiver varieties, Hilbert schemes, and the geometric realization of Kac-Moody algebras. Here some of the more technical proofs are omitted; instead only the statements and some ideas of the proofs are given, and the reader is referred to original papers for details. The exposition in the book requ...

  2. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.

  3. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...

  4. Understanding representations in design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1998-01-01

    Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work situations...... and computer applications. It suggests that representations are primarily containers of ideas and that representation is situated at the same time as representations are crossing boundaries between various design and use activities. As such, representations should be carriers of their own contexts regarding...

  5. “I can't tell whether it's my hand”: a pilot study of the neurophenomenology of body representation during the rubber hand illusion in trauma-related disorders

    Directory of Open Access Journals (Sweden)

    Daniela Rabellino

    2016-11-01

    Full Text Available Background: Early traumatic experiences are thought to be causal factors in the development of trauma-related dissociative experiences, including depersonalization and derealization. The rubber hand illusion (RHI, a well-known paradigm that measures multi-sensorial integration of a rubber hand into one's own body representation, has been used to investigate alterations in the experience of body ownership and of body representation. Critically, however, it has never been studied in individuals with trauma-related disorders. Objective: To investigate body representation distortions occurring in trauma-related disorders in response to the RHI. Method: The RHI was administered to three individuals with the dissociative subtype of posttraumatic stress disorder (PTSD, and subjective, behavioral, cardiovascular and skin conductance responses were recorded. Results: Participants’ subjective experiences of the RHI were differentiated and complex. The illusion was induced following both synchronous and asynchronous brushing and variably evoked subjective distress, depersonalization and derealization experiences, tonic immobility, increased physiological arousal and flashbacks. Conclusions: The present findings point towards the RHI as a strong provocation stimulus that elicits individual patterns of symptom presentation, including experiences of distress and dissociation, in individuals with trauma-related disorders, including the dissociative subtype of PTSD. Highlights of the article:

  6. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region

    Directory of Open Access Journals (Sweden)

    J. Eeckman

    2017-09-01

    Full Text Available This paper provides a new representation of the effect of altitude on precipitation that represents spatial and temporal variability in precipitation in the Everest region. Exclusive observation data are used to infer a piecewise linear function for the relation between altitude and precipitation and significant seasonal variations are highlighted. An original ensemble approach is applied to provide non-deterministic water budgets for middle and high-mountain catchments. Physical processes at the soil–atmosphere interface are represented through the Interactions Soil–Biosphere–Atmosphere (ISBA surface scheme. Uncertainties associated with the model parametrization are limited by the integration of in situ measurements of soils and vegetation properties. Uncertainties associated with the representation of the orographic effect are shown to account for up to 16 % of annual total precipitation. Annual evapotranspiration is shown to represent 26 % ± 1 % of annual total precipitation for the mid-altitude catchment and 34% ± 3 % for the high-altitude catchment. Snowfall contribution is shown to be neglectable for the mid-altitude catchment, and it represents up to 44 % ± 8 % of total precipitation for the high-altitude catchment. These simulations on the local scale enhance current knowledge of the spatial variability in hydroclimatic processes in high- and mid-altitude mountain environments.

  7. An algebraic formulation of quantum electrodynamics. [Fermi method, Schroedinger representation, Weylalgebra

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J M

    1975-01-01

    A reappraisal of electromagnetic field theories is made and an account is given of the radiation gauge, Gupta-Bleuler and Fermi methods of quantitising the electromagnetic fields. The Weyl algebra of the vector potential is constructed and the Fermi method is then related to a certain representation of the algebra. The representation is specified by a generating functional for a state on the algebra. The Weyl algebra of the physical field is then constructed as a factor algebra. The Schroedinger representation of the algebra is then studied and it was found that the Fermi method is just a generalization of this representation to an infinite number of degrees of freedom. The Schroedinger representation of Fermi method is constructed.

  8. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.

    Science.gov (United States)

    Evans, Samuel; Davis, Matthew H

    2015-12-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. © The Author 2015. Published by Oxford University Press.

  9. Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension

    Science.gov (United States)

    Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.

    2016-01-01

    Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858

  10. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation

    Science.gov (United States)

    Carey, Daniel; Miquel, Marc E.; Evans, Bronwen G.; Adank, Patti; McGettigan, Carolyn

    2017-01-01

    Abstract Imitating speech necessitates the transformation from sensory targets to vocal tract motor output, yet little is known about the representational basis of this process in the human brain. Here, we address this question by using real-time MR imaging (rtMRI) of the vocal tract and functional MRI (fMRI) of the brain in a speech imitation paradigm. Participants trained on imitating a native vowel and a similar nonnative vowel that required lip rounding. Later, participants imitated these vowels and an untrained vowel pair during separate fMRI and rtMRI runs. Univariate fMRI analyses revealed that regions including left inferior frontal gyrus were more active during sensorimotor transformation (ST) and production of nonnative vowels, compared with native vowels; further, ST for nonnative vowels activated somatomotor cortex bilaterally, compared with ST of native vowels. Using test representational similarity analysis (RSA) models constructed from participants’ vocal tract images and from stimulus formant distances, we found that RSA searchlight analyses of fMRI data showed either type of model could be represented in somatomotor, temporal, cerebellar, and hippocampal neural activation patterns during ST. We thus provide the first evidence of widespread and robust cortical and subcortical neural representation of vocal tract and/or formant parameters, during prearticulatory ST. PMID:28334401

  11. Collective and Personal Representations of the Crimean Tatars in the Ukrainian Media Discourse: Ideological Implications and Power Relations

    OpenAIRE

    Bezverkha, Anastasia

    2015-01-01

    This study analyzes the Ukrainian national and Crimean media’s collective and individual representations of the Crimean Tatar people during 2010–2012. It demonstrates that this media’s discourse was a sensitive milieu that reflected the unequal power relations between Crimea’s ethnic groups — the Crimean Tatar minority and the Slavic majority — and informed the way individuals constructed their identities and social roles within Crimean society. The discursive mechanisms of the media’s repres...

  12. FATHERS' AND MOTHERS' REPRESENTATIONS OF THE INFANT: ASSOCIATIONS WITH PRENATAL RISK FACTORS.

    Science.gov (United States)

    Vreeswijk, Charlotte M J M; Rijk, Catharina H A M; Maas, A Janneke B M; van Bakel, Hedwig J A

    2015-01-01

    Parents' representations of their infants consist of parents' subjective experiences of how they perceive their infants. They provide important information about the quality of the parent-infant relationship and are closely related to parenting behavior and infant attachment. Previous studies have shown that parents' representations emerge during pregnancy. However, little is known about prenatal (risk) factors that are related to parents' representations. In a prospective study, 308 mothers and 243 fathers were followed during pregnancy and postpartum. Prenatal risk factors were assessed with an adapted version of the Dunedin Family Services Indicator (T.G. Egan et al., ; R.C. Muir et al., ). At 26 weeks' gestation and 6 months' postpartum, parents' representations of their children were assessed with the Working Model of the Child Interview (C.H. Zeanah, D. Benoit, L. Hirshberg, M.L. Barton, & C. Regan). Results showed stability between pre- and postnatal representations, with fathers having more disengaged representations than did mothers. In addition, prenatal risk factors of parenting problems were associated with the quality of parents' prenatal (only in mothers) and postnatal representations. This study provides valuable information concerning parents at risk of developing nonbalanced representations of their children. In clinical practice, these families could be monitored more intensively and may be supported in developing a more optimal parent-infant relationship. © 2015 Michigan Association for Infant Mental Health.

  13. Right mesial temporal lobe epilepsy impairs empathy-related brain responses to dynamic fearful faces.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; Kurthen, Martin; Rankin, Katherine P; Jokeit, Hennric

    2015-03-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with reduced amygdala responsiveness to fearful faces. However, the effect of unilateral MTLE on empathy-related brain responses in extra-amygdalar regions has not been investigated. Using functional magnetic resonance imaging, we measured empathy-related brain responses to dynamic fearful faces in 34 patients with unilateral MTLE (18 right sided), in an epilepsy (extra-MTLE; n = 16) and in a healthy control group (n = 30). The primary finding was that right MTLE (RMTLE) was associated with decreased activity predominantly in the right amygdala and also in bilateral periaqueductal gray (PAG) but normal activity in the right anterior insula. The results of the extra-MTLE group demonstrate that these reduced amygdala and PAG responses go beyond the attenuation caused by antiepileptic and antidepressant medication. These findings clearly indicate that RMTLE affects the function of mesial temporal and midbrain structures that mediate basic interoceptive input necessary for the emotional awareness of empathic experiences of fear. Together with the decreased empathic concern found in the RMTLE group, this study provides neurobehavioral evidence that patients with RMTLE are at increased risk for reduced empathy towards others' internal states and sheds new light on the nature of social-cognitive impairments frequently accompanying MTLE.

  14. Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia.

    Science.gov (United States)

    Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod

    2012-02-15

    Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7-9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The Temporality of Power and the Power of Temporality

    DEFF Research Database (Denmark)

    Costas, Jana; Grey, Christopher

    2014-01-01

    This paper extends existing understandings of power, resistance and subjectivity in professional service organizations by developing an analysis of how these relate to temporality. Drawing in particular on Hoy’s reading of the Foucauldian account of temporality, we conceive of disciplinary power...... regimes and resistance as inherently future-oriented, or, to use Ybema’s term, postalgic. In moving beyond the extant research focus on self-disciplined and/or counter-resistant professional selves, we draw attention to the imaginary future self as an employee response to disciplinary power. In contrast...

  16. Social Representations of Intelligence

    Directory of Open Access Journals (Sweden)

    Elena Zubieta

    2016-02-01

    Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions. 

  17. Medial temporal lobe roles in human path integration.

    Directory of Open Access Journals (Sweden)

    Naohide Yamamoto

    Full Text Available Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.

  18. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  19. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  20. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets.

    Science.gov (United States)

    Miyakawa, Naohisa; Banno, Taku; Abe, Hiroshi; Tani, Toshiki; Suzuki, Wataru; Ichinohe, Noritaka

    2017-01-01

    The common marmoset ( Callithrix jacchus ) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species.

  1. Thoughts on representation in therapy of Holocaust survivors.

    Science.gov (United States)

    Moore, Yael

    2009-12-01

    This paper presents the problems of representation and lack of representation in treating Holocaust survivors, through clinical vignettes and various theoreticians. The years of Nazi persecution and murder brought about a destruction of symbolization and turning inner and external reality into the Thing itself, the concrete, or, in Lacan's words, 'The Thing'. The paper presents two ideas related to praxis as well as theory in treating Holocaust survivors: the first is related to the therapist's treatment of the Holocaust nightmare expressing the traumatic events just as they happened 63 years previously; the second deals with the attempt at subjectification, in contrast to the objectification forced by the Nazis on their victims.

  2. Sensorimotor Skills Impact on Temporal Expectation: Evidence from Swimmers

    Directory of Open Access Journals (Sweden)

    Marco Bove

    2017-10-01

    Full Text Available Aim of this study was to assess whether the ability to predict the temporal outcome of a sport action was influenced by the sensorimotor skills previously acquired during a specific sport training. Four groups, each of 30 subjects, were enrolled in this study; subjects of three groups practiced different sports disciplines (i.e., swimming, rhythmic gymnastics, and water polo at competitive level whilst the fourth group consisted of control subjects. Subjects were asked to observe a video showing a swimmer doing two laps in crawl style. This video was shown 36 times, and was occluded after variable intervals, randomized across trials, by a dark window that started 3, 6, and 12 s before the swimmer touched the poolside. During the occluded interval, subjects were asked to indicate when the swimmer touched the edge of the pool by clicking on any button of the laptop keyboard. We found that swimmers were more accurate than subjects performing other sports in temporally predicting the final outcome of the swimming task. Particularly, we observed a significant difference in absolute timing error that was lower in swimmers compared to other groups when they were asked to make a temporal prediction with the occluded interval of short duration (i.e., 3 s. Our findings demonstrate that the ability to extract temporal patterns of a motor action depends largely on the subjective expertise, suggesting that sport-acquired sensorimotor skills impact on the temporal representation of the previously observed action, allowing subjects to predict the time course of the action in absence of visual information.

  3. When this means that: the role of working memory and inhibitory control in children's understanding of representations.

    Science.gov (United States)

    Astle, Andrea; Kamawar, Deepthi; Vendetti, Corrie; Podjarny, Gal

    2013-10-01

    We investigated cognitive skills that contribute to 4-year-olds' understanding of representations. In our main task, children used representations on a perspective line drawing to find stickers hidden in a model room. To compare the contributions made by various cognitive skills with children's understanding of different types of representations, we manipulated the resemblance between the representations and their referents. Our results indicate that when representations are iconic (i.e., look like their referents), children have very little difficulty with the task. Controlling for performance on this baseline version of the task, we found that specific cognitive skills are differentially predictive of performance when using arbitrary and conflicting representations (i.e., symbols). When the representation was arbitrarily linked to the sticker, performance was related to phonological and visuospatial working memory. When the representation matched the color of an alternate sticker (thereby conflicting with the desired sticker), performance was related to phonological working memory and inhibitory control. We discuss the role that different cognitive skills play in representational understanding as a function of the nature of the representation-referent relation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Gender representation trends and relations at the United States Naval Academy

    OpenAIRE

    Lewis, Shannon FitzPatrick.

    2005-01-01

    This study employed quantitative and qualitative methods to examine gender trends and the quality of gender interactions at the United States Naval Academy (USNA). In addition to gender, midshipmen demographics, experiences, personality types, interests, and graduation outcomes were compared within and across gender for graduation years, 1980, 1985, 1990, 1995, 2000, and 2004. Representation of women has increased to the current high of around 16%. Further, the data revealed similarities and ...

  5. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  6. Simultaneity and Temporal Order Judgments Are Coded Differently and Change With Age: An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Aysha Basharat

    2018-04-01

    Full Text Available Multisensory integration is required for a number of daily living tasks where the inability to accurately identify simultaneity and temporality of multisensory events results in errors in judgment leading to poor decision-making and dangerous behavior. Previously, our lab discovered that older adults exhibited impaired timing of audiovisual events, particularly when making temporal order judgments (TOJs. Simultaneity judgments (SJs, however, were preserved across the lifespan. Here, we investigate the difference between the TOJ and SJ tasks in younger and older adults to assess neural processing differences between these two tasks and across the lifespan. Event-related potentials (ERPs were studied to determine between-task and between-age differences. Results revealed task specific differences in perceiving simultaneity and temporal order, suggesting that each task may be subserved via different neural mechanisms. Here, auditory N1 and visual P1 ERP amplitudes confirmed that unisensory processing of audiovisual stimuli did not differ between the two tasks within both younger and older groups, indicating that performance differences between tasks arise either from multisensory integration or higher-level decision-making. Compared to younger adults, older adults showed a sustained higher auditory N1 ERP amplitude response across SOAs, suggestive of broader response properties from an extended temporal binding window. Our work provides compelling evidence that different neural mechanisms subserve the SJ and TOJ tasks and that simultaneity and temporal order perception are coded differently and change with age.

  7. Value representations: a value based dialogue tool

    DEFF Research Database (Denmark)

    Petersen, Marianne Graves; Rasmussen, Majken Kirkegaard

    2011-01-01

    Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...

  8. Temporal dynamics of disgust and morality: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Qun Yang

    Full Text Available Disgust is argued to be an emotion that motivates the avoidance of disease-causing entities in the physical domain and unacceptable behaviors in the social-moral domain. Empirical work from behavioral, physiological and brain imaging studies suggests moral judgments are strongly modulated by disgust feelings. Yet, it remains unclear how they are related in the time course of neural processing. Examining the temporal order of disgust emotion and morality could help to clarify the role of disgust in moral judgments. In the present research, a Go/No-Go paradigm was employed to evoke lateralized readiness potentials (LRPs to investigate the temporal order of physical disgust and moral information processing. Participants were asked to give a "yes" or "no" response regarding the physical disgust and moral wrongness of a social act. The results showed that the evaluation of moral information was processed prior to that of physical disgust information. This suggests that moral information is available earlier than physical disgust, and provides more data on the biological heterogeneity between disgust and morality in terms of the time course of neural activity. The findings implicate that physical disgust emotion may not be necessary for people to make moral judgments. They also suggest that some of our moral experience may be more fundamental (than physical disgust experience to our survival and development, as humans spend a considerable amount of time engaging in social interaction.

  9. Heuristics and representational change in two-move matchstick arithmetic tasks

    Directory of Open Access Journals (Sweden)

    Michael Öllinger

    2006-01-01

    Full Text Available Insight problems are problems where the problem solver struggles to find a solution until * aha! * the solution suddenly appears. Two contemporary theories suggest that insight problems are difficult either because problem solvers begin with an incorrect representation of the problem, or that problem solvers apply inappropriate heuristics to the problem. The relative contributions of representational change and inappropriate heuristics on the process of insight problem solving was studied with a task that required the problem solver to move two matchsticks in order to transform an incorrect arithmetic statement into a correct one. Problem solvers (N = 120 worked on two different types of two-move matchstick arithmetic problems that both varied with respect to the effectiveness of heuristics and to the degree of a necessary representational change of the problem representation. A strong influence of representational change on solution rates was found whereas the influence of heuristics hadminimal effects on solution rates. That is, the difficulty of insight problems within the two-move matchstick arithmetic domain is governed by the degree of representational change required. A model is presented that details representational change as the necessary condition for ensuring that appropriate heuristics can be applied on the proper problem representation.

  10. Gender Representation in Elementary Level, African Language Textbooks

    Directory of Open Access Journals (Sweden)

    Antonia Folarin Schleicher

    2004-01-01

    Full Text Available Foreign language learners' perceptions and understanding of a target culture(s are affected by the infonnation presented by their teacher(s, textbooks and other instructional materials. This paper focuses on an analysis of gender representation in elementary level, African language textbooks, with a specific concentration on Hausa, Swahili, Yoruba, and Zulu textbooks. Although the study of gender representation in textbooks is not new (see Blankenship, 1984; Clausen, 1982; Neussel, 1977 and others, relatively few authors have focused on gender representation in foreign language textbooks (Graci, 1989; Rifkin, 1998. This study seeks to extend the work of these scholars into the field of African languages. As a result, the present analysis focuses on (1 establishing criteria for evaluating African language textbooks for gender representation; (2 applying these criteria to seventeen different, elementary level, African language textbooks to create a basis for a comparative case study; (3 presenting the findings of a detailed analysis; and ( 4 utilizing the findings to formulate guidelines for future textbook writers.

  11. Neural Representation. A Survey-Based Analysis of the Notion

    Directory of Open Access Journals (Sweden)

    Oscar Vilarroya

    2017-08-01

    Full Text Available The word representation (as in “neural representation”, and many of its related terms, such as to represent, representational and the like, play a central explanatory role in neuroscience literature. For instance, in “place cell” literature, place cells are extensively associated with their role in “the representation of space.” In spite of its extended use, we still lack a clear, universal and widely accepted view on what it means for a nervous system to represent something, on what makes a neural activity a representation, and on what is re-presented. The lack of a theoretical foundation and definition of the notion has not hindered actual research. My aim here is to identify how active scientists use the notion of neural representation, and eventually to list a set of criteria, based on actual use, that can help in distinguishing between genuine or non-genuine neural-representation candidates. In order to attain this objective, I present first the results of a survey of authors within two domains, place-cell and multivariate pattern analysis (MVPA research. Based on the authors’ replies, and on a review of neuroscientific research, I outline a set of common properties that an account of neural representation seems to require. I then apply these properties to assess the use of the notion in two domains of the survey, place-cell and MVPA studies. I conclude by exploring a shift in the notion of representation suggested by recent literature.

  12. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  13. On a microscopic representation of space-time

    International Nuclear Information System (INIS)

    Dahm, R.

    2012-01-01

    We start from a noncompact Lie algebra isomorphic to the Dirac algebra and relate this Lie algebra in a brief review to low-energy hadron physics described by the compact group SU(4). This step permits an overall physical identification of the operator actions. Then we discuss the geometrical origin of this noncompact Lie algebra and “reduce” the geometry in order to introduce in each of these steps coordinate definitions which can be related to an algebraic representation in terms of the spontaneous symmetry breakdown along the Lie algebra chain su*(4) → usp(4) → su(2) × u(1). Standard techniques of Lie algebra decomposition(s) as well as the (physical) operator identification give rise to interesting physical aspects and lead to a rank-1 Riemannian space which provides an analytic representation and leads to a 5-dimensional hyperbolic space H 5 with SO(5, 1) isometries. The action of the (compact) symplectic group decomposes this (globally) hyperbolic space into H 2 ⊕ H 3 with SO(2, 1) and SO(3, 1) isometries, respectively, which we relate to electromagnetic (dynamically broken SU(2) isospin) and Lorentz transformations. Last not least, we attribute this symmetry pattern to the algebraic representation of a projective geometry over the division algebra H and subsequent coordinate restrictions.

  14. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  15. Effects of Level of Retrieval Success on Recall-Related Frontal and Medial Temporal Lobe Activations

    Directory of Open Access Journals (Sweden)

    Daniela Montaldi

    2002-01-01

    Full Text Available Brain dedicated single photon emission computed tomography (SPECT was used to compare the neuroactivation produced by the cued recall of response words in a set of studied word pairs with that produced by the cued retrieval of words semantically related to unstudied stimulus words. Six of the 12 subjects scanned were extensively trained so as to have good memory of the studied pairs and the remaining six were minimally trained so as to have poor memory. When comparing episodic with semantic retrieval, the well-trained subjects showed significant left medial temporal lobe activation, which was also significantly greater than that shown by the poorly trained subjects, who failed to show significant medial temporal lobe activation. In contrast, the poorly trained subjects showed significant bilateral frontal lobe activation, which was significantly greater than that shown by the well-trained subjects who failed to show significant frontal lobe activation. The frontal activations occurred mainly in the dorsolateral region, but extended into the ventrolateral and, to a lesser extent, the frontal polar regions. It is argued that whereas the medial temporal lobe activation increased as the proportion of response words successfully recalled increased, the bilateral frontal lobe activation increased in proportion to retrieval effort, which was greater when learning had been less good.

  16. Generative Representations for the Automated Design of Modular Physical Robots

    Science.gov (United States)

    Hornby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2003-01-01

    We will begin with a brief background of evolutionary robotics and related work, and demonstrate the scaling problem with our own prior results. Next we propose the use of an evolved generative representation as opposed to a non-generative representation. We describe this representation in detail as well as the evolutionary process that uses it. We then compare progress of evolved robots with and without the use of the grammar, and quantify the obtained advantage. Working two- dimensional and three-dimensional physical robots produced by the system are shown.

  17. Spectro-temporal processing of speech – An information-theoretic framework

    DEFF Research Database (Denmark)

    Christiansen, Thomas Ulrich; Dau, Torsten; Greenberg, Steven

    2007-01-01

    Hearing – From Sensory Processing to Perception presents the papers of the latest "International Symposium on Hearing," a meeting held every three years focusing on psychoacoustics and the research of the physiological mechanisms underlying auditory perception. The proceedings provide an up......-to-date report on the status of the field of research into hearing and auditory functions. The 59 chapters treat topics such as: the physiological representation of temporal and spectral stimulus properties as a basis for the perception of modulation patterns, pitch and signal intensity; spatial hearing...

  18. The representation of knowledge within model-based control systems

    International Nuclear Information System (INIS)

    Weygand, D.P.; Koul, R.

    1987-01-01

    Representation of knowledge in artificially intelligent systems is discussed. Types of knowledge that might need to be represented in AI systems are listed, and include knowledge about objects, events, knowledge about how to do things, and knowledge about what human beings know (meta-knowledge). The use of knowledge in AI systems is discussed in terms of acquiring and retrieving knowledge and reasoning about known facts. Different kinds of reasonings or representations are ghen described with some examples given. These include formal reasoning or logical representation, which is related to mathematical logic, production systems, which are based on the idea of condition-action pairs (production), procedural reasoning, which uses pre-formed plans to solve problems, frames, which provide a structure for representing knowledge in an organized manner, direct analogical representations, which represent knowledge in such a manner that permits some observation without deduction

  19. Hologram representation of design data in an expert system knowledge base

    Science.gov (United States)

    Shiva, S. G.; Klon, Peter F.

    1988-01-01

    A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.

  20. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    Science.gov (United States)

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  1. The Impact of Feedback on the Different Time Courses of Multisensory Temporal Recalibration

    Directory of Open Access Journals (Sweden)

    Matthew A. De Niear

    2017-01-01

    Full Text Available The capacity to rapidly adjust perceptual representations confers a fundamental advantage when confronted with a constantly changing world. Unexplored is how feedback regarding sensory judgments (top-down factors interacts with sensory statistics (bottom-up factors to drive long- and short-term recalibration of multisensory perceptual representations. Here, we examined the time course of both cumulative and rapid temporal perceptual recalibration for individuals completing an audiovisual simultaneity judgment task in which they were provided with varying degrees of feedback. We find that in the presence of feedback (as opposed to simple sensory exposure temporal recalibration is more robust. Additionally, differential time courses are seen for cumulative and rapid recalibration dependent upon the nature of the feedback provided. Whereas cumulative recalibration effects relied more heavily on feedback that informs (i.e., negative feedback rather than confirms (i.e., positive feedback the judgment, rapid recalibration shows the opposite tendency. Furthermore, differential effects on rapid and cumulative recalibration were seen when the reliability of feedback was altered. Collectively, our findings illustrate that feedback signals promote and sustain audiovisual recalibration over the course of cumulative learning and enhance rapid trial-to-trial learning. Furthermore, given the differential effects seen for cumulative and rapid recalibration, these processes may function via distinct mechanisms.

  2. Natural representation of the deduction; applying to the temporal reasoning for expert systems based on production rules

    International Nuclear Information System (INIS)

    Baudin, Patrick

    1990-01-01

    The expert systems development within a real time context, requires both to master the necessary reasoning about the time as well as to master the necessary response time for reasoning. Although rigorous temporal logic formalisms exist, strategies for temporal reasoning are either incomplete or else imply unacceptable response times. The first part presents the logic formalism upon which is based the production system. This formalism contains a three-valued logic system with truth-valued matrix, and a deductive system with a formal system. It does a rigorous work for this no standard logic, where the notions of consistency and completeness can be studied. Its development supports itself on the will to formalise the reasoning used at the elaboration time of the strategies to make them more explicit as the natural deduction method. The second part proposes an extension for the source logic formalism to take explicitly the time into account. The approach proposed through 'TANIS', the prototype of such an expert system shell, using a natural reasoning application is proposed. It allows, at the generation time, the implementation within the expert system, of an adapted deduction strategy to the symbolic temporal reasoning which is complete and ease the determination of the response time. (author) [fr

  3. Temporal association between the isolation of Sabin-related poliovirus vaccine strains and the Guillain-Barré syndrome

    OpenAIRE

    Friedrich, F.; Filippis, A. M. B.; Schatzmayr, H. G.

    1996-01-01

    Thirty eight paralysis cases classified as Guillain-Barré syndrome (GBS) in Brazil were analysed. In all these cases Sabin-related poliovirus vaccine strains were isolated. In most of the cases the last vaccine dose was given months or years before the onset of GBS, suggesting a persistent infection or the transmission of the Sabin-related strains to the patients. The isolation of Sabin-related strains from GBS cases some days or weeks after the onset of the disease, demonstrated a temporal a...

  4. Introduction to computer data representation

    CERN Document Server

    Fenwick, Peter

    2014-01-01

    Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and 'universal' or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic repre

  5. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  6. Temporal focus, temporal distance, and mind-wandering valence: Results from an experience sampling and an experimental study.

    Science.gov (United States)

    Spronken, Maitta; Holland, Rob W; Figner, Bernd; Dijksterhuis, Ap

    2016-04-01

    When mind-wandering, people may think about events that happened in the past, or events that may happen in the future. Using experience sampling, we first aimed to replicate the finding that future-oriented thoughts show a greater positivity bias than past-oriented thoughts. Furthermore, we investigated whether there is a relation between the temporal distance of past- and future-oriented thoughts and the frequency of positive thoughts, a factor that has received little attention in previous work. Second, we experimentally investigated the relation between temporal focus, temporal distance, and thought valence. Both studies showed that future-oriented thoughts were more positive compared to past-oriented thoughts. Regarding temporal distance, thoughts about the distant past and future were more positive than thoughts about the near past and future in the experiment. However, the experience sampling study did not provide clear insight into this relation. Potential theoretical and methodological explanations for these findings are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The role of visual representations during the lexical access of spoken words.

    Science.gov (United States)

    Lewis, Gwyneth; Poeppel, David

    2014-07-01

    Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability--concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Social representations and normative beliefs of aging.

    Science.gov (United States)

    Torres, Tatiana de Lucena; Camargo, Brigido Vizeu; Boulsfield, Andréa Barbará; Silva, Antônia Oliveira

    2015-12-01

    This study adopted the theory of social representations as a theoretical framework in order to characterize similarities and differences in social representations and normative beliefs of aging for different age groups. The 638 participants responded to self-administered questionnaire and were equally distributed by sex and age. The results show that aging is characterized by positive stereotypes (knowledge and experience); however, retirement is linked to aging, but in a negative way, particularly for men, involving illness, loneliness and disability. When age was considered, it was verified that the connections with the representational elements became more complex for older groups, showing social representation functionality, largely for the elderly. Adulthood seems to be preferred and old age is disliked. There were divergences related to the perception of the beginning of life phases, especially that of old age. Work was characterized as the opposite of aging, and it revealed the need for actions intended for the elderly and retired workers, with post-retirement projects. In addition, it suggests investment in public policies that encourage intergenerational contact, with efforts to reduce intolerance and discrimination based on age of people.

  9. Personality traits and illness representations as predictors of life satisfaction in hypertensive adolescents and emerging adults

    Directory of Open Access Journals (Sweden)

    Urška Žugelj

    2016-12-01

    Full Text Available This exploratory study examined the role of illness representations and personality in hypertensive adolescents’ and emerging adults’ life satisfaction. Even though earlier research showed that illness representations and personality traits predict life satisfaction in paediatric samples suffering from other chronic illnesses, these associations were not yet explored on youth with essential hypertension. The 97 participants were assessed for demographic and medical data, life satisfaction, illness representations (own illness representations – OIR, and perceived important others’ representations about participants’ illness – PIOIR, and personality (self-report and peer-report. Regression analyses indicated that OIR and self-reported personality traits accounted for 24% of the variance in general life satisfaction, 33% of variance in family-related life satisfaction, 25% of variance in friends-related life satisfaction, and 25% of variance in self-related life satisfaction. When entering PIOR illness representations and peer-assessed personality traits as predictors of life satisfaction domains, these predictors accounted for 29% of the variance in general life satisfaction, 23% of variance in family-related life satisfaction, 17% of variance in friends-related life satisfaction, 24% of the variance in the living environment-related life satisfaction, and 20% in self-related life satisfaction. More specifically, the personality traits of agreeableness (self-report, neuroticism (self-report and openness (peer report, as well as the illness representations dimensions (OIR: concern and emotional burden; PIOIR: identity, comprehension, consequences and treatment control of PIOIR, were shown to be the most important predictors of different domains of life satisfaction.

  10. Basic hypergeometric functions and covariant spaces for even-dimensional representations of Uq[osp(1/2)

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R; Mohammed, S S Naina; Segar, J

    2007-01-01

    Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and is observed that they may be expressed in terms of the Q-Hahn polynomials. We next investigate representations of the quantum supergroup OSp q (1/2) which are not well defined in the classical limit. Employing the universal T-matrix, the representation matrices are obtained explicitly, and found to be related to the little Q-Jacobi polynomials. Characteristically, the relation Q = -q is satisfied in all cases. Using the Clebsch-Gordan coefficients derived here, we construct new noncommutative spaces that are covariant under the coaction of the even-dimensional representations of the quantum supergroup OSp q (1/2)

  11. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...

  12. Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bowers William J

    2008-08-01

    Full Text Available Abstract Background Several transgenic animal models genetically predisposed to develop Alzheimer's disease (AD-like pathology have been engineered to facilitate the study of disease pathophysiology and the vetting of potential disease-modifying therapeutics. The triple transgenic mouse model of AD (3xTg-AD harbors three AD-related genetic loci: human PS1M146V, human APPswe, and human tauP301L. These mice develop both amyloid plaques and neurofibrillary tangle-like pathology in a progressive and age-dependent manner, while these pathological hallmarks are predominantly restricted to the hippocampus, amygdala, and the cerebral cortex the main foci of AD neuropathology in humans. This model represents, at present, one of the most advanced preclinical tools available and is being employed ever increasingly in the study of mechanisms underlying AD, yet a detailed regional and temporal assessment of the subtleties of disease-related pathologies has not been reported. Methods and results In this study, we immunohistochemically documented the evolution of AD-related transgene expression, amyloid deposition, tau phosphorylation, astrogliosis, and microglial activation throughout the hippocampus, entorhinal cortex, primary motor cortex, and amygdala over a 26-month period in male 3xTg-AD mice. Intracellular amyloid-beta accumulation is detectable the earliest of AD-related pathologies, followed temporally by phospho-tau, extracellular amyloid-beta, and finally paired helical filament pathology. Pathology appears to be most severe in medial and caudal hippocampus. While astrocytic staining remains relatively constant at all ages and regions assessed, microglial activation appears to progressively increase temporally, especially within the hippocampal formation. Conclusion These data fulfill an unmet need in the ever-widening community of investigators studying 3xTg-AD mice and provide a foundation upon which to design future experiments that seek to

  13. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  14. Multi-stream CNN: Learning representations based on human-related regions for action recognition

    NARCIS (Netherlands)

    Tu, Zhigang; Xie, Wei; Qin, Qianqing; Poppe, R.W.; Veltkamp, R.C.; Li, Baoxin; Yuan, Junsong

    2018-01-01

    The most successful video-based human action recognition methods rely on feature representations extracted using Convolutional Neural Networks (CNNs). Inspired by the two-stream network (TS-Net), we propose a multi-stream Convolutional Neural Network (CNN) architecture to recognize human actions. We

  15. 29 CFR 500.231 - Appearances; representation of the Department of Labor.

    Science.gov (United States)

    2010-07-01

    ... Procedures Before Administrative Law Judge § 500.231 Appearances; representation of the Department of Labor... 29 Labor 3 2010-07-01 2010-07-01 false Appearances; representation of the Department of Labor. 500.231 Section 500.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT...

  16. Optimizing Temporal Queries: Efficient Handling of Duplicates

    DEFF Research Database (Denmark)

    Toman, David; Bowman, Ivan Thomas

    2001-01-01

    , these query languages are implemented by translating temporal queries into standard relational queries. However, the compiled queries are often quite cumbersome and expensive to execute even using state-of-the- art relational products. This paper presents an optimization technique that produces more efficient...... translated SQL queries by taking into account the properties of the encoding used for temporal attributes. For concreteness, this translation technique is presented in the context of SQL/TP; however, these techniques are also applicable to other temporal query languages....

  17. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    Directory of Open Access Journals (Sweden)

    Olivera Savic

    Full Text Available We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  18. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    Science.gov (United States)

    Savic, Olivera; Savic, Andrej M; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  19. Optimization of temporal networks under uncertainty

    CERN Document Server

    Wiesemann, Wolfram

    2012-01-01

    Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization probl

  20. A neural model of the temporal dynamics of figure-ground segregation in motion perception.

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2010-03-01

    How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy

  1. Form factors and related quantities in clothed-particle representation

    Directory of Open Access Journals (Sweden)

    Shebeko Alexander

    2017-01-01

    Full Text Available We show new applications of the notion of clothed particles in quantum field theory. Its realization by means of the clothing procedure put forward by Greenberg and Schweber allows one to express the total Hamiltonian H and other generators of the Poincaré group for a given system of interacting fields through the creation (annihilation operators for the so-called clothed particles with physical (observed properties. Here such a clothed particle representation is used to calculate the matrix elements (shortly, form factors of the corresponding Nöther current operators sandwiched between the H eigenstates. Our calculations are performed with help of an iterative technique suggested by us earlier when constructing the NN → πNN transition operators. As an illustration, we outline some application of our approach in the spinor quantum electrodynamics.

  2. Temporal and spatial variability in the aviation NOx-related O3 impact

    International Nuclear Information System (INIS)

    Gilmore, Christopher K; Barrett, Steven R H; Koo, Jamin; Wang, Qiqi

    2013-01-01

    Aviation NO x emissions promote tropospheric ozone formation, which is linked to climate warming and adverse health effects. Modeling studies have quantified the relative impact of aviation NO x on O 3 in large geographic regions. As these studies have applied forward modeling techniques, it has not been possible to attribute O 3 formation to individual flights. Here we apply the adjoint of the global chemistry–transport model GEOS-Chem to assess the temporal and spatial variability in O 3 production due to aviation NO x emissions, which is the first application of an adjoint to this problem. We find that total aviation NO x emitted in October causes 40% more O 3 than in April and that Pacific aviation emissions could cause 4–5 times more tropospheric O 3 per unit NO x than European or North American emissions. Using this sensitivity approach, the O 3 burden attributable to 83 000 unique scheduled civil flights is computed individually. We find that the ten highest total O 3 -producing flights have origins or destinations in New Zealand or Australia. The top ranked O 3 -producing flights normalized by fuel burn cause 157 times more normalized O 3 formation than the bottom ranked ones. These results show significant spatial and temporal heterogeneity in environmental impacts of aviation NO x emissions. (letter)

  3. Annotating temporal information in clinical narratives.

    Science.gov (United States)

    Sun, Weiyi; Rumshisky, Anna; Uzuner, Ozlem

    2013-12-01

    Temporal information in clinical narratives plays an important role in patients' diagnosis, treatment and prognosis. In order to represent narrative information accurately, medical natural language processing (MLP) systems need to correctly identify and interpret temporal information. To promote research in this area, the Informatics for Integrating Biology and the Bedside (i2b2) project developed a temporally annotated corpus of clinical narratives. This corpus contains 310 de-identified discharge summaries, with annotations of clinical events, temporal expressions and temporal relations. This paper describes the process followed for the development of this corpus and discusses annotation guideline development, annotation methodology, and corpus quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Student representational competence and self-assessment when solving physics problems

    Directory of Open Access Journals (Sweden)

    Noah D. Finkelstein

    2005-10-01

    Full Text Available Student success in solving physics problems is related to the representational format of the problem. We study student representational competence in two large-lecture algebra-based introductory university physics courses with approximately 600 participants total. We examined student performance on homework problems given in four different representational formats (mathematical, pictorial, graphical, verbal, with problem statements as close to isomorphic as possible. In addition to the homeworks, we examine students’ assessment of representations by providing follow-up quizzes in which they chose between various problem formats. As a control, some parts of the classes were assigned a random-format follow-up quiz. We find that there are statistically significant performance differences between different representations of nearly isomorphic statements of quiz and homework problems. We also find that allowing students to choose which representational format they use improves student performance under some circumstances and degrades it in others. Notably, one of the two courses studied shows much greater performance differences between the groups that received a choice of format and those that did not, and we consider possible causes. Overall, we observe that student representational competence is tied to both micro- and macrolevel features of the task and environment.

  5. Representations of handicaped in the portuguese press: hegemony and emancipation

    Directory of Open Access Journals (Sweden)

    Patrícia Neca

    2012-12-01

    Full Text Available The purpose of this study is to describe and analyze what are the representations that three Portuguese general-interest newspapers - Diário de Notícias, Jornal de Notícias and Público - construct and convey about people with disabilities. The analysis was guided by the perspective of social representations, on the assumption that the views conveyed by the press are shared by society and affect the public opinion. A total of 220 articles about disabilities, published in November and December between 2004 and 2009 where analyzed. The results show that there is little questioning in the newspapers regarding issues related with disability and that there are different representations mediated by different newspapers. Diário de Notícias and Público convey hegemonic representations, in other words, don´t discuss the disability issues and show the group as homogeneous, incompetent and object of social policies, thus blocking the appearance of new representations. Jornal de Notícias convey emancipated representations, this is, opens space to the debate of the new ideas, showing disabled people as competent, mainly in articles about awareness raising and physical disability. This debate enhances the appearance of new representations. Regarding mental disability, it appears associated to the stereotype of incompetence, in all the newspapers analyzed.

  6. Quiver representations

    CERN Document Server

    Schiffler, Ralf

    2014-01-01

    This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.

  7. Temporal maps and informativeness in associative learning.

    Science.gov (United States)

    Balsam, Peter D; Gallistel, C Randy

    2009-02-01

    Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla-Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information.

  8. Graph Regularized Auto-Encoders for Image Representation.

    Science.gov (United States)

    Yiyi Liao; Yue Wang; Yong Liu

    2017-06-01

    Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

  9. Explanation of the academic failure and the social representation

    Directory of Open Access Journals (Sweden)

    Youcef AÏSSANI

    2008-01-01

    Full Text Available There has been a plethora of research related to attribution in the last few decades. However, very few studies focused on the relationship between understanding the causes of others’ behavior and social representation. The overall objective of this study was to fill the gap by showing that the understanding of the causes behind others’ behavior is influenced by our social believes. We studied the scholar failure social representation of school-teacher.

  10. Representation of numerical magnitude in math-anxious individuals.

    Science.gov (United States)

    Colomé, Àngels

    2018-01-01

    Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.

  11. [Evaluation of temporality semantic knowledge in normal aging and in mild and moderate stages of Alzheimer's disease].

    Science.gov (United States)

    Rivasseau Jonveaux, T; Batt, M; Empereur, F; Braun, M; Trognon, A

    2015-04-01

    Episodic and semantic processes are involved in temporality used in daily life. Episodic memory permits one to place an event on the time axis, while semantic memory makes us aware of the time segmentation and its symbolic representation. Memory of the knowledge connected to the passing of time is materialized on the calendar and can be seen symbolically on the dial of a clock. In AD, semantic memory processes are preserved longer than processes related to episodic memory. We wonder whether the specific field of knowledge about time is altered during AD. We validated a specific evaluation with a control group (354 healthy subjects). Then we applied this battery to assess AD patients to appreciate the feasibility of this tool for this population. We then compared 22 AD patients with a control group matched for age, sex and educational level. Our clinical scale of temporal semantic knowledge consists of four parts: (a) hour reading with a.m. and p.m. hours; (b) using a clock: 12 clock faces with the hour numbers already placed: the patient draws hour and minute hands for various hours; (c) temporal segmentation: exploration of the knowledge on daytime scale and of the calendar; (d) time duration estimation: calculate how long the interview has lasted after indicating the time of its beginning and its end, then the time between 10.40 to 12.00. While age and educational level had an influence on all the scores, in the two groups control and patients, gender did not. Temporal segmentation, independent of the cultural level, revealed the best acquired knowledge in our control population. All the scores differentiated patients from control subjects. The temporal semantic knowledge correlated with the AD severity seemed to be correlated with the attention, verbal comprehension, and some components of executive functions, but was not related to the clock drawing test result. Depression did not have any influence on this scale in our AD group. The temporal semantic knowledge

  12. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  13. Temporal network epidemiology

    CERN Document Server

    Holme, Petter

    2017-01-01

    This book covers recent developments in epidemic process models and related data on temporally varying networks. It is widely recognized that contact networks are indispensable for describing, understanding, and intervening to stop the spread of infectious diseases in human and animal populations; “network epidemiology” is an umbrella term to describe this research field. More recently, contact networks have been recognized as being highly dynamic. This observation, also supported by an increasing amount of new data, has led to research on temporal networks, a rapidly growing area. Changes in network structure are often informed by epidemic (or other) dynamics, in which case they are referred to as adaptive networks. This volume gathers contributions by prominent authors working in temporal and adaptive network epidemiology, a field essential to understanding infectious diseases in real society.

  14. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  15. Evolved Representation and Computational Creativity

    Directory of Open Access Journals (Sweden)

    Ashraf Fouad Hafez Ismail

    2001-01-01

    Full Text Available Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design, amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool, commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the whole design process.In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups of pixels (paintbrush programs, lines and shapes (general-purpose CAD programs or higher-level objects like ‘walls’ and ‘rooms’ (purpose-specific CAD programs.A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for specific design domains

  16. Infants use temporal regularities to chunk objects in memory.

    Science.gov (United States)

    Kibbe, Melissa M; Feigenson, Lisa

    2016-01-01

    Infants, like adults, can maintain only a few items in working memory, but can overcome this limit by creating more efficient representations, or "chunks." Previous research shows that infants can form chunks using shared features or spatial proximity between objects. Here we asked whether infants also can create chunked representations using regularities that unfold over time. Thirteen-month old infants first were familiarized with four objects of different shapes and colors, presented in successive pairs. For some infants, the identities of objects in each pair varied randomly across familiarization (Experiment 1). For others, the objects within a pair always co-occurred, either in consistent relative spatial positions (Experiment 2a) or varying spatial positions (Experiment 2b). Following familiarization, infants saw all four objects hidden behind a screen and then saw the screen lifted to reveal either four objects or only three. Infants in Experiment 1, who had been familiarized with random object pairings, failed to look longer at the unexpected 3-object outcome; they showed the same inability to concurrently represent four objects as in other studies of infant working memory. In contrast, infants in Experiments 2a and 2b, who had been familiarized with regularly co-occurring pairs, looked longer at the unexpected outcome. These infants apparently used the co-occurrence between individual objects during familiarization to form chunked representations that were later deployed to track the objects as they were hidden at test. In Experiment 3, we confirmed that the familiarization affected infants' ability to remember the occluded objects rather than merely establishing longer-term memory for object pairs. Following familiarization to consistent pairs, infants who were not shown a hiding event (but merely saw the same test outcomes as in Experiments 2a and b) showed no preference for arrays of three versus four objects. Finally, in Experiments 4 and 5, we asked

  17. When the ringing in the ears gets unbearable: Illness representations, self-instructions and adjustment to tinnitus.

    Science.gov (United States)

    Vollmann, Manja; Kalkouskaya, Natallia; Langguth, Berthold; Scharloo, Margreet

    2012-08-01

    Chronic tinnitus can severely impair a person's quality of life. The degree of impairment, however, is not closely related to tinnitus loudness. Applying the common sense model (CSM) of self-regulation of health and illness, this study investigated to what extent psychological factors, i.e. illness representations and positive/negative self-instructions, are associated with the degree of tinnitus-related complaints. In this cross-sectional study, 118 patients diagnosed with chronic tinnitus filled in questionnaires assessing illness representations (IPQ-R), positive and negative self-instructions (TRSS), and tinnitus-related complaints (TQ). The regression analysis yielded a number of significant associations between illness representations and tinnitus-related complaints, particularly for the IPQ-R dimensions identity, consequences, coherence, and emotional representations. With regard to self-instructions and tinnitus-related complaints, significant effects were found only for negative self-instructions. Moreover, multiple mediation analyses revealed that the effects of consequences and emotional representations on tinnitus-related complaints were (partially) due to the use of negative self-instructions. Psychological factors are strongly related to the extent of tinnitus-related complaints. The findings provide an indication of which aspects should be targeted in psychological and psychotherapeutic tinnitus treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Oscillatory Activity in the Infant Brain and the Representation of Small Numbers.

    Science.gov (United States)

    Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy

    2016-01-01

    Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6-8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants' representation of small numbers.

  19. An XML Representation for Crew Procedures

    Science.gov (United States)

    Simpson, Richard C.

    2005-01-01

    NASA ensures safe operation of complex systems through the use of formally-documented procedures, which encode the operational knowledge of the system as derived from system experts. Crew members use procedure documentation on the ground for training purposes and on-board space shuttle and space station to guide their activities. Investigators at JSC are developing a new representation for procedures that is content-based (as opposed to display-based). Instead of specifying how a procedure should look on the printed page, the content-based representation will identify the components of a procedure and (more importantly) how the components are related (e.g., how the activities within a procedure are sequenced; what resources need to be available for each activity). This approach will allow different sets of rules to be created for displaying procedures on a computer screen, on a hand-held personal digital assistant (PDA), verbally, or on a printed page, and will also allow intelligent reasoning processes to automatically interpret and use procedure definitions. During his NASA fellowship, Dr. Simpson examined how various industries represent procedures (also called business processes or workflows), in areas such as manufacturing, accounting, shipping, or customer service. A useful method for designing and evaluating workflow representation languages is by determining their ability to encode various workflow patterns, which depict abstract relationships between the components of a procedure removed from the context of a specific procedure or industry. Investigators have used this type of analysis to evaluate how well-suited existing workflow representation languages are for various industries based on the workflow patterns that commonly arise across industry-specific procedures. Based on this type of analysis, it is already clear that existing workflow representations capture discrete flow of control (i.e., when one activity should start and stop based on when other

  20. Temporal dynamics of conflict monitoring and the effects of one or two conflict sources on error-(related) negativity.

    Science.gov (United States)

    Armbrecht, Anne-Simone; Wöhrmann, Anne; Gibbons, Henning; Stahl, Jutta

    2010-09-01

    The present electrophysiological study investigated the temporal development of response conflict and the effects of diverging conflict sources on error(-related) negativity (Ne). Eighteen participants performed a combined stop-signal flanker task, which was comprised of two different conflict sources: a left-right and a go-stop response conflict. It is assumed that the Ne reflects the activity of a conflict monitoring system and thus increases according to (i) the number of conflict sources and (ii) the temporal development of the conflict activity. No increase of the Ne amplitude after double errors (comprising two conflict sources) as compared to hand- and stop-errors (comprising one conflict source) was found, whereas a higher Ne amplitude was observed after a delayed stop-signal onset. The results suggest that the Ne is not sensitive to an increase in the number of conflict sources, but to the temporal dynamics of a go-stop response conflict. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Maternal Depression, Children's Attachment Security, and Representational Development: An Organizational Perspective

    Science.gov (United States)

    Toth, Sheree L.; Rogosch, Fred A.; Sturge-Apple, Melissa; Cicchetti, Dante

    2009-01-01

    Relations among maternal depression, child attachment, and children's representations of parents and self were examined. Participants included toddlers and their mothers with a history of major depressive disorder (n=63) or no history of mental disorder (n=68). Attachment was assessed at 20 and 36 months and representations of parents and self…

  2. The Emergence of Visual Awareness: Temporal Dynamics in Relation to Task and Mask Type

    Science.gov (United States)

    Kiefer, Markus; Kammer, Thomas

    2017-01-01

    One aspect of consciousness phenomena, the temporal emergence of visual awareness, has been subject of a controversial debate. How can visual awareness, that is the experiential quality of visual stimuli, be characterized best? Is there a sharp discontinuous or dichotomous transition between unaware and fully aware states, or does awareness emerge gradually encompassing intermediate states? Previous studies yielded conflicting results and supported both dichotomous and gradual views. It is well conceivable that these conflicting results are more than noise, but reflect the dynamic nature of the temporal emergence of visual awareness. Using a psychophysical approach, the present research tested whether the emergence of visual awareness is context-dependent with a temporal two-alternative forced choice task. During backward masking of word targets, it was assessed whether the relative temporal sequence of stimulus thresholds is modulated by the task (stimulus presence, letter case, lexical decision, and semantic category) and by mask type. Four masks with different similarity to the target features were created. Psychophysical functions were then fitted to the accuracy data in the different task conditions as a function of the stimulus mask SOA in order to determine the inflection point (conscious threshold of each feature) and slope of the psychophysical function (transition from unaware to aware within each feature). Depending on feature-mask similarity, thresholds in the different tasks were highly dispersed suggesting a graded transition from unawareness to awareness or had less differentiated thresholds indicating that clusters of features probed by the tasks quite simultaneously contribute to the percept. The latter observation, although not compatible with the notion of a sharp all-or-none transition between unaware and aware states, suggests a less gradual or more discontinuous emergence of awareness. Analyses of slopes of the fitted psychophysical functions

  3. Self-representation of children suffering from congenital heart disease and maternal competence

    Directory of Open Access Journals (Sweden)

    Giovanna Perricone

    2013-02-01

    Full Text Available Child development may be subject to forms of motor, physical, cognitive and self-representation impairments when complex congenital heart disease (CHD occurs. In some cases, inadequacy of both self-representation as well as the family system are displayed. It seems to be important to search the likely internal and external resources of the CHD child, and the possible connections among such resources, which may help him/her to manage his/her own risk condition. The research project inquires the possible resources related to the self-representation and self-esteem levels of the CHD child, and those related to maternal self-perception as competent mothers. A group of 25 children (mean age = 10.2; SD=1.8 suffering from specific forms of CHD, and a group made up of their relative mothers (mean age = 38.2; SD=5 were studied. The tools used were the Human Figure Drawing, to investigate child body-related self-representation; the TMA scale (Self-esteem Multidimensional Test, to investigate the child’s self-esteem; and the Q-sort questionnaire, to assess how mothers perceived their maternal competence. Data concerning the likely correlations between the child’s self-representation and the maternal role competence show [that] positive correlations between some indicators of maternal competence, specific aspects of CHD children’s self-representation (mothers’ emotional coping and children’s self-image adequacy and self-esteem (mothers’ emotional scaffolding and children’s self-esteem at an emotional level. By detecting the occurrence of specific correlations among resources of both child and mother, the study provides cardiologists with information that is useful for building a relationship with the families concerned, which would seem to enhance the quality of the process of the cure itself.

  4. Baikov-Lee representations of cut Feynman integrals

    International Nuclear Information System (INIS)

    Harley, Mark; Moriello, Francesco; Schabinger, Robert M.

    2017-01-01

    We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy’s residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.

  5. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Marital Conflict, Children's Representations of Family Relationships, and Children's Dispositions towards Peer Conflict Strategies

    Science.gov (United States)

    Du Rocher Schudlich, Tina D.; Shamir, Haya; Cummings, E. Mark

    2004-01-01

    The links among marital relations and children's representations were examined. Forty-seven children between the ages of 5 and 8 completed the Family Stories Task (FAST) to obtain their narrative representations of family relations and performed a variation of a puppet procedure (Mize & Ladd, 1988) to assess children's dispositions towards peer…

  7. Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception

    NARCIS (Netherlands)

    Honing, H.; Bouwer, F.L.; Háden, G.P.; Merchant, H.; de Lafuente, V.

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in

  8. Operator representations of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh

    2017-01-01

    of the properties of the operator T requires more work. For example it is a delicate issue to obtain a representation with a bounded operator, and the availability of such a representation not only depends on the frame considered as a set, but also on the chosen indexing. Using results from operator theory we show......The purpose of this paper is to consider representations of frames {fk}k∈I in a Hilbert space ℋ of the form {fk}k∈I = {Tkf0}k∈I for a linear operator T; here the index set I is either ℤ or ℒ0. While a representation of this form is available under weak conditions on the frame, the analysis...... that by embedding the Hilbert space ℋ into a larger Hilbert space, we can always represent a frame via iterations of a bounded operator, composed with the orthogonal projection onto ℋ. The paper closes with a discussion of an open problem concerning representations of Gabor frames via iterations of a bounded...

  9. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  10. Introduction to representation theory

    CERN Document Server

    Etingof, Pavel; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex

    2011-01-01

    Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a "holistic" introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic k...

  11. Community representation in hospital decision making: a literature review.

    Science.gov (United States)

    Murray, Zoë

    2015-06-01

    Advancing quality in health services requires structures and processes that are informed by consumer input. Although this agenda is well recognised, few researchers have focussed on the establishment and maintenance of customer input throughout the structures and processes used to produce high-quality, safe care. We present an analysis of literature outlining the barriers and enablers involved in community representation in hospital governance. The review aimed to explore how community representation in hospital governance is achieved. Studies spanning 1997-2012 were analysed using Donabedian' s model of quality systems as a guide for categories of interest: structure, in relation to administration of quality; process, which is particularly concerned with cooperation and culture; and outcome, considered, in this case, to be the achievement of effective community representation on quality of care. There are limited published studies on community representation in hospital governance in Australia. What can be gleaned from the literature is: 1) quality subcommittees set up to assist Hospital Boards are a key structure for involving community representation in decision making around quality of care, and 2) there are a number of challenges to effectively developing the process of community representation in hospital governance: ambiguity and the potential for escalated indecision; inadequate value and consideration given to it by decision makers resulting in a lack of time and resources needed to support the community engagement strategy (time, facilitation, budgets); poor support and attitude amongst staff; and consumer issues, such as feeling isolated and intimidated by expert opinion. The analysis indicates that: quality subcommittees set up to assist boards are a key structure for involving community representation in decision making around quality of care. There are clearly a number of challenges to effectively developing the process of community representation in

  12. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Shunping Ji

    2018-01-01

    Full Text Available This study describes a novel three-dimensional (3D convolutional neural networks (CNN based method that automatically classifies crops from spatio-temporal remote sensing images. First, 3D kernel is designed according to the structure of multi-spectral multi-temporal remote sensing data. Secondly, the 3D CNN framework with fine-tuned parameters is designed for training 3D crop samples and learning spatio-temporal discriminative representations, with the full crop growth cycles being preserved. In addition, we introduce an active learning strategy to the CNN model to improve labelling accuracy up to a required threshold with the most efficiency. Finally, experiments are carried out to test the advantage of the 3D CNN, in comparison to the two-dimensional (2D CNN and other conventional methods. Our experiments show that the 3D CNN is especially suitable in characterizing the dynamics of crop growth and outperformed the other mainstream methods.

  13. A structured representation for parallel algorithm design on multicomputers

    International Nuclear Information System (INIS)

    Sun, Xian-He; Ni, L.M.

    1991-01-01

    Traditionally, parallel algorithms have been designed by brute force methods and fine-tuned on each architecture to achieve high performance. Rather than studying the design case by case, a systematic approach is proposed. A notation is first developed. Using this notation, most of the frequently used scientific and engineering applications can be presented by simple formulas. The formulas constitute the structured representation of the corresponding applications. The structured representation is simple, adequate and easy to understand. They also contain sufficient information about uneven allocation and communication latency degradations. With the structured representation, applications can be compared, classified and partitioned. Some of the basic building blocks, called computation models, of frequently used applications are identified and studied. Most applications are combinations of some computation models. The structured representation relates general applications to computation models. Studying computation models leads to a guideline for efficient parallel algorithm design for general applications. 6 refs., 7 figs

  14. THE FORMATION OF SOCIAL REPRESENTATIONS OF TRUST IN ADOLESCENCE

    Directory of Open Access Journals (Sweden)

    Svetlana Dzahotovna Gurieva

    2017-04-01

    Full Text Available In adolescence, there is a reorganization of social relationships, so the study of social representations of adolescents about trust as the basis of relations and their formation is of high scientific and practical significance. The result presented article is to analyze the social representations of trust among teenagers in St. Petersburg. The study involved 70 people between the ages of 12 to 17 years (average age 14.6. The authors used a method of interviews, questionnaires, and projective techniques. The results of content analysis, using mathematical and statistical analysis showed the formation of social representations of confidence in adolescence. Goal. The article is devoted the theme of developmental and social psychology. The study focused on the social representations of trust among adolescents. The authors aim to study the formation process of social representations of data. Method and methodology of work. The authors used the method of interviews, questionnaires and projective techniques. Processing of results was carried out using content analysis and statistical analysis. Results. The results showed features of formation of social notions of trust in adolescence, their relationship with age and gender.

  15. A Spatio-Temporal Building Exposure Database and Information Life-Cycle Management Solution

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2017-04-01

    Full Text Available With an ever-increasing volume and complexity of data collected from a variety of sources, the efficient management of geospatial information becomes a key topic in disaster risk management. For example, the representation of assets exposed to natural disasters is subjected to changes throughout the different phases of risk management reaching from pre-disaster mitigation to the response after an event and the long-term recovery of affected assets. Spatio-temporal changes need to be integrated into a sound conceptual and technological framework able to deal with data coming from different sources, at varying scales, and changing in space and time. Especially managing the information life-cycle, the integration of heterogeneous information and the distributed versioning and release of geospatial information are important topics that need to become essential parts of modern exposure modelling solutions. The main purpose of this study is to provide a conceptual and technological framework to tackle the requirements implied by disaster risk management for describing exposed assets in space and time. An information life-cycle management solution is proposed, based on a relational spatio-temporal database model coupled with Git and GeoGig repositories for distributed versioning. Two application scenarios focusing on the modelling of residential building stocks are presented to show the capabilities of the implemented solution. A prototype database model is shared on GitHub along with the necessary scenario data.

  16. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    Science.gov (United States)

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  17. Narrative representations of caregivers and emotion dysregulation as predictors of maltreated children's rejection by peers.

    Science.gov (United States)

    Shields, A; Ryan, R M; Cicchetti, D

    2001-05-01

    This study examined whether maltreated children were more likely than nonmaltreated children to develop poor-quality representations of caregivers and whether these representations predicted children's rejection by peers. A narrative task assessing representations of mothers and fathers was administered to 76 maltreated and 45 nonmaltreated boys and girls (8-12 years old). Maltreated children's representations were more negative/constricted and less positive/coherent than those of nonmaltreated children. Maladaptive representations were associated with emotion dysregulation, aggression, and peer rejection, whereas positive/coherent representations were related to prosocial behavior and peer preference. Representations mediated maltreatment's effects on peer rejection in part by undermining emotion regulation. Findings suggest that representations of caregivers serve an important regulatory function in the peer relationships of at-risk children.

  18. Learning semantic histopathological representation for basal cell carcinoma classification

    Science.gov (United States)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  19. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    Science.gov (United States)

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps

    KAUST Repository

    Bhatia, H.; Jadhav, S.; Bremer, P.; Guoning Chen,; Levine, J. A.; Nonato, L. G.; Pascucci, V.

    2012-01-01

    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures. © 2012 IEEE.