WorldWideScience

Sample records for relative quantum yield

  1. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Spectroscopy characterization and quantum yield determination of quantum dots

    International Nuclear Information System (INIS)

    Ortiz, S N Contreras; Ospino, E Mejía; Cabanzo, R

    2016-01-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum. (paper)

  3. Quantum Yields in Mixed-Conifer Forests and Ponderosa Pine Plantations

    Science.gov (United States)

    Wei, L.; Marshall, J. D.; Zhang, J.

    2008-12-01

    Most process-based physiological models require canopy quantum yield of photosynthesis as a starting point to simulate carbon sequestration and subsequently gross primary production (GPP). The quantum yield is a measure of photosynthetic efficiency expressed in moles of CO2 assimilated per mole of photons absorbed; the process is influenced by environmental factors. In the summer 2008, we measured quantum yields on both sun and shade leaves for four conifer species at five sites within Mica Creek Experimental Watershed (MCEW) in northern Idaho and one conifer species at three sites in northern California. The MCEW forest is typical of mixed conifer stands dominated by grand fir (Abies grandis (Douglas ex D. Don) Lindl.). In northern California, the three sites with contrasting site qualities are ponderosa pine (Pinus ponderosa C. Lawson var. ponderosa) plantations that were experimentally treated with vegetation control, fertilization, and a combination of both. We found that quantum yields in MCEW ranged from ~0.045 to ~0.075 mol CO2 per mol incident photon. However, there were no significant differences between canopy positions, or among sites or tree species. In northern California, the mean value of quantum yield of three sites was 0.051 mol CO2/mol incident photon. No significant difference in quantum yield was found between canopy positions, or among treatments or sites. The results suggest that these conifer species maintain relatively consistent quantum yield in both MCEW and northern California. This consistency simplifies the use of a process-based model to accurately predict forest productivity in these areas.

  4. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    International Nuclear Information System (INIS)

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10 -3 at 193 nm, 7.6 x 10 - 4 at 248 nm, 6.1 x 10 -4 at 308 nm, and 4.0 x 10 -4 at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values

  5. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Anna I Sulatskaya

    Full Text Available In this work, the fluorescence of thioflavin T (ThT was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0. The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.

  6. Rhodamine 800 as reference substance for fluorescence quantum yield measurements in deep red emission range

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: andrea.alessi@eni.com [Centro Ricerche per le Energie non Convenzionali, Istituto eni Donegani, e.n.i. S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Salvalaggio, M. [Centro Ricerche per le Energie non Convenzionali, Istituto eni Donegani, e.n.i. S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Ruzzon, G. [HORIBA Jobin Yvon Srl, Via Cesare Pavese 35/AB, 20090 Opera Milano (Italy)

    2013-02-15

    The determination of fluorescence quantum yields ({Phi}{sub f}) of deep red dyes emitting at 635-900 nm is difficult due to lack of suitable standards. In this work, we propose a commercial dye, rhodamine 800 (Rho800), as reference standard which belongs to the family of xanthenes. The quantum yield of rhodamine 800 in absolute ethanol has been studied using a relative method with cresyl violet (CV) and rhodamine 101 (Rho101) as references, and an absolute fluorometric method by integrating sphere measurements. - Highlights: Black-Right-Pointing-Pointer A red emitting dye Rhodamine 800 was electronic spectroscopy characterized. Black-Right-Pointing-Pointer Its fluorescence quantum yield was studied using a relative and an absolute method. Black-Right-Pointing-Pointer The values found are greater than the values currently known in the literature.

  7. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  8. Photophysics of the variable quantum yield of asymmetric bilirubin

    International Nuclear Information System (INIS)

    Troup, G.J.

    1998-01-01

    Full text: Bilirubin (BR), responsible for neonatal jaundice, is a molecule containing two pyrromethenone chromophores conjoined by a 'saturated' carbon CH 2 group. Because this disease is cured by phototherapy, BR has been extensively studied by laser means. When the chromophores in each half of the molecule are identical, we have symmetrical BR (SBR); when they are not, we have asymmetric BR (ASBR). The quantum yield of the photoproducts in simple organic solution from SBR is not wavelength-dependent, while that from ASBR is. Because of the proximity of the two chromophores, both the SBR and ASBR systems are subject to Davidoff (dynamic electric dipole) splitting of the chromophore excited states. A quantum mechanical calculation shows that when the two (ASBR) chromophore states are not degenerate, the higher Davidoff state is preferentially occupied by the chromophore with the 'original' higher energy, and the lower Davidoff state by the chromophore of 'original' lower energy. This is just what is required for the quantum yield to vary with wavelength. If the variation of the quantum yield of ASBR in the presence of human serum albumen is approximated by a square-wave (narrow line approximation), the deduced ratio of the short wavelength photoproduct yield with the long wavelength one is in agreement with accepted values for the 'original' energy difference of the chromophores, and the Davidoff splitting parameter. A previous explanation has involved variation of relaxation processes with wavelength, but only qualitatively. The quantum yields for SBRs bonded to HSA are not yet published, but show wavelength variation, possibly from asymmetric bonding. In 0.1% ammonia/methanol however, there is no such variation for the SBRs, while for ASBR, there is, and the photoproduct ratios for long and short wavelength are reciprocals of one another, as predicted by our theory

  9. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    Science.gov (United States)

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  10. Some applications of uncertainty relations in quantum information

    Science.gov (United States)

    Majumdar, A. S.; Pramanik, T.

    2016-08-01

    We discuss some applications of various versions of uncertainty relations for both discrete and continuous variables in the context of quantum information theory. The Heisenberg uncertainty relation enables demonstration of the Einstein, Podolsky and Rosen (EPR) paradox. Entropic uncertainty relations (EURs) are used to reveal quantum steering for non-Gaussian continuous variable states. EURs for discrete variables are studied in the context of quantum memory where fine-graining yields the optimum lower bound of uncertainty. The fine-grained uncertainty relation is used to obtain connections between uncertainty and the nonlocality of retrieval games for bipartite and tripartite systems. The Robertson-Schrödinger (RS) uncertainty relation is applied for distinguishing pure and mixed states of discrete variables.

  11. Influence of excitonic effects on luminescence quantum yield in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sachenko, A.V.; Kostylyov, V.P.; Vlasiuk, V.M. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv (Ukraine); Sokolovskyi, I.O., E-mail: isokolovskyi@mun.ca [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv (Ukraine); Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, NL, A1B 3X7 Canada (Canada); Evstigneev, M. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, NL, A1B 3X7 Canada (Canada)

    2017-03-15

    Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.

  12. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  13. Quantum relativity theory

    International Nuclear Information System (INIS)

    Banai, M.

    1983-11-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)

  14. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    Science.gov (United States)

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  15. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Cui, Ping, E-mail: cokecp@sohu.com

    2016-04-15

    Graphical abstract: - Highlights: • Cheap carbon quantum dots (CQDs) with a high quantum yield were prepared. • The preparation process and surface functionalization on CQDs are rather facile. • Such functionalized CQDs can be attached to BSA covalently. • This predicts that some biomolecules can be labeled by the fluorescent CQDs. - Abstract: An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  16. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  17. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  18. Absolute quantum yield measurements for the formation of oxygen ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The dynamics of formation of oxygen atoms after UV photoexcitation of .... The SO2 pressure in the cell was typically 30–55 mTorr (monitored by an MKS .... With this value the quantum yield for O(3P) formation could be calculated to.

  19. Quantum yields and mechanism in TiO[sub 2] mediated photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lizhong

    1994-01-01

    The photocatalytic pathway in TiO[sub 2] suspensions was examined using a spin trap/electron paramagnetic resonance spectroscopy technique within a competition kinetic scheme. Experimental results from competition reactions show that there is a marked difference in kinetic behaviors between the systems with (heterogeneous) and without (homogeneous) TiO[sub 2] suspension, confirming that the reaction pathway of OH- radicals in the TiO[sub 2] suspension is at least partly heterogeneous. A photocatalytic mechanism is proposed. A method of determining the trapping efficiency of OH- radicals was developed, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), for measuring growth rates of the spin adduct DMPO-OH and high pressure liquid chromatography for measuring the OH- radical generation rates. The reliability of the measurement method was confirmed by comparison with published values. The trapping efficiency in the heterogeneous (TiO[sub 2]) system was found to be ca 0.28. A method for quantum yield determinations in heterogeneous systems was developed, based on measurements of OH- radical generation rates and the flux of absorbed photons by TiO[sub 2] suspensions. A chemical actinometer was used to measure absorbed-photon flux. Good agreement with literature values was obtained for quantum yield measurements in p-benzoquinone and H[sub 2]O[sub 2] systems. Accordingly, the quantum yield of OH- radical generation in TiO[sub 2] suspensions was determined to be ca 0.040 at pH 7. Effects of suspension loading, light intensity, electron acceptor addition, and dissolved oxygen concentration on the quantum yield were observed. The effects of pH and buffer concentration on the formation rate of DMPO-OH spin adduct are discussed. 117 refs., 50 figs., 8 tabs.

  20. Size effects in the quantum yield of Cd Te quantum dots for optimum fluorescence bioimaging

    International Nuclear Information System (INIS)

    Jacinto, C.; Rocha, U.S.; Maestro, L.M.; Garcia-Sole, J.; Jaque, D.

    2011-01-01

    those achievable when using CdSe-QDs. In this work, the size dependence of the fluorescence quantum yield of CdTe Quantum dots has been systematically investigated by Thermal Lens Spectroscopy. It has been found that optimum quantum yield is reached for 3.7 nm quantum dots. The presence of this optimum size has been corroborated by fluorescence experiments. Combination of quantum yield and fluorescence decay time measurements have concluded that the appearance of this optimum size emerges from the interplay between the frequency dependent radiative emission rate and the size dependent coupling strength between bulk exciton and surface trapping states. Our results open a new avenue in the search for new fluorescent 'multifunctional nanoprobes' for high resolution fluorescence imaging at the nanoscale. (author)

  1. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.

    Science.gov (United States)

    Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G

    2014-12-10

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.

  2. Relating quantum discord with the quantum dense coding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song; Zhang, Chi [China University of Mining and Technology, School of Sciences (China); Ye, Bin [China University of Mining and Technology, School of Information and Electrical Engineering (China)

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  3. Relating quantum discord with the quantum dense coding capacity

    International Nuclear Information System (INIS)

    Wang, Xin; Qiu, Liang; Li, Song; Zhang, Chi; Ye, Bin

    2015-01-01

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained

  4. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    Science.gov (United States)

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  5. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress.

    Science.gov (United States)

    Borell, Esther M; Bischof, Kai

    2008-10-01

    Thermal resistance of the coral-zooxanthellae symbiosis has been associated with chronic photoinhibition, increased antioxidant activity and protein repair involving high demands of nitrogen and energy. While the relative importance of heterotrophy as a source of nutrients and energy for cnidarian hosts, and as a means of nitrogen acquisition for their zooxanthellae, is well documented, the effect of feeding on the thermal sensitivity of the symbiotic association has been so far overlooked. Here we examine the effect of zooplankton feeding versus starvation on the bleaching susceptibility and photosynthetic activity of photosystem II (PSII) of zooxanthellae in the scleractinian coral Stylophora pistillata in response to thermal stress (daily temperature rises of 2-3 degrees C) over 10 days, employing pulse-amplitude-modulated chlorophyll fluorometry. Fed and starved corals displayed a decrease in daily maximum potential quantum yield (F (v)/F (m)) of PSII, effective quantum yield (F/F (m)') and relative electron transport rates over the course of 10 days. However after 10 days of exposure to elevated temperature, F (v)/F (m) of fed corals was still 50-70% higher than F (v)/F (m) of starved corals. Starved corals showed strong signs of chronic photoinhibition, which was reflected in a significant decline in nocturnal recovery rates of PSII relative to fed corals. This was paralleled by the progressive inability to dissipate excess excitation energy via non-photochemical quenching (NPQ). After 10 days, NPQ of starved corals had decreased by about 80% relative to fed corals. Feeding treatment had no significant effect on chlorophyll a and c (2) concentrations and zooxanthellae densities, but the mitotic indices were significantly lower in starved than in fed corals. Collectively the results indicate that exogenous food may reduce the photophysiological damage of zooxanthellae that typically leads to bleaching and could therefore play an important role in mediating the

  6. Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

    Science.gov (United States)

    Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H

    2016-01-01

    The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.

  7. Effect of capsid proteins to ICG mass ratio on fluorescent quantum yield of virus-resembling optical nano-materials

    Science.gov (United States)

    Gupta, Sharad; Ico, Gerardo; Matsumura, Paul; Rao, A. L. N.; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    We recently reported construction of a new type of optical nano-construct composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with Indocyanine green (ICG), an FDA-approved chromophore. We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. To utilize OVGs as effective nano-probes in fluorescence imaging applications, their fluorescence quantum yield needs to be maximized. In this study, we investigate the effect of altering the CP to ICG mass ratio on the fluorescent quantum yield of OVGs. Results of this study provide the basis for construction of OVGs with optimal amounts of CP and ICG to yield maximal fluorescence quantum yield.

  8. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    DEFF Research Database (Denmark)

    Meusinger, Carl; Berhanu, Tesfaye A.; Erbland, Joseph

    2014-01-01

    undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼ 1%, much lower than reported for aqueous chemistry. A companion paper...... are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude...

  9. A pH dependence study of CdTe quantum dots fluorescence quantum yields using eclipsing thermal lens spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Estupiñán-López, C. [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Dominguez, C. Tolentino [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Centre for Telecommunication Studies, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Filho, P.E. Cabral [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE (Brazil); Santos, B.S. [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE (Brazil); Fontes, A., E-mail: adriana.fontes.biofisica@gmail.com [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE (Brazil); Araujo, R.E. de, E-mail: renato.earaujo@ufpe.br [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil)

    2016-06-15

    In this study we evaluated the absolute fluorescence quantum yield (Φ) of hydrophilic CdTe QDs in function of different pHs, modified from the alkaline to acid, by using two different chemicals compounds, the mercaptosuccinic acid (MSA-the stabilizing agent of the QDs synthesis) or hydrochloric acid (HCl). The pH control of QDs suspensions is essential for the use of fluorescent nanoparticles in biological systems. We used the eclipsing thermal lens spectroscopy technique to determine the absolute fluorescence quantum yield values. The results showed variations on the Φ values as a function of the pH, which allowed a better understanding of QDs emission characteristics, establishing parameters for their use in biomedical applications such as optical images of biological systems, immunoassays, flow cytometry, biosensors and others.

  10. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    Science.gov (United States)

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    to widely used semiconductor quantum dots. However, it remains a great challenge to prepare highly stable, water-soluble green luminescent Cdots with a high quantum yield. Herein we report a new synthesis route for green luminescent Cdots imbuing these desirable properties and demonstrate their potential...... in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We...

  12. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  13. A comparative study of quantum yield and electrical energy per order (E(Eo)) for advanced oxidative decolourisation of reactive azo dyes by UV light.

    Science.gov (United States)

    Muruganandham, M; Selvam, K; Swaminathan, M

    2007-06-01

    This paper evaluates the quantum yield and electrical energy per order (E(Eo)) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe(2+)/H(2)O(2)/UV>UV/TiO(2)>UV/H(2)O(2). The low efficiency of UV/H(2)O(2) process is mainly due to low UV absorption by hydrogen peroxide at the 365nm. The figure of merit E(Eo) values showed that UV/H(2)O(2) process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H(2)O(2)>UV/TiO(2)>Fe(2+)/H(2)O(2)/UV. At low initial dye concentration higher quantum yield was observed in UV/TiO(2) process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E(Eo) value.

  14. A comparative study of quantum yield and electrical energy per order (E Eo) for advanced oxidative decolourisation of reactive azo dyes by UV light

    International Nuclear Information System (INIS)

    Muruganandham, M.; Selvam, K.; Swaminathan, M.

    2007-01-01

    This paper evaluates the quantum yield and electrical energy per order (E Eo ) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe 2+ /H 2 O 2 /UV > UV/TiO 2 > UV/H 2 O 2 . The low efficiency of UV/H 2 O 2 process is mainly due to low UV absorption by hydrogen peroxide at the 365 nm. The figure of merit E Eo values showed that UV/H 2 O 2 process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H 2 O 2 > UV/TiO 2 > Fe 2+ /H 2 O 2 /UV. At low initial dye concentration higher quantum yield was observed in UV/TiO 2 process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E Eo value

  15. Quantum work relations and response theory in parity-time-symmetric quantum systems

    Science.gov (United States)

    Wei, Bo-Bo

    2018-01-01

    In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.

  16. Modern canonical quantum general relativity

    CERN Document Server

    Thiemann, Thomas

    2007-01-01

    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory provi...

  17. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  18. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  19. Modulating fluorescence quantum yield of highly concentrated fluorescein using differently shaped green synthesized gold nanoparticles

    International Nuclear Information System (INIS)

    John, Jisha; Thomas, Lincy; Kurian, Achamma; George, Sajan D.

    2016-01-01

    The interaction of dye molecules with differently shaped nanoparticles is of great interest owing to the potential applications in areas of bioimaging, sensing and photodynamic therapy (biology) as well as solar cells (photonics) applications. For such applications, noble metallic nanoparticles are commonly employed to either enhance or quench the luminescence of a nearby fluorophore. However, in most of the studies, the dye concentration is limited to avoid self-quenching. This paper reports the influence of differently shaped gold nanoparticles (spherical, bean and star), prepared via green synthesis, on the emission behavior as well as on the fluorescence quantum yield of fluorescein dye at concentrations for which self-quenching occurs. The emission behavior is probed via laser based steady state fluorescence whereas quantum yield is measured using a dual beam laser based thermal lens technique. The experimentally observed fluorescence quenching with a concomitant increase in thermal lens signal in the vicinity of nanoparticles are explained in terms of nonradiative energy transfer between the donor and the acceptor. Further, the influence of pH of the prepared gold nanofluid on the absorption, emission as well as quantum yield are also accounted. These studies elucidate that even at high concentrations of dye, the gold nanoparticle and its shape clearly influences the optical properties of nearby dye molecules and thus can be exploited for future applications. - Highlights: • Green synthesis of differently shaped gold nanoparticles. • Tailoring emission properties of fluorescein with respect to nanoparticle concentration and shape. • Tailoring the quantum yield of highly concentrated fluorescein with nanoparticles.

  20. Reciprocal relativity of noninertial frames: quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Low, Stephen G [4301 Avenue D, Austin, Texas, 78751 (United States)

    2007-04-06

    Noninertial transformations on time-position-momentum-energy space {l_brace}t, q, p, e{r_brace} with invariant Born-Green metric ds{sup 2} = -dt{sup 2} + 1/c{sup 2} dq{sup 2} + 1/b{sup 2} (dp{sup 2} = 1/c{sup 2} de{sup 2}) and the symplectic metric -de and dt + dp and dq are studied. This U 1,3) group of transformations contains the Lorentz group as the inertial special case and, in the limit of small forces and velocities, reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds{sup 2} -dt{sup 2}. The U(1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. In the limit of b {yields} {infinity}, spacetime is invariant. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary representations of its central extension. The same method of projective representations for the inhomogeneous U(1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous U(1,3) group is the cover of the quaplectic group Q(1,3) U(1,3) x{sub s} H(4), H(4) is the Weyl-Heisenberg group. The H(4) group, and the associated Heisenberg commutation relations central to quantum mechanics, results directly from requiring projective representations. A set of second-order wave equations result from the representations of the Casimir operators.

  1. Quantum teleportation for continuous variables and related quantum information processing

    International Nuclear Information System (INIS)

    Furusawa, Akira; Takei, Nobuyuki

    2007-01-01

    Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view

  2. High quantum yield graphene quantum dots decorated TiO_2 nanotubes for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-01-01

    Highlights: • High concentration yellow GQDs and TiO_2 nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO_2 nanotube. • The catalytic performance of GQDs/TiO_2 depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO_2 was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO_2 nanotubes (GQDs/TiO_2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO_2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO_2 nanotubes (TiO_2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO_2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO_2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO_2 composite.

  3. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    Science.gov (United States)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  4. Quantum decoherence and interlevel relations

    Science.gov (United States)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful

  5. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  6. Efficient quantum circuit implementation of quantum walks

    International Nuclear Information System (INIS)

    Douglas, B. L.; Wang, J. B.

    2009-01-01

    Quantum walks, being the quantum analog of classical random walks, are expected to provide a fruitful source of quantum algorithms. A few such algorithms have already been developed, including the 'glued trees' algorithm, which provides an exponential speedup over classical methods, relative to a particular quantum oracle. Here, we discuss the possibility of a quantum walk algorithm yielding such an exponential speedup over possible classical algorithms, without the use of an oracle. We provide examples of some highly symmetric graphs on which efficient quantum circuits implementing quantum walks can be constructed and discuss potential applications to quantum search for marked vertices along these graphs.

  7. Expressing complementarity and the x-p commutation relation through further quantum inequalities

    International Nuclear Information System (INIS)

    Alvarez-Estrada, Ramon F

    2010-01-01

    Complementarity and the commutation relation of position (x) and momentum (p) imply much more than the fundamental x-p uncertainty inequality. Here, we display some further consequences of the former that could have certain pedagogical interest and, so, contribute to the teaching of quantum mechanics. Inspired by an elementary derivation of the x-p uncertainty inequality, based upon a positive quadratic polynomial, we explore one possible extension, via quartic polynomials and simple algebra and integrations. Our analysis, aimed at providing some further pedagogic expression of genuine quantum behaviours, yields other quantum inequalities for expectation values, expressed through suitable discriminants associated with quartic algebraic equations, which differ from (and are not a strict consequence of) the x-p uncertainty inequality. Those quantum inequalities are confirmed, and genuine non-classical behaviours are exhibited, for simple cases: a harmonic oscillator, a hydrogenic atom and free Gaussian wave packets. The physical interest of the expectation values involved in the quantum inequalities and of the latter is discussed, in the framework of quantum optics and squeezing phenomena.

  8. Quantum information and relativity theory

    International Nuclear Information System (INIS)

    Peres, Asher; Terno, Daniel R.

    2004-01-01

    This article discusses the intimate relationship between quantum mechanics, information theory, and relativity theory. Taken together these are the foundations of present-day theoretical physics, and their interrelationship is an essential part of the theory. The acquisition of information from a quantum system by an observer occurs at the interface of classical and quantum physics. The authors review the essential tools needed to describe this interface, i.e., Kraus matrices and positive-operator-valued measures. They then discuss how special relativity imposes severe restrictions on the transfer of information between distant systems and the implications of the fact that quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about that Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory is, of course, necessary for a consistent description of interactions. Its structure implies a fundamental tradeoff between detector reliability and localizability. Moreover, general relativity produces new and counterintuitive effects, particularly when black holes (or, more generally, event horizons) are involved. In this more general context the authors discuss how most of the current concepts in quantum information theory may require a reassessment

  9. Orthogonality and quantum geometry: Towards a relational reconstruction of quantum theory

    NARCIS (Netherlands)

    Zhong, S.

    2015-01-01

    This thesis is an in-depth mathematical study of the non-orthogonality relation between the (pure) states of quantum systems. In Chapter 2, I define quantum Kripke frames, the protagonists of this thesis. A quantum Kripke frame is a Kripke frame in which the binary relation possesses some simple

  10. Quantum yield and lifetime data analysis for the UV curable quantum dot nanocomposites

    Directory of Open Access Journals (Sweden)

    Qi Cheng

    2016-03-01

    Full Text Available The quantum yield (QY and lifetime are the important parameters for the photoluminescent materials. The data here report the changes of the QY and lifetime for the quantum dot (QD nanocomposite after the UV curing of the urethane acrylate prepolymer. The data were collected based on the water soluble CdTe QDs and urethane acrylate prepolymer. Colloidal QDs were in various concentration from 0.5×10−3 molL−1 to 10×10−3 molL−1, and 1% (wt% 1173 was the photoinitiator. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively. The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively. Lifetime data showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively.

  11. How do ligands influence the quantum yields of cyclometalated platinum(ii) complexes, a theoretical research study.

    Science.gov (United States)

    Yang, Baozhu; Huang, Shuang; Wang, Jianhao

    2017-08-30

    A series of cyclometalated platinum(ii) complexes have been investigated with the TDDFT method. These complexes have similar structures but distinct phosphorescence quantum yields. Theoretical calculations were carried out to explain the differences in quantum yields from the conjugation effect of the cyclometalated ligand, molecular rigidity and ligand-field strength of the monodentate ligand. The radiative decay rate constants (k r ) have been discussed with the oscillator strength (f n ), the strength of the spin-orbit coupling (SOC) interaction between the lowest energy triplet excited state (T 1 ) and singlet excited states (S n ), and the energy gaps between E(T 1 ) and E(S n ). To illustrate the nonradiative decay processes, the transition states (TS) between the triplet metal-centered state ( 3 MC) and T 1 states have been optimized. In addition, the minimum energy crossing points (MECPs) between 3 MC and the ground states (S 0 ) were optimized. Finally, the potential energy curves along the nonradiative decay pathways are simulated. To obtain a phosphorescent complex with a high quantum yield, the complex should retain molecular rigidity well in the S 1 and T 1 states, while showing significant structural distortion at the MECP structure.

  12. Photolysis of CH₃CHO at 248 nm: evidence of triple fragmentation from primary quantum yield of CH₃ and HCO radicals and H atoms.

    Science.gov (United States)

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν(248nm) → CH3CHO*, CH3CHO* → CH3 + HCO ϕ(1a) = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ(1e) = 0.205 ± 0.04, CH3CHO*[Formula: see text]CH3CO + HO2 ϕ(1f) = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as ϕ(CH₃) = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ(1b) = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ(1c) = 0.

  13. A general theory of quantum relativity

    International Nuclear Information System (INIS)

    Minic, Djordje; Tze, C.-H.

    2004-01-01

    The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics

  14. Quantum physics and relational ontology

    Energy Technology Data Exchange (ETDEWEB)

    Cordovil, Joao [Center of Philosophy of Sciences of University of Lisbon (Portugal)

    2013-07-01

    The discovery of the quantum domain of reality put a serious ontological challenge, a challenge that is still well present in the recent developments of Quantum Physics. Physics was conceived from an atomistic conception of the world, reducing it, in all its diversity, to two types of entities: simple, individual and immutable entities (atoms, in metaphysical sense) and composite entities, resulting solely from combinations. Linear combinations, additive, indifferent to the structure or to the context. However, the discovery of wave-particle dualism and the developments in Quantum Field Theories and in Quantum Nonlinear Physical, showed that quantum entities are not, in metaphysical sense, neither simple, nor merely the result of linear (or additive) combinations. In other words, the ontological foundations of Physics revealed as inadequate to account for the nature of quantum entities. Then a fundamental challenge arises: How to think the ontic nature of these entities? In my view, this challenge appeals to a relational and dynamist ontology of physical entities. This is the central hypothesis of this communication. In this sense, this communication has two main intentions: 1) positively characterize this relational and dynamist ontology; 2) show some elements of its metaphysical suitability to contemporary Quantum Physics.

  15. High quantum yield graphene quantum dots decorated TiO{sub 2} nanotubes for enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: qal67@163.com; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Highlights: • High concentration yellow GQDs and TiO{sub 2} nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO{sub 2} nanotube. • The catalytic performance of GQDs/TiO{sub 2} depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO{sub 2} was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO{sub 2} nanotubes (GQDs/TiO{sub 2} NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO{sub 2} NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO{sub 2} nanotubes (TiO{sub 2} NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO{sub 2} NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO{sub 2} NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO{sub 2} composite.

  16. Relativity, symmetry and the structure of quantum theory

    CERN Document Server

    Klink, William H; Schweiger, Wolfgang

    Quantum theory is one of the most successful of all physical theories. Our everyday world is dominated by devices that function because of knowledge of the quantum world. Yet many, physicists and non-physicists alike, find the theory which explains the behavior of the quantum world baffling and strange. This book is the first in a series of three that argues that relativity and symmetry determine the structure of quantum theory. That is to say, the structure of quantum theory is what it is because of relativity and symmetry. There are different types of relativity, each leading to a particular type of quantum theory. This book deals specifically with what we call Newton relativity, the form of relativity built into Newtonian mechanics, and the quantum theory to which it gives rise, which we call Galilean (often misleadingly called non-relativistic) quantum theory. Key Features: • Meaning and significance of the term of relativity; discussion of the principle of relativity. • Relation of symmetry to relati...

  17. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  18. Relative quantum yield of I-asterisk(2P1/2) in the tunable laser UV photodissociation of i-C3F7I and n-C3F7I - Effect of temperature and exciplex emission

    Science.gov (United States)

    Smedley, J. E.; Leone, S. R.

    1983-01-01

    Wavelength-specific relative quantum yields of metastable I from pulsed laser photodissociation of i-C3F7I and n-C3F7I in the range 265-336 nm are determined by measuring the time-resolved infrared emission from the atomic I(P-2(1/2) P-2(3/2) transition. It is shown that although this yield appears to be unity from 265 to 298 nm, it decreases dramatically at longer wavelengths. Values are also reported for the enhancement of emission from metastable I due to exciplex formation at several temperatures. The exciplex formation emission increases linearly with parent gas pressure, but decreases with increasing temperature. Absorption spectra of i- and n-C3F7I between 303 and 497 K are presented, and the effect of temperature on the quantum yields at selected wavelengths greater than 300 nm, where increasing the temperature enhances the absorption considerably, are given. The results are discussed in regard to the development of solar-pumped iodine lasers.

  19. The Broken Ring: Reduced Aromaticity in Lys-Trp Cations and High pH Tautomer Correlates with Lower Quantum Yield and Shorter Lifetimes

    Science.gov (United States)

    2015-01-01

    Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of Lys-Trp dipeptide charged species shows that backbone-ring interactions are undistinguished. Instead, quantum mechanical ground state isosurfaces reveal variations in indole π electron distribution and density that parallel charge (as a function of pK1, pK2, and pKR) on the backbone and residues. A pattern of aromaticity-associated quantum yield and fluorescence lifetime changes emerges. Where quantum yield is high, isosurfaces have a charge distribution similar to the highest occupied molecular orbital (HOMO) of indole, which is the dominant fluorescent ground state of the 1La transition dipole moment. Where quantum yield is low, isosurface charge distribution over the ring is uneven, diminished, and even found off ring. At pH 13, the indole amine is deprotonated, and Lys-Trp quantum yield is extremely low due to tautomer structure that concentrates charge on the indole amine; the isosurface charge distribution bears scant resemblance to the indole HOMO. Such greatly diminished fluorescence has been observed for proteins where the indole nitrogen is hydrogen bonded, lending credence to the association of aromaticity changes with diminished quantum yield in proteins as well. Thus tryptophan ground state isosurfaces are an indicator of indole aromaticity, signaling the partition of excitation energy between radiative and nonradiative processes. PMID:24882092

  20. Special relativity at the quantum scale.

    Directory of Open Access Journals (Sweden)

    Pui K Lam

    Full Text Available It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry. Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1 the quantum version of the postulates of special relativity and (2 the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  1. Special relativity at the quantum scale.

    Science.gov (United States)

    Lam, Pui K

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  2. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abolfath, R; Guo, F; Chen, Z; Nath, R [Yale New Haven Hospital, New Haven, CT (United States)

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  3. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms

    Science.gov (United States)

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-01

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν248nm → CH3CHO*, CH3CHO* → CH3 + HCO ϕ1a = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ1e = 0.205 ± 0.04, CH3CHO*{to 2pc{rArrfill}}limits^{o2}CH3CO + HO2 ϕ1f = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as φ_{CH3} = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ1b = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ1c = 0.

  4. Modern Canonical Quantum General Relativity

    Science.gov (United States)

    Thiemann, Thomas

    2008-11-01

    Preface; Notation and conventions; Introduction; Part I. Classical Foundations, Interpretation and the Canonical Quantisation Programme: 1. Classical Hamiltonian formulation of general relativity; 2. The problem of time, locality and the interpretation of quantum mechanics; 3. The programme of canonical quantisation; 4. The new canonical variables of Ashtekar for general relativity; Part II. Foundations of Modern Canonical Quantum General Relativity: 5. Introduction; 6. Step I: the holonomy-flux algebra [P]; 7. Step II: quantum-algebra; 8. Step III: representation theory of [A]; 9. Step IV: 1. Implementation and solution of the kinematical constraints; 10. Step V: 2. Implementation and solution of the Hamiltonian constraint; 11. Step VI: semiclassical analysis; Part III. Physical Applications: 12. Extension to standard matter; 13. Kinematical geometrical operators; 14. Spin foam models; 15. Quantum black hole physics; 16. Applications to particle physics and quantum cosmology; 17. Loop quantum gravity phenomenology; Part IV. Mathematical Tools and their Connection to Physics: 18. Tools from general topology; 19. Differential, Riemannian, symplectic and complex geometry; 20. Semianalytical category; 21. Elements of fibre bundle theory; 22. Holonomies on non-trivial fibre bundles; 23. Geometric quantisation; 24. The Dirac algorithm for field theories with constraints; 25. Tools from measure theory; 26. Elementary introduction to Gel'fand theory for Abelean C* algebras; 27. Bohr compactification of the real line; 28. Operatir -algebras and spectral theorem; 29. Refined algebraic quantisation (RAQ) and direct integral decomposition (DID); 30. Basics of harmonic analysis on compact Lie groups; 31. Spin network functions for SU(2); 32. + Functional analytical description of classical connection dynamics; Bibliography; Index.

  5. Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae

    NARCIS (Netherlands)

    Flameling, I.A.; Kromkamp, J.C.

    1998-01-01

    Quantum yields of photosystem II (PSII) charge separation (Phi(P)) and oxygen production (Phi(O2)) were determined by simultaneous measurements of oxygen production and variable fluorescence in four different aquatic microalgae representing three different taxonomic groups: the freshwater alga

  6. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  7. N-acetylcysteine increased rice yield

    OpenAIRE

    NOZULAIDI, MOHD; JAHAN, MD SARWAR; KHAIRI, MOHD; KHANDAKER, MOHAMMAD MONERUZZAMAN; NASHRIYAH, MAT; KHANIF, YUSOP MOHD

    2015-01-01

    N-acetylcysteine (NAC) biosynthesized reduced glutathione (GSH), which maintains redox homeostasis in plants under normal and stressful conditions. To justify the effects of NAC on rice production, we measured yield parameters, chlorophyll (Chl) content, minimum Chl fluorescence (Fo), maximum Chl fluorescence (Fm), quantum yield (Fv/Fm), net photosynthesis rate (Pn), photosynthetically active radiation (PAR), and relative water content (RWC). Four treatments, N1G0 (nitrogen (N) with no NAC), ...

  8. Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters.

    Science.gov (United States)

    Marchisio, Andrea; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-04-15

    Chromophoric dissolved organic matter (CDOM) in surface waters is a photochemical source of several transient species such as CDOM triplet states ((3)CDOM*), singlet oxygen ((1)O2) and the hydroxyl radical (OH). By irradiation of lake water samples, it is shown here that the quantum yields for the formation of these transients by CDOM vary depending on the irradiation wavelength range, in the order UVB > UVA > blue. A possible explanation is that radiation at longer wavelengths is preferentially absorbed by the larger CDOM fractions, which show lesser photoactivity compared to smaller CDOM moieties. The quantum yield variations in different spectral ranges were definitely more marked for (3)CDOM* and OH compared to (1)O2. The decrease of the quantum yields with increasing wavelength has important implications for the photochemistry of surface waters, because long-wavelength radiation penetrates deeper in water columns compared to short-wavelength radiation. The average steady-state concentrations of the transients ((3)CDOM*, (1)O2 and OH) were modelled in water columns of different depths, based on the experimentally determined wavelength trends of the formation quantum yields. Important differences were found between such modelling results and those obtained in a wavelength-independent quantum yield scenario. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  10. Quantum geometry of resurgent perturbative/nonperturbative relations

    Energy Technology Data Exchange (ETDEWEB)

    Basar, Gökçe [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States); Dunne, Gerald V. [Department of Physics, University of Connecticut, Storrs, CT 06269-3046 (United States); Ünsal, Mithat [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2017-05-16

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain N=2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c=3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.

  11. Relational quadrilateralland II: The Quantum Theory

    Science.gov (United States)

    Anderson, Edward; Kneller, Sophie

    2014-04-01

    We provide the quantum treatment of the relational quadrilateral. The underlying reduced configuration spaces are ℂℙ2 and the cone over this. We consider exact free and isotropic HO potential cases and perturbations about these. Moreover, our purely relational kinematical quantization is distinct from the usual one for ℂℙ2, which turns out to carry absolutist connotations instead. Thus, this paper is the first to note absolute-versus-relational motion distinctions at the kinematical rather than dynamical level. It is also an example of value to the discussion of kinematical quantization along the lines of Isham, 1984. The relational quadrilateral is the simplest RPM whose mathematics is not standard in atomic physics (the triangle and four particles on a line are both based on 𝕊2 and ℝ3 mathematics). It is far more typical of the general quantum relational N-a-gon than the previously studied case of the relational triangle. We consider useful integrals as regards perturbation theory and the peaking interpretation of quantum cosmology. We subsequently consider problem of time (PoT) applications of this: quantum Kuchař beables, the Machian version of the semiclassical approach and the timeless naïve Schrödinger interpretation. These go toward extending the combined Machian semiclassical-Histories-Timeless Approach of [Int. J. Mod. Phys. D23 (2014) 1450014] to the case of the quadrilateral, which will be treated in subsequent papers.

  12. Quantum reversibility is relative, or does a quantum measurement reset initial conditions?

    Science.gov (United States)

    Zurek, Wojciech H

    2018-07-13

    I compare the role of the information in classical and quantum dynamics by examining the relation between information flows in measurements and the ability of observers to reverse evolutions. I show that in the Newtonian dynamics reversibility is unaffected by the observer's retention of the information about the measurement outcome. By contrast-even though quantum dynamics is unitary, hence, reversible-reversing quantum evolution that led to a measurement becomes, in principle, impossible for an observer who keeps the record of its outcome. Thus, quantum irreversibility can result from the information gain rather than just its loss-rather than just an increase of the (von Neumann) entropy. Recording of the outcome of the measurement resets, in effect, initial conditions within the observer's (branch of) the Universe. Nevertheless, I also show that the observer's friend-an agent who knows what measurement was successfully carried out and can confirm that the observer knows the outcome but resists his curiosity and does not find out the result-can, in principle, undo the measurement. This relativity of quantum reversibility sheds new light on the origin of the arrow of time and elucidates the role of information in classical and quantum physics. Quantum discord appears as a natural measure of the extent to which dissemination of information about the outcome affects the ability to reverse the measurement.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  13. Machine learning with quantum relative entropy

    International Nuclear Information System (INIS)

    Tsuda, Koji

    2009-01-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  14. Machine learning with quantum relative entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Koji [Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, 72076 (Germany)], E-mail: koji.tsuda@tuebingen.mpg.de

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  15. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  16. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    Science.gov (United States)

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  17. Unitary Quantum Relativity. (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  18. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  19. Near-unity photoluminescence quantum yield in MoS2

    KAUST Repository

    Amani, Matin

    2015-11-26

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low.The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QYof 0.6%, which indicates a considerable defect density. Herewe report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude.The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a finalQYofmore than 95%, with a longest-observed lifetime of 10.8 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  20. Near-unity photoluminescence quantum yield in MoS2

    KAUST Repository

    Amani, Matin; Lien, Der Hsien; Kiriya, Daisuke; Xiao, Jun; Azcatl, Angelica; Noh, Jiyoung; Madhvapathy, Surabhi R.; Addou, Rafik; Santosh, K. C.; Dubey, Madan; Cho, Kyeongjae; Wallace, Robert M.; Lee, Si Chen; He, Jr-Hau; Ager, Joel W.; Zhang, Xiang; Yablonovitch, Eli; Javey, Ali

    2015-01-01

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low.The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QYof 0.6%, which indicates a considerable defect density. Herewe report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude.The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a finalQYofmore than 95%, with a longest-observed lifetime of 10.8 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  1. Analytical mechanics for relativity and quantum mechanics

    CERN Document Server

    Johns, Oliver Davis

    2011-01-01

    Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...

  2. On the relation of the theoretical foundations of quantum theory and general relativity theory

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.

  3. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S [Department of Medical Physics, Juravinski Cancer Centre and McMaster University, 699 Concession Street, Hamilton, Ontario L8V 5C2 (Canada)

    2003-12-21

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance were calculated by diffusion theory and Monte Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS{sub 4}), Photofrin or meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride (TPPS{sub 4}). The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelengthwas recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS{sub 4} and TPPS{sub 4} were calculated to be 0.59 {+-} 0.03 and 0.121 {+-} 0

  4. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence

    International Nuclear Information System (INIS)

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S

    2003-01-01

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance were calculated by diffusion theory and Monte Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS 4 ), Photofrin or meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride (TPPS 4 ). The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelengthwas recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS 4 and TPPS 4 were calculated to be 0.59 ± 0.03 and 0.121 ± 0.001 respectively using the point

  5. Violet-to-Blue Gain and Lasing from Colloidal CdS Nanoplatelets: Low-Threshold Stimulated Emission Despite Low Photoluminescence Quantum Yield

    Energy Technology Data Exchange (ETDEWEB)

    Diroll, Benjamin T.; Talapin, Dmitri V.; Schaller, Richard D.

    2017-02-13

    Amplified spontaneous emission (ASE) and lasing from solution-processed materials are demonstrated in the challenging violet-to-blue (430–490 nm) spectral region for colloidal nanoplatelets of CdS and newly synthesized core/shell CdS/ZnS nanoplatelets. Despite modest band-edge photoluminescence quantum yields of 2% or less for single excitons, which we show results from hole trapping, the samples exhibit low ASE thresholds. Furthermore, four-monolayer CdS samples show ASE at shorter wavelengths than any reported film of colloidal quantum-confined material. This work underlines that low quantum yields for single excitons do not necessarily lead to a poor gain medium. The low ASE thresholds originate from negligible dispersion in thickness, large absorption cross sections of 2.8 × 10–14 cm–2, and rather slow (150 to 300 ps) biexciton recombination. We show that under higher-fluence excitation, ASE can kinetically outcompete hole trapping. Using nanoplatelets as the gain medium, lasing is observed in a linear optical cavity. This work confirms the fundamental advantages of colloidal quantum well structures as gain media, even in the absence of high photoluminescence efficiency.

  6. Incompatibility of the quantum and relativity theories and a possible resolution

    International Nuclear Information System (INIS)

    Sachs, M.

    1982-01-01

    This paper presents a comparison of the conceptual bases of the quantum theory and the theory of relativity, each considered as fundamental theories of elementary matter. From a study of the irreducible axiomatic bases of these respective approaches to elementary matter, it is concluded that they cannot peacefully co-exist because of logical incompatibility. Among the reasons discussed for this conclusion, one is the implication of the Hamiltonian form of quantum mechanics yielding an irreducible absolute frame of reference - that of the measuring apparatus - in the basic expression for the laws of elementary particles. This difficulty leads to logical inconsistency as well as a formulation of relativistic quantum field theory that is not demonstrably mathematically consistent. In spite of their logical incompatiability, it is argued that each of these theories logically requires the other, within its own framework. The conclusion is reached that, to make further progress in our understanding of elementary matter, it is necessary to abandon the axiomatic basis of one of these theories for the other, while keeping the formal structure of the abandoned theory as an accurate mathematical approximation (under special physical conditions) for a generalized form of the retained theory. An argument is presented for the author's retention of the theory of relativity as an authentic basis of elementary matter, and how its generalization is achieved by incorporating a fully (generally) covariant expression of the inertial manifestations of matter with its force manifestations

  7. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, John; Mishra, Ashok Kumar [Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  8. Introducing Relativity into Quantum Chemistry

    Science.gov (United States)

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  9. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    Science.gov (United States)

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  10. Quantum Theory finally reconciled with Special Relativity

    OpenAIRE

    Tommasini, Daniele

    2001-01-01

    In 1935 Einstein, Podolsky and Rosen (EPR) pointed out that Quantum Mechanics apparently implied some mysterious, instantaneous action at a distance. This paradox is supposed to be related to the probabilistic nature of the theory, but since deterministic alternatives involving "Hidden Variables" hardly agree with the experiments, the scientific community is now accepting this ``quantum nonlocality" as if it were a reality. However, I have argued recently that Quantum Electrodynamics is free ...

  11. On the relation between reduced quantisation and quantum reduction for spherical symmetry in loop quantum gravity

    International Nuclear Information System (INIS)

    Bodendorfer, N; Zipfel, A

    2016-01-01

    Building on a recent proposal for a quantum reduction to spherical symmetry from full loop quantum gravity, we investigate the relation between a quantisation of spherically symmetric general relativity and a reduction at the quantum level. To this end, we generalise the previously proposed quantum reduction by dropping the gauge fixing condition on the radial diffeomorphisms, thus allowing us to make direct contact with previous work on reduced quantisation. A dictionary between spherically symmetric variables and observables with respect to the reduction constraints in the full theory is discussed, as well as an embedding of reduced quantum states to a subsector of the quantum symmetry reduced full theory states. On this full theory subsector, the quantum algebra of the mentioned observables is computed and shown to qualitatively reproduce the quantum algebra of the reduced variables in the large quantum number limit for a specific choice of regularisation. Insufficiencies in recovering the reduced algebra quantitatively from the full theory are attributed to the oversimplified full theory quantum states we use. (paper)

  12. Reasonable fermionic quantum information theories require relativity

    International Nuclear Information System (INIS)

    Friis, Nicolai

    2016-01-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory. (paper)

  13. Some relations of parameters in quantum field theory

    International Nuclear Information System (INIS)

    Ishikawa, K.

    1986-01-01

    Two schemes of parameter relations, linear relation and non-linear relation are discussed. The linear relation of coupling constants is derived directly from an underlying symmetry of the classical theory and is preserved usually in the quantum theory. The non-linear relation is not derived by a same manner but is derived by more involved way which is intrinsically connected with quantum theory. An underlying symmetry which leads the linear relation is shown to be essential in the non-linear relation too. Some extension is also discussed

  14. Universal quantum uncertainty relations between nonergodicity and loss of information

    Science.gov (United States)

    Awasthi, Natasha; Bhattacharya, Samyadeb; SenDe, Aditi; Sen, Ujjwal

    2018-03-01

    We establish uncertainty relations between information loss in general open quantum systems and the amount of nonergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying a set of intuitively satisfactory axioms. The relations show that as the nonergodicity of the dynamics increases, the lower bound on information loss decreases, which validates the belief that nonergodicity plays an important role in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central qubit interacting with a fermionic thermal bath and derive its reduced dynamics to subsequently investigate the information loss and nonergodicity in such dynamics. We comment on the "minimal" situations that saturate the uncertainty relations.

  15. Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment

    Science.gov (United States)

    Zhang, Jun; Liu, Liang; Han, Yan

    2018-05-01

    In this paper, we investigate the tightness of entropic uncertainty relation in the absence (presence) of the quantum memory which the memory particle being weakly coupled to a decohering Davies-type Markovian environment. The results show that the tightness of the quantum uncertainty relation can be controlled by the energy relaxation time F, the dephasing time G and the rescaled temperature p, the perfect tightness can be arrived by dephasing and energy relaxation satisfying F = 2G and p = 1/2. In addition, the tightness of the memory-assisted entropic uncertainty relation and the entropic uncertainty relation can be influenced mainly by the purity. While in memory-assisted model, the purity and quantum correlation can also influence the tightness actively while the quantum entanglement can influence the tightness slightly.

  16. Measuring the quality of a quantum reference frame: The relative entropy of frameness

    International Nuclear Information System (INIS)

    Gour, Gilad; Marvian, Iman; Spekkens, Robert W.

    2009-01-01

    In the absence of a reference frame for transformations associated with group G, any quantum state that is noninvariant under the action of G may serve as a token of the missing reference frame. We here present a measure of the quality of such a token: the relative entropy of frameness. This is defined as the relative entropy distance between the state of interest and the nearest G-invariant state. Unlike the relative entropy of entanglement, this quantity is straightforward to calculate, and we find it to be precisely equal to the G-asymmetry, a measure of frameness introduced by Vaccaro et al. It is shown to provide an upper bound on the mutual information between the group element encoded into the token and the group element that may be extracted from it by measurement. In this sense, it quantifies the extent to which the token successfully simulates a full reference frame. We also show that despite a suggestive analogy from entanglement theory, the regularized relative entropy of frameness is zero and therefore does not quantify the rate of interconversion between the token and some standard form of quantum reference frame. Finally, we show how these investigations yield an approach to bounding the relative entropy of entanglement.

  17. Near-unity photoluminescence quantum yield in MoS.sub.2

    Science.gov (United States)

    Amani, Matin; Lien, Der-Hsien; Kiriya, Daisuke; Bullock, James; Javey, Ali

    2017-12-26

    Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS.sub.2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS.sub.2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8.+-.0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.

  18. On the 'principle of the quantumness', the quantumness of Relativity, and the computational grand-unification

    International Nuclear Information System (INIS)

    D'Ariano, Giacomo Mauro

    2010-01-01

    I will argue that the proposal of establishing operational foundations of Quantum Theory should have top-priority, and that the Lucien Hardy's program on Quantum Gravity should be paralleled by an analogous program on Quantum Field Theory (QFT), which needs to be reformulated, notwithstanding its experimental success. In this paper, after reviewing recently suggested operational 'principles of the quantumness', I address the problem on whether Quantum Theory and Special Relativity are unrelated theories, or instead, if the one implies the other. I show how Special Relativity can be indeed derived from causality of Quantum Theory, within the computational paradigm 'the universe is a huge quantum computer', reformulating QFT as a Quantum-Computational Field Theory (QCFT). In QCFT Special Relativity emerges from the fabric of the computational network, which also naturally embeds gauge invariance. In this scheme even the quantization rule and the Planck constant can in principle be derived as emergent from the underlying causal tapestry of space-time. In this way Quantum Theory remains the only theory operating the huge computer of the universe.Is the computational paradigm only a speculative tautology (theory as simulation of reality), or does it have a scientific value? The answer will come from Occam's razor, depending on the mathematical simplicity of QCFT. Here I will just start scratching the surface of QCFT, analyzing simple field theories, including Dirac's. The number of problems and unmotivated recipes that plague QFT strongly motivates us to undertake the QCFT project, since QCFT makes all such problems manifest, and forces a re-foundation of QFT.

  19. The problem of time quantum mechanics versus general relativity

    CERN Document Server

    Anderson, Edward

    2017-01-01

    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon ...

  20. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    Science.gov (United States)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  1. Between general relativity and quantum theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1982-01-01

    Some possibilities of reconciling general relativity with quantum theory are discussed. The procedure of quantization is certainly not unique, but depends upon the choice of the coordinate conditions. Most versions of quantization predict the existence of gravitons, but it is also possible to formulate a quantum theory with a classical gravity whereby the expectation values of Tsub(μν) constitute the sources of the classical metric field. (author)

  2. A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a 'clock'. Conditional probabilities are computed for variables of the system to take certain values when the 'clock' specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation

  3. Quantum uncertainty relation based on the mean deviation

    OpenAIRE

    Sharma, Gautam; Mukhopadhyay, Chiranjib; Sazim, Sk; Pati, Arun Kumar

    2018-01-01

    Traditional forms of quantum uncertainty relations are invariably based on the standard deviation. This can be understood in the historical context of simultaneous development of quantum theory and mathematical statistics. Here, we present alternative forms of uncertainty relations, in both state dependent and state independent forms, based on the mean deviation. We illustrate the robustness of this formulation in situations where the standard deviation based uncertainty relation is inapplica...

  4. Energy entanglement relation for quantum energy teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)

    2010-07-26

    Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.

  5. Formulation of uncertainty relation of error and disturbance in quantum measurement by using quantum estimation theory

    International Nuclear Information System (INIS)

    Yu Watanabe; Masahito Ueda

    2012-01-01

    Full text: When we try to obtain information about a quantum system, we need to perform measurement on the system. The measurement process causes unavoidable state change. Heisenberg discussed a thought experiment of the position measurement of a particle by using a gamma-ray microscope, and found a trade-off relation between the error of the measured position and the disturbance in the momentum caused by the measurement process. The trade-off relation epitomizes the complementarity in quantum measurements: we cannot perform a measurement of an observable without causing disturbance in its canonically conjugate observable. However, at the time Heisenberg found the complementarity, quantum measurement theory was not established yet, and Kennard and Robertson's inequality erroneously interpreted as a mathematical formulation of the complementarity. Kennard and Robertson's inequality actually implies the indeterminacy of the quantum state: non-commuting observables cannot have definite values simultaneously. However, Kennard and Robertson's inequality reflects the inherent nature of a quantum state alone, and does not concern any trade-off relation between the error and disturbance in the measurement process. In this talk, we report a resolution to the complementarity in quantum measurements. First, we find that it is necessary to involve the estimation process from the outcome of the measurement for quantifying the error and disturbance in the quantum measurement. We clarify the implicitly involved estimation process in Heisenberg's gamma-ray microscope and other measurement schemes, and formulate the error and disturbance for an arbitrary quantum measurement by using quantum estimation theory. The error and disturbance are defined in terms of the Fisher information, which gives the upper bound of the accuracy of the estimation. Second, we obtain uncertainty relations between the measurement errors of two observables [1], and between the error and disturbance in the

  6. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2015-01-01

    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  7. Relation between random walks and quantum walks

    Science.gov (United States)

    Boettcher, Stefan; Falkner, Stefan; Portugal, Renato

    2015-05-01

    Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.

  8. Entanglement-fidelity relations for inaccurate ancilla-driven quantum computation

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki; Kahn, Jonas

    2010-01-01

    It was shown by T. Morimae [Phys. Rev. A 81, 060307(R) (2010)] that the gate fidelity of an inaccurate one-way quantum computation is upper bounded by a decreasing function of the amount of entanglement in the register. This means that a strong entanglement causes the low gate fidelity in the one-way quantum computation with inaccurate measurements. In this paper, we derive similar entanglement-fidelity relations for the inaccurate ancilla-driven quantum computation. These relations again imply that a strong entanglement in the register causes the low gate fidelity in the ancilla-driven quantum computation if the measurements on the ancilla are inaccurate.

  9. Relativity and quantum physics for beginners

    CERN Document Server

    Manly, Steven L

    2009-01-01

    As we humans have expanded our horizons to see things vastly smaller, faster, larger, and farther than ever before, we have been forced to confront preconceptions born of the human experience and create wholly new ways of looking at the world around us. The theories of relativity and quantum physics were developed out of this need and have provided us with phenomenal, mind-twisting insights into the strange and exciting reality show of our universe.Relativity and Quantum Physics For Beginners is an entertaining and accessible introduction to the bizarre concepts that fueled the scientific revolution of the 20th century and led to amazing advances in our understanding of the universe.

  10. Accurate quantum yields by laser gain vs absorption spectroscopy - Investigation of Br/Br(asterisk) channels in photofragmentation of Br2 and IBr

    Science.gov (United States)

    Haugen, H. K.; Weitz, E.; Leone, S. R.

    1985-01-01

    Various techniques have been used to study photodissociation dynamics of the halogens and interhalogens. The quantum yields obtained by these techniques differ widely. The present investigation is concerned with a qualitatively new approach for obtaining highly accurate quantum yields for electronically excited states. This approach makes it possible to obtain an accuracy of 1 percent to 3 percent. It is shown that measurement of the initial transient gain/absorption vs the final absorption in a single time-resolved signal is a very accurate technique in the study of absolute branching fractions in photodissociation. The new technique is found to be insensitive to pulse and probe laser characteristics, molecular absorption cross sections, and absolute precursor density.

  11. Quantum cosmological relational model of shape and scale in 1D

    International Nuclear Information System (INIS)

    Anderson, Edward

    2011-01-01

    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1D to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues (1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schroedinger interpretation and records theory) and (2) in quantum cosmology, such as in the investigation of uniform states, robustness and the qualitative understanding of the origin of structure formation.

  12. Revisiting the quantum Szilard engine with fully quantum considerations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China); Zou, Jian, E-mail: zoujian@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jun-Gang; Shao, Bin [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), P.O. Box 644, ES-48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, ES-48011 Bilbao (Spain)

    2012-12-15

    By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from the bath in the QSZE. Moreover, when the well width L{yields}{infinity} or the temperature of the bath T{yields}{infinity} the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W{sub tot}=k{sub B}Tln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case. - Highlights: Black-Right-Pointing-Pointer For the first time analyze the QSZE by considering energy level shifts. Black-Right-Pointing-Pointer Find different roles played by classical and quantum information in the QSZE. Black-Right-Pointing-Pointer The amount of work extracted depends on the cyclic strategies of the QSZE. Black-Right-Pointing-Pointer Verify that the QSZE will reduce to the CSZE in the classical limits.

  13. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  14. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  15. Modern Canonical Quantum General Relativity;

    International Nuclear Information System (INIS)

    Kiefer, Claus

    2008-01-01

    The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches-loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang-Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of

  16. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    Science.gov (United States)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  17. Pressure dependent photolysis quantum yields for CH3C(O)CH3 at 300 and 308 nm and at 298 and 228 K.

    Science.gov (United States)

    Khamaganov, V G; Crowley, J N

    2013-07-07

    The quantum yield of formation of CH3 and CH3CO in the pulsed laser photo-excitation of acetone at 300 and 308 nm was investigated at several pressures (60 to 740 Torr) and at either 298 or 228 K. The organic radicals generated were monitored indirectly following conversion (by reaction with Br2) to Br atoms, which were detected by resonance fluorescence. The photolysis of Cl2 in back-to-back experiments at the same wavelength and under identical experimental conditions served as chemical actinometer. The pressure and temperature dependent quantum yields obtained with this method are in good agreement with previous literature values and are reproduced using the parameterisation developed by Blitz et al. The Br formation kinetics deviated from that expected from reactions of CH3 and CH3CO alone and Br atoms were still observed at high yield even when the quantum yield of formation of CH3 and CH3CO was low. This is explained by the reactive quenching of thermalized triplet acetone (T1) by Br2. High yields of T1 (>80%) at the highest pressure in this study indicate that any dissociation from the first excited singlet state (S1) occurs in competition with intersystem crossing, and that physical quenching of S1 to the electronic ground (S0) is not a major process at these wavelengths. The rate coefficient for reaction of T1 with Br2 was found to be ∼3 × 10(-10) cm(3) molecule(-1) s(-1), independent of pressure or temperature.

  18. Can quantum theory and special relativity peacefully coexist?

    NARCIS (Netherlands)

    Seevinck, M.P.

    This white paper aims to identify an open problem in ‘Quantum Physics and the Nature of Reality’—namely whether quantum theory and special relativity are formally compatible—, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.

  19. Can quantum theory and special relativity peacefully coexist?

    NARCIS (Netherlands)

    Seevinck, M.P.; Briggs, A.

    2010-01-01

    This white paper aims to identify an open problem in ‘Quantum Physics and the Nature of Reality’—namely whether quantum theory and special relativity are formally compatible—, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.

  20. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  1. Quantum mechanics from general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1986-01-01

    A generalization of quantum mechanics is demonstrated in the context of general relativity, following from a generally covariant field theory of inertia. Nonrelativistically, the formalism corresponds with linear quantum mechanics. In the limit of special relativity, nonlinearity remains and several new features are derived: (1) Particle-antiparticle pairs do not annihilate; an exact bound state solution is derived corresponding with all experimental facts about annihilation/creation - which, in approximation, gives the blackbody radiation spectrum for a sea of such pairs. (2) A result is proven, without approximation, that is physically equivalent to the Pauli exclusion principle - which, in linear approximation, gives the totally antisymmetrised many-body wave function and Fermi-Dirac statistics. (3) The hydrogen spectrum is derived, including the Lamb shifts, in agreement with experiment; new results are found for high energy electron-proton scattering. (4) Finally, several applications to the elementary particle domain are demonstrated, in agreement with results from experimental high energy physics. (Auth.)

  2. Quantum quincunx in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Sanders, Barry C.; Bartlett, Stephen D.; Tregenna, Ben; Knight, Peter L.

    2003-01-01

    We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence

  3. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H.v.; Treder, H.J.

    1984-01-01

    The paper concerns Einstein's general relativity, wave mechanics and the quantization of Einstein's gravitation equations. The principle of equivalence and its association with both wave mechanics and quantum gravity, is discussed. (U.K.)

  4. Generalization of uncertainty relation for quantum and stochastic systems

    Science.gov (United States)

    Koide, T.; Kodama, T.

    2018-06-01

    The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.

  5. Relational quantum mechanics

    International Nuclear Information System (INIS)

    Rovelli, C.

    1996-01-01

    I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the open-quotes measurement problemclose quotes) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of open-quotes observer-independent stateclose quotes of a system, or open-quotes observer-independent values of physical quantities.close quotes I reformulate the problem of the open-quotes interpretation of quantum mechanicsclose quotes as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete

  6. Categories of relations as models of quantum theory

    Directory of Open Access Journals (Sweden)

    Chris Heunen

    2015-11-01

    Full Text Available Categories of relations over a regular category form a family of models of quantum theory. Using regular logic, many properties of relations over sets lift to these models, including the correspondence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this lifting gives continuous symmetric encryption. Over a regular Mal'cev category, this correspondence gives a characterization of categories of completely positive maps, enabling the formulation of quantum features. These models are closer to Hilbert spaces than relations over sets in several respects: Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.

  7. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    Science.gov (United States)

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Noncommutative unification of general relativity and quantum mechanics

    International Nuclear Information System (INIS)

    Heller, Michael; Pysiak, Leszek; Sasin, Wieslaw

    2005-01-01

    We present a model unifying general relativity and quantum mechanics based on a noncommutative geometry. This geometry is developed in terms of a noncommutative algebra A which is defined on a transformation groupoid Γ given by the action of a noncompact group G on the total space E of a principal fiber bundle over space-time M. The case is important since to obtain physical effects predicted by the model we should assume that G is a Lorentz group or some of its representations. We show that the generalized Einstein equation of the model has the form of the eigenvalue equation for the generalized Ricci operator, and all relevant operators in the quantum sector of the model are random operators; we study their dynamics. We also show that the model correctly reproduces general relativity and the usual quantum mechanics. It is interesting that the latter is recovered by performing the measurement of any observable. In the act of such a measurement the model 'collapses' to the usual quantum mechanics

  9. Geometry, commutation relations and the quantum fictitious force

    DEFF Research Database (Denmark)

    Botero, J.; Cirone, M.A.; Dahl, Jens Peder

    2003-01-01

    We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave.......We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave....

  10. Quantum fields on manifolds: an interplay between quantum theory, statistical thermodynamics and general relativity

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1986-01-01

    The author shows how the basic axioms of quantum field theory, general relativity and statistical thermodynamics lead, in a model-independent way, to a generalized Hawking-Unruh effect, whereby the gravitational fields carried by a class of space-time manifolds with event horizons thermalize ambient quantum fields. The author is concerned with a quantum field on a space-time x containing a submanifold X' bounded by event horizons. The objective is to show that, for a wide class of space-times, the global vacuum state of the field reduces, in X', to a thermal state, whose temperature depends on the geometry. The statistical thermodynaical, geometrical, and quantum field theoretical essential ingredients for the reduction of the vacuum state are discussed

  11. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  12. The relative entropy in the quantum mechanics

    International Nuclear Information System (INIS)

    Lecomte Montes, A.

    1983-06-01

    Relative Entropy is a generalization of entropy which substitutes the Liouville measure from classical mechanics or the trace from quantum mechanics by an arbitrary state. There are many different defintions of it in quantum mechanics because the algebra of observables is not commutative. In this work, three known defintions of the quantum relative entropy are studied and compared but specifically their common properties are presented. The best known defintion was proposed many years ago by Umegaki and later on by Lindblad. This defintion can be realized through a functional calculus for quadratic forms introduced by Pusz and Woronowicz, for two arbitrary states on a Csup(*)-algebra. The two other definitions investigated are the Naudt's entropy and the inference function of Marchand and Wyss. The first one can be expressed through the functional calculus too, it has then almost the same properties as the Umegaki-Lindblad defintion. The inference function can be considered only as some kind of 1/2-relative entropy. The function is nevertheless very important because it can be expressed as the logarithm of the transition probability between the basis state and the actual state. A general theory which includes the three defintions is not found yet, but it is shown that the functional calculus provides a great family of relative entropies. This is important for a unified theory of all defintions and their properties. (Author)

  13. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  14. Quantum information and general relativity

    OpenAIRE

    Peres, Asher

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as one-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  15. Quantum information and general relativity

    Science.gov (United States)

    Peres, A.

    2004-11-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  16. Relation between academic yield and stress in medical students

    Directory of Open Access Journals (Sweden)

    Sandra Patricia González Peña

    2006-12-01

    Full Text Available Objective. To study risk factors that where found as influence in the academic yield (stress, alcohol, friendships, depression and family relations in the students of the Medicine Faculty of the Universidad de Manizales. Materials and methods: Descriptive study integrated by random selected sample, who were attending of II to XI semester of the Medicine faculty. An anonymous survey was conduced about sociodemographic, cultural, academic and motivational characteristics,including stress, depresión, family disfunction and substance abuse. We correlated all variables with academic yield using chi square test, Pearson`s coefficient and lineal regression. Results: 212 students of ages between 17 and 31 years where analyzed, in which the majority where from another city. Some of the factors were detected which affect the academic yield of the students as it is stress, depression, the family function and friendships among others. Conclusions: A significant relation between academic yield and stress was found. In turn, stress variable was influenced by depression, alcohol and family relation.

  17. Quantum entanglement and special relativity

    International Nuclear Information System (INIS)

    Nishikawa, Yoshihisa

    2008-01-01

    Quantum entanglement was suggested by Einstein to indicate that quantum mechanics was incomplete. However, against Einstein's expectation, the phenomenon due to quantum entanglement has been verified by experiments. Recently, in quantum information theory, it has been also treated as a resource for quantum teleportation and so on. In around 2000, it is recognized that quantum correlations between two particles of one pair state in an entangled spin-state are affected by the non-trivial effect due to the successive Lorentz transformation. This relativistic effect is called the Wigner rotation. The Wigner rotation has to been taken into account when we observe spin-correlation of moving particles in a different coordinate frame. In this paper, first, we explain quantum entanglement and its modification due to the Wigner rotation. After that, we introduce an extended model instead of one pair state model. In the extended model, quantum entanglement state is prepared as a superposition state of various pair states. We have computed the von Neumann entropy and the Shannon entropy to see the global behavior of variation for the spin correlation due to the relativistic effect. We also discuss distinguishability between the two particles of the pair. (author)

  18. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  19. Active and silent chromophore isoforms for phytochrome Pr photoisomerization: An alternative evolutionary strategy to optimize photoreaction quantum yields

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2014-01-01

    Full Text Available Photoisomerization of a protein bound chromophore is the basis of light sensing of many photoreceptors. We tracked Z-to-E photoisomerization of Cph1 phytochrome chromophore PCB in the Pr form in real-time. Two different phycocyanobilin (PCB ground state geometries with different ring D orientations have been identified. The pre-twisted and hydrogen bonded PCBa geometry exhibits a time constant of 30 ps and a quantum yield of photoproduct formation of 29%, about six times slower and ten times higher than that for the non-hydrogen bonded PCBb geometry. This new mechanism of pre-twisting the chromophore by protein-cofactor interaction optimizes yields of slow photoreactions and provides a scaffold for photoreceptor engineering.

  20. Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)

    2017-05-15

    A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)

  1. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    Science.gov (United States)

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  2. Sanctioning Large-Scale Domestic Cannabis Production - Potency, Yield and Professionalism

    DEFF Research Database (Denmark)

    Møller, Kim; Lindholst, Christian

    2014-01-01

    Domestically cultivated cannabis, referred to as sinsemilla, constitutes a growing share of the illicit drug markets in the Scandinavian countries. In this study we present forensic evidence of THC content in sinsemilla and resin confiscated by the Danish police from 2008 to 2012. The purpose...... that courts do not apply a yield-percentage estimate. The specificities of domestic cannabis cultivation also relate to the sanction criteria „professionalism”. Firstly, the number of plants found can provide for calculation of an aggregate quantum. Secondly, this can be related to the formal quantum......-scale cannabis cases would improve by applying a 1:1 potency level between sinsemilla and resin....

  3. Damage to uracil- and adenine-containing bases, nucleosides, nucleotides and polynucleotides: quantum yields on irradiation at 193 and 254 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Goerner, H.

    1994-01-01

    Photoreactions, such as base release and decomposition of the base moeity, induced by either 20 ns laser pulses at 193 nm or continuous 254 nm irradiation, were studied for a series of uracil and adenine derivatives in neutral aqueous solution. The quantum yield of chromophore loss (Φ cl ) depends significantly on the nature of the nucleic acid constituent and the saturating gas (Ar, N 2 O or O 2 ). In the case of polynucleotides the destruction of nucleotides was measured by high-performance liquid chromatography after hydrolysis; the quantum yields (Φ dn ) are comparable to those of chromophore loss or larger. The Φ cl and Φ dn of 0.04-0.1 for poly(U) and poly(dU), obtained for both wavelengths of irradiation, are due to processes originating from the lowest excited singlet state, i.e. formation of photohydrates and photodimers, and a second part from photoionization using λ irr = 193 nm. Irradiation at 193 nm effectively splits pyrimidine dimers and thus reverts them into monomers. (author)

  4. Genetic basis of yield and some yield related traits in basmati rice

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Additive, dominance and epistasis components of genetic variation for yield and some yield related traits were assessed through modified triple test cross technique in Basmati rice. Epistasis was found an important part of genetic variation for plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant except primary branches per panicle and panicle length. Bifurcation of epistasis showed that additive x additive (i) type and additive x dominance + dominance x dominance (j + l) types of non-allelic interactions were involved in the expression of these traits. Additive and dominance type of gene action influenced the expression of primary branches per panicle and panicle length. No evidence of directional dominance was observed for these two traits. For plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant, recurrent selection or bi parental mating may be exercised in F2 and following generations however, selection of desired plants may be postponed till F5 or F6 generations to permit maximum obsession of epistatic effects to develop desired cultivar(s) in Basmati rice.(author)

  5. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity.

    Science.gov (United States)

    Duplantier, Bertrand; Sheffield, Scott

    2009-04-17

    We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville quantum gravity. It uses the properly regularized quantum area measure dmicro_{gamma}=epsilon;{gamma;{2}/2}e;{gammah_{epsilon}(z)}dz, where dz is the Lebesgue measure on D, gamma is a real parameter, 02 is shown to be related to the quantum measure dmu_{gamma;{'}}, gamma;{'}<2, by the fundamental duality gammagamma;{'}=4.

  6. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence

    Science.gov (United States)

    Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan

    2016-05-01

    Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively.Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A

  7. Uncertainty relation and simultaneous measurements in quantum theory

    International Nuclear Information System (INIS)

    Busch, P.

    1982-01-01

    In this thesis the question for the interpretation of the uncertainty relation is picked up, and a program for the justification of its individualistic interpretation is formulated. By means of quantum mechanical models for the position and momentum measurement a justification of the interpretaton has been tried by reconstruction of the origin of the uncertainties from the conditions of the measuring devices and the determination of the relation of the measured results to the object. By means of a model of the common measurement it could be shown how the uncertainty relation results from the not eliminable mutual disturbance of the devices and the uncertainty relation for the measuring system. So finally the commutation relation is conclusive. For the illustration the split experiment is discussed, first according to Heisenberg with fixed split, then for the quantum mechanical, movable split (Bohr-Einstein). (orig./HSI) [de

  8. Surface structures for enhancement of quantum yield in broad spectrum emission nanocrystals

    Science.gov (United States)

    Schreuder, Michael A.; McBride, James R.; Rosenthal, Sandra J.

    2014-07-22

    Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.

  9. Breaking the relativity principle in the Lorentz-covariant quantum mechanics

    International Nuclear Information System (INIS)

    Rembielinski, J.; Caban, P.; Smolinski, K.

    2005-01-01

    Full text: Attributing a physical meaning to the physical state, its time evolution, localization etc. is related to serious problems on the border of quantum mechanics and special relativity. One of possible sources of these difficulties might lie in an improper synchronization scheme for clocks (i.e. coordinate time definition) used in the standard formulation of relativistic quantum mechanics. In my lecture I will show that although classical physics is unaffected by different choices of synchronization, the Lorentz-covariant quantum mechanics distinguishes an absolute synchronization scheme (as was expected by Bell). In this framework one can derive the EPR correlation function of spin measurements for two qubits in two moving inertial frames taking into account particle localization in the time of detection. These correlations depend on a preferred frame velocity in an essential way (i.e. this dependence cannot be removed by expressing the correlation function by velocities given in the Einstein synchronization scheme). This result can be interpreted as breaking the relativity principle on the quantum level. (author)

  10. Quantum Optics

    CERN Document Server

    Walls, D F

    2007-01-01

    Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.

  11. Quantum information and general relativity

    International Nuclear Information System (INIS)

    Peres, A.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Regression relation for pure quantum states and its implications for efficient computing.

    Science.gov (United States)

    Elsayed, Tarek A; Fine, Boris V

    2013-02-15

    We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.

  13. Quantum gauge freedom in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)

    2017-02-15

    We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  14. Quantum Rényi relative entropies affirm universality of thermodynamics.

    Science.gov (United States)

    Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K

    2015-10-01

    We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.

  15. Pressure dependence for the CO quantum yield in the photolysis of acetone at 248 nm: a combined experimental and theoretical study.

    Science.gov (United States)

    Somnitz, H; Fida, M; Ufer, T; Zellner, R

    2005-09-21

    The quantum yield of CO in the laser pulse photolysis of acetone at 248 nm and at 298 K in the pressure range 20-900 mbar (N2) has been measured directly using quantitative infrared diode laser absorption of CO. It is found that the quantum yield of CO shows a significant dependence on total pressure with Phi(CO) decreasing with pressure from around 0.45 at 20 mbar to approximately 0.25 at 900 mbar. From a combination of ab initio quantum chemical calculations on the molecular properties of the acetyl (CH3CO) radical and its unimolecular fragmentation as well as the application of statistical (RRKM) and dynamical calculations we show that CO production results from prompt secondary fragmentation (via(2a)) of the internally excited primary CH3CO* photolysis product with an excess energy of approximately 62.8 kJ mol(-1). Hence, our findings are consistent with a consecutive photochemically induced decomposition model, viz. step (1): CH3COCH3+hv--> CH3CO*+ CH3, step (2a): CH3CO*--> CH3+ CO or step (2b) CH3CO*-(+M)--> CH3CO. Formation of CO via a direct and/or concerted channel CH3COCH3+hv--> 2CH(3)+ CO (1') is considered to be unimportant.

  16. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jinmyoung [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Defforge, Thomas; Gautier, Gael, E-mail: msailor@ucsd.edu, E-mail: gael.gautier@univ-tours.fr, E-mail: lcanham@psivida.com [Universite Francois Rabelais de Tours, CNRS CEA, INSA-CVL, GREMAN UMR 7347, 37071 Tours Cedex 2 (France); Loni, Armando [pSiMedica Ltd., Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ (United Kingdom); Kim, Dokyoung; Sailor, Michael J., E-mail: msailor@ucsd.edu, E-mail: gael.gautier@univ-tours.fr, E-mail: lcanham@psivida.com [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Li, Z. Y. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Canham, Leigh T., E-mail: msailor@ucsd.edu, E-mail: gael.gautier@univ-tours.fr, E-mail: lcanham@psivida.com [pSiMedica Ltd., Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ (United Kingdom); Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2016-04-11

    The effect of supercritical drying (SCD) on the preparation of porous silicon (pSi) powders has been investigated in terms of photoluminescence (PL) efficiency. Since the pSi contains closely spaced and possibly interconnected Si nanocrystals (<5 nm), pore collapse and morphological changes within the nanocrystalline structure after common drying processes can affect PL efficiency. We report the highly beneficial effects of using SCD for preparation of photoluminescent pSi powders. Significantly higher surface areas and pore volumes have been realized by utilizing SCD (with CO{sub 2} solvent) instead of air-drying. Correspondingly, the pSi powders better retain the porous structure and the nano-sized silicon grains, thus minimizing the formation of non-radiative defects during liquid evaporation (air drying). The SCD process also minimizes capillary-stress induced contact of neighboring nanocrystals, resulting in lower exciton migration levels within the network. A significant enhancement of the PL quantum yield (>32% at room temperature) has been achieved, prompting the need for further detailed studies to establish the dominant causes of such an improvement.

  17. Combining relativity and quantum mechanics: Schroedinger's interpretation of ψ

    International Nuclear Information System (INIS)

    Barut, A.O.

    1987-07-01

    The incongruence between quantum theory and relativity theory is traced to the probability interpretation of the former. The classical continium interpretation of ψ removes the difficulty. How quantum properties of matter and light, and in particular the radiative problems, like spontaneous emission and Lamb shift, may be accounted in a first quantized Maxwell-Dirac system is discussed. (author). 17 refs

  18. Quantum information and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Peres, A. [Technion, Israel Institute of Technology, Haifa (Israel)

    2004-12-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  19. Phosphine synthetic route features and postsynthetic treatment of InP quantum dots

    International Nuclear Information System (INIS)

    Mordvinova, Natalia; Vinokurov, Alexander; Dorofeev, Sergey; Kuznetsova, Tatiana; Znamenkov, Konstantin

    2014-01-01

    Highlights: • Quantum dots with average diameter of 3–5 nm were synthesized. • PH 3 was used as novel phosphorous precursor. • Electrophoresis was demonstrated to be an effective method of purification of QDs. • Photoeching leads to quantum yields about 20%. • The concentration and time dependencies for photoetching of QDs were obtained. -- Abstract: In this paper we report on the development of synthesis of InP quantum dots with a gaseous phosphine PH 3 as a source of phosphorus and myristic acid and TOP/TOPO as stabilizers. Samples synthesized using myristic acid as stabilizer at relatively low temperatures were found to contain admixture of In(OH) 3 . We studied the influence of HF concentration and duration of illumination on luminescence properties of InP quantum dots during photoetching process. Quantum yields of photoetched samples reached about 20%. Additionally, electrophoresis as a new technique of purification and size-depended separation of synthesized quantum dots was developed

  20. General tradeoff relations of quantum nonlocality in the Clauser–Horne–Shimony–Holt scenario

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hong-Yi, E-mail: hongyisu@chonnam.ac.kr [Department of Physics Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Chen, Jing-Ling [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Hwang, Won-Young, E-mail: wyhwang@jnu.ac.kr [Department of Physics Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2017-02-15

    General tradeoff relations present in nonlocal correlations of bipartite systems are studied, regardless of any specific quantum states and measuring directions. Extensions to multipartite scenarios are possible and very promising. Tsirelson’s bound can be derived out in particular. The close connection with uncertainty relations is also presented and discussed. - Highlights: • Quantum violation of CHSH inequalities is found to satisfy tradeoff relations. • Tsirelson’s bound for quantum mechanics can be directly implied from these tradeoffs. • Tradeoff relations shed new light on uncertainty relations in summation forms.

  1. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield

    KAUST Repository

    Soldan, Giada

    2016-04-10

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-xAux(BDT)12(TPP)4, x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.

  2. Energy distribution and quantum yield for photoemission from air-contaminated gold surfaces under ultraviolet illumination close to the threshold

    Science.gov (United States)

    Hechenblaikner, Gerald; Ziegler, Tobias; Biswas, Indro; Seibel, Christoph; Schulze, Mathias; Brandt, Nico; Schöll, Achim; Bergner, Patrick; Reinert, Friedrich T.

    2012-06-01

    The kinetic energy distributions of photo-electrons emitted from gold surfaces under illumination by UV-light close to the threshold (photon energy in the order of the material work function) are measured and analyzed. Samples are prepared as chemically clean through Ar-ion sputtering and then exposed to atmosphere for variable durations before quantum yield measurements are performed after evacuation. During measurements, the bias voltage applied to the sample is varied and the resulting emission current measured. Taking the derivative of the current-voltage curve yields the energy distribution which is found to closely resemble the distribution of total energies derived by DuBridge for emission from a free electron gas. We investigate the dependence of distribution shape and width on electrode geometry and contaminant substances adsorbed from the atmosphere, in particular, to water and hydro-carbons. Emission efficiency increases initially during air exposure before diminishing to zero on a timescale of several hours, whilst subsequent annealing of the sample restores emissivity. A model fit function, in good quantitative agreement with the measured data, is introduced which accounts for the experiment-specific electrode geometry and an energy dependent transmission coefficient. The impact of large patch potential fields from contact potential drops between sample and sample holder is investigated. The total quantum yield is split into bulk and surface contributions which are tested for their sensitivity to light incidence angle and polarization. Our results are directly applicable to model parameters for the contact-free discharge system onboard the Laser Interferometer Space Antenna (LISA) Pathfinder spacecraft.

  3. Cloning of a quantum measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, Alessandro; D' Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal [QUIT Group, Dipartimento di Fisica ' ' A. Volta' ' and INFN, via Bassi 6, I-27100 Pavia (Italy); QUIT Group, Dipartimento di Fisica ' ' A. Volta' ' via Bassi 6, I-27100 Pavia (Italy) and Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 11 Bratislava (Slovakia)

    2011-10-15

    We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.

  4. Quantum fermions and quantum field theory from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, Christof

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  5. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  6. Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions

    Science.gov (United States)

    Yu, Yong Qiang; Zhang, Quan Sheng; Tang, Yong Zheng; Li, Xue Meng; Liu, Hong Liang; Li, Li Xia

    2013-07-01

    In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These

  7. Quantum state correction of relic gravitons from quantum gravity

    OpenAIRE

    Rosales, Jose-Luis

    1996-01-01

    The semiclassical approach to quantum gravity would yield the Schroedinger formalism for the wave function of metric perturbations or gravitons plus quantum gravity correcting terms in pure gravity; thus, in the inflationary scenario, we should expect correcting effects to the relic graviton (Zel'dovich) spectrum of the order (H/mPl)^2.

  8. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  9. Position-momentum uncertainty relations in the presence of quantum memory

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Berta, Mario [Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125 (United States); Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Tomamichel, Marco [School of Physics, The University of Sydney, Sydney 2006 (Australia); Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Scholz, Volkher B. [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark)

    2014-12-15

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting of position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.

  10. Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles

    Science.gov (United States)

    Mazziotti, David A.; Erdahl, Robert M.

    2001-04-01

    For the description of ground-state correlation phenomena an accurate mapping of many-body quantum mechanics onto four particles is developed. The energy for a quantum system with no more than two-particle interactions may be expressed in terms of a two-particle reduced density matrix (2-RDM), but variational optimization of the 2-RDM requires that it corresponds to an N-particle wave function. We derive N-representability conditions on the 2-RDM that guarantee the validity of the uncertainty relations for all operators with two-particle interactions. One of these conditions is shown to be necessary and sufficient to make the RDM solutions of the dispersion condition equivalent to those from the contracted Schrödinger equation (CSE) [Mazziotti, Phys. Rev. A 57, 4219 (1998)]. In general, the CSE is a stronger N-representability condition than the dispersion condition because the CSE implies the dispersion condition as well as additional N-representability constraints from the Hellmann-Feynman theorem. Energy minimization subject to the representability constraints is performed for a boson model with 10, 30, and 75 particles. Even when traditional wave-function methods fail at large perturbations, the present method yields correlation energies within 2%.

  11. Tuning Single Quantum Dot Emission with a Micromirror.

    Science.gov (United States)

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  12. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  13. Direct quantum mechanical calculation of the F + H{sub 2} {yields} HF + H thermal rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Moix, Marc [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain); Huarte-Larranaga, Fermin [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain)], E-mail: fhuarte@pcb.ub.es

    2008-07-03

    Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H{sub 2}{yields}HF+H reaction on the Stark-Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.

  14. Loop space representation of quantum general relativity and the group of loops

    International Nuclear Information System (INIS)

    Gambini, R.

    1991-01-01

    The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)

  15. Scale relativity: from quantum mechanics to chaotic dynamics.

    Science.gov (United States)

    Nottale, L.

    Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.

  16. Connecting and unmasking relativity and quantum theory

    NARCIS (Netherlands)

    Koning, de W.L.; Willigenburg, van L.G.

    2015-01-01

    The answer lies right in front of us, but we refuse to see it. Both relativity and quantum theory, the two pillars of fundamental physics, are modified in this paper to make them also explain the physical phenomena they describe. With this explanation, all current inconsistencies between the two

  17. ON THE RELATIVE ABUNDANCE OF LiH AND LiH+ MOLECULES IN THE EARLY UNIVERSE: NEW RESULTS FROM QUANTUM REACTIONS

    International Nuclear Information System (INIS)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Franco A.; Galli, Daniele; Palla, Francesco

    2011-01-01

    The relative efficiencies of the chemical pathways that can lead to the destruction of LiH and LiH + molecules, conjectured to be present in the primordial gas and to control molecular cooling processes in the gravitational collapse of the post-recombination era, are revisited by using accurate quantum calculations for the several reactions involved. The new rates are employed to survey the behavior of the relative abundance of these molecules at redshifts of interest for early universe conditions. We find significant differences with respect to previous calculations, the present ones yielding LiH abundances higher than LiH + at all redshifts.

  18. From special relativity to quantum mechanics through interval

    International Nuclear Information System (INIS)

    Malcor, R.

    1985-01-01

    Quantum mechanics is an optics with one more spatial dimension, the angle of phase. Wave-particle duality is nothing else than geometric tangent-point duality. The 'interval' of special relativity is proportional to the phase

  19. Quantum systems related to root systems and radial parts of Laplace operators

    OpenAIRE

    Olshanetsky, M. A.; Perelomov, A. M.

    2002-01-01

    The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.

  20. Quantum logic using correlated one-dimensional quantum walks

    Science.gov (United States)

    Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk

    2018-01-01

    Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.

  1. Soybean yield in relation to distance from the Itaipu reservoir

    Science.gov (United States)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  2. Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4.

    Science.gov (United States)

    Chen, Min-Yi; Lin, Jin-Tai; Hsu, Chia-Shuo; Chang, Chung-Kai; Chiu, Ching-Wen; Chen, Hao Ming; Chou, Pi-Tai

    2018-05-01

    Colloidal perovskite quantum dots represent one of the most promising materials for applications in solar cells and photoluminescences. These devices require a low density of crystal defects and a high yield of photogenerated carriers, which are difficult to realize in tin-halide perovskite because of the intrinsic instability of tin during nucleation. Here, an enhancement in the luminescent property of tin-halide perovskite nanoplates (TPNPs) that are composed of strongly coupled layered structures with the chemical formula of PEA 2 SnX 4 (PEA = C 6 H 5 (CH 2 ) 2 NH 3 , X = Br, I) is reported. TPNPs (X = I) show an emission at a wavelength of 640 nm, with high quantum yield of 6.40 ± 0.14% and full width at half maximum (FWHM) as small as 36 nm. The presence of aliphatic carboxylic acid is found to play a key role in reducing the tin perovskite defect density, which significantly improves the emission intensity and stability of TPNPs. Upon mixing iodo- and bromo- precursors, the emission wavelength is successfully tuned from 640 nm (PEA 2 SnI 4 ) to 550 nm (PEA 2 SnBr 4 ), with a corresponding emission quantum yield and FWHM of 0.16-6.40% and 36-80 nm, respectively. The results demonstrate a major advance for the emission yield and tunability of tin-halide perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantum solitons and their classical relatives. II. ''Fermion--boson reciprocity'' and classical versus quantum problem for the sine-Gordon system

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1981-01-01

    Both quantum and classical sine--Gordon fields can be built out of the fundamental free neutral massive excitations, which quantally obey the Bose--Einstein statistics. At the roots of the ''boson-fermion reciprocity'' invented by Coleman, lies the spin 1/2 approximation of the underlying Bose system. By generalizing the coherent state methods to incorporate non-Fock quantum structures and to give account of the so-called boson transformation theory, we construct the carrier Hilbert space H/sub SG/ for quantum soliton operators. The h→0 limit of state expectation values of these operators among pure coherentlike states in H/sub SG/ reproduces the classical sine--Gordon field. The related (classical and quantum) spin 1/2 xyz Heisenberg model field is built out of the fundamental sine--Gordon excitations, and hence can be consistently defined on the appropriate subset of the quantum soliton Hilbert space H/sub x/yz . A correct classical limit is here shown to arise for the Heisenberg system: phase manifolds of the classical Heisenberg and sine--Gordon systems cannot be then viewed independently as a consequence of the quantum relation

  4. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    International Nuclear Information System (INIS)

    Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert

    2013-01-01

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies

  5. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Balondo Iyela, Daddy [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Département de Physique, Université de Kinshasa (UNIKIN), B.P. 190 Kinshasa XI, Democratic Republic of Congo (Congo, The Democratic Republic of the); Govaerts, Jan [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hounkonnou, M. Norbert [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin)

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.

  6. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H. von; Treder, H.

    1982-01-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies

  7. Indefinite-metric quantum field theory of general relativity, 6

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The canonical commutation relations are analyzed in detail in the indefinite-metric quantum field theory of gravity based on the vierbein formalism. It is explicitly verified that the BRS charge, the local-Lorentz-BRS charge and the Poincare generators satisfy the expected commutation relations. (author)

  8. X-ray transition yields of low-Z kaonic atoms produced in Kapton

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Beer, G. [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700 STN CNC, Victoria, BC V8W 2Y2 (Canada); Berucci, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Bombelli, L. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 32, I-20133 Milano (Italy); Bragadireanu, A.M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, Reactorului 30, Magurele (Romania); Cargnelli, M. [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Curceanu, C.; D' Uffizi, A. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 32, I-20133 Milano (Italy); Ghio, F. [INFN Sezione di Roma I and Instituto Superiore di Sanita, I-00161 Roma (Italy); Guaraldo, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Hayano, R.S. [University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo (Japan); Iliescu, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Ishiwatari, T., E-mail: tomoichi.ishiwatari@assoc.oeaw.ac.at [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Iwasaki, M. [RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2013-10-23

    The X-ray transition yields of kaonic atoms produced in Kapton polyimide (C{sub 22}H{sub 10}N{sub 2}O{sub 5}) were measured for the first time in the SIDDHARTA experiment. X-ray yields of the kaonic atoms with low atomic numbers (Z=6,7, and 8) and transitions with high principal quantum numbers (n=5–8) were determined. The relative yields of the successive transitions in the same atoms and the yield ratios of carbon-to-nitrogen (C:N) and carbon-to-oxygen (C:O) for the same transitions were also determined. These X-ray yields provide important information for understanding the capture ratios and cascade mechanisms of kaonic atoms produced in a compound material, such as Kapton.

  9. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  10. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  11. Holographic Quantum States

    International Nuclear Information System (INIS)

    Osborne, Tobias J.; Eisert, Jens; Verstraete, Frank

    2010-01-01

    We show how continuous matrix product states of quantum fields can be described in terms of the dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.

  12. Rotating Wigner molecules and spin-related behaviors in quantum rings

    International Nuclear Information System (INIS)

    Yang Ning; Zhu Jialin; Dai Zhensheng

    2008-01-01

    The trial wavefunctions for few-electron quantum rings are presented to describe the spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the single-particle orbits which contain two variational parameters to describe the shape and size dependence of electron localization in the ring-like confinement. They can explicitly show the size dependence of single-particle orbital occupation to give an understanding of the spin rules of ground states without magnetic fields. They can also correctly describe the spin and angular momentum transitions in magnetic fields. By examining the von Neumann entropy, it is demonstrated that the wavefunctions can illustrate the entanglement between electrons in quantum rings, including the AB oscillations as well as the spin and size dependence of the entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors of a few electrons in quantum rings

  13. Quantum non-malleability and authentication

    DEFF Research Database (Denmark)

    Alagic, Gorjan; Majenz, Christian

    2017-01-01

    is too weak, as it allows adversaries to “inject” plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy....... Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design and hence also to the. Our techniques...... also yield new results regarding the closely-related task of quantum authentication. We show that “total authentication” (a notion recently proposed by Garg et al. [6],) can be satisfied with two-designs, a significant improvement over the eight-design construction of [18],. We also show that, under...

  14. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  15. Indefinite-metric quantum field theory of general relativity, 15

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1982-01-01

    In the manifestly covariant canonical formalism of quantum gravity, it is known that the equal-time commutator between a tensor field and the B field b sub(rho) is consistent with the rules of tensor analysis. Another tensorlike commutation relation is shown to exist for the equal-time commutator between a tensor and b sub(rho), but at the same time its limitation is clarified. The quantum-gravity extension of the invariant D function is defined and provied to be affine-invariant. The four-dimensional commutation relation between a tensor and b sub(rho) is investigated, and it is shown that the commutator consists of a completely tensorlike, manifestly affine-covariant part and a remainder, which is clearly distinguishable from the former. (author)

  16. Which Quantum Theory Must be Reconciled with Gravity? (And What Does it Mean for Black Holes?

    Directory of Open Access Journals (Sweden)

    Matthew J. Lake

    2016-10-01

    Full Text Available We consider the nature of quantum properties in non-relativistic quantum mechanics (QM and relativistic quantum field theories, and examine the connection between formal quantization schemes and intuitive notions of wave-particle duality. Based on the map between classical Poisson brackets and their associated commutators, such schemes give rise to quantum states obeying canonical dispersion relations, obtained by substituting the de Broglie relations into the relevant (classical energy-momentum relation. In canonical QM, this yields a dispersion relation involving ℏ but not c, whereas the canonical relativistic dispersion relation involves both. Extending this logic to the canonical quantization of the gravitational field gives rise to loop quantum gravity, and a map between classical variables containing G and c, and associated commutators involving ℏ. This naturally defines a “wave-gravity duality”, suggesting that a quantum wave packet describing self-gravitating matter obeys a dispersion relation involving G, c and ℏ. We propose an Ansatz for this relation, which is valid in the semi-Newtonian regime of both QM and general relativity. In this limit, space and time are absolute, but imposing v max = c allows us to recover the standard expressions for the Compton wavelength λ C and the Schwarzschild radius r S within the same ontological framework. The new dispersion relation is based on “extended” de Broglie relations, which remain valid for slow-moving bodies of any mass m. These reduce to canonical form for m ≪ m P , yielding λ C from the standard uncertainty principle, whereas, for m ≫ m P , we obtain r S as the natural radius of a self-gravitating quantum object. Thus, the extended de Broglie theory naturally gives rise to a unified description of black holes and fundamental particles in the semi-Newtonian regime.

  17. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    OpenAIRE

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8?keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79???0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result ...

  18. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis

    KAUST Repository

    Galí, Martí

    2016-11-14

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  19. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis.

    Science.gov (United States)

    Galí, Martí; Kieber, David J; Romera-Castillo, Cristina; Kinsey, Joanna D; Devred, Emmanuel; Pérez, Gonzalo L; Westby, George R; Marrasé, Cèlia; Babin, Marcel; Levasseur, Maurice; Duarte, Carlos M; Agustí, Susana; Simó, Rafel

    2016-12-20

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m 3 (mol quanta) -1 ). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m 3 (mol quanta) -1 . The largest AQY(330), up to 34 m 3 (mol quanta) -1 ), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d -1 ), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  20. Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity

    International Nuclear Information System (INIS)

    Ma Yongge

    2012-01-01

    The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.

  1. Spin-related transport phenomena in HgTe-based quantum well structures

    International Nuclear Information System (INIS)

    Koenig, Markus

    2007-12-01

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg 0.3 Cd 0.7 Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  2. Spin-related transport phenomena in HgTe-based quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Markus

    2007-12-15

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  3. Majorization uncertainty relations for mixed quantum states

    Science.gov (United States)

    Puchała, Zbigniew; Rudnicki, Łukasz; Krawiec, Aleksandra; Życzkowski, Karol

    2018-04-01

    Majorization uncertainty relations are generalized for an arbitrary mixed quantum state ρ of a finite size N. In particular, a lower bound for the sum of two entropies characterizing the probability distributions corresponding to measurements with respect to two arbitrary orthogonal bases is derived in terms of the spectrum of ρ and the entries of a unitary matrix U relating both bases. The results obtained can also be formulated for two measurements performed on a single subsystem of a bipartite system described by a pure state, and consequently expressed as an uncertainty relation for the sum of conditional entropies.

  4. Some relations between quantum Turing machines and Turing machines

    OpenAIRE

    Sicard, Andrés; Vélez, Mario

    1999-01-01

    For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.

  5. Quantum correlations in multipartite quantum systems

    Science.gov (United States)

    Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.

    2018-03-01

    Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.

  6. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun

    2017-12-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  7. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun; Shang, Yuequn; Yin, Jun; de Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M.; Hedhili, Mohamed N.; Emwas, Abdul-Hamid M.; Mohammed, Omar F.; Ning, Zhijun; Bakr, Osman

    2017-01-01

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  8. Quantum effects from a purely geometrical relativity theory

    International Nuclear Information System (INIS)

    Ellis, Homer G

    2005-01-01

    A purely geometrical relativity theory results from a construction that produces from three-dimensional space a happy unification of Kaluza's five-dimensional theory and Weyl's conformal theory. The theory can provide geometrical explanations for the following observed phenomena, among others: (a) visibility lifetimes of elementary particles of lengths inversely proportional to their rest masses; (b) the equality of charge magnitude among all charged particles interacting at an event; (c) the propensity of electrons in atoms to be seen in discretely spaced orbits; and (d) 'quantum jumps' between those orbits. This suggests the possibility that the theory can provide a deterministic underpinning of quantum mechanics like that provided to thermodynamics by the molecular theory of gases

  9. On uncertainty relations in quantum mechanics

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2004-01-01

    Uncertainty relations (UR) are shown to have nothing specific for quantum mechanics (QM), being the general property valid for the arbitrary function. A wave function of a particle simultaneously having a precisely defined position and momentum in QM is demonstrated. Interference on two slits in a screen is shown to exist in classical mechanics. A nonlinear classical system of equations replacing the QM Schroedinger equation is suggested. This approach is shown to have nothing in common with the Bohm mechanics

  10. Quantum mechanics versus relativity: an experimental test of the structure of spacetime

    International Nuclear Information System (INIS)

    Emelyanov, S A

    2012-01-01

    We have performed an experimental test under the conditions in which quantum mechanics predicts spatially discontinuous single-particle transport. The transport is beyond the relativistic paradigm of movement in Cartesian space and therefore may well be nonlocal. Our test has demonstrated that such transport does exist. This fact opens the door for a realistic interpretation of quantum mechanics in so far as the requirement of Lorentz invariance appears inapplicable to any version of quantum theory. Moreover, as quantum mechanics proposes a particle dynamics beyond relativity, it automatically requires an adequate ‘quantum’ concept of spacetime, for which the relativistic concept is only a limiting case. The quantum concept allows absolute simultaneity and hence revives the notion of absolute time. It also goes beyond the relativistic curvilinear Cartesian order of space to account for quantum phenomena such as discontinuity and nonlocality in the spirit of Bohm's concept of the implicate order.

  11. The relation between majorization theory and quantum information from entanglement monotones perspective

    Energy Technology Data Exchange (ETDEWEB)

    Erol, V. [Department of Computer Engineering, Institute of Science, Okan University, Istanbul (Turkey); Netas Telecommunication Inc., Istanbul (Turkey)

    2016-04-21

    Entanglement has been studied extensively for understanding the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known monotones for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. The study on these monotones has been a hot topic in quantum information [1-7] in order to understand the role of entanglement in this discipline. It can be observed that from any arbitrary quantum pure state a mixed state can obtained. A natural generalization of this observation would be to consider local operations classical communication (LOCC) transformations between general pure states of two parties. Although this question is a little more difficult, a complete solution has been developed using the mathematical framework of the majorization theory [8]. In this work, we analyze the relation between entanglement monotones concurrence and negativity with respect to majorization for general two-level quantum systems of two particles.

  12. Anti-hydrogen: The cusp between quantum mechanics and general relativity

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1992-09-01

    We argue that the crossing (CPT) symmetry of relativistic quantum mechanics requires that both the coulombic and the Newtonian force between pairs of particles will reverse when one is replaced by its anti-particle. For consistency, this requires a theory in which both the equivalence principles and gauge invariance are abandoned. thus whether anti-hydrogen ''falls'' up or down will provide an experiment crusis separating general relativity and gauge invariance from this version of quantum mechanics

  13. Position-momentum uncertainty relations in the presence of quantum memory

    DEFF Research Database (Denmark)

    Furrer, Fabian; Berta, Mario; Tomamichel, Marco

    2014-01-01

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear oper....... As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states....

  14. Device-independent quantum reading and noise-assisted quantum transmitters

    International Nuclear Information System (INIS)

    Roga, W; Buono, D; Illuminati, F

    2015-01-01

    In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by reason of enhanced state distinguishability. Here we show that enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes, we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield higher quantum efficiency compared with coherent thermal quantum states. The noise-enhanced quantum advantage is a consequence of the discord of response being a non-decreasing function of increasing thermal noise under constant squeezing, a behavior that leads to increased state distinguishability. We finally show that, for non-symmetric squeezed thermal states, the probability of error, as measured by the quantum Chernoff bound, vanishes asymptotically with increasing local thermal noise with finite global squeezing. Therefore, with fixed finite squeezing, noisy but strongly discordant quantum states with a large noise imbalance between the field modes can outperform noisy classical resources as well as pure entangled transmitters with the same finite level of squeezing. (paper)

  15. Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings

    International Nuclear Information System (INIS)

    Engle, J

    2007-01-01

    In this paper we address the meaning of states in loop quantum cosmology (LQC), in the context of loop quantum gravity. First, we introduce a rigorous formulation of an embedding proposed by Bojowald and Kastrup, of LQC states into loop quantum gravity. Then, using certain holomorphic representations, a new class of embeddings, called b-embeddings, are constructed, following the ideas of Engle (2006 Quantum field theory and its symmetry reduction Class. Quantum Gravity 23 2861-94). We exhibit a class of operators preserving each of these embeddings, and show their consistency with the LQC quantization. In the b-embedding case, the classical analogues of these operators separate points in phase space. Embedding at the gauge and diffeomorphism invariant level is discussed briefly in the conclusions

  16. The q-difference operator, the quantum hyperplane, Hilbert spaces of analytic functions and q-oscillators

    International Nuclear Information System (INIS)

    Arik, M.

    1991-01-01

    It is shown that the differential calculus of Wess and Zumino for the quantum hyperplane is intimately related to the q-difference operator acting on the n-dimensional complex space C n . An explicit transformation relates the variables and the q-difference operators on C n to the variables and the quantum derivatives on the quantum hyperplane. For real values of the quantum parameter q, the consideration of the variables and the derivatives as hermitean conjugates yields a quantum deformation of the Bargmann-Segal Hilbert space of analytic functions on C n . Physically such a system can be interpreted as the quantum deformation of the n dimensional harmonic oscillator invariant under the unitary quantum group U q (n) with energy eigenvalues proportional to the basic integers. Finally, a construction of the variables and quantum derivatives on the quantum hyperplane in terms of variables and ordinary derivatives on C n is presented. (orig.)

  17. Beyond-one-loop quantum gravity action yielding both inflation and late-time acceleration

    Directory of Open Access Journals (Sweden)

    E. Elizalde

    2017-08-01

    Full Text Available A unified description of early-time inflation with the current cosmic acceleration is achieved by means of a new theory that uses a quadratic model of gravity, with the inclusion of an exponential F(R-gravity contribution for dark energy. High-curvature corrections of the theory come from higher-derivative quantum gravity and yield an effective action that goes beyond the one-loop approximation. It is shown that, in this theory, viable inflation emerges in a natural way, leading to a spectral index and tensor-to-scalar ratio that are in perfect agreement with the most reliable Planck results. At low energy, late-time accelerated expansion takes place. As exponential gravity, for dark energy, must be stabilized during the matter and radiation eras, we introduce a curing term in order to avoid nonphysical singularities in the effective equation of state parameter. The results of our analysis are confirmed by accurate numerical simulations, which show that our model does fit the most recent cosmological data for dark energy very precisely.

  18. Private quantum computation: an introduction to blind quantum computing and related protocols

    Science.gov (United States)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

  19. Quantum entanglement and a metaphysics of relations

    Science.gov (United States)

    Esfeld, Michael

    This paper argues for a metaphysics of relations based on a characterization of quantum entanglement in terms of non-separability, thereby regarding entanglement as a sort of holism. By contrast to a radical metaphysics of relations, the position set out in this paper recognizes things that stand in the relations, but claims that, as far as the relations are concerned, there is no need for these things to have qualitative intrinsic properties underlying the relations. This position thus opposes a metaphysics of individual things that are characterized by intrinsic properties. A principal problem of the latter position is that it seems that we cannot gain any knowledge of these properties insofar as they are intrinsic. Against this background, the rationale behind a metaphysics of relations is to avoid a gap between epistemology and metaphysics.

  20. Deformed special relativity as an effective flat limit of quantum gravity

    International Nuclear Information System (INIS)

    Girelli, Florian; Livine, Etera R.; Oriti, Daniele

    2005-01-01

    We argue that a (slightly) curved space-time probed with a finite resolution, equivalently a finite minimal length, is effectively described by a flat non-commutative space-time. More precisely, a small cosmological constant (so a constant curvature) leads the κ-deformed Poincare flat space-time of deformed special relativity (DSR) theories. This point of view eventually helps understanding some puzzling features of DSR. It also explains how DSR can be considered as an effective flat (low energy) limit of a (true) quantum gravity theory. This point of view leads us to consider a possible generalization of DSR to arbitrary curvature in momentum space and to speculate about a possible formulation of an effective quantum gravity model in these terms. It also leads us to suggest a doubly deformed special relativity framework for describing particle kinematics in an effective low energy description of quantum gravity

  1. Relational motivation for conformal operator ordering in quantum cosmology

    International Nuclear Information System (INIS)

    Anderson, Edward

    2010-01-01

    Operator ordering in quantum cosmology is a major as-yet unsettled ambiguity with not only formal but also physical consequences. We determine the Lagrangian origin of the conformal invariance that underlies the conformal operator-ordering choice in quantum cosmology. This arises particularly naturally and simply from relationalist product-type actions (such as the Jacobi action for mechanics or Baierlein-Sharp-Wheeler-type actions for general relativity), for which all that is required is for the kinetic and potential factors to rescale in compensation to each other. These actions themselves mathematically sharply implement philosophical principles relevant to whole-universe modelling, so that the motivation for conformal operator ordering in quantum cosmology is thereby substantially strengthened. Relationalist product-type actions also give emergent times which amount to recovering Newtonian, proper and cosmic time in various contexts. The conformal scaling of these actions directly tells us how emergent time scales; if one follows suit with the Newtonian time or the lapse in the more commonly used difference-type Euler-Lagrange or Arnowitt-Deser-Misner-type actions, one sees how these too obey a more complicated conformal invariance. Moreover, our discovery of the conformal scaling of the emergent time permits relating how this simplifies equations of motion with how affine parametrization simplifies geodesics.

  2. Quantum group and Manin plane related to a coloured braid group representation

    International Nuclear Information System (INIS)

    Basu Mallick, B.

    1993-07-01

    By considering 'coloured' braid group representation we have obtained a quantum group, which reduces to the standards GL q (2) and GL pq (2) cases at some particular limits of the 'colour' parameters. In spite of quite complicated nature, all of these new quantum group relations can be expressed neatly in the Heisenberg-Weyl form, for a nontrivial choice of the basis elements. Furthermore, it is possible to associate invariant Manin planes, parametrized by the 'colour' variables, with such quantum group structure. (author). 26 refs

  3. Indefinite-metric quantum field theory of general relativity, 2

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)

  4. Leibniz's relationalism and the crisis of Anschauung in quantum mechanics

    International Nuclear Information System (INIS)

    Herbig, Ralf

    2009-01-01

    Heisenberg's pioneering work ''Ueber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen'' (1925) illustrates corner points of Leibniz's theory of knowledge. It succeeds to distill kinematics of circles with velocity from an analysis of the Larmor model for the Zeeman effect. Aim of this novel kinematics is Heisenberg's time-free quantum algebra. The circle kinematica are strictly relational, and they can serve as fundament of a prototheory of quantum physics just to be developed. The kinematics of the circles implicates finally a staged term of illustrativeness. [de

  5. Quantum effects in warp drives

    Directory of Open Access Journals (Sweden)

    Finazzi Stefano

    2013-09-01

    Full Text Available Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  6. Quantum integrable systems related to lie algebras

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1983-01-01

    Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)

  7. Unifying quanta and relativity. Schroedinger`s attitude to relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, H. [Roskilde Universitetscenter (Denmark)

    1992-12-31

    A considerable part of Schroedinger`s scientific work focused on the relationship between quantum theory and the theory of relativity. This paper provides a historical analysis of his occupation on this subject in the period 1925-1934. The first section surveys the role played by relativity in Schroedinger`s formation of wave mechanics in 1925-1926; the second section analyzes his attempt to make sense of Dirac`s theory of the electron by proposing a relativistic wave equation with positive energies only. In this work, which took place in 1930-1931, Schroedinger discovered the Zitterbewegung that Dirac electrons will exhibit even in a field-free case. Schroedinger`s failed attempt to introduce an alternative to the Dirac theory was part of his general dissatisfaction with the current state of quantum mechanics. It is argued that, to a large extent, his work on the Dirac theory was philosophically motivated and that it contributed to his alienation from mainstream quantum physics in the 1930s. (author). 54 refs.

  8. Dynamical parasupersymmetries in quantum mechanics

    International Nuclear Information System (INIS)

    Durand, S.; Vinet, L.

    1990-01-01

    This paper reports on supersymmetric field theories that have the distinctive feature of being invariant under transformations that mix bosonic and fermionic variables. Reduction to 0 + 1 dimensions yields mechanical models with an analogous invariance. In this case, the Grassmannian variables are interpreted as describing (classically) the spin degrees of freedom of the particles involved. After canonical quantization, the corresponding quantities obey the standard anticommutation relations of fermionic creation and annihilation operators. It is known that paraquantitization offers alternative to the usual quantization scheme. In this framework, one can expect that it is possible to construct parasupersymmetric theories, that is, theories which are invariant under transformations between bosonic and parafermionic variables. As a matter of fact, Rubakov and Spiridonov has recently shown how the parasupersymmetric generalization of supersymmetric Quantum Mechanics proceeds. In this case, the fermionic creation and annihilation operators obey paracommutation relations. The applications of supersymmetric Quantum Mechanics are many. One might hope that its parasupersymmetric generalization will be as useful. The elaboration of parasupersymmeric Quantum Mechanics moreover has led to new mathematical constructs; indeed, the symmetry generators realize algebras involving products of degree higher than 2

  9. Provable quantum advantage in randomness processing

    OpenAIRE

    Dale, H; Jennings, D; Rudolph, T

    2015-01-01

    Quantum advantage is notoriously hard to find and even harder to prove. For example the class of functions computable with classical physics actually exactly coincides with the class computable quantum-mechanically. It is strongly believed, but not proven, that quantum computing provides exponential speed-up for a range of problems, such as factoring. Here we address a computational scenario of "randomness processing" in which quantum theory provably yields, not only resource reduction over c...

  10. Evaluation of yield and water-level relations

    International Nuclear Information System (INIS)

    Cushman, R.L.; Purtymun, W.D.

    1975-10-01

    Yield and water relations in the Los Alamos supply wells were evaluated because of the increasing demand for water. Water-level declines were extrapolated for 10 yr, to 1983, on the basis of past records. On the basis of current pumpage, the extrapolations indicate that nonpumping water levels in individual wells will decline from 10 to 30 ft. Well characteristics were compiled to provide an individual history of each well, and recommendations for improving water production are presented

  11. Quantum non-locality and relativity metaphysical intimations of modern physics

    CERN Document Server

    Maudlin, Tim

    2011-01-01

    The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell's Theorem and its implication for the relativistic account of space and timeDiscusses Roderich Tumiulka's explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell's inequality. Discusses the "Free Will Theorem" of John Conway and Simon KochenIntroduces philosophers to the relevant physics and demonstra

  12. Representations of the algebra Uq'(son) related to quantum gravity

    International Nuclear Information System (INIS)

    Klimyk, A.U.

    2002-01-01

    The aim of this paper is to review our results on finite dimensional irreducible representations of the nonstandard q-deformation U q ' (so n ) of the universal enveloping algebra U(so(n)) of the Lie algebra so(n) which does not coincide with the Drinfeld-Jimbo quantum algebra U q (so n ).This algebra is related to algebras of observables in quantum gravity and to algebraic geometry.Irreducible finite dimensional representations of the algebra U q ' (so n ) for q not a root of unity and for q a root of unity are given

  13. Determination of Dacarbazine Φ-Order Photokinetics, Quantum Yields, and Potential for Actinometry.

    Science.gov (United States)

    Maafi, Mounir; Lee, Lok-Yan

    2015-10-01

    The characterization of drugs' photodegradation kinetics is more accurately achieved by means of the recently developed Φ-order kinetics than by the zero-, first-, and/or second-order classical treatments. The photodegradation of anti-cancer dacarbazine (DBZ) in ethanol has been investigated and found to obey Φ-order kinetics when subjected to continuous and monochromatic irradiation of various wavelengths. Its photochemical efficiency was proven to be wavelength dependent in the 220-350 nm range, undergoing a 50-fold increase. Albeit this variation was well defined by a sigmoid pattern, the overall photoreactivity of DBZ was proven to depend also on the contributions of reactants and experimental attributes. The usefulness of DBZ to serve as a drug-actinometer has been investigated using the mathematical framework of Φ-order kinetics. It has been shown that DBZ in ethanol can represent a good candidate for reliable actinometry in the range 270-350 nm. A detailed and easy-to-implement procedure has been proposed for DBZ actinometry. This procedure could advantageously be implemented prior to the determination of the photodegradation quantum yields. This approach might be found useful for the development of many drug actinometers as alternatives to quinine hydrochloride. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Line tester analysis of yield and yield related attributed in different sunflower genotypes

    International Nuclear Information System (INIS)

    Din, S.U.; Khan, M.A.; Usman, K.; Sayal, O.U.

    2014-01-01

    This paper encompasses the study of line * tester analysis to chalk out genetic implications regarding yield and yield relating components in different genotypes of sunflower. Eight parents (four CMS lines and four restorers) along with their sixteen F1 hybrids were considered and planted in Randomized Complete Block Design (RCBD) replicated thrice at experimental area of Oilseed Research Program, National Agriculture Research Centre (NARC), Islamabad, Pakistan in 2011. Combining ability for some important morphological traits included days to flower initiation, days to flower completion, days to maturity, plant height, head diameter and seed yield plant-1. In this concern general combining ability (GCA), reciprocals combining ability (RCA) and specific combining ability (SCA) for all traits were studied. The GCA and SCA variances due to lines and testers interaction were significant for all the characters. However, the magnitude of GCAs from CMS lines (females) and restorers (pollinators) were higher than the SCA indicating preponderance of additive genes in the expression of all the traits. Among the lines, CMS-HA-54 whereas in testers, RHP-71, by manifesting maximum GCA effects were considered as the best general combiners for almost all the traits indicating the presence of more additive gene effects in these parents, therefore may serve as potential parents for hybridization and to improve the characters studied. Among the F1 hybrids, CMS HA-99 * RHP-76 (1.54, 212.65) and CMS HA-101 * RHP-73 (0.91, 432.73) were found as the best specific combiners for head or capitulum and seed yield. Hence, if farming community and researchers include these hybrids in their selection and hybridization program for the trait under study optimum result may be obtained. (author)

  15. Special relativity and quantum theory: a collection of papers on the Poincari Group

    International Nuclear Information System (INIS)

    Noz, M.E.; Kim, Y.S.

    1988-01-01

    When the present form of quantum mechanics was formulated in 1927, the most pressing problem was how to make it consistent with special relativity. This still remains a most important and urgent theoretical problem in physics. The underlying language for both disciplines is group theory, and E.P. Wigner's 1939 paper on the Poincari group laid the foundation for unifying the concepts and algorithms of quantum mechanics and special relativity. This volume comprises forty-five papers, including those by P.A.M. Dirac, R.P. Feynman, S. Weinberg, E.P. Wigner and H. Yukawa, covering representations of the Poincari group, time-energy uncertainty relation, covariant pictures of quantum bound states, Lorentz-Dirac deformation in high-enery physics, gauge degrees of freedom for massless particles, group contractions applied to the large-momentum/zero-mass limit, localization problems, and physical applications of the Lorentz group

  16. Pressure and temperature-dependent quantum yields for the photodissociation of acetone between 279 and 327.5 nm

    Science.gov (United States)

    Blitz, M. A.; Heard, D. E.; Pilling, M. J.; Arnold, S. R.; Chipperfield, M. P.

    2004-03-01

    The photodissociation of acetone has been studied over the wavelength (λ) range 279-327.5 nm as a function of temperature (T) and pressure (p) using a spectroscopic method to monitor the acetyl (CH3CO) radical fragment. Above 310 nm the quantum yield (QY) is substantially smaller than previous measurements, and decreases with T. The QYs for production of CH3CO + CH3 and CH3 + CH3 + CO have been parameterised as a function of λ, p and T and used to calculate the altitude dependence of the photolysis frequency. In the upper troposphere (UT) the acetone photolysis lifetime is a factor of 2.5-10 longer, dependent upon latitude and season, than if the previously recommended QYs are used.

  17. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    International Nuclear Information System (INIS)

    Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Shirley, D.A.

    1986-01-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80--270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f, 5p, and 5d subshells) and CH 3 I (I 4d subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations

  18. Experimental bit commitment based on quantum communication and special relativity.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  19. Some speculations on a causal unification of relativity, gravitation, and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Buonomano, V; Engel, A [Universidade Estadual de Campinas (Brazil). Instituto de Matematica

    1976-03-01

    Some speculations on a causal model that could provide a common conceptual foundation for relativity, gravitation, and quantum mechanics are presented. The present approach is a unification of three theories, the first being the repulsive theory of gravitational forces first proposed by Lesage who attempted to explain gravitational forces from the principle of conservation of momentum of the hypothetical particles gravitons. The second of these theories is the Brownian motion theory of quantum mechanics or stochastic mechanics, which treats the nondeterministic nature of quantum mechanics as being due to a Brownian motion of all objects. This Brownian motion being caused by the statistical variation in the graviton flux. The above two theories are unified in this article with the causal theory of special relativity. The Big Bang theory of the creation of the Universe is assumed. An experimental test is proposed.

  20. Electroluminescence property improvement by adjusting quantum wells’ position relative to p-doped region in InGaN/GaN multiple-quantum-well light emitting diodes

    Directory of Open Access Journals (Sweden)

    P. Chen

    2017-03-01

    Full Text Available The hole distribution and electroluminescence property improvement by adjusting the relative position between quantum wells and p-doped region in InGaN/GaN multiple-quantum-well structures are experimentally and theoretically investigated. Five designed samples with different barrier layer parameters of multiple-quantum-well structure are grown by MOCVD and then fabricated into devices. The electroluminescence properties of these samples are measured and compared. It is found that the output electroluminescence intensity of samples is enhanced if the position of quantum wells shifts towards p-side, while the output power is reduced if their position is shifted towards the n-side. The theoretical calculation of characteristics of these devices using the simulation program APSYS agrees well with the experimental data, illustrating that the effect of relative position between p-doped region and quantum wells on the improvement of hole distribution and electroluminescence performance is significant, especially for InGaN/GaN multiple-quantum-well devices operated under high injection condition.

  1. How to recover Newtonian mechanics from non-relative quantum mechanics in limit ℎ→0

    International Nuclear Information System (INIS)

    Mei Shizhong

    2001-01-01

    It is assumed that when ℎ→0, correct non-relative quantum mechanics should be equivalent to Newtonian mechanics. Starting from this point, the authors slightly revised the widely accepted non-relative quantum mechanics such that the mechanics after modification is strictly equivalent to that before the modification when ℎ≠0, and equivalent to Newtonian mechanics in the limit ℎ→0. The significance lies in the possibility that if authors further postulate that corrected relative quantum mechanics is equivalent to Einstein's theory of relativity in the case ℎ→0, then authors may obtain different predictions from what produced by the former that will help to verify or improve it

  2. Relation of a unified quantum field theory of spinors to the structure of general relativity

    International Nuclear Information System (INIS)

    Kober, Martin

    2009-01-01

    Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.

  3. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  4. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Tieqiang [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China)

    2016-08-08

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  5. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    International Nuclear Information System (INIS)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu; Zhang, Tieqiang

    2016-01-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  6. Quantum resonances and regularity islands in quantum maps

    Science.gov (United States)

    Sokolov; Zhirov; Alonso; Casati

    2000-05-01

    We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of an order q. The map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transformation described by the unitary unimodular group SU(q). The resonant energy growth is attributed to the zero Liouville eigenmodes of the generator in the adjoint representation of the group while the nonzero modes yield saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the form of power expansion with respect to the detuning from the resonance. The problem is related in this way to the motion along a circle in a (q2 - 1)-component inhomogeneous "magnetic" field of a quantum particle with q intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical phase oscillations near a nonlinear resonance. The most important role is played by the resonances with the orders much smaller than the typical localization length q < l. Such resonances master for exponentially long though finite times the motion in some domains around them. Explicit analytical solution is possible for a few lowest and strongest resonances.

  7. On the relation of the theoretical foundations of quantum theory and general relativity theory; Ueber die Beziehung der begrifflichen Grundlagen der Quantentheorie und der Allgemeinen Relativitaetstheorie

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Martin

    2010-07-01

    The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.

  8. Blue-emitting dinuclear N-heterocyclic dicarbene gold(I) complex featuring a nearly unit quantum yield

    KAUST Repository

    Baron, Marco

    2012-02-06

    Dinuclear N-heterocyclic dicarbene gold(I) complexes of general formula [Au 2(RIm-Y-ImR) 2](PF 6) 2 (R = Me, Cy; Y = (CH 2) 1-4, o-xylylene, m-xylylene) have been synthesized and screened for their luminescence properties. All the complexes are weakly emissive in solution whereas in the solid state some of them show significant luminescence intensities. In particular, crystals or powders of the complex with R = Me, Y = (CH 2) 3 exhibit an intense blue emission (λ max = 450 nm) with a high quantum yield (Φ em = 0.96). The X-ray crystal structure of this complex is characterized by a rather short intramolecular Au•••Au distance (3.272 Ǻ). Time dependent density functional theory (TDDFT) calculations have been used to calculate the UV/vis properties of the ground state as well as of the first excited state of the complex, the latter featuring a significantly shorter Au•••Au distance. © 2012 American Chemical Society.

  9. Blue-emitting dinuclear N-heterocyclic dicarbene gold(I) complex featuring a nearly unit quantum yield

    KAUST Repository

    Baron, Marco; Tubaro, Cristina; Biffis, Andrea; Basato, Marino; Graiff, Claudia; Poater, Albert; Cavallo, Luigi; Armaroli, Nicola; Accorsi, Gianluca

    2012-01-01

    Dinuclear N-heterocyclic dicarbene gold(I) complexes of general formula [Au 2(RIm-Y-ImR) 2](PF 6) 2 (R = Me, Cy; Y = (CH 2) 1-4, o-xylylene, m-xylylene) have been synthesized and screened for their luminescence properties. All the complexes are weakly emissive in solution whereas in the solid state some of them show significant luminescence intensities. In particular, crystals or powders of the complex with R = Me, Y = (CH 2) 3 exhibit an intense blue emission (λ max = 450 nm) with a high quantum yield (Φ em = 0.96). The X-ray crystal structure of this complex is characterized by a rather short intramolecular Au•••Au distance (3.272 Ǻ). Time dependent density functional theory (TDDFT) calculations have been used to calculate the UV/vis properties of the ground state as well as of the first excited state of the complex, the latter featuring a significantly shorter Au•••Au distance. © 2012 American Chemical Society.

  10. Relating covariant and canonical approaches to triangulated models of quantum gravity

    International Nuclear Information System (INIS)

    Arnsdorf, Matthias

    2002-01-01

    In this paper we explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over spacetime triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularizations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulation model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory

  11. Molecular Mapping of QTLs for Yield and Yield-Related Traits in Oryza sativa cv Swarna × O. nivara (IRGC81848 Backcross Population

    Directory of Open Access Journals (Sweden)

    B.P. MALLIKARJUNA SWAMY

    2011-09-01

    Full Text Available Advanced backcross QTL analysis was used to identify QTLs for seven yield and yield-related traits in a BC2F2 population from the cross between a popular Oryza sativa cv Swarna and O. nivara IRGC81848. Transgressive segregants with more than 15% increased effect over Swarna were observed for all the traits except days to heading and days to 50% flowering. Thirty QTLs were detected for seven yield and yield-related traits using interval and composite interval mapping. Enhancing alleles at 13 (45% of these QTLs were derived from O. nivara, and enhancing alleles at all the QTLs for stem diameter and rachis diameter were derived from O. nivara. Three stem diameter QTLs, two rachis diameter QTLs and one number of secondary branches QTL identified by both Interval and composite interval mapping contributed more than 15% of the total phenotypic variance. The QTL epistasis was significant for stem diameter and plot yield. The most significant QTLs qSD7.2, qSD8.1 and qSD9.1 for stem diameter, qRD9.1 for rachis diameter and qNSB1.1 for number of secondary branches are good targets to evaluate their use in marker-assisted selection. O. nivara is a good source of novel alleles for yield related traits and reveals major effect QTLs suitable for marker-assisted selection.

  12. Quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Shenvi, Neil; Whaley, K. Birgitta; Kempe, Julia

    2003-01-01

    Quantum random walks on graphs have been shown to display many interesting properties, including exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we present a quantum search algorithm based on the quantum random-walk architecture that provides such a speedup. It will be shown that this algorithm performs an oracle search on a database of N items with O(√(N)) calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum random-walk formulation has considerable flexibility, presenting interesting opportunities for development of other, possibly novel quantum algorithms

  13. Matrix Results and Techniques in Quantum Information Science and Related Topics

    Science.gov (United States)

    Pelejo, Diane Christine

    In this dissertation, we present several matrix-related problems and results motivated by quantum information theory. Some background material of quantum information science will be discussed in chapter 1, while chapter 7 gives a summary of results and concluding remarks. In chapter 2, we look at 2n x 2 n unitary matrices, which describe operations on a closed n-qubit system. We define a set of simple quantum gates, called controlled single qubit gates, and their associated operational cost. We then present a recurrence scheme to decompose a general 2n x 2n unitary matrix to the product of no more than 2n-12n-1 single qubit gates with small number of controls. In chapter 3, we address the problem of finding a specific element phi among a given set of quantum channels S that will produce the optimal value of a scalar function D(rho 1,phi(rho2)), on two fixed quantum states rho 1 and rho2. Some of the functions we considered for D(·,·) are the trace distance, quantum fidelity and quantum relative entropy. We discuss the optimal solution when S is the set of unitary quantum channels, the set of mixed unitary channels, the set of unital quantum channels, and the set of all quantum channels. In chapter 4, we focus on the spectral properties of qubit-qudit bipartite states with a maximally mixed qudit subsystem. More specifically, given positive numbers a1 ≥ ... ≥ a 2n ≥ 0, we want to determine if there exist a 2n x 2n density matrix rho having eigenvalues a1,..., a2n and satisfying tr 1(rho)=1/n In. This problem is a special case of the more general quantum marginal problem. We give the minimal necessary and sufficient conditions on a1,..., a2n for n ≤ 6 and state some observations on general values of n.. In chapter 5, we discuss the numerical method of alternating projections and illustrate its usefulness in: (a) constructing a quantum channel, if it exists, such that phi(rho(1))=sigma(1),...,phi(rho (k))=sigma(k) for given rho (1),...,rho(k) ∈ Dn and

  14. Quantum walk on a chimera graph

    Science.gov (United States)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  15. Phosphorescence and delayed fluorescence properties of fluorone dyes in bio-related films

    International Nuclear Information System (INIS)

    Penzkofer, A.; Tyagi, A.; Slyusareva, E.; Sizykh, A.

    2010-01-01

    Graphical abstract: The spectral and temporal phosphorescence and delayed fluorescence behaviour of five fluorescein dyes in gelatine, starch, and chitosan is studied and basic parameters are determined. Research highlights: → Phosphorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Phosphorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → General theory of short-pulse excited phosphorescence and delayed fluorescence is presented and relevant parameters are extracted. - Abstract: The phosphorescence and delayed fluorescence behaviour of the fluorone dyes disodium fluorescein (FL, uranine), 4,5-dibromofluorescein (DBF), eosin Y (EO), erythrosine B (ER), and rose bengal (RB) in bio-films of gelatine, starch, and chitosan at room temperature is studied. Phosphorescence and delayed fluorescence quantum yields and lifetimes were measured. The singlet-triplet dynamics is described and applied to the fluorone dyes for parameter extraction. For uranine films at room temperature no phosphorescence could be resolved. The efficiency of singlet-triplet intersystem crossing increased in the order φ ISC (DBF) ISC (EO) ISC (ER) ISC (RB) due to the heavy atom effect on spin-orbit coupling. The phosphorescence quantum yields increased in the order φ P (DBF) P (EO) P (RB) P (ER). The phosphorescence lifetimes followed the order τ P (DBF) > τ P (EO) > τ P (ER) > τ P (RB).

  16. The classicality and quantumness of a quantum ensemble

    International Nuclear Information System (INIS)

    Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui

    2011-01-01

    In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.

  17. Genetic control of late blight, yield and some yield related traits in tomato (lycopersicon esculentum mill.)

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Asghar, M.; Khan, A.R.; Iqbal, Q.

    2011-01-01

    Genetic control of late blight (LB) and some economic traits was assessed to identify genotypes suitable for the hybrids were derived from crossing of 2 male sterile lines viz., development of late blight resistant hybrids in tomato. 10 F/sub 1/ hybrid were derived from crossing of 2 male sterile lines viz., TMS1 and TMS2 with 5 elite lines viz., Nagina, Riogrande, Roma, 88572 and Picdenato according to line x tester technique. Disease resistance was measured using detached leaf and whole plant assay techniques. Data were also recorded for days to maturity, number of fruit per plant, single fruit weight and yield per plant. The analysis of variance showed significant differences among crosses, lines, testers and line x tester interaction for almost all parameters. Estimate of genetic components indicated preponderance of additive type of gene action for detached leaf assay, whole plant assay, number of fruit per plant and yield per plant whereas non-additive type of gene action for days to maturity and single fruit weight. Among parents, TMS2, Nagina, Roma and Picdenato showed significant favorable general combing ability (GCA) effects for disease rating traits while TMS1 and Riogrande indicated desirable GCA effects for yield and some yield related traits. Among hybrids, TMS2 x Roma and TMS1 x Riogrande had significant specific combing ability (SCA) effects for detached and whole plant assays. However, hybrid TMS2 x Roma appeared as good combination of LB resistance as it had both parents with desirable GCA effects. All hybrids showed average type of SCA effects for yield and yield components. Genetic control of LB revealed that a multiple crossing program involving genotypes with high GCA effects would be rewarding to identify LB resistant genotypes in early generations. (author)

  18. Causality, relativity and quantum correlation experiments with ...

    Indian Academy of Sciences (India)

    gled photons are sent via an optical fiber network to two villages near Geneva, separated ... Quantum information processing; quantum communication. ... situation is presented as follows: The system that undergoes a measurement first, let us.

  19. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  20. Intermediate statistics in quantum maps

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, Olivier [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Marklof, Jens [School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom); O' Keefe, Stephen [School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom)

    2004-07-16

    We present a one-parameter family of quantum maps whose spectral statistics are of the same intermediate type as observed in polygonal quantum billiards. Our central result is the evaluation of the spectral two-point correlation form factor at small argument, which in turn yields the asymptotic level compressibility for macroscopic correlation lengths. (letter to the editor)

  1. Reconsideration of the Uncertainty Relations and Quantum Measurements

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2008-04-01

    Full Text Available Discussions on uncertainty relations (UR and quantum measurements (QMS persisted until nowadays in publications about quantum mechanics (QM. They originate mainly from the conventional interpretation of UR (CIUR. In the most of the QM literarure, it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR were signaled. As a rule the alluded deficiencies were remarked disparately and discussed as punctual and non-essential questions. Here we approach an investigation of the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose a reconsideration of the major problems referring to UR and QMS. We reveal that all the basic presumption of CIUR are troubled by insurmountable deficiencies which require the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must be deprived of their statute of crucialpieces for physics. So, the aboriginal versions of UR appear as being in postures of either (i thought-experimental fictions or (ii simple QM formulae and, any other versions of them, have no connection with the QMS. Then the QMS must be viewed as an additional subject comparatively with the usual questions of QM. For a theoretical description of QMS we propose an information-transmission model, in which the quantum observables are considered as random variables. Our approach directs to natural solutions and simplifications for many problems regarding UR and QMS.

  2. Reconsideration of the Uncertainty Relations and Quantum Measurements

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2008-04-01

    Full Text Available Discussions on uncertainty relations (UR and quantum measurements (QMS persisted until nowadays in publications about quantum mechanics (QM. They originate mainly from the conventional interpretation of UR (CIUR. In the most of the QM literarure, it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR were signaled. As a rule the alluded deficiencies were remarked disparately and dis- cussed as punctual and non-essential questions. Here we approach an investigation of the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose a reconsideration of the major problems referring to UR and QMS. We reveal that all the basic presumption of CIUR are troubled by insurmountable deficiencies which require the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must be deprived of their statute of crucial pieces for physics. So, the aboriginal versions of UR appear as being in postures of either (i thought-experimental fictions or (ii sim- ple QM formulae and, any other versions of them, have no connection with the QMS. Then the QMS must be viewed as an additional subject comparatively with the usual questions of QM. For a theoretical description of QMS we propose an information- transmission model, in which the quantum observables are considered as random vari- ables. Our approach directs to natural solutions and simplifications for many problems regarding UR and QMS.

  3. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments

    International Nuclear Information System (INIS)

    Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang

    2014-01-01

    The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)

  4. Study on calibration of neutron efficiency and relative photo-yield of plastic scintillator

    International Nuclear Information System (INIS)

    Peng Taiping; Zhang Chuanfei; Li Rurong; Zhang Jianhua; Luo Xiaobing; Xia Yijun; Yang Zhihua

    2002-01-01

    A method used for the calibration of neutron efficiency and the relative photo yield of plastic scintillator is studied. T(p, n) and D(d, n) reactions are used as neutron resources. The neutron efficiencies and the relative photo yields of plastic scintillators 1421 (40 mm in diameter and 5 mm in thickness) and determined in the neutron energy range of 0.655-5 MeV

  5. Electron quantum optics as quantum signal processing

    OpenAIRE

    Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.

    2016-01-01

    The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics...

  6. Use of the fluorescence quantum yield for the determination of the number-average molecular weight of polymers of epicatechin with 4β→8 interflavin bonds

    Science.gov (United States)

    D. Cho; W.L. Mattice; L.J. Porter; Richard W. Hemingway

    1989-01-01

    Excitation at 280 nm produces a structureless emission band with a maximum at 321-324 nm for dilute solutions of catechin, epicatechin, and their oligomers in l,4-dioxane or water. The fluorescence quantum yield, Q, has been measured in these two solvents for five dimers, a trimer, a tetramer, a pentamer, a hexamer, and a polymer in which the monomer...

  7. Stochastic quantum mechanics and quantum spacetime

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1984-01-01

    This monograph deals in part with the physical, mathematical and epistemological reasons behind the failure of past theoretical frameworks, including conventional relativistic quantum mechanics, to bring about a conssistent unification of relativity with quantum theory. The assessment of the past record is set in an historical perspective by citing from original sources, some of which might be partly forgotten or are not that well known, but forcefully illustrate the motivations and goals of the foudners of relativity and quantum theory as they set about developing their respetive disciplines. The proposed framework for unification, which constitutes the bulk of this book, embraces classical as well as quantum theories by implementing an epsitemic idea first put forth by M. Born, namely that all deterministic values for measurable quantitites. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical leves. (author). refs.; figs.; tabs

  8. Quantum mechanics, relativity and casuality

    International Nuclear Information System (INIS)

    Tati, T.

    1976-01-01

    In quantum mechanics, the state is prepared by a measurement on a spacelike surface sigma. What is that determine the surface sigma on which the measurement prepares the stae. It si considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning casuality or conservation of probability due to the fact that the velocity of reduction of a wave packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing casual relations. An experimental to discriminate between the above-mentioned two cases and to test the existence of the universal timelike vector is proposed

  9. Quantum mechanics, relativity and causality

    International Nuclear Information System (INIS)

    Tati, Takao.

    1975-07-01

    In quantum mechanics, the state is prepared by a measurement on a space-like surface sigma. What is that determines the surface sigma on which the measurement prepares the state It is considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning causality or conservation of probability due to that the velocity of reduction of wave-packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing causal relations. We propose an experiment to discriminate between the above-mentioned two cases and to test the existence of the universal time-like vector. (auth.)

  10. Extending quantum mechanics entails extending special relativity

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R

    2016-01-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure. (paper)

  11. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  12. Quantum correlations and distinguishability of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)

    2014-07-15

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  13. Quantum correlations and distinguishability of quantum states

    International Nuclear Information System (INIS)

    Spehner, Dominique

    2014-01-01

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature

  14. Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.

    2015-01-01

    Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality — a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the “constituents” of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow us to avoid the arguments for firewalls and to make the existence of the black hole interior consistent with unitary evolution in the sense of complementarity. Our analysis provides a concrete answer to how information can be preserved at the quantum level throughout the evolution of a black hole, and gives a basic picture of how general coordinate transformations may work at the level of full quantum gravity beyond the approximation of semiclassical theory.

  15. Applications of quantum entropy to statistics

    International Nuclear Information System (INIS)

    Silver, R.N.; Martz, H.F.

    1994-01-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods

  16. Numerical analysis of the big bounce in loop quantum cosmology

    International Nuclear Information System (INIS)

    Laguna, Pablo

    2007-01-01

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity

  17. Quantum Probabilistic Dyadic Second-Order Logic

    NARCIS (Netherlands)

    Baltag, A.; Bergfeld, J.M.; Kishida, K.; Sack, J.; Smets, S.J.L.; Zhong, S.; Libkin, L.; Kohlenbach, U.; de Queiroz, R.

    2013-01-01

    We propose an expressive but decidable logic for reasoning about quantum systems. The logic is endowed with tensor operators to capture properties of composite systems, and with probabilistic predication formulas P  ≥ r (s), saying that a quantum system in state s will yield the answer ‘yes’ (i.e.

  18. Quantum control limited by quantum decoherence

    International Nuclear Information System (INIS)

    Xue, Fei; Sun, C. P.; Yu, S. X.

    2006-01-01

    We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability

  19. Quantumness-generating capability of quantum dynamics

    Science.gov (United States)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  20. Quantum features of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lozada-Cassou, M.; Dong Shihai; Yu Jiang

    2004-01-01

    The exact solutions of the two-dimensional Schrodinger equation with the position-dependent mass for the square well potential in the semiconductor quantum dots system are obtained. The eigenvalues, which are closely related to the position-dependent masses μ1 and μ2, the potential well depth V0 and the radius of the quantum dots r0, can be calculated from two boundary conditions. We generalize this quantum system to three-dimensional case. The special cases for the angular momentum quantum number l=0, 1, 2 are studied in some detail. We find that the energy levels are proportional to the parameters μ2, V0 and r0 for l=0. The relations between them for l=1, 2 become very complicated. The scattering states of this quantum system are mentioned briefly

  1. Secure self-calibrating quantum random-bit generator

    International Nuclear Information System (INIS)

    Fiorentino, M.; Santori, C.; Spillane, S. M.; Beausoleil, R. G.; Munro, W. J.

    2007-01-01

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled

  2. A Relation Between Topological Quantum Field Theory and the Kodama State

    OpenAIRE

    Oda, Ichiro

    2003-01-01

    We study a relation between topological quantum field theory and the Kodama (Chern-Simons) state. It is shown that the Kodama (Chern-Simons) state describes a topological state with unbroken diffeomorphism invariance in Yang-Mills theory and Einstein's general relativity in four dimensions. We give a clear explanation of "why" such a topological state exists.

  3. Classicality condition on a system observable in a quantum measurement and a relative-entropy conservation law

    Science.gov (United States)

    Kuramochi, Yui; Ueda, Masahito

    2015-03-01

    We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.

  4. Commuting quantum traces: the case of reflection algebras

    Energy Technology Data Exchange (ETDEWEB)

    Avan, Jean [Laboratory of Theoretical Physics and Modelization, University of Cergy, 5 mail Gay-Lussac, Neuville-sur-Oise, F-95031, Cergy-Pontoise Cedex (France); Doikou, Anastasia [Theoretical Physics Laboratory of Annecy-Le-Vieux, LAPTH, BP 110, Annecy-Le-Vieux, F-74941 (France)

    2004-02-06

    We formulate a systematic construction of commuting quantum traces for reflection algebras. This is achieved by introducing two dual sets of generalized reflection equations with associated consistent fusion procedures. Products of their respective solutions yield commuting quantum traces.

  5. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink

    KAUST Repository

    Fischer, Armin H.; Rollny, Lisa R.; Pan, Jun; Carey, Graham H.; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Kim, Jinyoung; Bakr, Osman; Sargent, E. H.

    2013-01-01

    We develop a photovoltaic colloidal quantum dot ink that allows for lossless, single-step coating of large areas in a manufacturing-compatible process. Our materials strategy involves a solution-phase ligand exchange to transport compatible linkers that yield 1-thioglycerol-capped PbS quantum dots in dimethyl sulfoxide with a photoluminescence quantum yield of 24%. A proof-of-principle solar cell made from the ink exhibits 2.1% power conversion efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink

    KAUST Repository

    Fischer, Armin H.

    2013-08-12

    We develop a photovoltaic colloidal quantum dot ink that allows for lossless, single-step coating of large areas in a manufacturing-compatible process. Our materials strategy involves a solution-phase ligand exchange to transport compatible linkers that yield 1-thioglycerol-capped PbS quantum dots in dimethyl sulfoxide with a photoluminescence quantum yield of 24%. A proof-of-principle solar cell made from the ink exhibits 2.1% power conversion efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture

    International Nuclear Information System (INIS)

    Ji, Se-Wan; Nha, Hyunchul; Kim, M S

    2015-01-01

    It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements. (paper)

  8. Dynamics of a quantum phase transition

    International Nuclear Information System (INIS)

    Zurek, W.H.

    2005-01-01

    We present two approaches to the non-equilibrium dynamics of a quench-induced phase transition in quantum Ising model. First approach retraces steps of the standard calculation to thermodynamic second order phase transitions in the quantum setting. The second calculation is purely quantum, based on the Landau-Zener formula for transition probabilities in processes that involve avoided level crossings. We show that the two approaches yield compatible results for the scaling of the defect density with the quench rate. We exhibit similarities between them, and comment on the insights they give into dynamics of quantum phase transitions. (author)

  9. Hey to quantum mechanics: the Riesz-Fejer theorem

    International Nuclear Information System (INIS)

    Frohner, F. H.

    2000-01-01

    Quantum mechanics is spectacularly successful on the technical level but its rules remain mysterious, more than seventy years after its inception. The central question concerns the super-position principle, i. e. the rule to calculate probabilities as absolute squares of complex wave functions. Other questions concern the collapse of the wave function when new information becomes available, or the relationship between spin and statistics. These questions are reconsidered. The superposition principle turns out to be a consequence of an apparently little known mathematical theorem for non-negative Fourier polynomials published by Fejer in 1915 that implies wave-mechanical interference for all probability distributions. Combined with the classical Hamiltonian equations for free motion, gauge invariance and particle indistinguishability the theorem yields A basic features of quantum mechanics - wave-particle duality, operator calculus, uncertainty relations, Schrodinger equation, and quantum statistics. Bayesian updating of probabilities with new evidence, well known in probability theory, entails collapse of the wave function. Thus the Riesz-Fejer provides a key to a better understanding of quantum mechanics. (author)

  10. The DSR-deformed relativistic symmetries and the relative locality of 3D quantum gravity

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele; Bianco, Stefano; Buonocore, Riccardo J

    2013-01-01

    Over the last decade there were significant advances in the understanding of quantum gravity coupled to point particles in 3D ((2+1)-dimensional) spacetime. Most notably it is emerging that the theory can be effectively described as a theory of free particles on a momentum space with anti-deSitter geometry and with noncommutative spacetime coordinates of the type [x μ , x ν ] = iℏℓε μν ρ x ρ . We here show that the recently proposed relative-locality curved-momentum-space framework is ideally suited for accommodating these structures' characteristics of 3D quantum gravity. Through this we obtain an intuitive characterization of the DSR-deformed Poincaré symmetries of 3D quantum gravity, and find that the associated relative spacetime locality is of the type producing dual-gravity lensing. (paper)

  11. Predicting fluorescence quantum yield for anisole at elevated temperatures and pressures

    Science.gov (United States)

    Wang, Q.; Tran, K. H.; Morin, C.; Bonnety, J.; Legros, G.; Guibert, P.

    2017-07-01

    Aromatic molecules are promising candidates for using as a fluorescent tracer for gas-phase scalar parameter diagnostics in a drastic environment like engines. Along with anisole turning out an excellent temperature tracer by Planar Laser-Induced Fluorescence (PLIF) diagnostics in Rapid Compression Machine (RCM), its fluorescence signal evolution versus pressure and temperature variation in a high-pressure and high-temperature cell have been reported in our recent paper on Applied Phys. B by Tran et al. Parallel to this experimental study, a photophysical model to determine anisole Fluorescence Quantum Yield (FQY) is delivered in this paper. The key to development of the model is the identification of pressure, temperature, and ambient gases, where the FQY is dominated by certain processes of the model (quenching effect, vibrational relaxation, etc.). In addition to optimization of the vibrational relaxation energy cascade coefficient and the collision probability with oxygen, the non-radiative pathways are mainly discussed. The common non-radiative rate (intersystem crossing and internal conversion) is simulated in parametric form as a function of excess vibrational energy, derived from the data acquired at different pressures and temperatures from the literature. A new non-radiative rate, namely, the equivalent Intramolecular Vibrational Redistribution or Randomization (IVR) rate, is proposed to characterize anisole deactivated processes. The new model exhibits satisfactory results which are validated against experimental measurements of fluorescence signal induced at a wavelength of 266 nm in a cell with different bath gases (N2, CO2, Ar and O2), a pressure range from 0.2 to 4 MPa, and a temperature range from 473 to 873 K.

  12. Expectation values of $r^{q}$ between Dirac and quasirelativistic wave functions in the quantum-defect approximation

    CERN Document Server

    Kwato-Njock, M G; Oumarou, B

    2002-01-01

    A search is conducted for the determination of expectation values of $r^q$ between Dirac and quasirelativistic radial wave functions in the quantum-defect approximation. The phenomenological and supersymmetry-inspired quantum-defect models which have proven so far to yield accurate results are used. The recursive structure of formulae derived on the basis of the hypervirial theorem enables us to develop explicit relations for arbitrary values of $q$. Detailed numerical calculations concerning alkali-metal-like ions of the Li-, Na- and Cu-iso electronic sequences confirm the superiority of supersymmetry-based quantum-defect theory over quantum-defect orbital and exact orbital quantum number approximations. It is also shown that relativistic rather than quasirelativistic treatment may be used for consistent inclusion of relativistic effects.

  13. Angularly Deformed Special Relativity and its Results for Quantum Mechanics

    OpenAIRE

    Glinka, Lukasz Andrzej

    2015-01-01

    In this paper, the deformed Special Relativity, which leads to an essentially new theoretical context of quantum mechanics, is presented. The formulation of the theory arises from a straightforward analogy with the Special Relativity, but its foundations are laid through the hypothesis on breakdown of the velocity-momentum parallelism which affects onto the Einstein equivalence principle between mass and energy of a relativistic particle. Furthermore, the derivation is based on the technique ...

  14. Quantum reference frames and quantum transformations

    International Nuclear Information System (INIS)

    Toller, M.

    1997-01-01

    A quantum frame is defined by a material object following the laws of quantum mechanics. The present paper studies the relations between quantum frames, which are described by some generalization of the Poincare' group. The possibility of using a suitable quantum group is examined, but some arguments are given which show that a different mathematical structure is necessary. Some simple examples in lower-dimensional space-times are treated. They indicate the necessity of taking into account some ''internal'' degrees of freedom of the quantum frames, that can be disregarded in a classical treatment

  15. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  16. Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1988-01-01

    Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry

  17. On superactivation of one-shot quantum zero-error capacity and the related property of quantum measurements

    DEFF Research Database (Denmark)

    Shirokov, M. E.; Shulman, Tatiana

    2014-01-01

    We give a detailed description of a low-dimensional quantum channel (input dimension 4, Choi rank 3) demonstrating the symmetric form of superactivation of one-shot quantum zero-error capacity. This property means appearance of a noiseless (perfectly reversible) subchannel in the tensor square...... of a channel having no noiseless subchannels. Then we describe a quantum channel with an arbitrary given level of symmetric superactivation (including the infinite value). We also show that superactivation of one-shot quantum zero-error capacity of a channel can be reformulated in terms of quantum measurement...

  18. Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Gvozdikov, V M; Taut, M

    2009-01-01

    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.

  19. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther

    2015-01-01

    even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes...... place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our...... results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schro...

  20. Quantum chemistry and dynamics of the abstraction reaction of H atoms from formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Siaï, A. [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Oueslati, I. [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Observatoire de Paris-Meudon, Sorbonne Universités, UPMC Univ Paris 06, UMR8112 du CNRS, LERMA, 5 Place Jules Janssen, 92195 Meudon cedex (France); Académie Militaire, Fondouk Jedid, 8012 Nabeul (Tunisia); Kerkeni, Boutheïna, E-mail: Boutheina.kerkeni@obspm.fr [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Observatoire de Paris-Meudon, Sorbonne Universités, UPMC Univ Paris 06, UMR8112 du CNRS, LERMA, 5 Place Jules Janssen, 92195 Meudon cedex (France); Institut Supérieur des Arts Multimédia de la Manouba, Université de la Manouba, 2010 la Manouba (Tunisia)

    2016-08-02

    This work reports a reduced dimensionality rate constant calculation of the H-abstraction reaction from formaldehyde. Quantum scattering calculations are performed treating explicitly the bonds being broken and formed. Geometry optimisations and frequency calculations are done at the MP2/cc-pVTZ level while energies are calculated with the CCSD(T) method. An analytical potential energy surface was developed from a relatively small number of grid points. When compared to semi-classical approaches, the quantum scattering calculations show that quantum tunnelling yields large contributions at low temperatures. At 200 K, we note a difference of about 5 orders of magnitude between transition state theory (TST) and quantum rate constants. Our predicted results show that the quantum and the CVT/SCT rate constants are in reasonable agreement with the available experiment at high temperatures, but that the last one gives better agreement to experimental results at low temperatures.

  1. Mathematica® for Theoretical Physics Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...

  2. Electron quantum interferences and universal conductance fluctuations

    International Nuclear Information System (INIS)

    Benoit, A.; Pichard, J.L.

    1988-05-01

    Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr

  3. Expectation values of r sup q between Dirac and quasirelativistic wave functions in the quantum-defect approximation

    CERN Document Server

    Kwato-Njock, K

    2002-01-01

    A search is conducted for the determination of expectation values of r sup q between Dirac and quasirelativistic radial wave functions in the quantum-defect approximation. The phenomenological and supersymmetry-inspired quantum-defect models which have proven so far to yield accurate results are used. The recursive structure of formulae derived on the basis of the hypervirial theorem enables us to develop explicit relations for arbitrary values of q. Detailed numerical calculations concerning alkali-metal-like ions of the Li-, Na- and Cu-iso electronic sequences confirm the superiority of supersymmetry-based quantum-defect theory over quantum-defect orbital and exact orbital quantum number approximations. It is also shown that relativistic rather than quasirelativistic treatment may be used for consistent inclusion of relativistic effects.

  4. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  5. Relation between 'no broadcasting' for noncommuting states and 'no local broadcasting' for quantum correlations

    International Nuclear Information System (INIS)

    Luo Shunlong; Li Nan; Cao Xuelian

    2009-01-01

    The no-broadcasting theorem, first established by Barnum et al. [Phys. Rev. Lett. 76, 2818 (1996)], states that a set of quantum states can be broadcast if and only if it constitutes a commuting family. Quite recently, Piani et al. [Phys. Rev. Lett. 100, 090502 (2008)] showed, by using an ingenious and sophisticated method, that the correlations in a single bipartite state can be locally broadcast if and only if the state is effectively a classical one (i.e., the correlations therein are classical). In this Brief Report, under the condition of nondegenerate spectrum, we provide an alternative and significantly simpler proof of the latter result based on the original no-broadcasting theorem and the monotonicity of the quantum relative entropy. This derivation motivates us to conjecture the equivalence between these two elegant yet formally different no-broadcasting theorems and indicates a subtle and fundamental issue concerning spectral degeneracy which also lies at the heart of the conflict between the von Neumann projection postulate and the Lueders ansatz for quantum measurements. This relation not only offers operational interpretations for commutativity and classicality but also illustrates the basic significance of noncommutativity in characterizing quantumness from the informational perspective.

  6. Quantum foundations in the light of quantum cryptography

    International Nuclear Information System (INIS)

    Brassard, G.; Fuchs, C.A.

    2005-01-01

    Full text: Consider the two great physical theories of the twentieth century: relativity and quantum mechanics. Einstein derived relativity from very simple principles such as: 'The speed of light in empty space is independent of the speed of its source' and 'Physics should appear the same in all inertial reference frames'. By contrast, the foundation of quantum mechanics is built on a set of rather strange, disjointed and ad hoc axioms. Why is that? Must quantum mechanics be inherently less elegant than relativity? Or is it rather that the current axioms of quantum mechanics reflect at best the history that led to its discovery by too many people (compared to one person for relativity), over too long a period of time? The purpose of this talk is to argue that a better foundation for quantum mechanics lies within the teachings of quantum information science. We postulate that the truly fundamental laws of nature concern information, not waves or particles. For example, it has been proven, from the current axioms of quantum mechanics, that 'nature allows for the unconditionally secure transmission of confidential information', but 'nature does not allow for unconditionally secure bit commitment' (these are standard classical cryptographic primitives). We propose to turn the table around, start from these two theorems and possibly a few others, upgrade them as axioms, and ask how much of quantum mechanics they can derive. This provocative talk is meant as an eye-opener: we shall ask far more questions than we shall resolve. (author)

  7. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  8. Water-Yield Relations of Drip Irrigated Watermelon in Temperate Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2016-08-01

    Full Text Available The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb. grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha was significantly higher compared to non irrigated (9,98 t/ha. Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.

  9. Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm.

    Science.gov (United States)

    Li, Yunxiang; Ouyang, Shuxin; Xu, Hua; Wang, Xin; Bi, Yingpu; Zhang, Yuanfang; Ye, Jinhua

    2016-10-03

    Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C 3 N 4 , a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C 3 N 4 -based photocatalyst to effectively convert photocatalytic generation of H 2 O 2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C 3 N 4 -based photocatalyst as an in situ and robust H 2 O 2 generator, and surface-decorated Fe 3+ as a trigger of H 2 O 2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C 3 N 4 , which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.

  10. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  11. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  12. Relative states and the existential interpretation: einselection, envariance and quantum Darwinism

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H [Los Alamos National Laboratory

    2008-01-01

    This is a brief 'guide to ideas' aimed at illuminating various developments that are based on the recognition of the role of the environment in the transition from quantum to dassical, and that are relevant to Everett's 'Relative State Interpretation' .

  13. Conditional quantum entropy power inequality for d-level quantum systems

    Science.gov (United States)

    Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok

    2018-04-01

    We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.

  14. Macroscopic effects of the quantum trace anomaly

    International Nuclear Information System (INIS)

    Mottola, Emil; Vaulin, Ruslan

    2006-01-01

    The low energy effective action of gravity in any even dimension generally acquires nonlocal terms associated with the trace anomaly, generated by the quantum fluctuations of massless fields. The local auxiliary field description of this effective action in four dimensions requires two additional scalar fields, not contained in classical general relativity, which remain relevant at macroscopic distance scales. The auxiliary scalar fields depend upon boundary conditions for their complete specification, and therefore carry global information about the geometry and macroscopic quantum state of the gravitational field. The scalar potentials also provide coordinate invariant order parameters describing the conformal behavior and divergences of the stress tensor on event horizons. We compute the stress tensor due to the anomaly in terms of its auxiliary scalar potentials in a number of concrete examples, including the Rindler wedge, the Schwarzschild geometry, and de Sitter spacetime. In all of these cases, a small number of classical order parameters completely determine the divergent behaviors allowed on the horizon, and yield qualitatively correct global approximations to the renormalized expectation value of the quantum stress tensor

  15. Towards cosmological dynamics from loop quantum gravity

    Science.gov (United States)

    Li, Bao-Fei; Singh, Parampreet; Wang, Anzhong

    2018-04-01

    We present a systematic study of the cosmological dynamics resulting from an effective Hamiltonian, recently derived in loop quantum gravity using Thiemann's regularization and earlier obtained in loop quantum cosmology (LQC) by keeping the Lorentzian term explicit in the Hamiltonian constraint. We show that quantum geometric effects result in higher than quadratic corrections in energy density in comparison to LQC, causing a nonsingular bounce. Dynamics can be described by the Hamilton or Friedmann-Raychaudhuri equations, but the map between the two descriptions is not one to one. A careful analysis resolves the tension on symmetric versus asymmetric bounce in this model, showing that the bounce must be asymmetric and symmetric bounce is physically inconsistent, in contrast to the standard LQC. In addition, the current observations only allow a scenario where the prebounce branch is asymptotically de Sitter, similar to a quantization of the Schwarzschild interior in LQC, and the postbounce branch yields the classical general relativity. For a quadratic potential, we find that a slow-roll inflation generically happens after the bounce, which is quite similar to what happens in LQC.

  16. Quantum walk computation

    International Nuclear Information System (INIS)

    Kendon, Viv

    2014-01-01

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer

  17. The relation between quantum W algebras and Lie algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1994-01-01

    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  18. The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1986-02-01

    We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral

  19. A Theory of Gravity and General Relativity based on Quantum Electromagnetism

    Science.gov (United States)

    Zheng-Johansson, J. X.

    2018-02-01

    Based on first principles solutions in a unified framework of quantum mechanics and electromagnetism we predict the presence of a universal attractive depolarisation radiation (DR) Lorentz force (F) between quantum entities, each being either an IED matter particle or light quantum, in a polarisable dielectric vacuum. Given two quantum entities i = 1, 2 of either kind, of characteristic frequencies ν _i^0, masses m_i0 = hν _i^0/{c^2} and separated at a distance r 0, the solution for F is F = - G}m_1^0m_2^0/{≤ft( {{r^2}} \\right)^2}, where G} = χ _0^2{e^4}/12{π ^2} \\in _0^2{ρ _λ };{χ _0} is the susceptibility and π λ is the reduced linear mass density of the vacuum. This force F resembles in all respects Newton’s gravity and is accurate at the weak F limit; hence ℊ equals the gravitational constant G. The DR wave fields and hence the gravity are each propagated in the dielectric vacuum at the speed of light c; these can not be shielded by matter. A test particle µ of mass m 0 therefore interacts gravitationally with all of the building particles of a given large mass M at r 0 apart, by a total gravitational force F = -GMm 0/(r 0)2 and potential V = -∂F/∂r 0. For a finite V and hence a total Hamiltonian H = m 0 c 2 + V, solution for the eigenvalue equation of µ presents a red-shift in the eigen frequency ν = ν 0(1 - GM/r 0 c 2) and hence in other wave variables. The quantum solutions combined with the wave nature of the gravity further lead to dilated gravito optical distance r = r 0/(1 - GM/r 0 c 2) and time t = t 0/(1 - GM/r 0 c 2), and modified Newton’s gravity and Einstein’s mass energy relation. Applications of these give predictions of the general relativistic effects manifested in the four classical test experiments of Einstein’s general relativity (GR), in direct agreement with the experiments and the predictions given based on GR.

  20. Quantum games as quantum types

    Science.gov (United States)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  1. Role of information theoretic uncertainty relations in quantum theory

    International Nuclear Information System (INIS)

    Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo

    2015-01-01

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed

  2. Role of information theoretic uncertainty relations in quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 (Czech Republic); ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany); Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom); Joo, Jaewoo, E-mail: j.joo@surrey.ac.uk [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.

  3. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2016-01-01

    This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...

  4. The relation between classical and quantum mechanics

    International Nuclear Information System (INIS)

    Taylor, Peter.

    1984-01-01

    The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)

  5. Identification of QTL for maize grain yield and kernel-related traits

    Indian Academy of Sciences (India)

    [Yang C., Zhang L., Jia A. and Rong T. 2016 Identification of QTL for maize grain yield and kernel-related traits. ... 2010; Zhang et al. ...... in the structure and evolution of genetic systems. ... 2013 Fine mapping a major QTL for kernel number per.

  6. Causal approach to (2+1)-dimensional Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Scharf, G.; Wreszinski, W.F.; Pimentel, B.M.; Tomazelli, J.L.

    1993-05-01

    It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs

  7. Improving Ranking Using Quantum Probability

    OpenAIRE

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...

  8. Quantum Entropy and Its Applications to Quantum Communication and Statistical Physics

    Directory of Open Access Journals (Sweden)

    Masanori Ohya

    2010-05-01

    Full Text Available Quantum entropy is a fundamental concept for quantum information recently developed in various directions. We will review the mathematical aspects of quantum entropy (entropies and discuss some applications to quantum communication, statistical physics. All topics taken here are somehow related to the quantum entropy that the present authors have been studied. Many other fields recently developed in quantum information theory, such as quantum algorithm, quantum teleportation, quantum cryptography, etc., are totally discussed in the book (reference number 60.

  9. Quantum mechanics with quantum time

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)

  10. Quantum optimization for training support vector machines.

    Science.gov (United States)

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  11. Quantum mechanics and quantum information a guide through the quantum world

    CERN Document Server

    Fayngold, Moses

    2013-01-01

    Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.

  12. Equivalence relations between deterministic and quantum mechanical systems

    International Nuclear Information System (INIS)

    Hooft, G.

    1988-01-01

    Several quantum mechanical models are shown to be equivalent to certain deterministic systems because a basis can be found in terms of which the wave function does not spread. This suggests that apparently indeterministic behavior typical for a quantum mechanical world can be the result of locally deterministic laws of physics. We show how certain deterministic systems allow the construction of a Hilbert space and a Hamiltonian so that at long distance scales they may appear to behave as quantum field theories, including interactions but as yet no mass term. These observations are suggested to be useful for building theories at the Planck scale

  13. Past Quantum States of a Monitored System

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus

    2013-01-01

    A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times t...(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...

  14. Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2014-04-16

    Optoelectronic applications of colloidal quantum dots demand a high emission efficiency, stability in time, and narrow spectral bandwidth. Electronic trap states interfere with the above properties but understanding of their origin remains lacking, inhibiting the development of robust passivation techniques. Here we show that surface vacancies improve the fluorescence yield compared to vacancy-free surfaces, while dynamic vacancy aggregation can temporarily turn fluorescence off. We find that infilling with foreign cations can stabilize the vacancies, inhibiting intermittency and improving quantum yield, providing an explanation of recent experimental observations. © 2014 American Physical Society.

  15. Indefinite-metric quantum field theory of general relativity

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)

  16. Electron states in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-01-01

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications

  17. Relativistic quantum cryptography

    International Nuclear Information System (INIS)

    Molotkov, S. N.

    2011-01-01

    A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.

  18. Quantum stochastic calculus and representations of Lie superalgebras

    CERN Document Server

    Eyre, Timothy M W

    1998-01-01

    This book describes the representations of Lie superalgebras that are yielded by a graded version of Hudson-Parthasarathy quantum stochastic calculus. Quantum stochastic calculus and grading theory are given concise introductions, extending readership to mathematicians and physicists with a basic knowledge of algebra and infinite-dimensional Hilbert spaces. The develpment of an explicit formula for the chaotic expansion of a polynomial of quantum stochastic integrals is particularly interesting. The book aims to provide a self-contained exposition of what is known about Z_2-graded quantum stochastic calculus and to provide a framework for future research into this new and fertile area.

  19. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Fu, Qiang; Zhang, Peijiang; Tan, Lubin; Zhu, Zuofeng; Ma, Dan; Fu, Yongcai; Zhan, Xinchun; Cai, Hongwei; Sun, Chuanqing

    2010-02-01

    Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC(4)F(2) and BC(4)F(4)), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  20. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  1. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  2. Dealing with quantum weirdness: Holism and related issues

    International Nuclear Information System (INIS)

    Elby, A.R.

    1995-12-01

    Various issues are discussed in interpretation of quantum mechanics. All these explorations point toward the same conclusion, that some systems are holistically connected, i.e., some composite systems have properties that cannot, even in principle, be reduced to the properties of its subsystems. This is argued to be the central metaphysical lesson of quantum theory; this will remain pertinent even if quantum mechanics gets replaced by a superior theory. Chap. 2 discusses nonlocality and rules out hidden-variable theories that approximately reproduce the perfect correlations of quantum mechanics, as well as theories that obey locality conditions weaker than those needed to derive Bell's inequality. Chap. 3 shows that SQUID experiments can rule out non-invasive measurability if not macrorealism. Chap. 4 looks at interpretational issues surrounding decoherence, the dissipative interaction between a system and its environment. Decoherence klcan help ''modal'' interpretations pick out the desired ''preferred'' basis. Chap. 5 explores what varieties of causation can and cannot ''explain'' EPR correlations. Instead of relying on ''watered down'' causal explanations, we should instead develop new, holistic explanatory frameworks

  3. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  4. On quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Haag, R.; Narnhofer, H.; Stein, U.

    1984-02-01

    We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)

  5. Quantum Gravity phenomenology: achievements and challenges

    International Nuclear Information System (INIS)

    Liberati, S; Maccione, L

    2011-01-01

    Motivated by scenarios of quantum gravity, Planck-suppressed deviations from Lorentz invariance are expected at observable energies. Ultra-High-Energy Cosmic Rays, the most energetic particles ever observed in nature, yielded in the last two years strong constraints on deviations suppressed by O(E 2 /M 2 Pl ) and also, for the first time, on space-time foam, stringy inspired models of quantum gravity. We review the most important achievements and discuss future outlooks.

  6. A Topological Extension of General Relativity to Explore the Nature of Quantum Spacetime, Dark Energy and Inflation

    NARCIS (Netherlands)

    Spaans, M.

    General Relativity is extended into the quantum domain. A thought experiment is explored to derive a specific topological build-up for Planckian spacetime. The presented arguments are inspired by Feynman's path integral for superposition and Wheeler's quantum foam of Planck mass mini black holes

  7. Estimates of the relative specific yield of aquifers from geo-electrical ...

    African Journals Online (AJOL)

    This paper discusses a method of estimating aquifer specific yield based on surface resistivity sounding measurements supplemented with data on water conductivity. The practical aim of the method is to suggest a parallel low cost method of estimating aquifer properties. The starting point is the Archie's law, which relates ...

  8. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  9. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    Science.gov (United States)

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Steinberg ``AUDIOMAPS'' Music Appreciation-Via-Understanding: Special-Relativity + Expectations ``Quantum-Theory'': a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    Science.gov (United States)

    Fender, Lee; Steinberg, Russell; Siegel, Edward Carl-Ludwig

    2011-03-01

    Steinberg wildly popular "AUDIOMAPS" music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power-spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity "+" (with its enjoyment-expectations) a manifestation of quantum-theory expectation-values, together a music quantum-ACOUSTO/MUSICO-dynamics(QA/MD). Analysis via Derrida deconstruction enabled Siegel-Baez "Category-Semantics" "FUZZYICS"="CATEGORYICS ('TRIZ") Aristotle SoO DEduction , irrespective of Boon-Klimontovich vs. Voss-Clark[PRL(77)] music power-spectrum analysis sampling-time/duration controversy: part versus whole, shows QA/MD reigns supreme as THE music appreciation-via-analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music, (06)] brain/mind-barrier brain/mind-music connection is subtle/compelling/immediate!!!

  11. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  12. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  13. Chaos and quantum Fisher information in the quantum kicked top

    International Nuclear Information System (INIS)

    Wang Xiao-Qian; Zhang Xi-He; Ma Jian; Wang Xiao-Guang

    2011-01-01

    Quantum Fisher information is related to the problem of parameter estimation. Recently, a criterion has been proposed for entanglement in multipartite systems based on quantum Fisher information. This paper studies the behaviours of quantum Fisher information in the quantum kicked top model, whose classical correspondence can be chaotic. It finds that, first, detected by quantum Fisher information, the quantum kicked top is entangled whether the system is in chaotic or in regular case. Secondly, the quantum Fisher information is larger in chaotic case than that in regular case, which means, the system is more sensitive in the chaotic case. (general)

  14. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J.W.

    2006-12-15

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  15. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    International Nuclear Information System (INIS)

    Zahn, J.W.

    2006-12-01

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  16. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

    KAUST Repository

    Pan, Jun; Sarmah, Smritakshi P.; Banavoth, Murali; Dursun, Ibrahim; Peng, Wei; Parida, Manas R.; Liu, Jiakai; Sinatra, Lutfan; AlYami, Noktan; Zhao, Chao; Alarousu, Erkki; Ng, Tien Khee; Ooi, Boon S.; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic–organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented

  17. Carbon monoxide apparent quantum yields and photoproduction in the Tyne estuary

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2011-03-01

    Full Text Available Carbon monoxide (CO apparent quantum yields (AQYs are reported for a suite of riverine, estuarine and sea water samples, spanning a range of coloured dissolved organic matter (CDOM sources, diagenetic histories, and concentrations (absorption coefficients. CO AQYs were highest for high CDOM riverine samples and almost an order of magnitude lower for low CDOM coastal seawater samples. CO AQYs were between 47 and 80% lower at the mouth of the estuary than at its head. Whereas, a conservative mixing model predicted only 8 to 14% decreases in CO AQYs between the head and mouth of the estuary, indicating that a highly photoreactive pool of terrestrial CDOM is lost during estuarine transit. The CDOM absorption coefficient (a at 412 nm was identified as a good proxy for CO AQYs (linear regression r2 > 0.8; n = 12 at all CO AQY wavelengths studied (285, 295, 305, 325, 345, 365, and 423 nm and across environments (high CDOM river, low CDOM river, estuary and coastal sea. These regressions are presented as empirical proxies suitable for the remote sensing of CO AQYs in natural waters, including open ocean water, and were used to estimate CO AQY spectra and CO photoproduction in the Tyne estuary based upon annually averaged estuarine CDOM absorption data. A minimum estimate of annual CO production was determined assuming that only light absorbed by CDOM leads to the formation of CO and a maximum limit was estimated assuming that all light entering the water column is absorbed by CO producing photoreactants (i.e. that particles are also photoreactive. In this way, annual CO photoproduction in the Tyne was estimated to be between 0.99 and 3.57 metric tons of carbon per year, or 0.004 to 0.014% of riverine dissolved organic carbon (DOC inputs to the estuary. Extrapolation of CO photoproduction rates to estimate total DOC photomineralisation indicate that less than 1% of DOC inputs are removed via photochemical processes during

  18. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  19. Quantum effects on propagation of bulk and surface waves in a thin quantum plasma film

    International Nuclear Information System (INIS)

    Moradi, Afshin

    2015-01-01

    The propagation of bulk and surface plasma waves in a thin quantum plasma film is investigated, taking into account the quantum effects. The generalized bulk and surface plasma dispersion relation due to quantum effects is derived, using the quantum hydrodynamic dielectric function and applying appropriate additional boundary conditions. The quantum mechanical and film geometric effects on the bulk and surface modes are discussed. It is found that quantum effects become important for a thin film of small thickness. - Highlights: • New bulk and surface plasma dispersion relations due to quantum effects are derived, in a thin quantum plasma film. • It is found that quantum effects become important for a thin quantum film of small thickness

  20. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  1. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  2. Quantum logic between remote quantum registers

    Science.gov (United States)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  3. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    Energy Technology Data Exchange (ETDEWEB)

    Absalan, H; SalmanOgli, A; Rostami, R

    2013-07-31

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event or a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)

  4. Simulation of a broadband nano-biosensor based on an onion-like quantum dot–quantum well structure

    International Nuclear Information System (INIS)

    Absalan, H; SalmanOgli, A; Rostami, R

    2013-01-01

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot–quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event or a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 – 760 nm). (laser applications in biology and medicine)

  5. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Science.gov (United States)

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  6. Quantum dot transport in soil, plants, and insects

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salim, Najeh [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand); Barraclough, Emma; Burgess, Elisabeth [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Clothier, Brent, E-mail: brent.clothier@plantandfood.co.nz [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Deurer, Markus; Green, Steve [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Malone, Louise [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Weir, Graham [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand)

    2011-08-01

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. - Research highlights: {yields} Quantum dots are transported rapidly through soil but half were retained. {yields} Intact roots of plants did not take up quantum dots. Excised plants

  7. The theory of everything quantum and relativity is everywhere : a Fermat Universe

    CERN Document Server

    Schwarzer, Norbert

    2018-01-01

    The book unifies quantum theory and the general theory of relativity. As an unsolved problem for about 100 years and influencing so many fields, this is probably of some importance to the scientific community. Examples like Higgs field, limit to classical Dirac and Klein–Gordon or Schrödinger cases, quantized Schwarzschild, Kerr, Kerr–Newman objects, and the photon are considered for illustration. An interesting explanation for the asymmetry of matter and antimatter in the early universe was found while quantizing the Schwarzschild metric. Along the way, the methods outlined in the book are also used to tackle the problem of the proof of Fermat’s last theorem, as there is a connection between quantum theory and basic mathematical laws of integers. The book shows that the proof of Fermat’s last theorem can be brought down to a few lines by applying new quantum theoretical methods. Because such proof was sought for over 370 years, this book is of definite interest to mathematicians.

  8. Excitation energy transfer in ruthenium (II)-porphyrin conjugates led to enhanced emission quantum yield and 1O2 generation

    International Nuclear Information System (INIS)

    Pan, Jie; Jiang, Lijun; Chan, Chi-Fai; Tsoi, Tik-Hung; Shiu, Kwok-Keung; Kwong, Daniel W.J.; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung

    2017-01-01

    Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.

  9. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations

    International Nuclear Information System (INIS)

    Gelman, David; Schwartz, Steven D.

    2010-01-01

    The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.

  10. Relations between soil factors and herbage yields of natural ...

    African Journals Online (AJOL)

    Keywords: Cation exchange capacity; Correlation matrix; Nitrogen supplies; Root mass; Root measurements; Soil acidity; Soil variables; Soil water content; Soil water measurements; Yield measurements; nitrogen supply; ph; herbage yield; grassland; soils; productivity; soil depth; dry matter yield; grasses; water content; n; ...

  11. Quantum gravity phenomenology. Achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liberati, S. [International School for Advanced Study (SISSA), Trieste (Italy); INFN, Sezione di Trieste (Italy); Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    Motivated by scenarios of quantum gravity, Planck-suppressed deviations from Lorentz invariance are expected at observable energies. Ultra-High-Energy Cosmic Rays, the most energetic particles ever observed in nature, yielded in the last two years strong constraints on deviations suppressed by O(E{sup 2}/M{sup 2}{sub Pl}) and also, for the first time, on space-time foam, stringy inspired models of quantum gravity. We review the most important achievements and discuss future outlooks. (orig.)

  12. Introduction to topological quantum matter & quantum computation

    CERN Document Server

    Stanescu, Tudor D

    2017-01-01

    What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...

  13. Quantum-capacity-approaching codes for the detected-jump channel

    International Nuclear Information System (INIS)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng; Zeng Bei

    2010-01-01

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.

  14. Isotope yield ratios as a probe of the reaction dynamics

    International Nuclear Information System (INIS)

    Trautmann, W.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Trockel, R.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Eckert, E.M.; Pochodzalla, J.; Bock, I.; Pelte, D.

    1987-04-01

    Isotopically resolved yields of particles and complex fragments from 12 C and 18 O induced reactions on 53 Ni, 54 Ni, Ag, and 197 Au in the intermediate range of bombarding energies 30 MeV ≤ E/A ≤ 84 MeV were measured. The systematic variation of the deduced isotope yield ratios with projectile and target is used to determine the degree of N/Z equilibration achieved and to establish time scales for the reaction process. A quantum statistical model is employed in order to derive entropies of the emitting systems from the measured isotope yield ratios. (orig.)

  15. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  16. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Morales, A.L.; Martínez-Orozco, J.C.; Baghramyan, H.M.; Barseghyan, M.G.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p z -like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum

  17. On quantum gravity and the many-worlds interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Smolin, L.

    1984-01-01

    The paper examines the interpretation of quantum mechanics and the quantum theory of gravity. Foundational problems in quantum gravity; the many-worlds interpretation of quantum mechanics; the role of observation in the many-worlds and in the minimal relative state interpretations; and advantages of the many-worlds interpretation; are all discussed. (U.K.)

  18. Quantum cosmology. 18

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1989-01-01

    Quantum cosmology is to quantum gravity what the Bohr model is to the full quantum mechanical description of the hydrogen atom. In quantum cosmology one attempts to give a quantum-mechanical meaning to classical solutions of general relativity. This is discussed in this chapter. The approach is illustrated by quantizing only the conformal degree of freedom of the gravitational field, in particular the Friedmann-Robertson-Walker models. And, as in the hydrogen atom, the classical singularity of general relativity is avoided and one has analogous stationary states in the quantum Universe. The chapter ends with a model of the fundamental role that the Planck length may play as the universal cutoff in all field theories, thus ridding the theory of ultra-violet divergences. Two appendices introduce field theory in the Schroedinger representation and the Schroedinger equation for quantum gravity, namely the Wheeler-De Wit equation. (author). 38 refs.; 2 figs.; 1 tab

  19. Indefinite-metric quantum field theory of general relativity, 5

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The indefinite-metric quantum field theory of general relativity is extended to the coupled system of the gravitational field and a Dirac field on the basis of the vierbein formalism. The six extra degrees of freedom involved in vierbein are made unobservable by introducing an extra subsidiary condition Q sub(s) + phys> = 0, where Q sub(s) denotes a new BRS charge corresponding to the local Lorentz invariance. It is shown that a manifestly covariant, unitary, canonical theory can be constructed consistently on the basis of the vierbein formalism. (author)

  20. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture

    Directory of Open Access Journals (Sweden)

    Mandana Haack-Sørensen

    2016-11-01

    Full Text Available Abstract Background Adipose derived stromal cells (ASCs are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system is compared with traditional manual cultivation. Methods Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. Results The viability of ASCs passage 0 (P0 and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 107 SVF cells loaded into a Quantum system yielded 8.96 × 107 ASCs P0, while 4.5 × 106 SVF cells seeded per T75 flask yielded an average of 2.37 × 106 ASCs—less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Conclusion: Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to

  1. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture.

    Science.gov (United States)

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten; Brorsen, Sonja K; Søndergaard, Rebekka H; Kastrup, Jens; Ekblond, Annette

    2016-11-16

    Adipose derived stromal cells (ASCs) are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 10 7 SVF cells loaded into a Quantum system yielded 8.96 × 10 7 ASCs P0, while 4.5 × 10 6 SVF cells seeded per T75 flask yielded an average of 2.37 × 10 6 ASCs-less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD) around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to safe and robust cell production. Notably, the use of the Quantum

  2. Preparation of Graphene Quantum Dots and Their Application in Cell Imaging

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-01-01

    Full Text Available Objective. This study aims to increase the fluorescence quantum yield by improving the conditions of preparing graphene quantum dots (GQDs through the solvothermal route and observe the GQDs performance in imaging oral squamous cells. Methodology. The following experimental conditions of GQDs preparation through the solvothermal route were improved: graphene oxide (GO/N-N dimethyl formamide (DMF ratio, filling percentage, and reaction time. A fluorescence spectrophotometer was used to measure photoluminescence, and the peak values were compared. Methylthiazolyldiphenyl-tetrazolium (MTT bromide was used to detect the cytotoxicity of GQDs, which was compared with that of cadmium telluride quantum dots (CdTe QDs. GQDs were cultured with tongue cancer cells. After the coculture, a laser scanning confocal microscope (LSCM was used to observe cell imaging. Results. The optimal conditions of GQD preparation through the solvothermal route included the following: 10 mg/mL GO/DMF ratio, 80% filling percentage, 12 h reaction time, and 17.4% fluorescence quantum yield. As the cell concentration increased, the GQD and CdTe QD groups exhibited a decreasing cell survival rate, with the decrease in the CdTe QD group being more significant. The LSCM observations showed bright green fluorescence images. Conclusion. The improved experimental conditions increased the fluorescence quantum yield of GQDs. In this study, the prepared GQDs exhibited low cytotoxicity level and satisfactory cell imaging performance.

  3. Holonomic quantum computation based on the scalar Aharonov–Bohm effect for neutral particles and linear topological defects

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, Claudio

    2012-01-01

    We discuss holonomic quantum computation based on the scalar Aharonov–Bohm effect for a neutral particle. We show that the interaction between the magnetic dipole moment and external fields yields a non-abelian quantum phase allowing us to make any arbitrary rotation on a one-qubit. Moreover, we show that the interaction between the magnetic dipole moment and a magnetic field in the presence of a topological defect yields an analogue effect of the scalar Aharonov–Bohm effect for a neutral particle, and a new way of building one-qubit quantum gates. - Highlights: ► Holonomic quantum computation for neutral particles. ► Implementation of one-qubit quantum gates based on the Anandan quantum phase. ► Implementation of one-qubit quantum gates based on the scalar Aharonov–Bohm effect.

  4. Investigations into quantum theory and relativity theory

    International Nuclear Information System (INIS)

    Cox, I.D.

    1982-03-01

    This thesis falls into two parts. The first is concerned with damping theory as a particular approach to the description of the dynamical evolution of non-closed systems. Appealing ultimately to the Liouville/Von-Neuman equation in the weak coupling regime, the current-voltage characteristics of both the normal and Josephson tunnelling junctions, treated as open systems are obtained. It is then shown that the same results may be obtained via the combined scattering and density matrix formalism (which does not appeal to the Liouville/Von-Neuman equation), and that this method has certain advantages over the conventional formalism. In the second part an extended (non-quantum) theory of relativity in a five dimensional space is developed and a number of interesting consequences thereof obtained. In particular a generalised set of Maxwell equations for electro-dynamics is derived, and some of the implications of the new set of equations are described. Furthermore a treatment of the five-dimensional analogue of the Schwarzschild problem in general relativity is given, together with the resulting implications for planetary motion. (author)

  5. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2007-01-01

    These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given. The first part is devoted to Special Relativity concerning in particular space-time relativity and relativistic kinematics. The second part deals with Schroedinger's formulation of quantum mechanics. The presentation concerns mainly one dimensional problems, in particular tunnel effect, discrete energy levels and band spectra. The third part concerns the application of Gibbs statistical methods to quantum systems and in particular to Bose and Fermi gasses.

  6. Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

    Directory of Open Access Journals (Sweden)

    Xu Hengyi

    2010-01-01

    Full Text Available Abstract We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs overcoated with Cd0.5Zn0.5S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence quantum yield up to 80% was measured for the core/multishell nanocrystals. Finally, the resulting CdSe/Cd0.5Zn0.5S/ZnS core/multishell QDs have been successfully applied to the labeling and imaging of breast cancer cells (SK-BR3.

  7. Dark energy from quantum matter

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Moeller, Jan; Pinamonti, Nicola

    2010-07-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  8. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  9. Steinberg ``AUDIOMAPS" Music Appreciation-Via-Understanding: Special-Relativity + Expectations "Quantum-Theory": a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    Science.gov (United States)

    Steinberg, R.; Siegel, E.

    2010-03-01

    ``AUDIOMAPS'' music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power- spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity ``+'' (with its enjoyment- expectations) a manifestation of quantum-theory expectation- values, together a music quantum-ACOUSTO/MUSICO-dynamics (QA/MD). Analysis via Derrida deconstruction enabled Siegel- Baez ``Category-Semantics'' ``FUZZYICS''=``CATEGORYICS (``SON of 'TRIZ") classic Aristotle ``Square-of-Opposition" (SoO) DEduction-logic, irrespective of Boon-Klimontovich versus Voss- Clark[PRL(77)] music power-spectrum analysis sampling- time/duration controversy: part versus whole, shows that ``AUDIOMAPS" QA/MD reigns supreme as THE music appreciation-via- analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music,(2006)] brain/mind-barrier brain/mind-music connection is both subtle and compelling and immediate!!!

  10. Is relativistic quantum mechanics compatible with special relativity?

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    2001-01-01

    The transformation from a time-dependent random walk to quantum mechanics converts a modified Bessel function into an ordinary one together with a phase factor e iπ/2 for each time the electron flips both direction and handedness. Causality requires the argument to be greater than the order of the Bessel function. Assuming equal probabilities for jumps ±1, the normalized modified Bessel function of an imaginary argument is the solution of the finite difference differential Schroedinger equation whereas the same function of a real argument satisfies the diffusion equation. In the nonrelativistic limit, the stability condition of the difference scheme contains the mass whereas in the ultrarelativistic limit only the velocity of light appears. Particle waves in the nonrelativistic limit become elastic waves in the ultrarelativistic limit with a phase shift in the frequency and wave number of π/2. The ordinary Bessel function satisfies a second order recurrence relation which is a finite difference differential wave equation, using non-nearest neighbors, whose solutions are the chirality components of a free-particle in the zero fermion mass limit. Reintroducing the mass by a phase transformation transforms the wave equation into the Klein-Gordon equation but does not admit a solution in terms of ordinary Bessel functions. However, a sign change of the mass term permits a solution in terms of a modified Bessel function whose recurrence formulas produce all the results of special relativity. The Lorentz transformation maximizes the integral of the modified Bessel function and determines the paths of steepest descent in the classical limit. If the definitions of frequency and wave number in terms of the phase were used in special relativity, the condition that the frame be inertial would equate the superluminal phase velocity with the particle velocity in violation of causality. In order to get surfaces of constant phase to move at the group velocity, an integrating

  11. Quantum Darwinism

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  12. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials

    International Nuclear Information System (INIS)

    Khavryuchenko, V.D.; Khavryuchenko, O.V.; Lisnyak, V.V.

    2007-01-01

    Amorphous calcium hydroxyapatite was examined by vibrational spectroscopy (Raman and infra-red (IR)) and quantum chemical simulation techniques. The structures and vibrational (IR, Raman and inelastic neutron scattering) spectra of PO 4 3- ion, Ca 3 (PO 4 ) 2 , [Ca 3 (PO 4 ) 2 ] 3 , Ca 5 (PO 4 ) 3 OH, CaHPO 4 , [CaHPO 4 ] 2 , Ca 3 (PO 4 ) 2 .H 2 O, Ca 3 (PO 4 ) 2 .2H 2 O and Ca 3 (PO 4 ) 2 .3H 2 O clusters were quantum chemically simulated at ab initio and semiempirical levels of approximation. A complete coordinate analysis of the vibrational spectra was performed. The comparison of the theoretically simulated spectra with the experimental ones allows to identify correctly the phase composition of the amorphous calcium hydroxyapatite and related materials. The shape of the bands in the IR spectra of the hydroxoapatite can be used in order to characterize the structural properties of the material, e.g., the PO 4 3- ion status, the degree of hydrolysis of the material and the presence of hydrolysis products. - Graphical abstract: The structure of the quantum chemically optimized Ca 5 (PO 4 ) 3 (OH) cluster, which was used for vibrations spectra simulation

  13. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications.

    Science.gov (United States)

    Ellis, Matthew A; Grandinetti, Giovanna; Fichter, Katye M; Fichter, Kathryn M

    2016-02-06

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.

  14. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications

    Science.gov (United States)

    Ellis, Matthew A.; Grandinetti, Giovanna; Fichter, Katye M.

    2016-01-01

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications. PMID:26891282

  15. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  16. Stochastic quantum mechanics and quantum spacetime

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1984-01-01

    This monograph's principal intent is to provide a systematic and self-contained introduction to an alternative unification of relativity with quantum theory based on stochastic phase spaces and stochastic geometries, and presented at a level accessible to graduate students in theoretical and mathematical physics as well as to professional physicists and mathematicians. The proposed framework for unification embraces classical as well as quantum theories by implementing an epistemic idea first put forth by M. Born, namely that all physical theories should be formulated in terms of stochastic rather than deterministic values for measurable quantities. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical levels. (Auth.)

  17. Divide and conquer approach to quantum Hamiltonian simulation

    Science.gov (United States)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  18. Quantum physics, relativity and complex spacetime towards a new synthesis

    CERN Document Server

    Kaiser, Gerald

    1990-01-01

    A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime, and it is shown that this complexification has a solid physical interpretation as an extended phase space. The extended fields can be said to be realistic wavelet transforms of the original fields. A new, algebraic theory of wavelets is developed.

  19. A general action for topological quantum field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-03-01

    Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs

  20. Biexciton binding energy in ZnSe quantum wells and quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans-Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    2002-01-01

    The biexciton binding energy E-XX is investigated in ZnSe/ZnMgSe quantum wells and quantum wires as a function of the lateral confinement by transient four-wave mixing. In the quantum wells one observes for decreasing well width a significant increase in the relative binding energy, saturating...... for well widths less than 8 nm. In the quantum wires an increase of 30% is found in the smallest quantum wire structures compared to the corresponding quantum well value. A simple analytical model taking into account the quantum confinement in these low-dimensional systems is used to explain...

  1. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    Science.gov (United States)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  2. Quantum criticality.

    Science.gov (United States)

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  3. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  4. Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation

    Science.gov (United States)

    Gallagher, C. B.; Ferraro, A.

    2018-05-01

    A possible alternative to the standard model of measurement-based quantum computation (MBQC) is offered by the sequential model of MBQC—a particular class of quantum computation via ancillae. Although these two models are equivalent under ideal conditions, their relative resilience to noise in practical conditions is not yet known. We analyze this relationship for various noise models in the ancilla preparation and in the entangling-gate implementation. The comparison of the two models is performed utilizing both the gate infidelity and the diamond distance as figures of merit. Our results show that in the majority of instances the sequential model outperforms the standard one in regard to a universal set of operations for quantum computation. Further investigation is made into the performance of sequential MBQC in experimental scenarios, thus setting benchmarks for possible cavity-QED implementations.

  5. Practical, Reliable Error Bars in Quantum Tomography

    OpenAIRE

    Faist, Philippe; Renner, Renato

    2015-01-01

    Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of...

  6. Rigid particle revisited: Extrinsic curvature yields the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)

    2014-03-01

    We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.

  7. A New Perspective on Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Kong, Otto C W

    2011-01-01

    Based on a linear realization formulation of a quantum relativity, - proposed relativity for 'quantum space-time', we introduce the new Poincare-Snyder relativity and Snyder relativity as relativities in between the latter and the well known Galilean and Einstein cases. While there is supposed to be not separate notion of classical and quantum mechanics at the level of the very unconventional quantum relativity, the Poincare-Snyder relativity is more like a mathematically extended form of Einstein relativity on which we can write down a formal canonical classical and quantum mechanics. We discuss how the Poincare-Snyder relativity may provide a stronger framework for the description of the usual (Einstein) relativistic quantum mechanics and present a first look of the interesting picture from the new perspective.

  8. Quantum tunneling of magnetization and related phenomena in molecular materials.

    Science.gov (United States)

    Gatteschi, Dante; Sessoli, Roberta

    2003-01-20

    Molecules comprising a large number of coupled paramagnetic centers are attracting much interest because they may show properties which are intermediate between those of simple paramagnets and classical bulk magnets and provide unambiguous evidence of quantum size effects in magnets. To date, two cluster families, usually referred to as Mn12 and Fe8, have been used to test theories. However, it is reasonable to predict that other classes of molecules will be discovered which have similar or superior properties. To do this it is necessary that synthetic chemists have a good understanding of the correlation between the structure and properties of the molecules, for this it is necessary that concepts such as quantum tunneling, quantum coherence, quantum oscillations are understood. The goal of this article is to review the fundamental concepts needed to understand quantum size effects in molecular magnets and to critically report what has been done in the field to date.

  9. Optimally stopped variational quantum algorithms

    Science.gov (United States)

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  10. Bell-type quantum field theories

    International Nuclear Information System (INIS)

    Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino

    2005-01-01

    In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)

  11. Great Disparity in Photoluminesence Quantum Yields of Colloidal CsPbBr3 Nanocrystals with Varied Shape: The Effect of Crystal Lattice Strain.

    Science.gov (United States)

    Zhao, Jiangtao; Liu, Mei; Fang, Li; Jiang, Shenlong; Zhou, Jingtian; Ding, Huaiyi; Huang, Hongwen; Wen, Wen; Luo, Zhenlin; Zhang, Qun; Wang, Xiaoping; Gao, Chen

    2017-07-06

    Understanding the big discrepancy in the photoluminesence quantum yields (PLQYs) of nanoscale colloidal materials with varied morphologies is of great significance to its property optimization and functional application. Using different shaped CsPbBr 3 nanocrystals with the same fabrication processes as model, quantitative synchrotron radiation X-ray diffraction analysis reveals the increasing trend in lattice strain values of the nanocrystals: nanocube, nanoplate, nanowire. Furthermore, transient spectroscopic measurements reveal the same trend in the defect quantities of these nanocrystals. These experimental results unambiguously point out that large lattice strain existing in CsPbBr 3 nanoparticles induces more crystal defects and thus decreases the PLQY, implying that lattice strain is a key factor other than the surface defect to dominate the PLQY of colloidal photoluminesence materials.

  12. Coherent quantum logic

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1987-01-01

    The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex

  13. Yield in almond is related more to the abundance of flowers than the relative number of flowers that set fruit

    Directory of Open Access Journals (Sweden)

    Sergio Tombesi

    2016-11-01

    Full Text Available Almond tree yield is a function of the number of flowers on a tree and the percentage of flowers that set fruit. Almonds are borne on spurs (short proleptic shoots that can have both leaves and flowers. Almond tree spur dynamics research has documented that previous year spur leaf area is a predictive parameter for year-to-year spur survival, spur flowering and to a lesser extent spur fruiting, while previous year fruit bearing has a negative impact on subsequent year flowering. However, a question remained about whether yields are more dependent on flower numbers or relative fruit set of the flowers that are present. The aim of the present work was to compare the importance of flower abundance with that of relative fruit set in determining the productivity of a population of tagged spurs in almond trees over a 6-year period. Overall tree yield among years was more sensitive to total number of flowers on a tree rather than relative fruit set. These results emphasize the importance of maintaining large populations of healthy flowering spurs for sustained high production in almond orchards.

  14. Quantum frames

    Science.gov (United States)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  15. Multi-functional quantum router using hybrid opto-electromechanics

    Science.gov (United States)

    Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang

    2018-03-01

    Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.

  16. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  17. Spin-orbit interaction in multiple quantum wells

    International Nuclear Information System (INIS)

    Hao, Ya-Fei

    2015-01-01

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices

  18. Spin-orbit interaction in multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  19. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  20. Abnormal screening in the quantum disordered phases of nonlinear σ-models

    International Nuclear Information System (INIS)

    Wen, X.G.; Zee, A.

    1989-01-01

    We study some properties of the quantum disordered phase of nonlinear σ-models, focussing on the quantum numbers of the quasi-particles and possible experimental implications. We find that the quasi-particles in the quantum disordered phase may, in many cases, carry new quantum numbers which do not appear in any finite combination of the fundamental fields. We call this phenomenon abnormal screening. Abnormal screening is shown to appear in (1+1)-dimensional systems. Using a large N mean field approach to the quantum disordered state, we show that abnormal screening may also appear in (1+2)-dimensional nonlinear σ-models. In 1+2 dimensions abnormal screening is closely related to spin-charge separation, which was proposed to occur in the spin liquid state relevant in some theories of high T c superconductivity. We compare the mean field approach with bosonization and other exact results for (1+1)-dimensional systems and find exact agreement for the quantum numbers of the quasi-particles. This suggests that mean field analysis of high T c superconductivity may yield a qualitatively reliable picture. Our result also gives an alternative way of understanding some novel properties of the antiferromagnetic spin chain. We estimate the density and temperature at which deconfinement and abnormal screening occur. Finally, we suggest some experimental signatures for this phenomenon. (orig.)

  1. New View on Quantum Gravity:. Micro-Structure of Spacetime and Origin of the Universe

    Science.gov (United States)

    Hu, B. L.

    2008-04-01

    It is generally agreed that the primary goal of quantum gravity is to find the microscopic structure of spacetime. However, for the last half a century the cardinal principle upheld by most general relativists has been to find ways to quantize Einstein's general theory of relativity, a theory which has proven to be highly successful in describing the macroscopic structure of spacetime we live in today. A tacit assumption in this existing paradigm is that doing so will yield the micro-structures of spacetime. We challenge this supposition and present a different view. If general relativity is an effective theory valid only at the long wavelength and low energy limits, and the metric and connection forms are collective variables, then quantizing a classical theory such as general relativity valid in the macroscopic domain is unlikely to yield a theory of the microscopic structures of spacetime. To uncover the microscopic structures one needs to find ways to unravel the underlying microscopic structures from observed macroscopic phenomena rather than naively quantizing the macroscopic variables, two very different paradigms. This task is similar to deducing the molecular constituents or even their quantum features from hydrodynamics or universalities of microscopic theories from critical phenomena. The macro to micro road poses a new and perhaps more difficult challenge to the next generation of theorists, phenomenologists and experimentalists in quantum gravity. Here we need to address issues at the quantum-classical and micro-macro interfaces familiar in mesoscopic physics, focusing on quantum fluctuations and correlations, coarse-graining and backreaction, and adopt ideas of nonequilibrium statistical mechanics and techniques from quantum field theory to explore theories built upon general relativity in a `bottom-up' approach or a `grass-root' road to quantum gravity. This view also provides us with a natural resolution towards the `Origin of the Universe' issue

  2. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    Science.gov (United States)

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  3. Quantum no-scale regimes in string theory

    Science.gov (United States)

    Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé

    2018-05-01

    We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.

  4. Post-quantum cryptography

    Science.gov (United States)

    Bernstein, Daniel J.; Lange, Tanja

    2017-09-01

    Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.

  5. Post-quantum cryptography.

    Science.gov (United States)

    Bernstein, Daniel J; Lange, Tanja

    2017-09-13

    Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.

  6. Quantum theory. 3. ed.

    International Nuclear Information System (INIS)

    Kiefer, C.

    2004-01-01

    The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)

  7. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    Science.gov (United States)

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  8. On the quantum dynamical foundations of collision terms

    International Nuclear Information System (INIS)

    Nemes, M.C.; Toledo Piza, A.F.R. de

    1981-08-01

    Collision terms are non-unitary corrections usually added to mean field descriptions in order to describe dissipative effects. Derivations of collision terms usually include assumptions which lack an explicit connection with a fully quantum dynamical description. Quantum dynamical foundations of collision terms are examined: they are shown to reflect the dynamics of quantum correlations. A careful study of the non-unitary aspects of the evolution of quantum correlations leads naturally to an unambiguous definition of a collision term. This collision term is shown to obey a non-linear pre-master equation, whose derivation is fully quantum-mechanical. Moreover, it is shown that quantum correlations also yield an unitary correction to the mean field description, which could be absorbed in a suitable redefinition of the mean field. Formal expressions for these corrections are derived and their connection with memory effects exhibited explicitely. The typical time of evaluation of quantum correlations allows for an analytical expression for the 'lifetime of mean field descriptions'. Finally, a quantum mechanical point of view for 'irreversibility' in deep inelastic is discussed. (Author) [pt

  9. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  10. Quantum gravity and quantum nondemolition measurements

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H. von; Treder, H.J.

    1984-01-01

    It is shown that in Quantum Gravity, and more general: in Grand Unified Theory incorporating General Relativity on a basic level, there arise necessarily absolute limitations on measurement which one cannot evade by any 'quantum nondemolition measurements'. This fact is demonstrated not to oppose the existence of certain approximations to the full theory where these limitations do not arise. (author)

  11. Quantum physics meets the philosophy of mind new essays on the mind-body relation in quantum-theoretical perspective

    CERN Document Server

    Meixner, Uwe

    2014-01-01

    Quantum physics, unlike classical physics, suggests a non-physicalistic metaphysics. Whereas physicalism implies a reductive position in the philosophy of mind, quantum physics is compatible with non-reductionism, and actually seems to support it. The essays in this book explore, from various points of view, the possibilities of basing a non-reductive philosophy of mind on quantum physics.

  12. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    International Nuclear Information System (INIS)

    Mekhov, Igor B; Ritsch, Helmut

    2012-01-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)

  13. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980–2010

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Guoyong

    2017-12-01

    Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (RGST_CY) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in association with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K~-3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in RGST_CY are mainly observed in Midwest Corn Belt and central High Plains, and are well reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study period.

  14. Quantum information aspects of noncommutative quantum mechanics

    Science.gov (United States)

    Bertolami, Orfeu; Bernardini, Alex E.; Leal, Pedro

    2018-01-01

    Some fundamental aspects related with the construction of Robertson-Schrödinger-like uncertainty-principle inequalities are reported in order to provide an overall description of quantumness, separability and nonlocality of quantum systems in the noncommutative phase-space. Some consequences of the deformed noncommutative algebra are also considered in physical systems of interest.

  15. Quantum physics meets the philosophy of mind. New essays on the mind-body relation in quantum-theoretical perspective

    International Nuclear Information System (INIS)

    Corradini, Antonella; Meixner, Uwe

    2014-01-01

    Quantum physics, in contrast to classical physics, allows non-locality and indeterminism in nature. Moreover, the role of the observer seems indispensable in quantum physics. In fact, quantum physics, unlike classical physics, suggests a metaphysics that is not physicalism (which is today's official metaphysical doctrine). As is well known, physicalism implies a reductive position in the philosophy of mind, specifically in its two core areas, the philosophy of consciousness and the philosophy of action. Quantum physics, in contrast, is compatible with psychological non-reductionism, and actually seems to support it. The essays in this book explore, from various points of view, the possibilities of basing a non-reductive philosophy of mind on quantum physics. In doing so, they not only engage with the ontological and epistemological aspects of the question but also with the neurophysiological ones.

  16. Quantum physics meets the philosophy of mind. New essays on the mind-body relation in quantum-theoretical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Antonella [Catholic Univ., Milan (Italy); Meixner, Uwe (ed.) [Augsburg Univ. (Germany)

    2014-07-01

    Quantum physics, in contrast to classical physics, allows non-locality and indeterminism in nature. Moreover, the role of the observer seems indispensable in quantum physics. In fact, quantum physics, unlike classical physics, suggests a metaphysics that is not physicalism (which is today's official metaphysical doctrine). As is well known, physicalism implies a reductive position in the philosophy of mind, specifically in its two core areas, the philosophy of consciousness and the philosophy of action. Quantum physics, in contrast, is compatible with psychological non-reductionism, and actually seems to support it. The essays in this book explore, from various points of view, the possibilities of basing a non-reductive philosophy of mind on quantum physics. In doing so, they not only engage with the ontological and epistemological aspects of the question but also with the neurophysiological ones.

  17. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    International Nuclear Information System (INIS)

    Lu, Y. F.; Cao, X. A.

    2014-01-01

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions

  18. On the relation between the modular double of Uq(sl(2,R)) and the quantum Teichmueller theory

    International Nuclear Information System (INIS)

    Nidaiev, Iurii; Teschner, Joerg

    2013-02-01

    We exhibit direct relations between the modular double of U q (sl(2,R)) and the quantum Teichmueller theory. Explicit representations for the fusion- and braiding operations of the quantum Teichmueller theory are immediate consequences. Our results include a simplified derivation of the Clebsch-Gordan decomposition for the principal series of representation of the modular double of U q (sl(2,R)).

  19. A strong astrophysical constraint on the violation of special relativity by quantum gravity.

    Science.gov (United States)

    Jacobson, T; Liberati, S; Mattingly, D

    2003-08-28

    Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.

  20. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    Man'ko, O.V.

    1999-03-01

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  1. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    Energy Technology Data Exchange (ETDEWEB)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  2. Dynamic behavior of the quantum Zakharov-Kuznetsov equations in dense quantum magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Hui-Ling; Tian, Bo, E-mail: tian-bupt@163.com; Wang, Yu-Feng; Zhong, Hui; Sun, Wen-Rong [State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-01-15

    Quantum Zakharov-Kuznetsov (qZK) equation is found in a dense quantum magnetoplasma. Via the spectral analysis, we investigate the Hamiltonian and periodicity of the qZK equation. Using the Hirota method, we obtain the bilinear forms and N-soliton solutions. Asymptotic analysis on the two-soliton solutions shows that the soliton interaction is elastic. Figures are plotted to reveal the propagation characteristics and interaction between the two solitons. We find that the one soliton has a single peak and its amplitude is positively related to H{sub e}, while the two solitons are parallel when H{sub e} < 2, otherwise, the one soliton has two peaks and the two solitons interact with each other. Hereby, H{sub e} is proportional to the ratio of the strength of magnetic field to the electronic Fermi temperature. External periodic force on the qZK equation yields the chaotic motions. Through some phase projections, the process from a sequence of the quasi-period doubling to chaos can be observed. The chaotic behavior is observed since the power spectra are calculated, and the quasi-period doubling states of perturbed qZK equation are given. The final chaotic state of the perturbed qZK is obtained.

  3. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  4. Quantum versus classical dynamics in the optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  5. Quantum process tomography by 2D fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-01-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed

  6. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    Ganesan, Narayan; Tarn, Tzyh-Jong

    2007-01-01

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  7. Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.; Sargent, E. H.

    2014-01-01

    with foreign cations can stabilize the vacancies, inhibiting intermittency and improving quantum yield, providing an explanation of recent experimental observations. © 2014 American Physical Society.

  8. Quantum objects. Non-local correlation, causality and objective indefiniteness in the quantum world

    International Nuclear Information System (INIS)

    Jaeger, Gregg

    2014-01-01

    Presents interpretation of quantum mechanics, advances in quantum foundations and philosophy of quantum mechanics. Explains non-locality and its relationship to causality and probability in quantum theory. Displays foundational characteristics of quantum physic to understand conceptual origins of the unusual nature of quantum phenomena. Describes relationship of subsystems and space-time. Gives a careful review of existing views. Confronts the old approaches with recent results and approaches from quantum information theory. Delivers a clear and thorough analysis of the quantum events in the context of relativistic space-time, which impacts the problem of creating a theory of quantum gravity. Supplies a detailed discussion of non-local correlation within and beyond the bounds set by standard quantum mechanics, which impacts the foundations of information theory. Gives a detailed discussion of probabilistic causation (central to contemporary accounts of causation) in quantum mechanics and relativity. Leads a thorough discussion of the nature of ''quantum potentiality,'' the novel form of existence arising for the first time in quantum mechanics. This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the conceptual grounds

  9. Quantum objects. Non-local correlation, causality and objective indefiniteness in the quantum world

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Gregg [Boston Univ., MA (United States). Natural Sciences and Mathematics

    2014-07-01

    Presents interpretation of quantum mechanics, advances in quantum foundations and philosophy of quantum mechanics. Explains non-locality and its relationship to causality and probability in quantum theory. Displays foundational characteristics of quantum physic to understand conceptual origins of the unusual nature of quantum phenomena. Describes relationship of subsystems and space-time. Gives a careful review of existing views. Confronts the old approaches with recent results and approaches from quantum information theory. Delivers a clear and thorough analysis of the quantum events in the context of relativistic space-time, which impacts the problem of creating a theory of quantum gravity. Supplies a detailed discussion of non-local correlation within and beyond the bounds set by standard quantum mechanics, which impacts the foundations of information theory. Gives a detailed discussion of probabilistic causation (central to contemporary accounts of causation) in quantum mechanics and relativity. Leads a thorough discussion of the nature of ''quantum potentiality,'' the novel form of existence arising for the first time in quantum mechanics. This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the

  10. Accumulation and distribution of dry matter in relation to root yield of ...

    African Journals Online (AJOL)

    Cassava an important staple food is grown both in upland and inland valley in the tropics. A trial to assess dry matter production and partitioning in relation to root yield was conducted in 3 positions along inland valley toposequence using 4 x 4 Latin square design. Dry matter partitioning differed among cultivars, ...

  11. Towards quantum gravity via quantum field theory. Problems and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2016-07-01

    General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.

  12. Uncertainty, joint uncertainty, and the quantum uncertainty principle

    International Nuclear Information System (INIS)

    Narasimhachar, Varun; Poostindouz, Alireza; Gour, Gilad

    2016-01-01

    Historically, the element of uncertainty in quantum mechanics has been expressed through mathematical identities called uncertainty relations, a great many of which continue to be discovered. These relations use diverse measures to quantify uncertainty (and joint uncertainty). In this paper we use operational information-theoretic principles to identify the common essence of all such measures, thereby defining measure-independent notions of uncertainty and joint uncertainty. We find that most existing entropic uncertainty relations use measures of joint uncertainty that yield themselves to a small class of operational interpretations. Our notion relaxes this restriction, revealing previously unexplored joint uncertainty measures. To illustrate the utility of our formalism, we derive an uncertainty relation based on one such new measure. We also use our formalism to gain insight into the conditions under which measure-independent uncertainty relations can be found. (paper)

  13. Strain release in metastable CdSe/CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ke; Beane, Gary; Kelley, David F., E-mail: dfkelley@ucmerced.edu

    2016-06-01

    Highlights: • We have synthesized CdSe/CdS core/shell quantum dots in the “stable” and “metastable” regimes. • Annealing of metastable particles causes lattice strain release, producing hole-trapping defects. • Electron microscopy imaging is relatively insensitive to defects that result in rapid radiationless decay. - Abstract: It has recently been shown (J. Phys. Chem. Lett., 2015, 6, 1559) that high quantum yields (QYs) in zincblende CdSe/CdS quantum dots can be achieved when the lattice strain energy density is in the stable (0–0.59 eV/nm{sup 2}) or metastable (0.59–0.85 eV/nm{sup 2}) regime. Annealing of metastable particles causes a dramatic reduction in the observed QY and a red shift of the absorbance and photoluminescence. In this work we demonstrate that the decline in QY upon annealing is due to the formation of hole traps. These traps, while dramatically affecting the observed QY, produce no significant changes in either morphology or crystallinity as determined by high resolution transmission electron microscopy (HRTEM).

  14. Relativistic quantum chemistry the fundamental theory of molecular science

    CERN Document Server

    Reiher, Markus

    2014-01-01

    Einstein proposed his theory of special relativity in 1905. For a long time it was believed that this theory has no significant impact on chemistry. This view changed in the 1970s when it was realized that (nonrelativistic) Schrödinger quantum mechanics yields results on molecular properties that depart significantly from experimental results. Especially when heavy elements are involved, these quantitative deviations can be so large that qualitative chemical reasoning and understanding is affected. For this to grasp the appropriate many-electron theory has rapidly evolved. Nowadays relativist

  15. Control Theoretical Expression of Quantum Systems And Lower Bound of Finite Horizon Quantum Algorithms

    OpenAIRE

    Yanagisawa, Masahiro

    2007-01-01

    We provide a control theoretical method for a computational lower bound of quantum algorithms based on quantum walks of a finite time horizon. It is shown that given a quantum network, there exists a control theoretical expression of the quantum system and the transition probability of the quantum walk is related to a norm of the associated transfer function.

  16. Unification of General Relativity with Quantum Field Theory

    International Nuclear Information System (INIS)

    Ni Jun

    2011-01-01

    In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)

  17. Quasi quantum group covariant q-oscillators

    International Nuclear Information System (INIS)

    Schomerus, V.

    1992-05-01

    If q is a p-th root of unity there exists a quasi-co-associative truncated quantum group algebra U T q (sl 2 ) whose indecomposable representations are the physical representations of U q (sl 2 ), whose co-product yields the truneated tensor product of physical representations of U q (sl 2 ), and whose R-matrix satisfies quasi Yang Baxter equations. For primitive p-th roots q, we consider a 2-dimensional q-oscillator which admits U T q (sl 2 ) as a symmetry algebra. Its wave functions lie in a space F T q of 'functions on the truncated quantum plane', i.e. of polynomials in noncommuting complex coordinate functions z a , on which multiplication operators Z a and the elements of U T q (sl 2 ) can act. This illustrates the concept of quasi quantum planes. Due to the truncation, the Hilbert space of states is finite dimensional. The subspaces F T(n) of monomials in x a of n-th degree vanish for n ≥ p-1, and F T(n) carries the 2J+1 dimensional irreducible representation of U T q (sl 2 ) if n=2J, J=0, 1/2, ... 1/2(p-2). Partial derivatives δ a are introduced. We find a *-operation on the algebra of multiplication operators Z i and derivatives δ b such that the adjoints Z * a act as differentiation on the truncated quantum plane. Multiplication operators Z a ('creation operators') and their adjoints ('annihilation operators') obey q -1/2 -commutation relations. The *-operation is used to determine a positive definite scalar product on the truncated quantum plane F T q . Some natural candidates of Hamiltonians for the q-oscillators are determined. (orig./HSI)

  18. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    Science.gov (United States)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of

  19. Relationship between quantum walks and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.

    2010-01-01

    Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

  20. Quantum localisation on the circle

    Science.gov (United States)

    Fresneda, Rodrigo; Gazeau, Jean Pierre; Noguera, Diego

    2018-05-01

    Covariant integral quantisation using coherent states for semi-direct product groups is implemented for the motion of a particle on the circle. In this case, the phase space is the cylinder, which is viewed as a left coset of the Euclidean group E(2). Coherent states issued from fiducial vectors are labeled by points in the cylinder and depend also on extra parameters. We carry out the corresponding quantisations of the basic classical observables, particularly the angular momentum and the 2π-periodic discontinuous angle function. We compute their corresponding lower symbols. The quantum localisation on the circle is examined through the properties of the angle operator yielded by our procedure, its spectrum and lower symbol, its commutator with the quantum angular momentum, and the resulting Heisenberg inequality. Comparison with other approaches to the long-standing question of the quantum angle is discussed.

  1. Extent of the Immirzi ambiguity in quantum general relativity

    International Nuclear Information System (INIS)

    Marugan, Guillermo A Mena

    2002-01-01

    The Ashtekar-Barbero formulation of general relativity admits a one-parameter family of canonical transformations that preserves the expressions of the Gauss and diffeomorphism constraints. The loop quantization of the connection formalism based on each of these canonical sets leads to different predictions. This phenomenon is called the Immirzi ambiguity. It has been recently argued that this ambiguity could be generalized to the extent of a spatially dependent function instead of a parameter. This would ruin the predictability of loop quantum gravity. We prove that such expectations are not realized, so that the Immirzi ambiguity introduces exclusively a freedom in the choice of a real number. (letter to the editor)

  2. Improved photoluminescence quantum yield and stability of CdSe-TOP, CdSe-ODA-TOPO, CdSe/CdS and CdSe/EP nanocomposites

    Science.gov (United States)

    Wei, Shutian; Zhu, Zhilin; Wang, Zhixiao; Wei, Gugangfen; Wang, Pingjian; Li, Hai; Hua, Zhen; Lin, Zhonghai

    2016-07-01

    Size-controllable monodisperse CdSe nanocrystals with different organic capping were prepared based on the hot-injection method. The effective separation of nucleation and growth was achieved by rapidly mixing two highly reactive precursors. As a contrast, we prepared CdSe/CdS nanocrystals (NCs) successfully based on the selective ion layer adsorption and reaction (SILAR) technique. This inorganic capping obtained higher photoluminescence quantum yield (PLQY) of 59.3% compared with organic capping of 40.8%. Furthermore, the CdSe-epoxy resin (EP) composites were prepared by adopting a flexible ex situ method, and showed excellent stability in the ambient environment for one year. So the composites with both high PLQY of nanocrystals and excellent stability are very promising to device application.

  3. Engineering quantum mechanics

    CERN Document Server

    Ahn, Doyeol

    2011-01-01

    A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...

  4. Quantum effects due to coordinate non-inertial systems

    International Nuclear Information System (INIS)

    Mueller, Daniel

    1996-01-01

    In chapter 1 we make an introduction to quantum fields in curved spaces, mentioning something about fermions. Chapter 2 begins a brief introduction to General Relativity, and the calculation of the linearized limit to obtain Thirring's metric, which is a first approximation to the Kerr metric. In Chapter 3 we calculate Dirac's equation in Thirring's space-time and work out the non relativistic limit obtaining the modifications in Schroedinger's equation resulting from the geometry. Particularly, we observe the interference of a particle beam. And in Chapter 4, we present a revision of classical and quantum detectors and discuss the response of detectors in non-inertial motion, in particular, for uniform acceleration and uniform circular motion. The latter is known to yield and integral for the response function which has been so far carried out only numerically. We propose a semi-analytical solution for the spectrum of a circular moving detector. We consider c=1. (author)

  5. Quantum information theory. Mathematical foundation. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics

    2017-07-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

  6. Quantum information theory. Mathematical foundation. 2. ed.

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    2017-01-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

  7. Quantum mechanics. An introduction

    International Nuclear Information System (INIS)

    Lesch, H.

    2008-01-01

    The following topics are dealt with: The way to quantum mechanics starting from thermal radiation and the stability of matter, Heisenberg's uncertainty relation, the impact of quantum mechanics on technology, the description of the big bang by means of quantum mechanics

  8. Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application.

    Science.gov (United States)

    Chen, Yameng; Zhou, Yang; Zhao, Qing; Zhang, Junying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao

    2018-04-18

    All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs4PbBr6-related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an enviromentally friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs4PbBr6/CsPbBr3 perovskite composites with near-unity PLQY (95%), high product yield (71%) and good stability, using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr3 nanocrystals well passivated by the zero-dimensional Cs4PbBr6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs4PbBr6/CsPbBr3, combined with red-emitting K2SiF6:Mn4+, can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.

  9. Interannual and spatial variability of maple syrup yield as related to climatic factors

    Science.gov (United States)

    Houle, Daniel

    2014-01-01

    Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001–2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions. PMID:24949244

  10. Real quantum cybernetics

    Science.gov (United States)

    Grössing, Gerhard

    1987-05-01

    It is shown on the basis of quantum cybernetics that one can obtain the usual predictions of quantum theory without ever referring to complex numbered “quantum mechanical amplitudes”. Instead, a very simple formula for transition and certain conditional probabilities is developed that involves real numbers only, thus relating intuitively understandable and in principle directly observable physical quantities.

  11. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  12. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  13. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  14. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  15. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  16. The vacuum structure, special relativity theory and quantum mechanics revisited: a field theory-no-geometry approach

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.; Prykarpatsky, A.K.; Ufuk Taneri

    2008-07-01

    The main fundamental principles characterizing the vacuum field structure are formulated and the modeling of the related vacuum medium and charged point particle dynamics by means of de- vised field theoretic tools are analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles and the classical special relativity theory relationship between the energy and the corresponding point particle mass is revisited and newly obtained. The Lorentz force expression with respect to arbitrary non-inertial reference frames is revisited and discussed in detail, and some new interpretations of relations between the special relativity theory and quantum mechanics are presented. The famous quantum-mechanical Schroedinger type equations for a relativistic point particle in the external potential and magnetic fields within the quasiclassical approximation as the Planck constant (h/2π) → 0 and the light velocity c → ∞ are obtained. (author)

  17. A quantum uncertainty relation based on Fisher's information

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, P; Plastino, A R; Dehesa, J S, E-mail: pablos@ugr.es, E-mail: arplastino@ugr.es, E-mail: dehesa@ugr.es [Departamento de Fisica Atomica, Molecular y Nuclear and Instituto Carlos I de Fisica Teorica y Computacional, University of Granada, Granada (Spain)

    2011-02-11

    We explore quantum uncertainty relations involving the Fisher information functionals I{sub x} and I{sub p} evaluated, respectively, on a wavefunction {Psi}(x) defined on a D-dimensional configuration space and the concomitant wavefunction {Psi}-tilde(p) on the conjugate momentum space. We prove that the associated Fisher functionals obey the uncertainty relation I{sub x}I{sub p} {>=} 4D{sup 2} when either {Psi}(x) or {Psi}-tilde(p) is real. On the other hand, there is no lower bound to the above product for arbitrary complex wavefunctions. We give explicit examples of complex wavefunctions not obeying the above bound. In particular, we provide a parametrized wavefunction for which the product I{sub x}I{sub p} can be made arbitrarily small.

  18. Remarkable identities related to the (quantum) elliptic Calogero-Sutherland model

    International Nuclear Information System (INIS)

    Langmann, Edwin

    2006-01-01

    We present remarkable functional identities related to the elliptic Calogero-Sutherland (eCS) system. We derive them from a second quantization of the eCS model within a quantum field theory model of anyons on a circle and at finite temperature. The identities involve two eCS Hamiltonians with arbitrary and, in general, different particle numbers N and M, and a particular function of N+M variables arising as anyon correlation function of N particles and M antiparticles. In addition to identities obtained from anyons with the same statistics parameter λ, we also obtain 'dual' relations involving 'mixed' correlation functions of anyons with two different statistics parameters λ and 1/λ. We also give alternative, elementary proofs of these identities by direct computations

  19. Transformation & uncertainty : some thoughts on quantum probability theory, quantum statistics, and natural bundles

    NARCIS (Netherlands)

    Janssens, B.

    2010-01-01

    This PHD thesis is concerned partly with uncertainty relations in quantum probability theory, partly with state estimation in quantum stochastics, and partly with natural bundles in differential geometry. The laws of quantum mechanics impose severe restrictions on the performance of measurement.

  20. Hidden Quantum Processes, Quantum Ion Channels, and 1/ f θ-Type Noise.

    Science.gov (United States)

    Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George

    2018-03-22

    In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral

  1. Quantum transformations

    International Nuclear Information System (INIS)

    Faraggi, A.E.; Matone, M.

    1998-01-01

    We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0

  2. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Amy Szuchmacher [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Soto, Carissa M [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Wilson, Charmaine D [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Whitley, Jessica L [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Moore, Martin H [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sapsford, Kim E [George Mason University, 10910 University Boulevard, Manassas, VA 20110 (United States); Lin, Tianwei [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Chatterji, Anju [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Johnson, John E [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ratna, Banahalli R [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-10-28

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot-protein assemblies were studied in detail. The IgG-QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV-QD complexes have a local concentration of quantum dots greater than 3000 nmol ml{sup -1}, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  3. Quantum spaces, central extensions of Lie groups and related quantum field theories

    Science.gov (United States)

    Poulain, Timothé; Wallet, Jean-Christophe

    2018-02-01

    Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.

  4. Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications

    Science.gov (United States)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2018-06-01

    We have investigated the effect of blending electron deficient heterocycle Benzothiadiazole (BT) on the photo-physical properties of conjugated polymer Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Quantum yield (QY) value has been found to increase from 37% for pure MEH-PPV to 45% for an optimum MEH-PPV:BT blend ratio of 1:3. This can be attributed to the efficient energy transfer from the wide bandgap BT (host) to the small bandgap MEH-PPV (guest). The FTIR spectrum of MEH-PPV:BT blended thin film indicates suppression of aromatic C-H out-of-plane and in-plane bending, suggesting planarization of the conjugated polymer chains and, hence, leading to increase in the conjugation length. The increase in conjugation length is also evident from the red-shifted PL spectra of MEH-PPV:BT blended films. Single layer MEH-PPV:BT device shows lower turn-on voltage than single layer MEH-PPV alone device. Further, the effect of electrical conductivity of PEDOT:PSS on the current-voltage characteristics is investigated in the PLED devices with MEH-PPV:BT blend as the active layer. PEDOT:PSS with higher conductivity as HIL reduces the turn on voltage from 4.5 V to 3.9 V and enhances the current density and optical output in the device.

  5. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation.

    Science.gov (United States)

    Schmitt, Markus; Erickson, Paul R; McNeill, Kristopher

    2017-11-21

    Excited triplet state chromophoric dissolved organic matter ( 3 CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3 CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (Φ ISC ). This study is an alternative approach to investigating 3 CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3 CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3 CDOM*. Quenching and control experiments verified that TMPD •+ was formed from 3 CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3 CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3 CDOM* can be simplified to a single signal. Using the TMPD •+ transient, the natural triplet lifetime and Φ ISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.

  6. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  7. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    International Nuclear Information System (INIS)

    Tomes, John J; Finlayson, Chris E

    2016-01-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values. (paper)

  8. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    Science.gov (United States)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  9. Quantum physics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibart, J.

    1997-01-01

    This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)

  10. Excitation energy transfer in ruthenium (II)-porphyrin conjugates led to enhanced emission quantum yield and {sup 1}O{sub 2} generation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jie; Jiang, Lijun; Chan, Chi-Fai [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Tsoi, Tik-Hung [Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong Special Administrative Region (Hong Kong); Shiu, Kwok-Keung; Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Wong, Wing-Tak [Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong Special Administrative Region (Hong Kong); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Wong, Ka-Leung, E-mail: klwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2017-04-15

    Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.

  11. Operational interpretations of quantum discord

    International Nuclear Information System (INIS)

    Cavalcanti, D.; Modi, K.; Aolita, L.; Boixo, S.; Piani, M.; Winter, A.

    2011-01-01

    Quantum discord quantifies nonclassical correlations beyond the standard classification of quantum states into entangled and unentangled. Although it has received considerable attention, it still lacks any precise interpretation in terms of some protocol in which quantum features are relevant. Here we give quantum discord its first information-theoretic operational meaning in terms of entanglement consumption in an extended quantum-state-merging protocol. We further relate the asymmetry of quantum discord with the performance imbalance in quantum state merging and dense coding.

  12. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    1999-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a

  13. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application

    NARCIS (Netherlands)

    Chen, Junsheng; Liu, Dongzhou; Al-Marri, Mohammed J.; Nuuttila, Lauri; Lehtivuori, Heli; Zheng, Kaibo

    Due to their superior photoluminescence (PL) quantum yield (QY) and tunable optical band gap, all-inorganic CsPbBr3 perovskite quantum dots (QDs) have attracted intensive attention for the application in solar cells, light emitting diodes (LED), photodetectors and laser devices. In this scenario,

  14. Switching-on quantum size effects in silicon nanocrystals.

    Science.gov (United States)

    Sun, Wei; Qian, Chenxi; Wang, Liwei; Wei, Muan; Mastronardi, Melanie L; Casillas, Gilberto; Breu, Josef; Ozin, Geoffrey A

    2015-01-27

    The size-dependence of the absolute luminescence quantum yield of size-separated silicon nanocrystals reveals a "volcano" behavior, which switches on around 5 nm, peaks at near 3.7-3.9 nm, and decreases thereafter. These three regions respectively define: i) the transition from bulk to strongly quantum confined emissive silicon, ii) increasing confinement enhancing radiative recombination, and iii) increasing contributions favoring non-radiative recombination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    Science.gov (United States)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  16. Relative ion yields in mammalian cell components using C60 SIMS

    Science.gov (United States)

    Keskin, Selda; Piwowar, Alan; Hue, Jonathan; Shen, Kan; Winograd, Nicholas

    2013-01-01

    Time of flight secondary ion mass spectrometry has been used to better understand the influence of molecular environment on the relative ion yields of membrane lipid molecules found in high abundance in a model mammalian cell line, RAW264.7. Control lipid mixtures were prepared to simulate lipid–lipid interactions in the inner and outer leaflet of cell membranes. Compared with its pure film, the molecular ion yields of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine are suppressed when mixed with 2-dipalmitoyl-sn-glycero-3-phosphocholine. In the mixture, proton competition between 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 2-dipalmitoyl-sn-glycero-3-phosphocholine led to lower ionization efficiency. The possible mechanism for ion suppression was also investigated with 1H and 13C nuclear magnetic resonance spectroscopy. The formation of a hydroxyl bond in lipid mixtures confirms the mechanism involving proton exchange with the surrounding environment. Similar effects were observed for lipid mixtures mimicking the composition of the inner leaflet of cell membranes. The secondary molecular ion yield of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine was observed to be enhanced in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. PMID:25140069

  17. Stability of agronomic and yield related traits of Jatropha curcas accessions raised from cuttings

    Science.gov (United States)

    Mat, Nurul Hidayah Che; Yaakob, Zahira; Ratnam, Wickneswari

    2016-11-01

    Monitoring stability of agronomic and yield related traits is important for prediction of crop yields. This study was a latter study for the evaluation of 295 J. curcas individuals representing 21 accessions from eight countries at Biodiesel Research Station of Universiti Kebangsaan Malaysia, Kuala Pilah planted in December 2012. In this study, 183 J. curcas individuals were selected randomly from the population and their growth performance evaluated from December 2013 to December 2014. All the individual plants were raised from cuttings. The yield related data were recorded periodically and performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Five traits which were number of fruits per plant (NFPP), number of fruits per inflorescence (NFPI), hundred seed weight (g) (HSW), number of seeds per plant (NSPP) and yield per plant (g) (YPP) showed significant differences among the accessions after two years of planting. Maximum values for each trait were 208 cm for plant height (PH), 31 for number of branches per plant (BPP), 115 for number of inflorescence per plant (NIPP), 582 for NFPP, 7 for NFPI, 307 for number of flowers per inflorescence (NFI), 17 for number of female flowers per inflorescence (NFFPI), 91.6 g for HSW, 1647.1 for NSPP and 927.6 g for YPP. Most of the plants which had performed well in the first year were among the best performers in the second year.

  18. Changing quantum reference frames

    OpenAIRE

    Palmer, Matthew C.; Girelli, Florian; Bartlett, Stephen D.

    2013-01-01

    We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects includ...

  19. Quantum speed limits in open system dynamics

    OpenAIRE

    del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.

    2012-01-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...

  20. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.