WorldWideScience

Sample records for relative permeabilities obtained

  1. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  2. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  3. A new method for the experimental determination of three-phase relative permeabilities

    International Nuclear Information System (INIS)

    Perez Carrillo, Edgar Ricardo; Jose Francisco Zapata Arango; Santos Santos, Nicolas

    2008-01-01

    Petroleum reservoirs under primary, secondary or tertiary recovery processes usually experience simultaneous flow of three fluids phases (oil, water and gas). Reports on some mathematical models for calculating three-phase relative permeability are available in the Literature. Nevertheless, many of these models were designed based on certain experimental conditions and reservoir rocks and fluids. Therefore, special care has to be taken when applying them to specific reservoirs. At the laboratory level, three-phase relative permeability can be calculated using experimental unsteady-state or steady state methodologies. This paper proposes an unsteady-state methodology to evaluate three-phase relative permeability using the equipment available at the petrophysical analysis Laboratory of the Instituto Colombiano del Petroleo (ICP) of Ecopetrol S.A. Improvements to the equipment were effected in order to achieve accuracy in the unsteady-state measurement of three-phase relative permeability. The target of improvements was directed toward to the attainment of two objectives:1) the modification of the equipment to obtain more reliable experimental data and 2) the appropriate interpretation of the data obtained. Special attention was given to the differential pressure and uncertainty measurement in the determination of fluid saturation in the rock samples. Three experiments for three-phase relative permeability were conducted using a sample A and reservoir rock from the Colombian Foothills. Fluid tests included the utilization of synthetic brine, mineral oil, reservoir crude oil and nitrogen. Two runs were conducted at the laboratory conditions while one run was conducted at reservoir conditions. Experimental results of these tests were compared using 16 mathematical models of three-phase relative permeability. For the three-phase relative permeability to oil, the best correlations between experimental data and tests using Blunt, Hustad Hasen, and Baker's models were

  4. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    International Nuclear Information System (INIS)

    Christiansen, R.L.; Kalbus, J.S.

    1997-05-01

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties

  5. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  6. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  7. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  8. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  9. Cross-property relations and permeability estimation in model porous media

    International Nuclear Information System (INIS)

    Schwartz, L.M.; Martys, N.; Bentz, D.P.; Garboczi, E.J.; Torquato, S.

    1993-01-01

    Results from a numerical study examining cross-property relations linking fluid permeability to diffusive and electrical properties are presented. Numerical solutions of the Stokes equations in three-dimensional consolidated granular packings are employed to provide a basis of comparison between different permeability estimates. Estimates based on the Λ parameter (a length derived from electrical conduction) and on d c (a length derived from immiscible displacement) are found to be considerably more reliable than estimates based on rigorous permeability bounds related to pore space diffusion. We propose two hybrid relations based on diffusion which provide more accurate estimates than either of the rigorous permeability bounds

  10. Permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier

    International Nuclear Information System (INIS)

    Squier, C.A.; Hall, B.K.

    1985-01-01

    The permeability of porcine skin and keratinized and nonkeratinized oral mucosa to tritium-labeled water and horseradish peroxidase (HRPO) was determined using perfusion chambers. Small blocks from each tissue were also incubated with HRPO and the extent of penetration visualized microscopically; this enabled measurements to be made of the thickness of the permeability barrier to this water-soluble tracer. Results obtained after inverting the oral mucosa in the chambers or adding metabolic inhibitors indicated that both compounds diffuse across the tissue. The permeability constants derived directly in the study showed that skin was less permeable than oral mucosa and that the floor of the mouth was significantly more permeable than all other regions. When these constants were normalized in terms of a standard permeability barrier thickness and the different tissues compared, the values obtained for skin were again less than those of the oral regions but, of these, the buccal mucosa was significantly higher. The difference in permeability between epidermis and keratinized oral epithelium may be due to differences in the volume density of membrane-coating granules known to exist between the tissues; differences between the oral mucosal regions may reflect differences in the nature of the intercellular barrier material

  11. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)

    2000-07-01

    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  12. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    Science.gov (United States)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  13. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  14. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  15. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken

    2007-09-30

    carbonate reservoirs of widely varying moldic pore systems that represent the major of reservoirs in Kansas and are important nationally and worldwide. A goal of the project is to measure wettability, using representative oils from Kansas fields, on a wide range of moldic-porosity lithofacies that are representative of Kansas and midcontinent shallow-shelf carbonate reservoirs. This investigation will discern the relative influence of wetting and pore architecture. In the midcontinent, reservoir water saturations are frequently greater than 'irreducible' because many reservoirs are largely in the capillary transition zone. This can change the imbibition oil-water relative permeability relations. Ignoring wettability and transition-zone relative permeabilities in reservoir modeling can lead to over- and under-prediction of oil recovery and recovery rates, and less effective improved recovery management. A goal of this project is to measure drainage and imbibition oil-water relative permeabilities for a large representative range of lithofacies at differ ent initial water saturations to obtain relations that can be applied everywhere in the reservoir. The practical importance of these relative permeability and wettability models will be demonstrated by using reservoir simulation studies on theoretical/generic and actual reservoir architectures. The project further seeks to evaluate how input of these new models affects reservoir simulation results at varying scales. A principal goal is to obtain data that will allow us to create models that will show how to accurately simulate flow in the shallow-structure, complex carbonate reservoirs that lie in the transition zone. Tasks involved to meet the project objectives include collection and consolidation of available data into a publicly accessible relational digital database and collection of oil and rock samples from carbonate fields around the state (Task 1). Basic properties of these rocks and oils will be measured

  16. Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

    Directory of Open Access Journals (Sweden)

    Sadegh Mahmoudi

    2013-04-01

    Full Text Available This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e., the pressure gradient. The influence of relationship between cohesion and adsorption parameters and the interfacial tension values in Young's equation, pore structure (micro scan image derived porous media response is compared with corresponding porosity and permeability ideal sphere pack structure, and saturation distribution on relative permeability curves are studied with the aim to achieve the realistic stable condition for the simulation of gas-liquid systems with a low viscosity ratio.

  17. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  18. Effect of Flow Direction on Relative Permeability Curves in Water/Gas Reservoir System: Implications in Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Abdulrauf Rasheed Adebayo

    2017-01-01

    Full Text Available The effect of gravity on vertical flow and fluids saturation, especially when flow is against gravity, is not often a subject of interest to researchers. This is because of the notion that flow in subsurface formations is usually in horizontal direction and that vertical flow is impossible or marginal because of the impermeable shales or silts overlying them. The density difference between two fluids (usually oil and water flowing in the porous media is also normally negligible; hence gravity influence is neglected. Capillarity is also often avoided in relative permeability measurements in order to satisfy some flow equations. These notions have guided most laboratory core flooding experiments to be conducted in horizontal flow orientation, and the data obtained are as good as what the experiments tend to mimic. However, gravity effect plays a major role in gas liquid systems such as CO2 sequestration and some types of enhanced oil recovery techniques, particularly those involving gases, where large density difference exists between the fluid pair. In such cases, laboratory experiments conducted to derive relative permeability curves should take into consideration gravity effects and capillarity. Previous studies attribute directional dependence of relative permeability and residual saturations to rock anisotropy. It is shown in this study that rock permeability, residual saturation, and relative permeability depend on the interplay between gravity, capillarity, and viscous forces and also the direction of fluid flow even when the rock is isotropic. Rock samples representing different lithology and wide range of permeabilities were investigated through unsteady-state experiments covering drainage and imbibition in both vertical and horizontal flow directions. The experiments were performed at very low flow rates to capture capillarity. The results obtained showed that, for each homogeneous rock and for the same flow path along the core length

  19. Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran

    2017-02-01

    Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

  20. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    KAUST Repository

    Hussaini, Irfan; Wang, Chao-Yang

    2009-01-01

    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  1. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  2. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  3. A fractal model for predicting permeability and liquid water relative permeability in the gas diffusion layer (GDL) of PEMFCs

    Science.gov (United States)

    He, Guangli; Zhao, Zongchang; Ming, Pingwen; Abuliti, Abudula; Yin, Caoyong

    In this study, a fractal model is developed to predict the permeability and liquid water relative permeability of the GDL (TGP-H-120 carbon paper) in proton exchange membrane fuel cells (PEMFCs), based on the micrographs (by SEM, i.e. scanning electron microscope) of the TGP-H-120. Pore size distribution (PSD), maximum pore size, porosity, diameter of the carbon fiber, pore tortuosity, area dimension, hydrophilicity or hydrophobicity, the thickness of GDL and saturation are involved in this model. The model was validated by comparison between the predicted results and experimental data. The results indicate that the water relative permeability in the hydrophobicity case is much higher than in the hydrophilicity case. So, a hydrophobic carbon paper is preferred for efficient removal of liquid water from the cathode of PEMFCs.

  4. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    Science.gov (United States)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  5. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions

  6. ADVANTAGES AND DISADVANTAGES OF MODERN LABORATORY MEASUREMENT OF THE COEFFICIENT OF PERMEABILITY FOR SOIL MATERIALS

    OpenAIRE

    Veinović, Želimir; Kovačević-Zelić, Biljana; Kvasnička, Predrag

    2003-01-01

    Permeability tests are one of the most often performed experiments in geotechnics. Conventional methods conducted by oedometer and triaxial apparatus have many disadvantages, the most significant being the test duration. As a consequence, errors in permeability measurements could occur. On the contrary, by applying modern flow-pump method, permeability measurements can be obtained much more rapidly. Moreover, the permeability/void ratio relation can be obtained by using adequate laboratory de...

  7. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  8. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-01-01

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  9. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  10. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  11. METHODOLOGY FOR CALCULATION OF HORIZONTAL WATER PERMEABILITY COEFFICIENT IN SOIL CAPILLARY BORDER

    Directory of Open Access Journals (Sweden)

    E. I. Michnevich

    2011-01-01

    Full Text Available The paper shows that for overall estimation of soil water permeability it is necessary to know a horizontal water permeability value of a soil capillary border in addition to coefficients of filtration and permeability. Relations allowing to determine soil permeability in the area of incomplete saturation, are given in the paper. For a fully developed capillary border some calculation formulae have been obtained in the form of algebraic polynomial versus soil grading (grain composition. These formulae allow to make more accurate calculations while designing and operating  reclamation works.

  12. Literature review and recommendation of methods for measuring relative permeability of anhydrite from the Salado Formation at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, R.L. [Colorado School of Mines, Golden, CO (United States). Dept. of Petroleum Engineering; Howarth, S.M. [Sandia National Labs., Albuquerque, NM (United States)

    1995-08-01

    This report documents a literature review of methods for measuring relative permeability as applied to low permeability anhydrite rock samples from the Salado Formation. About one hundred papers were reviewed, and four methods were identified as promising techniques for measuring the relative permeability of the Salado anhydrite: (1) the unsteady-state high-rate method, (2) the unsteady-state stationary-liquid method, (3) the unsteady-state centrifuge method, and (4) the unsteady-state low-rate method. Except for the centrifuge method, all have been used for low permeability rocks. The unsteady-state high-rate method is preferred for measuring relative permeability of Salado anhydrite, and the unsteady-state stationary-liquid method could be well suited for measuring gas relative permeability of Salado anhydrite. The unsteady-state low-rate method, which combines capillary pressure effects with relative permeability concepts may also prove effective. Likewise, the unsteady-state centrifuge method may be an efficient means for measuring brine relative permeability for Salado anhydrite, especially at high gas saturations.

  13. Literature review and recommendation of methods for measuring relative permeability of anhydrite from the Salado Formation at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Christiansen, R.L.

    1995-08-01

    This report documents a literature review of methods for measuring relative permeability as applied to low permeability anhydrite rock samples from the Salado Formation. About one hundred papers were reviewed, and four methods were identified as promising techniques for measuring the relative permeability of the Salado anhydrite: (1) the unsteady-state high-rate method, (2) the unsteady-state stationary-liquid method, (3) the unsteady-state centrifuge method, and (4) the unsteady-state low-rate method. Except for the centrifuge method, all have been used for low permeability rocks. The unsteady-state high-rate method is preferred for measuring relative permeability of Salado anhydrite, and the unsteady-state stationary-liquid method could be well suited for measuring gas relative permeability of Salado anhydrite. The unsteady-state low-rate method, which combines capillary pressure effects with relative permeability concepts may also prove effective. Likewise, the unsteady-state centrifuge method may be an efficient means for measuring brine relative permeability for Salado anhydrite, especially at high gas saturations

  14. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Science.gov (United States)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  15. Intestinal permeability of 51Cr-labelled ethylenediaminetetraacetic acid in patients with Crohn's disease and their healthy relatives

    International Nuclear Information System (INIS)

    Ainsworth, M.; Eriksen, J.; Rasmussen, J.W.; Muckadell, O.B.S. de

    1989-01-01

    An increased intestinal permeability has been proposed as an aetiologic factor in Crohn's disease. The 24-h urinary excretion of 100 μCi 51 Cr-labelled ethylenediaminetetraacetic acid (EDTA) was used to test the permeability in 15 patients with Crohn's disease and in 20 healthy first-degree relatives, who were known to have a genetic predisposition to inflammatory bowel disease. Twenty-eight healthy persons not related to patients with inflammatory bowel disease served as control material. The 51 Cr-EDTA excretion of the relatives was not significantly higher than that of the controls, whereas patients with Crohn's disease had a significantly higher excretion than both the relatives and the controls. Among patients the increased excretion was found only if the small intestine was involved. It is concluded that 1) as a group, patient with Crohn's disease in the small intestine have an increased intestinal permeability, in contrast to their healthy relatives, who have a normal permeability; 2) a considerable overlap of the results of the 51 Cr-EDTA test was found between the groups studied, and the test is not suitable for evaluating individual patients; 3) the results do not support the hypothesis of an increase in intestinal permeability as an aetiologic factor in Crohn's disease. 29 refs

  16. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  17. Permeability model of sintered porous media: analysis and experiments

    Science.gov (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  18. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Science.gov (United States)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  19. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    Science.gov (United States)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  20. Compositional and Relative Permeability Hysteresis Effects on Near-Miscible WAG

    DEFF Research Database (Denmark)

    Christensen, Jes Reimer; Stenby, Erling Halfdan; Skauge, Arne

    1998-01-01

    Evaluation of compositional effects and fluid flow description on near-miscible (water-alternating-gas) WAG modeling have been studied for a North Sea oil field starting production in 1998. A sector model with four wells was applied to simulate a heterogeneous sandstone reservoir, and a compositi......Evaluation of compositional effects and fluid flow description on near-miscible (water-alternating-gas) WAG modeling have been studied for a North Sea oil field starting production in 1998. A sector model with four wells was applied to simulate a heterogeneous sandstone reservoir......, and a compositional model was used to compare different production strategies e.g. waterflooding and a near-miscible (WAG) injection. In the WAG scheme both dry and wet (rich) hydrocarbon gases have been considered for injection. The phase behaviour was quantified by comparing the performance of the different...... injection gases. Result obtained shows the WAG injection gives improved recovery compared to water injection, due to better sweep and lower residual oil saturation. Simulations with and without relative permeability hysteresis (two-phase model) were compared. The effect of trapped gas on oil recovery does...

  1. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  2. Experimental study of heavy oil-water flow structure effects on relative permeabilities in a fracture filled with heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Shad, S.; Gates, I.D.; Maini, B.B. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    An experimental apparatus was used to investigate the flow of water in the presence of heavy oil within a smooth-walled fracture. Different flow patterns were investigated under a variety of flow conditions. Results of the experiments were used to determine the accuracy of VC, Corey, and Shad and Gates models designed to represent the behaviour of oil wet systems. The relative permeability concept was used to describe the behaviour of multiple phases flowing through porous media. A smooth-walled plexiglass Hele-Shaw cell was used to visualize oil and water flow. Changes in flow rates led to different flow regimes. The experiment demonstrated that water flowed co-currently in the form of droplets or slugs. Decreases in the oil flow rate enlarged the size of the water droplets as well as the velocity, until eventually the droplets coalesced and became water slugs. Droplet appearance or disappearance directly impacted the oil and water saturation levels. Changes in fluid saturation altered the pressure gradient. Darcy's law for the 2 liquid phases were used to calculate relative permeability curves. The study showed that at low water saturation, oil relative permeability reached as high as 2.5, while water relative permeability was lower than unity. In the presence of a continuous water channel, water drops formed in oil, and the velocity of the drops was lower than their velocity under a discontinuous water flow regime. It was concluded that the Shad and Gates model overestimated oil relative permeability and underestimated water relative permeability. 38 refs., 2 tabs., 9 figs.

  3. Establishment of a permeability/porosity equation for salt grit and damming materials

    International Nuclear Information System (INIS)

    Fein, E.; Mueller-Lyda, I.; Storck, R.

    1996-09-01

    The flow resistance of stowing and sealing materials hinder the transport of brines in an ultimate storage site in salt rock strata. This effect can be seen when brines flow into the storage areas and when contaminated brines are pressed out of the underground structure. The main variable determining flow resistance is permeability. The convergence process induced by rock pressure reduces the size of the available residual cavern and also the permeability of the stowing and sealing materials. In the long-term safety analyses carried out so far, the interdependence between porosity and permeability in the case of salt grit was commonly described by a power function. The present investigation uses the data available until the end of 1994 to derive an improved relation between permeability and porosity for salt grit stowing material. The results obtained show that the power function used until now is still applicable with only a slight modification of parameters. In addition, the statistical distribution functions of the correlated parameters of the permeability/porosity relation were determined for the first time for a probabilistic safety analysis. (orig./DG) [de

  4. 3D numerical surface charge model including relative permeability : the general theory

    NARCIS (Netherlands)

    Casteren, van D.T.E.H.; Paulides, J.J.H.; Lomonova, E.A.

    2014-01-01

    One of the still "open" issues within low-frequency magnetics is the inclusion of µr in the calculations using the magnetic charge method. In this paper a new iterative method to take the relative permeability into account is investigated. Results show that the model accurately accounts for the

  5. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  6. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  7. Determination of hydrogen permeability in uncoated and coated superalloys

    Science.gov (United States)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.

    1981-01-01

    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  8. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method

    Science.gov (United States)

    Xie, Jian.-Fei.; He, S.; Zu, Y. Q.; Lamy-Chappuis, B.; Yardley, B. W. D.

    2017-08-01

    In this paper, the migration of supercritical carbon dioxide (CO2) in realistic sandstone rocks under conditions of saline aquifers, with applications to the carbon geological storage, has been investigated by a two-phase lattice Boltzmann method (LBM). Firstly the digital images of sandstone rocks were reproduced utilizing the X-ray computed microtomography (micro-CT), and high resolutions (up to 2.5 μm) were applied to the pore-scale LBM simulations. For the sake of numerical stability, the digital images were "cleaned" by closing the dead holes and removing the suspended particles in sandstone rocks. In addition, the effect of chemical reactions occurred in the carbonation process on the permeability was taken into account. For the wetting brine and non-wetting supercritical CO2 flows, they were treated as the immiscible fluids and were driven by pressure gradients in sandstone rocks. Relative permeabilities of brine and supercritical CO2 in sandstone rocks were estimated. Particularly the dynamic saturation was applied to improve the reliability of the calculations of the relative permeabilities. Moreover, the effects of the viscosity ratio of the two immiscible fluids and the resolution of digital images on the relative permeability were systematically investigated.

  9. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands.

    Science.gov (United States)

    Reid, Douglas E B; Silins, Uldis; Lieffers, Victor J

    2003-08-01

    Stem sapwood hydraulic permeability, tree leaf area, sapwood basal area, earlywood to latewood ratio of annual rings, radial variation in hydraulic permeability and stem hydraulic capacity were examined in dominant (D), codominant (CD) and suppressed (SP) lodgepole pine (Pinus contorta Dougl. ex Loud.) trees growing on medium and poor sites. Hydraulic permeability on a sapwood area basis (ks) was lower in suppressed trees (0.71 x 10(-12) m2) compared to dominants (1.97 x 10(-12) m2) and codominants (1.79 x 10(-12) m2), and higher on medium than on poor sites. The leaf/sapwood area ratio (S) varied with crown dominance position (D > CD > SP) but not by site type. Leaf specific conductivity (kL) did not vary between crown classes or site types. The relationship between leaf area and stem hydraulic supply capacity (Q*) was strong, but differed among crown classes. Dominant trees and trees from the medium sites had a greater proportion of earlywood in outer rings of sapwood than suppressed trees. Sapwood permeability declined from the cambium to the sapwood-heartwood boundary in all samples, but the decline was more gradual in dominant trees compared to codominant and suppressed trees; differences in the radial variation in sapwood permeability may be related to differences in S. Sapwood permeability is positively related to crown dominance, whereas subdominant (CD and SP) trees have greater Q* in relation to leaf area, leading us to propose that this may give subdominant trees a survival advantage, slowing self-thinning.

  10. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    Science.gov (United States)

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  11. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    Science.gov (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  12. An asymptotic model of seismic reflection from a permeable layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Goloshubin, G.

    2009-10-15

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  13. Regional-Dependent Intestinal Permeability and BCS Classification: Elucidation of pH-Related Complexity in Rats Using Pseudoephedrine

    OpenAIRE

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-01-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (Peff) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (Fabs) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized Peff–Fabs correlation. The purpose of this study was to elucidate the underlying mechanisms behind the ...

  14. Non-monotonic permeability variation during colloidal transport: Governing equations and analytical model

    Science.gov (United States)

    Chequer, L.; Russell, T.; Behr, A.; Genolet, L.; Kowollik, P.; Badalyan, A.; Zeinijahromi, A.; Bedrikovetsky, P.

    2018-02-01

    Permeability decline associated with the migration of natural reservoir fines impairs the well index of injection and production wells in aquifers and oilfields. In this study, we perform laboratory corefloods using aqueous solutions with different salinities in engineered rocks with different kaolinite content, yielding fines migration and permeability alteration. Unusual permeability growth has been observed at high salinities in rocks with low kaolinite concentrations. This has been attributed to permeability increase during particle detachment and re-attachment of already mobilised fines by electrostatic attraction to the rock in stagnant zones of the porous space. We refine the traditional model for fines migration by adding mathematical expressions for the particle re-attachment rate, particle detachment with delay relative to salinity decrease, and the attached-concentration-dependency of permeability. A one-dimensional flow problem that accounts for those three effects allows for an exact analytical solution. The modified model captures the observed effect of permeability increase at high water salinities in rocks with low kaolinite concentrations. The developed model matches the coreflooding data with high accuracy, and the obtained model coefficients vary within their usual intervals.

  15. A casting and imaging technique for determining void geometry and relative permeability behavior of a single fracture specimen

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.L.; Pruess, K.; Persoff, P.

    1990-01-01

    A casting technique has been developed for making translucent replicas of the void space of natural rock fractures. Attenuation of light shined through the cast combined with digital image analysis provides a pointwise definition of fracture apertures. The technique has been applied to a fracture specimen from Dixie Valley, Nevada, and the measured void space geometry has been used to develop theoretical predictions of two-phase relative permeability. A strong anisotropy in relative permeabilities has been found, which is caused by highly anisotropic spatial correlations among fracture apertures. 16 refs., 6 figs.

  16. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  17. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  18. Estimated method of permeability in the granitic rocks by geophysical loggings; Butsuri kenso shuho ni yoru kakoganchu no tosuisei ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, K; Hashimoto, N. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)]Ogata, N. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1997-10-22

    Water permeability in granite is estimated by performing geophysical investigation using a 500m-deep test hole drilled in granitic rocks in the vicinity of a Tono mine. The investigation consists of flowmeter logging and geophysical logging. In flowmeter logging, a probe is moved up and down in the hole at a constant speed by use of a cable, and the cable speed and impeller revolution are used to workout the relative speed of the fluid in the hole. In the geophysical logging, a probe attached to the leading end of a logging cable is replaced with other probes so as to acquire different geophysical data. In a hole drilled in a crack-abundant rockbed such as a granitic rockbed, the inflow and outflow of ground water is governed mainly by water-permeable crack zones, and the result of the flowmeter logging show that this hole has three highly water-permeable zones. Using the results of the loggings, a correlative equation is worked out between changes in flow speed and changes in permeability index obtained by hydraulics tests. Among the various results achieved by the geophysical logging, a fine correlationship is found between an equation relative to permeability obtained using electricity and density and water-permeability indexes obtained by hydraulic tests conducted in situ. 4 refs., 8 figs., 1 tab.

  19. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  20. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  1. Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions

    International Nuclear Information System (INIS)

    Berryman, J.G.; Blair, S.C.

    1986-01-01

    Scanning electron microscope images of cross sections of several porous specimens have been digitized and analyzed using image processing techniques. The porosity and specific surface area may be estimated directly from measured two-point spatial correlation functions. The measured values of porosity and image specific surface were combined with known values of electrical formation factors to estimate fluid permeability using one version of the Kozeny-Carman empirical relation. For glass bead samples with measured permeability values in the range of a few darcies, our estimates agree well ( +- 10--20%) with the measurements. For samples of Ironton-Galesville sandstone with a permeability in the range of hundreds of millidarcies, our best results agree with the laboratory measurements again within about 20%. For Berea sandstone with still lower permeability (tens of millidarcies), our predictions from the images agree within 10--30%. Best results for the sandstones were obtained by using the porosities obtained at magnifications of about 100 x (since less resolution and better statistics are required) and the image specific surface obtained at magnifications of about 500 x (since greater resolution is required)

  2. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of preparation conditions on properties and permeability of chitosan-sodium hexametaphosphate capsules.

    Science.gov (United States)

    Angelova, N; Hunkeler, D

    2001-01-01

    Capsules were obtained by interpolymer complexation between chitosan (polycation) and sodium hexametaphosphate (SMP, oligoanion). The effect of the preparation conditions on the capsule characteristics was evaluated. Specifically, the influence of variables such as pH, ionic strength, reagent concentration, and additives on the capsule permeability properties was investigated using dextran as a model permeant. The capsule membrane permeability was found to increase by decreasing the chitosan/SMP ratio as well as adding mannitol to the oligoanion recipient bath. Increasing the ionic strength or the pH of the initial chitosan solution was also found to enhance the membrane permeability, moving the membrane exclusion limit to higher values. Generally, the capsules prepared tinder all tested conditions had a relatively low permeability which rarely exceeded a molecular cut-off of 40 kD based on dextran standards. Furthermore, the diffusion rate showed a strong temporal dependence, indicating that the capsules prepared under various conditions exhibit different apparent pore size densities on the surface. The results indicated that, in order to obtain the desired capsule mass-transfer properties, the preparation conditions should be carefully considered and adjusted. Adding a polyol as well as low salt amount (less than 0.15%) is preferable as a means of modulating the diffusion characteristics, without disturbing the capsule mechanical stability.

  4. Initial permeability and vickers hardness of thermally aged FeCu alloy

    International Nuclear Information System (INIS)

    Kikuchi, H.; Onuki, T.; Kamada, Y.; Ara, K.; Kobayashi, S.; Takahashi, S.

    2007-01-01

    The initial permeability obtained from small AC field excitation is a more useful parameter for nondestructive evaluation (NDE) of ferromagnetic materials than one obtained from a major hysteresis loop from the viewpoints of electricity consumption and real-time measurements. In this paper, in order to study the possibility of applying magnetic methods to pressure vessel surveillance at nuclear power plants, permeability of the thermally aged Fe-Cu specimens were evaluated using impedance measurements and the hardness of those specimens was also evaluated. The Vickers hardness increases as aging time increases. The permeability of the cold-rolled specimen decreases with thermal aging. On the other hand, the permeability of as-received specimens increased at first then decreases as thermal aging goes

  5. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  6. Principal permeability determination from multiple horizontal well tests

    Energy Technology Data Exchange (ETDEWEB)

    Economides, M. [Texas A and M Univ., TX (United States); Munoz, A.; Ehlig-Economides, C.

    1998-12-31

    A method for obtaining principal permeability magnitudes and direction that requires only the linear flow regime from transient tests in three horizontal wells oriented in three distinct and arbitrary directions, is described. Well design optimization strategies require knowledge of both the principal permeability orientation as well as the horizontal permeability magnitudes. When the degree of horizontal permeability anisotropy (i.e. permeability in the bedding plane with respect to direction) is significant, the productivity of a long horizontal well will depend greatly on its direction, especially when the well is first brought into production. Productivities have been found to deviate substantially among wells in the same reservoir and this deviation has been attributed to differences in well orientation. In view of this fact, measuring permeability anisotropy becomes a compelling necessity. The success of the proposed method is illustrated by a case study in which the principal permeability magnitudes and direction from three wells were used to predict the productivity of a fourth well within 10 per cent. Use of the computed principal permeabilities from the case study, it was possible to forecast the cumulative production to show the significance of well trajectory optimization on the discounted cash flow and the net present value. 20 refs., 3 figs.

  7. Application of histogram analysis for the evaluation of vascular permeability in glioma by the K2 parameter obtained with the dynamic susceptibility contrast method: Comparisons with Ktrans obtained with the dynamic contrast enhance method and cerebral blood volume.

    Science.gov (United States)

    Taoka, Toshiaki; Kawai, Hisashi; Nakane, Toshiki; Hori, Saeka; Ochi, Tomoko; Miyasaka, Toshiteru; Sakamoto, Masahiko; Kichikawa, Kimihiko; Naganawa, Shinji

    2016-09-01

    The "K2" value is a factor that represents the vascular permeability of tumors and can be calculated from datasets obtained with the dynamic susceptibility contrast (DSC) method. The purpose of the current study was to correlate K2 with Ktrans, which is a well-established permeability parameter obtained with the dynamic contrast enhance (DCE) method, and determine the usefulness of K2 for glioma grading with histogram analysis. The subjects were 22 glioma patients (Grade II: 5, III: 6, IV: 11) who underwent DSC studies, including eight patients in which both DSC and DCE studies were performed on separate days within 10days. We performed histogram analysis of regions of interest of the tumors and acquired 20th percentile values for leakage-corrected cerebral blood volume (rCBV20%ile), K2 (K220%ile), and for patients who underwent a DCE study, Ktrans (Ktrans20%ile). We evaluated the correlation between K220%ile and Ktrans20%ile and the statistical difference between rCBV20%ile and K220%ile. We found a statistically significant correlation between K220%ile and Ktrans20%ile (r=0.717, pK220%ile showed a statistically significant (pK2 value calculated from the DSC dataset, which can be obtained with a short acquisition time, showed a correlation with Ktrans obtained with the DCE method and may be useful for glioma grading when analyzed with histogram analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  9. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  10. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  11. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  12. Influence of demagnetizing field on the permeability of soft magnetic composites

    International Nuclear Information System (INIS)

    Lin, G.Q.; Li, Z.W.; Chen, Linfeng; Wu, Y.P.; Ong, C.K.

    2006-01-01

    The influence of demagnetizing field on the effective permeability of magnetic composites has been investigated. A theoretical expression of the effective permeability has been obtained and discussed according to four typical composites with spheres, needles, flakes, and aligned prolate ellipsoidal particles. The results indicate that the demagnetizing field within the particles can reduce the effective permeability significantly. In order to increase the effective permeability, it is necessary to decrease the demagnetizing field within the particles. A linear relationship between effective permeability and volume fraction is also observed for composites filled with spherical particles at low volume fraction

  13. Theoretical Insight Into the Empirical Tortuosity-Connectivity Factor in the Burdine-Brooks-Corey Water Relative Permeability Model

    Science.gov (United States)

    Ghanbarian, Behzad; Ioannidis, Marios A.; Hunt, Allen G.

    2017-12-01

    A model commonly applied to the estimation of water relative permeability krw in porous media is the Burdine-Brooks-Corey model, which relies on a simplified picture of pores as a bundle of noninterconnected capillary tubes. In this model, the empirical tortuosity-connectivity factor is assumed to be a power law function of effective saturation with an exponent (μ) commonly set equal to 2 in the literature. Invoking critical path analysis and using percolation theory, we relate the tortuosity-connectivity exponent μ to the critical scaling exponent t of percolation that characterizes the power law behavior of the saturation-dependent electrical conductivity of porous media. We also discuss the cause of the nonuniversality of μ in terms of the nonuniversality of t and compare model estimations with water relative permeability from experiments. The comparison supports determining μ from the electrical conductivity scaling exponent t, but also highlights limitations of the model.

  14. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes

    Energy Technology Data Exchange (ETDEWEB)

    Bouzerar, Roger; Chaarani, Bader; Baledent, Olivier [University Hospital, Image Processing Department, Amiens (France); Gondry-Jouet, Catherine [University Hospital, Radiology Department, Amiens (France); Zmudka, Jadwiga [University Hospital, Geriatric Unit, Amiens (France)

    2013-12-15

    The cerebrospinal fluid (CSF) plays a major role in the physiology of the central nervous system. The continuous turnover of CSF is mainly attributed to the highly vascularized choroid plexus (CP) located in the cerebral ventricles which represent a complex interface between blood and CSF. We propose a method for evaluating CP functionality in vivo using perfusion MR imaging and establish the age-related changes of associated parameters. Fifteen patients with small intracranial tumors were retrospectively studied. MR Imaging was performed on a 3T MR Scanner. Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (CA). The software developed used the combined T1- and T2-effects. The decomposition of the relaxivity signals enables the calculation of the CP capillary permeability (K{sub 2}). The relative cerebral blood volume (rCBV), mean transit time (MTT), and signal slope decrease (SSD) were also calculated. The mean permeability K{sub 2} of the extracted CP was 0.033+/-0.18 s{sup -1}. K{sub 2} and SSD significantly decreased with subject's age whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV and rCBF. The decrease in CP permeability is in line with the age-related changes in CSF secretion observed in animals. The MTT increase indicates significant structural changes corroborated by microscopy studies in animals or humans. Overall, DSC MR-perfusion enables an in vivo evaluation of the hemodynamic state of CP. Clinical applications such as neurodegenerative diseases could be considered thanks to specific functional studies of CP. (orig.)

  15. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Science.gov (United States)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  16. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)

    2016-05-06

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  17. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  18. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  19. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    Science.gov (United States)

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  20. Effect of permeability enhancers on paracellular permeability of acyclovir.

    Science.gov (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  1. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  2. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn

    2014-01-01

    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  3. Wave transmission over permeable submerged breakwaters; Transmision del oleaje en rompeolas sumergidos permeables

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-y-Zurvia-Flores, Jaime Roberto; Fragoso-Sandoval, Lucio [Instituto Politecnico Nacional(Mexico)

    2008-10-15

    The permeable submerged breakwaters represent a coastal protection alternative, where some degree of wave energy transmission is acceptable. Such would be the case of tourist beach protection in Mexico. In previous researches, like those performed by D'Angremond et al. (1996), Seabrook and Hall (1998), and Briganti et al. (2003), the empirical formulas developed, give only some limited information over the spatial distribution of wave energy over the structure. Therefore, a decision was made to conduct a study on a reduced physical model of a permeable submerged breakwater based on the results presented by those researchers and with possible applications. Therefore this paper presents the development of a study of wave transmission over permeable submerged breakwaters performed in a reduced physical model of different sections of a submerged rockfill breakwater of the trapezoidal type. This was done in a narrow wave flume with a hydraulic irregular wave generator controlled by a computer that was used to generate and to reproduce different types of irregular waves to be used in the tests. It also has a wave meter with four sensors, and they are connected to a computer in order to process the wave data. The main objective of the study was to determine in an experimental way the influence of the several parameters of submerged breakwater over the wave transmission coefficient. Our experimental results were comparable to those obtained by D'Angremond et al. (1996) and Seabrook and Hall (1998). The results show that the sumerged breakwater parameters of most influence over the wave transmission coefficient were relative submergence and the relative width crest of the sumerged breakwater, and that the formula by Seabrook and Hall correlates best with our results. [Spanish] Los rompeolas sumergidos permeables representan actualmente una alternativa de proteccion de costas, donde un cierto grado de transmision de energia del oleaje es aceptable, como seria el

  4. Water and nonelectrolyte permeability of isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Alpini, G.; Garrick, R.A.; Jones, M.J.; Nunes, R.; Tavoloni, N.

    1986-01-01

    We have measured the diffusive permeability coefficients of isolated rat hepatocytes to 3 H 2 O, [ 14 C]urea, [ 14 C]erythritol, [ 14 C]mannitol, [ 3 H]sucrose, and [ 3 H]inulin, employing a technique previously developed for erythrocytes (Redwood et al., J. Gen. Physiol 64:706-729, 1974). Diffusion coefficients for the tracer molecules were measured in packed hepatocytes, supernatant fluid, and intracellular medium (lysed hepatocytes) and were calculated assuming one-dimensional semi-infinite diffusion through a homogeneous medium. By applying the series-parallel pathway model, the following permeability coefficients (10(-5) cm/sec) for the hepatocyte plasma membrane were obtained. 3 H 2 O, 98.6 +/- 18.4; [ 14 C]urea, 18.2 +/- 5.3; [ 14 C]erythritol, 4.8 +/- 1.6; [ 14 C]mannitol, 3.1 +/- 1.4; [ 3 H]sucrose, 0; [ 3 H]inulin, 0. These results indicate that isolated rat hepatocytes are highly permeable to water and polar nonelectrolytes, when compared with other transporting epithelia. This relatively high cellular permeability is consistent with a model in which nonelectrolyte permeation is via an aqueous pathway of equivalent pore diameter of 8-12 A. The finding that [ 14 C]erythritol and [ 14 C]mannitol cross the hepatocyte plasma membrane indicates that these molecules enter the bile canaliculus through the transcellular route. Conversely, the failure of [ 3 H]sucrose and [ 3 H]inulin to permeate the hepatocyte in the isolated condition supports the concept that biliary entry of these large carbohydrates, at least that fraction which cannot be accounted for by a vesicular mechanism, must occur via the transjunctional shunt pathway

  5. Gas permeability of ice-templated, unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  6. Verification of capillary pressure functions and relative permeability equations for gas production

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaewon [Arizona State Univ., Tempe, AZ (United States)

    2016-10-25

    The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.

  7. Estimation of permeability and permeability anisotropy in horizontal wells through numerical simulation of mud filtrate invasion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Nelson [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Altman, Raphael; Rasmus, John; Oliveira, Jansen [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper describes how permeability and permeability anisotropy is estimated in horizontal wells using LWD (logging-while-drilling) laterolog resistivity data. Laterolog-while-drilling resistivity passes of while-drilling and timelapse (while reaming) were used to capture the invasion process. Radial positions of water based mud invasion fronts were calculated from while-drilling and reaming resistivity data. The invasion process was then recreated by constructing forward models with a fully implicit, near-wellbore numerical simulation such that the invasion front at a given time was consistent with the position of the front predicted by resistivity inversions. The radial position of the invasion front was shown to be sensitive to formation permeability. The while-drilling environment provides a fertile scenario to investigate reservoir dynamic properties because mud cake integrity and growth is not fully developed which means that the position of the invasion front at a particular point in time is more sensitive to formation permeability. The estimation of dynamic formation properties in horizontal wells is of particular value in marginal fields and deep-water offshore developments where running wireline and obtaining core is not always feasible, and where the accuracy of reservoir models can reduce the risk in field development decisions. (author)

  8. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.; Delshad, M.; Wheeler, M. F.

    2012-01-01

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  9. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.

    2012-11-03

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  10. Steady flow in voids and closed cracks in permeable media

    International Nuclear Information System (INIS)

    Rae, J.

    1985-03-01

    This paper considers what happens when a steady flow in a permeable medium meets two concentric spheres which have different permeabilities. This can form a first stage model for water flow near an engineered cavity in rock or a concreted waste package placed in filler material as in a nuclear waste repository. Results are obtained in terms of the simplest spherical harmonics, which lets them be used easily. Included are the well-known result that a highly permeable sphere will see only a few times the flux which would occur if it had the permeability of its surroundings, and the less well-known result, though unsurprising, that a spherical region surrounded by a highly permeable shell will see almost no flow, as it will almost all by-pass. A companion paper will include more geometrical effects by replacing the spheres by ellipsoids. (author)

  11. PHYSICAL AND CHEMICAL PROPERTIES IN RELATION WITH SOIL PERMEABILITY IN THE AREA OF VELIKA GORICA WELL FIELD

    Directory of Open Access Journals (Sweden)

    Zoran Kovač

    2018-01-01

    Full Text Available Hydraulic parameters affects behaviour of various ions in soils. The goal of this paper was to get better understanding of relationship between physical and chemical properties and soil permeability at the location of case study profile Velika Gorica, based on the physical and chemical data. Soil profile is situated in the Eutric Cambisol of the Zagreb aquifer, Croatia. Zagreb aquifer represents the only source of potable water for inhabitants of the City of Zagreb and Zagreb County. Based on the data obtained from particle size analysis, soil hydraulic parameters and measured water content, unsaturated hydraulic conductivity values were calculated for the estimation of soil profile permeability. Soil water retention curves and unsaturated hydraulic conductivities are very similar for all depths because soil content does not change significantly through the depth. Determination of anions and cations on soil samples was performed using the method of ion chromatography. Results showed decrease of ions concentrations after 0.6 m depth. SAR distribution in the soil profile shows that SAR values are not significantly changing at the soil profile. The highest CEC and EC values are determined in horizon Bw developed in 0.6 m depth which is consistent with highest SAR value and ions concentrations. All results suggest that physical and chemical properties of investigated profile are in relationship with soil permeability.

  12. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  13. Cross-Permeability of the Semisolid Region in Directional Solidification: A Combined Phase-Field and Lattice-Boltzmann Simulation Approach

    Science.gov (United States)

    Böttger, B.; Haberstroh, C.; Giesselmann, N.

    2016-01-01

    Based on the results of microstructure simulations, fluid flow through the semisolid region during directional solidification of the technical Ni-base alloy 718 has been studied. Three-dimensional microstructures at different positions in the semisolid region were obtained by using a multicomponent multiphase-field model that was online coupled to a commercial thermodynamic database. For the range of five different primary dendrite distances λ 1 between 50 µm and 250 µm, the flow velocity and the permeability perpendicular to the dendrite growth direction was evaluated by using a proprietary Lattice-Boltzmann model. The commercial CFD software ANSYS FLUENT was alternatively applied for reference. Consistent values of the average flow velocity along the dendrites were obtained for both methods. From the results of the fluid flow simulations, the cross-permeability was evaluated as a function of temperature and fraction liquid for each of the five different primary dendrite distances λ 1. The obtained permeability values can be approximated by a single analytical function of the fraction liquid and λ 1 and are discussed and compared with known relations from the literature.

  14. Experimental study of very low permeability rocks using a high accuracy permeameter

    International Nuclear Information System (INIS)

    Larive, Elodie

    2002-01-01

    The measurement of fluid flow through 'tight' rocks is important to provide a better understanding of physical processes involved in several industrial and natural problems. These include deep nuclear waste repositories, management of aquifers, gas, petroleum or geothermal reservoirs, or earthquakes prevention. The major part of this work consisted of the design, construction and use of an elaborate experimental apparatus allowing laboratory permeability measurements (fluid flow) of very low permeability rocks, on samples at a centimetric scale, to constrain their hydraulic behaviour at realistic in-situ conditions. The accuracy permeameter allows the use of several measurement methods, the steady-state flow method, the transient pulse method, and the sinusoidal pore pressure oscillation method. Measurements were made with the pore pressure oscillation method, using different waveform periods, at several pore and confining pressure conditions, on different materials. The permeability of one natural standard, Westerly granite, and an artificial one, a micro-porous cement, were measured, and results obtained agreed with previous measurements made on these materials showing the reliability of the permeameter. A study of a Yorkshire sandstone shows a relationship between rock microstructure, permeability anisotropy and thermal cracking. Microstructure, porosity and permeability concepts, and laboratory permeability measurements specifications are presented, the permeameter is described, and then permeability results obtained on the investigated materials are reported [fr

  15. Determination of filtrations and permeability of an earth dam

    International Nuclear Information System (INIS)

    Gomez, H.R.; Baro, G.B.; Gillen, Ricardo.

    1975-11-01

    The aim of this work was to measure with the aid of a radioactive tracer the speed flow of the water filtrating from Sumampa Dam in northeastern Catamarca, while being in operation, and with these data determine if the actual permeability corresponds to the projected one. Iodine-131 was used as tracer and periodical samples were taken from the down stream water in order to determine its activity concentration. In previous perforations ionic interchange resines were used so as to measure simultaneously the fixed Iodine-131. The permeability of the dam was calculated from the obtained speed based on time-concentration curves and applying Darcy formulas for permeability. (author) [es

  16. Errors in Air Permeability Rationing as Key Sources of Construction Quality Risk Assessment

    Science.gov (United States)

    Popov, A. A.; Nitievski, A. A.; Ivanov, R. N.

    2018-04-01

    The article deals with different approaches to the valuation parameters of air permeability n50 and q50. Examples of erroneous conclusions about the state of the building are presented as well as the ways to obtain reliable results. There are obtained comparative data of the air permeability parameters on examples of buildings with different configuration and with different values of compactness factor.

  17. Hydrogeology of rocks of low permeability: region studies

    International Nuclear Information System (INIS)

    Llamas, M.R.

    1985-01-01

    Hydrogeological regional studies on low permeability rocks are rather scarce in comparison to similar studies on normal permeability rocks. Economic and technological difficulties to develop ground water from these terrains may be the main cause of this scarcity. Several facts may indicate that these studies will increase in the near future. First, the need to supply water to the people living in underdeveloped arid zones over extensive areas of low permeability rocks. Second, the relevant role that some low permeability large groundwater basins may play in conjunctive ground and surface-water use. And last but not least the feasibility of some low permeability rock areas as sites for nuclear waste repositories. Some specific difficulties in these regional studies may be: a) intrinsic difficulties in obtaining representative water samples and measuring hydraulic heads; b) scarcity of observation and/or pumping wells; c) important hydraulic head and chemical properties variations in a vertical direction; d) old groundwater ages; this may require paleohydrological considerations to understand certain apparent anomalies. In most of these regional studies hydrogeochemical methods and modelling (flow and mass transport) may be very valuable tools. 77 references, 7 figures

  18. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: aymanabdalla62@hotmail.co [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)

    2011-01-15

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  19. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.

    2011-01-01

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  20. Electrical conductivity and magnetic permeability measurement of case hardened steels

    Science.gov (United States)

    Tian, Yong

    2015-03-01

    For case carburized steels, electrical conductivity and magnetic permeability profiles are needed to develop model-based case depth characterization techniques for the purpose of nondestructive quality control. To obtain fast and accurate measurement of these material properties, four-point potential drop approaches are applied on circular-shaped discs cut from steel rings with different case depths. First, a direct current potential drop (DCPD) approach is applied to measure electrical conductivity. Subsequently, an alternating current potential drop (ACPD) approach is used to measure magnetic permeability. Practical issues in measurement design and implementation are discussed. Depth profiles of electrical conductivity and magnetic permeability are reported.

  1. Permeability estimation from NMR diffusion measurements in reservoir rocks.

    Science.gov (United States)

    Balzarini, M; Brancolini, A; Gossenberg, P

    1998-01-01

    It is well known that in restricted geometries, such as in porous media, the apparent diffusion coefficient (D) of the fluid depends on the observation time. From the time dependence of D, interesting information can be derived to characterise geometrical features of the porous media that are relevant in oil industry applications. In particular, the permeability can be related to the surface-to-volume ratio (S/V), estimated from the short time behaviour of D(t), and to the connectivity of the pore space, which is probed by the long time behaviour of D(t). The stimulated spin-echo pulse sequence, with pulsed magnetic field gradients, has been used to measure the diffusion coefficients on various homogeneous and heterogeneous sandstone samples. It is shown that the petrophysical parameters obtained by our measurements are in good agreement with those yielded by conventional laboratory techniques (gas permeability and electrical conductivity). Although the diffusing time is limited by T1, eventually preventing an observation of the real asymptotic behaviour, and the surface-to-volume ratio measured by nuclear magnetic resonance is different from the value obtained by BET because of the different length scales probed, the measurement remains reliable and low-time consuming.

  2. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy

    Science.gov (United States)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer

    2018-05-01

    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  3. Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2014-01-01

    Full Text Available Discrete element method (DEM is used to produce dense and fixed porous media with rigid mono spheres. Lattice Boltzmann method (LBM is adopted to simulate the fluid flow in interval of dense spheres. To simulating the same physical problem, the permeability is obtained with different lattice number. We verify that the permeability is irrelevant to the body force and the media length along flow direction. The relationships between permeability, tortuosity and porosity, and sphere radius are researched, and the results are compared with those reported by other authors. The obtained results indicate that LBM is suited to fluid flow simulation of porous media due to its inherent theoretical advantages. The radius of sphere should have ten lattices at least and the media length along flow direction should be more than twenty radii. The force has no effect on the coefficient of permeability with the limitation of slow fluid flow. For mono spheres porous media sample, the relationship of permeability and porosity agrees well with the K-C equation, and the tortuosity decreases linearly with increasing porosity.

  4. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  5. Active intestinal drug absorption and the solubility-permeability interplay.

    Science.gov (United States)

    Porat, Daniel; Dahan, Arik

    2018-02-15

    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrothermal alteration and permeability changes in granitic intrusions related to Sn-W deposits : case study of Panasqueira (Portugal)

    Science.gov (United States)

    Launay, Gaetan; Sizaret, Stanislas; Guillou-Frottier, Laurent; Gloaguen, Eric; Melleton, Jérémie; Pichavant, Michel; Champallier, Rémi; Pinto, Filipe

    2017-04-01

    The Panasqueira Sn-W deposit occurs as a dense network of flat wolframite and cassiterite-bearing quartz veins concentrated in the vicinity of a hidden greisen cupola, and to a lesser extent as disseminated cassiterites in the greisen. Previous studies (Thadeu 1951; 1979) have suggested that the Panasqueira deposit is genetically related to magmatic activity for which the most part is unexposed, and being only represented by the greisen cupola. Hydrothermal fluid circulation during the final stages of granite crystallisation has probably led to the greisenisation of the cupola followed by the deposition of the mineralization in the veins system. Mineral replacement reactions that occurred during the greisenisation could affect rock properties (porosity, density and permeability) which control fluid circulation in the granite. This study aims to investigate effects of greisenisation reactions on the dynamic (time varying) permeability that ultimately leads to fluid circulation in the greisen cupola. To do so, petrological study and experimental determinations of hydrodynamic features (porosity and permeability) for different granite alteration levels and petrographic types (unaltered granite to greisen) are combined and then integrated in coupled numerical models of fluid circulation around the granitic intrusion. Greisen occurs in the apical part of the granitic body and results in the pervasive alteration of the granite along the granite-schist contact. This greisen consists mainly of quartz and muscovite formed by the replacement of feldspars and bleaching of biotites of the initial granite. Otherwise, greisen is generally vuggy which suggests a porosity increase of the granite during hydrothermal alteration processes. This porosity increase has a positive effect on the permeability of the granitic system. Indeed, experimental measurements of permeability with the Paterson press indicate that the initial granite is impermeable (10-20 m2) whereas the greisen is

  7. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  8. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  9. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail: shussain2@qinetiq.com

    2017-04-15

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  10. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-04

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  11. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    Science.gov (United States)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  12. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  13. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  14. Is vertebrate mortality correlated to potential permeability by underpasses along low-traffic roads?

    Science.gov (United States)

    Delgado, Juan D; Morelli, Federico; Arroyo, Natalia L; Durán, Jorge; Rodríguez, Alexandra; Rosal, Antonio; Palenzuela, María Del Valle; Rodríguez, Jesús D G P

    2018-09-01

    Road permeability to animal movements depends among several factors on structures which, integrated in the road design, operate as safe conducts to mitigate vehicle collision and barrier effects. There is abundant evidence that wildlife makes use of such structures as safe passages to cross roads. We analyzed the spatial relationship between road drainage elements (N = 253; mostly culverts) as potential faunal underpasses, and mortality due to vehicle collisions in two seasons and on four relatively low-traffic roads (roads, identifying and characterizing all potential underpasses. Overall frequencies of casualties and spatial distribution were highly variable both within and among these roads. We obtained an estimation of potential permeability for the different roads. We detected, located and described a wide supply and a very variable pattern of drainage culverts and other underpasses, with differences among roads in passage attributes potentially affecting permeability for wildlife, such as spatial arrangement, number, density (frequency or concentration of passages) and dimensions. We used Mantel tests to assess spatial congruence of passages and road-killed animals. We applied generalized linear mixed models fitted by maximum likelihood through Akaike Information Criterion to explain the variation in the distance of the 238 casualties to the nearest underpasses, with road transect and season as random factors, and traffic intensity, speed and vertebrate class as fixed effects. Both road-killed animals and underpass distribution followed aggregated patterns, and casualties were not significantly related to underpasses along any of the 4 roads. There were no differences in distance of casualties to the nearest underpass for the three vertebrate classes. Although existing underpasses were abundant, we could not correlate potential permeability with reduced mortality along these roads, and other factors potentially affecting roadkill aggregations should be

  15. The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials

    Science.gov (United States)

    Hamilton, N. C.

    2015-03-01

    The HF complex permeability spectrum of a magnetic material is deduced from the measured impedance spectrum, which is then normalized to a series permeability spectrum. However, this series permeability spectrum has previously been shown to correspond to a parallel magnetic circuit, which is not appropriate. Some of the implications of this truth are examined. This electric/magnetic duality has frustrated efforts to interpret the shape of the complex magnetic permeability spectra of materials, and has hindered the application of impedance spectroscopy to magnetic materials. In the presence of magnetic loss, the relationship between the relative magnetic permeability and the magnetic susceptibility is called into question. The use of reluctivity spectra for expressing magnetic material properties is advocated. The relative loss factor, tanδm/μi is shown to be an approximation for the imaginary part of the reluctivity. A single relaxation model for the initial reluctivity spectra of magnetic materials is presented, and its principles are applied to measurements of a high permeability ferrite. The results are presented as contour plots of the spectra as a function of temperature.

  16. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  17. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  18. Theory and test research on permeability of coal and rock body influenced by mining

    Energy Technology Data Exchange (ETDEWEB)

    Qing-xin Qi; Hong-yan Li; You-gang Wang; Zhi-gang Deng; Hang Lan; Yong-wei Peng; Chun-rui Li [China Coal Research Institute, Beijing (China)

    2009-06-15

    Stress distribution rules and deformation and failure properties of coal and rock bodies influenced by mining were analyzed. Experimental research on permeability of coal and rock samples under different loading conditions was finished in the laboratory. In-situ measurement of coal permeability influenced by actual mining was done as well. Theory analysis show that permeability varied with damage development of coal and rock under stress, and the influence of fissure on permeability was greatest. Laboratory results show that under different loading conditions permeability was different and it varied with stress, which indicated that permeability was directly related to the loading process. In-situ tests showed that permeability is related to abutment stress to some degree. The above results may be referenced to gas prevention and drainage. 11 refs., 6 figs., 1 tab.

  19. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye.

    Science.gov (United States)

    Ramsay, Eva; Del Amo, Eva M; Toropainen, Elisa; Tengvall-Unadike, Unni; Ranta, Veli-Pekka; Urtti, Arto; Ruponen, Marika

    2018-07-01

    On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 × 10 -6  cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Experimental study of very-low permeability rocks by the implementation of a precision permeameter

    International Nuclear Information System (INIS)

    Larive, E.

    2002-12-01

    The measurement of fluid flow through 'tight' rocks is important to provide a better understanding of physical processes involved in several industrial and natural problems. These include deep nuclear waste repositories, management of aquifers, gas, petroleum or geothermal reservoirs, or earthquakes prevention. The major part of this work consisted of the design, construction and use of an elaborate experimental apparatus allowing laboratory permeability measurements (fluid flow) of very low permeability rocks, on samples at a centimetric scale, to constrain their hydraulic behaviour at realistic in-situ conditions.The accuracy permeameter allows the use of several measurement methods, the steady-state flow method, the transient pulse method and the sinusoidal pore pressure oscillation method. Measurements were made with the pore pressure oscillation method, using different waveform periods, at several pore and confining pressure conditions on different materials. The permeability of one natural standard, Westerly granite, and an artificial one, a micro-porous cement, were measured and results obtained agreed with previous measurements made on these materials showing the reliability of the permeameter. A study of a Yorkshire sandstone shows a relationship between rock microstructure, permeability anisotropy and thermal cracking. Microstructure, porosity and permeability concepts, and laboratory permeability measurements specifications are presented, the permeameter is described, and then permeability results obtained on the investigated materials are reported. (author)

  1. Using artificial intelligence to predict permeability from petrographic data

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood Ali; Adwait Chawathe [New Mexico Petroleum Recovery Research Centre (Mexico)

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate

  2. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  3. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  4. Permeability of Aluminium Foams Produced by Replication Casting

    Directory of Open Access Journals (Sweden)

    Maxim L. Cherny

    2012-12-01

    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  5. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  6. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  7. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  8. Permeability and compression characteristics of municipal solid waste samples

    Science.gov (United States)

    Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz

    2006-08-01

    Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.

  9. Prediction of Central Nervous System Side Effects Through Drug Permeability to Blood-Brain Barrier and Recommendation Algorithm.

    Science.gov (United States)

    Fan, Jun; Yang, Jing; Jiang, Zhenran

    2018-04-01

    Drug side effects are one of the public health concerns. Using powerful machine-learning methods to predict potential side effects before the drugs reach the clinical stages is of great importance to reduce time consumption and protect the security of patients. Recently, researchers have proved that the central nervous system (CNS) side effects of a drug are closely related to its permeability to the blood-brain barrier (BBB). Inspired by this, we proposed an extended neighborhood-based recommendation method to predict CNS side effects using drug permeability to the BBB and other known features of drug. To the best of our knowledge, this is the first attempt to predict CNS side effects considering drug permeability to the BBB. Computational experiments demonstrated that drug permeability to the BBB is an important factor in CNS side effects prediction. Moreover, we built an ensemble recommendation model and obtained higher AUC score (area under the receiver operating characteristic curve) and AUPR score (area under the precision-recall curve) on the data set of CNS side effects by integrating various features of drug.

  10. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  11. Colloid transport in dual-permeability media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  12. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  13. A low-frequency asymptotic model of seismic reflection from a high-permeability layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy; Goloshubin, Gennady

    2009-03-01

    Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.

  14. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  15. Permeability of porour rhyolite

    Science.gov (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  16. Perovskite-related oxide materials for oxygen-permeable electrochemical membrans

    OpenAIRE

    Naumovich, E. N.; Yaremchenko, A. A.; Viskup, A. P.; Kharton, V. V.

    2003-01-01

    This brief review is focused on the studies of mixed ionic-electronic conductors on the basis of lanthanum gallate doped with transition metal cations in the В sublattice. The substitution of gallium with iron, cobalt or nickel results in greater electronic conductivity, simultaneously keeping high level of the oxy-gen ionic transport. In particular, La0 90Sr0 10Ga0 65Ni0 20Mg0 1503d perovskite exhib-its attractive oxygen permeability, which is quite similar to that of La2Ni04- and (...

  17. Comparison between traditional laboratory tests, permeability measurements and CT-based fluid flow modelling for cultural heritage applications

    Energy Technology Data Exchange (ETDEWEB)

    De Boever, Wesley, E-mail: Wesley.deboever@ugent.be [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Bultreys, Tom; Derluyn, Hannelore [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Van Hoorebeke, Luc [UGCT/Radiation Physics, Dept. of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); Cnudde, Veerle [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium)

    2016-06-01

    In this paper, we examine the possibility to use on-site permeability measurements for cultural heritage applications as an alternative for traditional laboratory tests such as determination of the capillary absorption coefficient. These on-site measurements, performed with a portable air permeameter, were correlated with the pore network properties of eight sandstones and one granular limestone that are discussed in this paper. The network properties of the 9 materials tested in this study were obtained from micro-computed tomography (μCT) and compared to measurements and calculations of permeability and the capillary absorption rate of the stones under investigation, in order to find the correlation between pore network characteristics and fluid management characteristics of these sandstones. Results show a good correlation between capillary absorption, permeability and network properties, opening the possibility of using on-site permeability measurements as a standard method in cultural heritage applications. - Highlights: • Measurements of capillary absorption are compared to in-situ permeability. • We obtain pore size distribution and connectivity by using micro-CT. • These properties explain correlation between permeability and capillarity. • Correlation between both methods is good to excellent. • Permeability measurements could be a good alternative to capillarity measurement.

  18. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  19. Permeability of hydrogen isotopes through Pd-Ag membrane

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi

    1981-01-01

    This paper represents the permeabilities, diffusion coefficients and isotope effects for hydrogen and deuterium through Pd-25 wt.% Ag alloy tubes The feed gas H 2 or D 2 flowing into the permeation cell was preheated before it reached to the outer surface of the permeation tube made of palladium-silver alloy. Permeation time lag method could be successfully carried out with the present apparatus to measure both permeability and diffusion coefficient. The square-root pressure dependence for the permeation of hydrogen isotopes was observed. The observed systematic temperature dependence indicates that the approximation of the Arrhenius' relation was effective within this experimental conditions. Some tendency of permeation fluxes in relation to the reciprocal temperature, 1/T, was seen. The permeability ratio was larger than the square root of isotopic mass ratio, and it decreased with temperature rise. On the contrary, the diffusion coefficient ratio was much smaller than the square root of isotopic mass ratio. (Kato, T.)

  20. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    International Nuclear Information System (INIS)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-01-01

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately

  1. Urban land use: Remote sensing of ground-basin permeability

    Science.gov (United States)

    Tinney, L. R.; Jensen, J. R.; Estes, J. E.

    1975-01-01

    A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

  2. Permeability of WIPP Salt During Damage Evolution and Healing

    International Nuclear Information System (INIS)

    BODNER, SOL R.; CHAN, KWAI S.; MUNSON, DARRELL E.

    1999-01-01

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering

  3. Effects of temperature, mechanical loading and of their interactions on the permeability of structural concrete

    International Nuclear Information System (INIS)

    Choinska, M.

    2006-11-01

    Concrete permeability may influence the durability of structures indirectly by controlling the penetration rate of aggressive agents, but also directly if the structure has a confinement role, like containment vessels of nuclear power plants for instance. In the industrial background on the safety of these structures, the objective of this study is to characterize the evolution of concrete permeability under the effects of temperature and mechanical loading. The permeability tests are performed on hollow concrete cylinders, subjected to temperature up to 150 C and compressive loading up to failure. Experimental results reveal that the effects of temperature and damage may be decoupled for the estimation of permeability and enable us to propose a relation between permeability, damage and temperature. However, this relation may only be applied in the pre-peak phase as concrete remains micro-cracked. In order to overcome this limit to be able to model also permeability increase in the post-peak phase, another parameter, which is crack opening, is introduced in the relation between permeability and damage. This problem, investigated by modelling, is exploited according to two approaches. The first one is based on the definition of a matching law between existing relations of permeability evolution with damage and with crack opening. With this approach the tendencies are similar to the observed ones on the experimental results. The second approach consists in linking from a mechanical point of view damage with crack opening in order to apply the Poiseuille's law for permeability determination. Experimental validation of this approach, emerging towards a continuous model capable to reproduce permeability variations of a concrete structure, constitutes a major perspective of this work. (author)

  4. In?situ permeability from integrated poroelastic reflection coefficients

    NARCIS (Netherlands)

    Van Dalen, K.N.; Ghose, R.; Drijkoningen, C.G.; Smeulders, D.M.J.

    2010-01-01

    A reliable estimate of the in?situ permeability of a porous layer in the subsurface is extremely difficult to obtain. We have observed that at the field seismic frequency band the poroelastic behavior for different seismic wavetypes can differ in such a way that their combination gives unique

  5. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  6. Effect of drilling fluids on permeability of uranium sandstone. Report of Investigations/1984

    International Nuclear Information System (INIS)

    Ahlness, J.K.; Johnson, D.I.; Tweeton, D.R.

    1984-01-01

    The Bureau of Mines conducted laboratory and field experiments to determine the amount of permeability reduction in uranium sandstone after its exposure to different drilling fluids. Seven polymer and two bentonite fluids were laboratory-tested in their clean condition, and six polymer fluids were tested with simulated drill cuttings added. Sandstone cores cut from samples collected at an open pit uranium mine were the test medium. The clean fluid that resulted in the least permeability reduction was an hydroxyethyl cellulose polymer fluid. The greatest permeability reduction of the clean polymers came from a shale-inhibiting synthetic polymer. Six polymer fluids were tested with simulated drill cuttings added to represent field use. The least permeability reduction was obtained from a multi-polymer blend fluid. A field experiment was performed to compare how two polymer fluids affect formation permeability when used for drilling in situ uranium leaching wells

  7. Permeability and dispersivity of variable-aperture fracture systems

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    A number of recent experiments have pointed out the need of including the effects of aperture variation within each fracture in predicting flow and transport properties of fractured media. This paper introduces a new approach in which medium properties, such as the permeability to flow and dispersivity in tracer transport, are correlated to only three statistical parameters describing the fracture aperture probability distribution and the aperture spatial correlation. We demonstrate how saturated permeability and relative permeabilities for flow, as well as dispersion for solute transport in fractures may be calculated. We are in the process of examining the applicability of these concepts to field problems. Results from the evaluation and analysis of the recent Stripa-3D field data are presented. 13 refs., 10 figs

  8. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability p...... significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas....

  9. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks

    Science.gov (United States)

    Shi, Ying; Jian, Shaoyong

    2018-03-01

    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  10. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  11. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The permeability of concrete for reactor containment vessels

    International Nuclear Information System (INIS)

    Mills, R.H.

    1983-07-01

    Review of the literature pertaining to water, water vapour and gas transmission through concrete revealed conflicting views on the mechanisms involved and the influence of mix design parameters such as initial porosities and water/cement ratio. Consideration of the effects of ageing and of construction defects in field concrete were totally neglected in published work. Permeability data from three published papers were compared with permeability calculated according to Powers. The ratio of calculated to observed permeability varied from 40 x 10 -3 to 860 x 10 -3 for one group: from 0.17 x 10 3 to 8.6 x 10 3 in the second; and from 24 x 10 3 to 142 x 10 3 for the third. There were therefore wide discrepancies within each group of data and between groups. A bibliography was prepared and an exploratory experimental programme was mounted to determine the relative importance of key parameters such as cement type, porosity and water/cement ratio. Contrary to frequently cited references it was found that permeability of concrete was not significantly influenced by water/cement ratio when the starting porosity was constant. If water/cement ratio was held constant, however, the permeability was strongly influenced by starting porosity. It was also found that with constant water/cement ratio permeability increased with cement content. The value of fly ash and blast furnace slag in partial substitution for Portland cement is neglected in the literature but it is important since such substitutions alleviate alkali-silicate reactions. Permeability of concrete was significantly decreased by partial substitution of Portland cement with fly ash but there was no benefit in the use of blast furnace slag

  13. Permeability and stress-jump effects on magnetic drug targeting in a permeable microvessel using Darcy model

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, S., E-mail: sachinshaw@gmail.com [Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye (Botswana); Sutradhar, A.; Murthy, PVSN [Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India)

    2017-05-01

    In the present paper, we investigated the influence of permeability of the carrier particle and stress jump condition on the porous spherical surface in magnetic drug targeting through a permeable microvessel. The nature of blood is defined by non-Newtonian Casson fluid in the core region of the microvessel and Newtonian fluid in the peripheral region which is located near the surface of the wall of the microvessel. The magnetic particles are considered as spherical and in nanosize, embedded in the carrier particle along with drug particles. A magnet is placed near the tumor position to generate a magnetic field. The relative motion of the carrier particle is the resultant of the fluidic force, magnetic force and Saffman drag force which are calculated for the spherical carrier particle. Trajectories of the carrier particle along the radial and axial direction are calculated. Effect of different parameters such as stress-jump constant, permeability of the carrier particle, pressure gradient, yield stress, Saffman force, volume fraction of the embedded magnetic nanoparticles, permeability of the microvessel wall, and the radius of the carrier particle on the trajectory of the carrier particle are discussed and displayed graphically. - Highlights: • In the present manuscript, we considered the porous carrier particle which provide a larger surface area contact with the fluid than the solid spherical carrier particle. It shows that the porous carrier particle are captured easily than the solid carrier particle. • Introduce Suffman force on the carrier particle which commences an additional resistance which acts opposite to the surface wall and helps the particles to go away from the tumor position. • Considered stress jump condition at the surface of the porous carrier particle which enhanced the tendency of the carrier particle to be capture near the tumor. • Used Darcy model to define the permeability of the wall of the microvessel.

  14. Temperature dependence of dynamical permeability characterization of magnetic thin films using shorted microstrip line probe

    International Nuclear Information System (INIS)

    Li, Xiling; Li, Chengyi; Chai, Guozhi

    2017-01-01

    A temperature dependence microwave permeability characterization system of magnetic thin film up to 10 GHz is designed and fabricated. This system can be used at temperatures ranging from room temperature to 200 °C, and is based on a shorted microstrip probe, which is made by microwave printed circuit board. Without contacting the magnetic thin films to the probe, the microwave permeability of the film can be detected without any limitations of sample size and with almost the same accuracy, as shown by comparison with the results obtained from a shorted microstrip transmission-line fixture. The complex permeability can be deduced by an analytical approach from the measured reflection coefficient of a strip line ( S 11 ) with and without a ferromagnetic film material on it. The procedures are the same with the shorted microstrip transmission-line method. The microwave permeability of an oblique deposited CoZr thin film was investigated with this probe. The results show that the room temperature dynamic permeability of the CoZr film is in good agreement with the results obtained from the established short-circuited microstrip perturbation method. The temperature dependence permeability results fit well with the Landau–Lifshitz–Gilbert equation. Development of the temperature-dependent measurement of the magnetic properties of magnetic thin film may be useful for the high-frequency application of magnetic devices at high temperatures. (paper)

  15. Effect of a mechanical damage on permeability and moisture diffusivity of concrete

    International Nuclear Information System (INIS)

    Picandet, V.

    2001-12-01

    The effect of a mechanical damage on transfer parameters of concrete is an original point of view on the coupling between damage and durability. The studied transfer parameters, permeability and moisture diffusivity, allow to characterize the transport ability of a porous media to convey gases or water (liquid and vapour). The theoretical framework of the measurement of these parameters and its applications to concrete is pointed out. The experimental studies are carried on three types of concrete: ordinary concrete, high performance concrete, and high performance steel fiber reinforced concrete. Two kinds of damage are considered and generated in samples: - A continuous damage of the medium, obtained by cyclic uniaxial loading. It is characterized by a loss of stiffness and results in a diffuse microcracking.- A discrete or localised damage, obtained by a diametrical compression of cylindrical specimens. It is characterized by the presence of identifiable and measurable cracks. Measurements of gas permeability are taken using a constant head, Cembureau type, permeameter. For cracked samples, the procedure and analysis of the results are changed in order to make the evaluation of their gas and water permeability. The simple imbibition and positive head imbibition are the disturbances of the moisture equilibrium, which allow the evaluation of the material diffusivity. The local moisture contents of the specimen are measured using a gamma-ray attenuation method. The analysis of profiles using Boltzmann's transformation leads to the moisture diffusivity and then to the water permeability coefficients. Measurements of gas and water permeability are compared in both cases of considered damage. In the first case, a damage - permeability relationship dependent on the fluid of percolation but valid for all concrete types studied could be worked out. (author)

  16. Microscopic and low Reynolds number flows between two intersecting permeable walls

    Science.gov (United States)

    Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.

    2018-06-01

    Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.

  17. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  18. THE STRUCTURE ANALYTICAL RESEARCH OF POROUS PERMEABLE WIRE MATERIAL (in Russian

    Directory of Open Access Journals (Sweden)

    Andrzej JAKUBOWSKI

    2016-04-01

    Full Text Available The details of making technology of porous permeable material with use of wire are allowed to carry out the analytical research of structure and structural characteristics of wire winding body. Its permit for prognostication the final proper-ties of material, that is produced by the following deformation treatment (diameter reduction. Due to the regular orga-nized arrangement of wire, the coil of winding body is considered as a multispan continuous beam, but a contact of coils – as interaction of two cylinders. Possibility of exactly calculation of the contacts between coils is allowed to go over the single fragment displacements into deformation of whole winding body. During research of deformation processes in regards of winding body geometry and used wire mechanical properties, the structural characteristics of porous permea-ble wire material are expected. The optimal number of winding layers, eliminating the distortion of organized final struc-ture, is established. The material pressure–compactness relation is obtained in order to control the technological condi-tions of winding and drafting for guarantee the product required properties.

  19. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan

    2012-01-01

    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  20. Clinical application of subtraction CT imaging for evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Toshihiko; Yatagai, Shigeo; Oonuma, Noboru; Ohno, Kunihiko; Nakamoto, Takaaki; Iizuka, Masahiko

    1991-01-01

    In this clinical study, one normal subject, one patient with primary interstitial pneumonia, one patient with segmental pneumonia due to Staphylococcus aureus, one patient with post-operative esophageal carcinoma, and two patients with mitral stenosis were studied. Dynamic CT scan images under continuous injection of low osmotic contrast medium were analyzed in series, in an attempt to evaluate vascular permeability quantitatively. The following results were obtained. Subtraction CT scan image 10 minutes after the start of contrast medium injection in two patients with pneumonia, showed a reduction of pulmonary vascular permeability following therapy. Subtraction CT scan image of the patient with post-operative esophageal carcinoma treated with 25 Gy radiation showed a discrepancy between pulmonary vascular permeability and other findings. In hemodynamically stable patients with mitral stenosis, subtraction CT images demonstrated that pulmonary vascular permeability was not affected by pulmonary congestion, irrespective of its severity. (author)

  1. Experimental study of the permeability of concrete under variable thermal and hydric conditions

    International Nuclear Information System (INIS)

    Chen, W.

    2011-01-01

    The main objective of this study is to evaluate the variable thermal and hydric effect, with fissuration effect on the hydraulic behaviour of two concretes. Many experimental tests (saturation and permeability measurements, uniaxial and triaxial compressions tests) were carried out in order to investigate the temperature and saturation influence on the behaviour hydraulic on sound and micro-cracked concrete. Moreover, an experimental device for permeability measurement on macro-cracked concrete was realized, it allows to study the behaviour of macro-cracked of concrete confined and subjected to dry gas flow or very moist air at different temperatures. Multiaxial mechanical tests are coupled to the permeability measurements of sound concrete and micro-cracked by freezing and thawing, which allow to measuring the permeability under deviatoric load-unload with the effect of pre-cracking under stress. We also effectuated a test of relative permeability of concrete as a function of water saturation, subjected to drying and re-saturation, conditioning by the different relative humidity imposed. (author)

  2. Problems of increasing of thermostability of highly permeable Ni-Zn ferrites and relative materials for telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A. E-mail: letyuk@mail.ru; Andreev, V.; Letyuk, L.; Shishkanov, A.; Maiorov, V

    2003-01-01

    The work considers ways of increasing of thermostability of ferrites of the basic systems NiO-ZnO-Fe{sub 2}O{sub 3} and MgO-ZnO-Fe{sub 2}O{sub 3} and relative materials for telecommunication. Sufficient results in increasing of the thermostability were achieved by doping Cu ions and controlling rejection of Fe{sub 2}O{sub 3} content from equimolar composition. These results allow to increase the Curie temperature to 130-140 deg. C for Ni-Zn ferrites with initial permeability 2000.

  3. Influence of effective stress and dry density on the permeability of municipal solid waste.

    Science.gov (United States)

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  4. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  5. Improvements in scaling of counter-current imbibition recovery curves using a shape factor including permeability anisotropy

    Science.gov (United States)

    Abbasi, Jassem; Sarafrazi, Shiva; Riazi, Masoud; Ghaedi, Mojtaba

    2018-02-01

    Spontaneous imbibition is the main oil production mechanism in the water invaded zone of a naturally fractured reservoir (NFR). Different scaling equations have been presented in the literature for upscaling of core scale imbibition recovery curves to field scale matrix blocks. Various scale dependent parameters such as gravity effects and boundary influences are required to be considered in the upscaling process. Fluid flow from matrix blocks to the fracture system is highly dependent on the permeability value in the horizontal and vertical directions. The purpose of this study is to include permeability anisotropy in the available scaling equations to improve the prediction of imbibition assisted oil production in NFRs. In this paper, a commercial reservoir simulator was used to obtain imbibition recovery curves for different scenarios. Then, the effect of permeability anisotropy on imbibition recovery curves was investigated, and the weakness of the existing scaling equations for anisotropic rocks was demonstrated. Consequently, an analytical shape factor was introduced that can better scale all the curves related to anisotropic matrix blocks.

  6. Microwave permeability of stripe patterned FeCoN thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuping [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Yang, Yong, E-mail: tslyayo@nus.edu.sg [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ma, Fusheng; Zong, Baoyu; Yang, Zhihong [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ding, Jun [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore)

    2017-03-15

    Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 µm the initial permeability shows a continuous growth from about 8–322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 µm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications. - Highlights: • This work presents a systematic study on permeability of FeCoN stripe pattern. • Geometrical parameters of the stripe pattern are systematically optimized. • Several important conclusions has been obtained. • The results offer guideline on FeCoN stripe patterns for high frequency applications.

  7. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives.

    Science.gov (United States)

    Sapone, Anna; de Magistris, Laura; Pietzak, Michelle; Clemente, Maria G; Tripathi, Amit; Cucca, Francesco; Lampis, Rosanna; Kryszak, Deborah; Cartenì, Maria; Generoso, Maddalena; Iafusco, Dario; Prisco, Francesco; Laghi, Francesca; Riegler, Gabriele; Carratu, Romano; Counts, Debra; Fasano, Alessio

    2006-05-01

    Zonulin, a protein that modulates intestinal permeability, is upregulated in several autoimmune diseases and is involved in the pathogenesis of autoimmune diabetes in the BB/Wor animal model of the disease. To verify the association between serum zonulin levels and in vivo intestinal permeability in patients with type 1 diabetes, both parameters were investigated in different stages of the autoimmune process. Forty-two percent (141 of 339) of the patients had abnormal serum zonulin levels, as compared with age-matched control subjects. The increased zonulin levels correlated with increased intestinal permeability in vivo and changes in claudin-1, claudin-2, and myosin IXB genes expression, while no changes were detected in ZO1 and occludin genes expression. When tested in serum samples collected during the pre-type 1 diabetes phase, elevated serum zonulin was detected in 70% of subjects and preceded by 3.5 +/- 0.9 years the onset of the disease in those patients who went on to develop type 1 diabetes. Combined, these results suggest that zonulin upregulation is associated with increased intestinal permeability in a subgroup of type 1 diabetic patients. Zonulin upregulation seems to precede the onset of the disease, providing a possible link between increased intestinal permeability, environmental exposure to non-self antigens, and the development of autoimmunity in genetically susceptible individuals.

  8. Reservoir rock permeability prediction using support vector regression in an Iranian oil field

    International Nuclear Information System (INIS)

    Saffarzadeh, Sadegh; Shadizadeh, Seyed Reza

    2012-01-01

    Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. It is often measured in the laboratory from reservoir core samples or evaluated from well test data. The prediction of reservoir rock permeability utilizing well log data is important because the core analysis and well test data are usually only available from a few wells in a field and have high coring and laboratory analysis costs. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data; however, these correlation formulae are not universally applicable. Recently, support vector machines (SVMs) have been proposed as a new intelligence technique for both regression and classification tasks. The theory has a strong mathematical foundation for dependence estimation and predictive learning from finite data sets. The ultimate test for any technique that bears the claim of permeability prediction from well log data is the accurate and verifiable prediction of permeability for wells where only the well log data are available. The main goal of this paper is to develop the SVM method to obtain reservoir rock permeability based on well log data. (paper)

  9. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  10. Sensitivity Analysis of Interfacial Tension on Saturation and Relative Permeability Model Predictions

    KAUST Repository

    Abdallah, Wael; Zhao, Weishu; Gmira, Ahmed; Negara, Ardiansyah; Buiting, Jan

    2011-01-01

    Interfacial tension (IFT) measurements of Dodecane/brine systems at different concentrations and Dodecane/deionized water subject to different Dodecane purification cycles were taken over extended durations at room temperature and pressure to investigate the impact of aging. When a fresh droplet was formed, a sharp drop in IFT was observed assumed to be a result of intrinsic impurity adsorption at the interface. The subsequent measurements exhibited a prolonged equilibration period consistent with diffusion from the bulk phase to the interface. Our results indicate that minute amounts of impurities present in experimental chemical fluids "used as received" have a drastic impact on the properties of the interface. Initial and equilibrium IFT are shown to be dramatically different, therefore it is important to be cautious of utilizing IFT values in numerical models. The study demonstrates the impact these variations in IFT have on relative permeability relationships by adopting a simple pore network model simulation.

  11. Sensitivity Analysis of Interfacial Tension on Saturation and Relative Permeability Model Predictions

    KAUST Repository

    Abdallah, Wael

    2011-05-18

    Interfacial tension (IFT) measurements of Dodecane/brine systems at different concentrations and Dodecane/deionized water subject to different Dodecane purification cycles were taken over extended durations at room temperature and pressure to investigate the impact of aging. When a fresh droplet was formed, a sharp drop in IFT was observed assumed to be a result of intrinsic impurity adsorption at the interface. The subsequent measurements exhibited a prolonged equilibration period consistent with diffusion from the bulk phase to the interface. Our results indicate that minute amounts of impurities present in experimental chemical fluids "used as received" have a drastic impact on the properties of the interface. Initial and equilibrium IFT are shown to be dramatically different, therefore it is important to be cautious of utilizing IFT values in numerical models. The study demonstrates the impact these variations in IFT have on relative permeability relationships by adopting a simple pore network model simulation.

  12. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  13. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  14. Microstructure-based characterization of permeability using a random walk model

    International Nuclear Information System (INIS)

    Chen, F F; Yang, Y S

    2012-01-01

    Quantitative transport properties of materials are analysed using a random walk model, based on the microscopic compositional distribution of compositions in the materials. A material sample is defined on a simple-cubic lattice, with volume fractions specified for each composition on every volume pixel (voxel). The quantitative relation between bulk permeability and fine-scale anisotropy is investigated by assuming fully anisotropic and fully isotropic voxel morphology. Such a study has prompted an analytic approximate formulation to predict bulk permeability range for a heterogeneous multi-component system that lacks detailed microstructure information. The numerical approach is verified on synthetic structures with known permeability. The analysis technique is applied to a real-world rock sample, as illustrated by a case study detailed in this paper. The investigations show that the bulk permeability is affected significantly by fine length scale anisotropy. (paper)

  15. Experimental study on the soil structure and permeability in aerated zone at CIRP's field test site

    International Nuclear Information System (INIS)

    Du Zhongde; Zhao Yingjie; Guo Zhiming

    2000-01-01

    Measurement of soil grain and pore size distribution, observation of soil microstructure and permeability test are used to study soil structure and permeability. The results show that soil heterogeneity in vertical soil profile is much great. The mean heterogeneity coefficient is 14.7. The eccentric rate of saturated permeability coefficient in vertical and horizontal direction is from 0.65 to 1.00. The mean coefficient is 0.93. So the soil can be considered to be isotropic from the view point of the groundwater dynamics. The permeability coefficient has more difference in different soil layers. In vertical profile, the saturated permeability coefficient is relatively great in upper and under layers. It is relatively small in middle layers

  16. Film Permeability Determination Using Static Permeability Cells

    Science.gov (United States)

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  17. Predicting permeability of low enthalpy geothermal reservoirs: A case study from the Upper Triassic − Lower Jurassic Gassum Formation, Norwegian–Danish Basin

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    2017-01-01

    This paper aims at improving the predictability of permeability in low enthalpy geothermal reser-voirs by investigating the effect of diagenesis on sandstone permeability. Applying the best fittedporosity–permeability trend lines, obtained from conventional core analysis, to log-interpreted poros...

  18. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  19. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  20. Evaluation of the membrane permeability (PAMPA and skin) of benzimidazoles with potential cannabinoid activity and their relation with the Biopharmaceutics Classification System (BCS).

    Science.gov (United States)

    Alvarez-Figueroa, M Javiera; Pessoa-Mahana, C David; Palavecino-González, M Elisa; Mella-Raipán, Jaime; Espinosa-Bustos, Cristián; Lagos-Muñoz, Manuel E

    2011-06-01

    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log P(oct) value permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability).

  1. Characterization and estimation of permeability correlation structure from performance data

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  2. Determination of hydrogen permeability in commercial and modified superalloys

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  3. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  4. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  5. Permeability coefficient of proton irradiated polyethylene terephatalate thin films

    International Nuclear Information System (INIS)

    Bassani, L.C.; Santos, W.M.S.; Marechal, B.

    1983-01-01

    The principle of operation of an apparatus developed to study gas permation through thin films is described and the measurement method is discussed. Use is made of diffusion theory to obtain a expression for the permeability coefficient as a function of the rate of increase of the pressure in the receiving volume. The Gibbs function for permeation of Helium through Polyethylene Terephtalate (P.E.T.) is determined. The permeability coefficient of Helium is found to increase significantly with the range of the implanted protons although the incident charge has been kept constant. The hypothesis of structural modifications of the proton implanted P.E.T. seems to be confirmed by small angles X-rays scattering experiments on the irradiated samples. (Author) [pt

  6. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  7. MHD flow of a uniformly stretched vertical permeable membrane in ...

    African Journals Online (AJOL)

    We present a magneto - hydrodynamic flow of a uniformly stretched vertical permeable surface undergoing Arrhenius heat reaction. The analytical solutions are obtained for concentration, temperature and velocity fields using an asymptotic approximation, similar to that of Ayeni et al 2004. It is shown that the temperature ...

  8. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  9. An efficient permeability scaling-up technique applied to the discretized flow equations

    Energy Technology Data Exchange (ETDEWEB)

    Urgelli, D.; Ding, Yu [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  10. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. However, an increase in the aquifer temperature might reduce permeability, and thereby increase production costs. An understanding of the factors that control permeability is required in order...... and the Klinkenberg procedure showed the expected correlation between the two measures, however, differences could be around one order of magnitude. In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore pressure change in the Klinkenberg procedure. Besides...... affecting the Klinkenberg procedure, the combined effect of slip and changes in permeability would affect production during pressure depletion in tight gas sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model based on the Klinkenberg equation. A lower...

  11. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  12. Determination of the permeability of α-, β- and γ-radiation in textile fabrics by Gamma-Scout device

    International Nuclear Information System (INIS)

    Gintibidze, N.; Mardaleishvili, Z.

    2009-01-01

    The goal of the present was the measurement of radiation permeability in textile fabrics by Gamma-Scout device and the comparison of the obtained results with the radiation background of the ambient air. The authors of this article have produced new fiber Fibron-3, which, according to theoretical calculations, reduces permeability of solar radiation. With this in mind, an experiment was performed. Three samples of the knitted cloth from Fibron-3 were taken, and the permeability of solar radiation in them was determined. The measurements were performed on Gamma-Scout device. The comparative analysis of the permeability of solar radiation in fabrics of different fibrous structure was performed. It was inferred that the degree of radiation permeability in fabrics depended on the thread thickness and the fiber structure. (author)

  13. Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees.

    Science.gov (United States)

    Scholz, Miklas; Uzomah, Vincent C

    2013-08-01

    The retrofitting of sustainable drainage systems (SuDS) such as permeable pavements is currently undertaken ad hoc using expert experience supported by minimal guidance based predominantly on hard engineering variables. There is a lack of practical decision support tools useful for a rapid assessment of the potential of ecosystem services when retrofitting permeable pavements in urban areas that either feature existing trees or should be planted with trees in the near future. Thus the aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems close to trees. This unique tool proposes the retrofitting of permeable pavements that obtained the highest ecosystem service score for a specific urban site enhanced by the presence of trees. This approach is based on a novel ecosystem service philosophy adapted to permeable pavements rather than on traditional engineering judgement associated with variables based on quick community and environment assessments. For an example case study area such as Greater Manchester, which was dominated by Sycamore and Common Lime, a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements are generally a preferred SuDS option. Permeable pavements combined with urban trees received relatively high scores, because of their great potential impact in terms of water and air quality improvement, and flood control, respectively. The outcomes of this paper are likely to lead to more combined permeable pavement and tree systems in the urban landscape, which are beneficial for humans and the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Permeability computation on a REV with an immersed finite element method

    International Nuclear Information System (INIS)

    Laure, P.; Puaux, G.; Silva, L.; Vincent, M.

    2011-01-01

    An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.

  15. Tunable d-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals.

    Science.gov (United States)

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2018-01-31

    In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.

  16. Role of different biodegradable polymers on the permeability of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Chandra Kanti Chakraborti

    2014-01-01

    Full Text Available Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp, flux, and enhancement ratio (ER were calculated. Considering Papp and flux values of all formulations, it is evident that formulation containing HPMC was the most beneficial for improving permeation and diffusivity of ciprofloxacin even after 16 h. Hence, this preparation may be considered as the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations, through excised goat intestinal mucosal membrane in alkaline pH, were higher than those formulations through goat stomach mucosal membrane in acidic pH. Enhancement ratio values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that HPMC containing formulation was the best suspension, which may show effective controlled release action. Even carbopol containing formulations might also produce controlled release action.

  17. Application of relative permeability modifier additives to reduce water production in different formations; Aplicacao de aditivos modificadores de permeabilidade relativa para reducao da producao de agua em diferentes formacoes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Ricardo C.B.; Torres, Ricardo S.; Pedrosa Junior, Helio; Dean, Gregory [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    Today most oil companies would be better described as water companies. Total worldwide oil production averages some 75 million barrels per day and, while estimates vary, this is associated with the production of 300 - 400 million barrels of water per day. These values of approximately 5 - 6 barrels of water for every barrel of oil are quite conservative. In the United States, where many fields are depleted, the ratio of water-to-oil production is closer to 9 to 1. In some areas around the world, fields remain on production when the ratio is as high as 48 to 1. Numerous strategies, both mechanical and chemical, have been employed over the years in attempts to achieve reduction in water production. Simple shut-off techniques, using cement, mechanical plugs and cross-linked gels have been widely used. Exotic materials such as DPR (disproportionate permeability reducers) and or new generation of relative permeability modifiers (RPM) have been applied in radial treatments with varying degrees of success. Most recently 'Conformance Fracturing' operations have increased substantially in mature fields as the synergistic effect obtained by adding a RPM to a fracturing fluid have produced increased oil production with reduced water cut in one step, consequently eliminating the cost of additional water shut off treatment later on. This paper presents laboratory testing and worldwide case histories of applications of various RPM materials, at different permeability and temperatures. The paper also describes technical design and operational methodology that we believe to have a significant impact in the development strategies of many fields worldwide. (author)

  18. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    Science.gov (United States)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  19. Pore Structure and Diagenetic Controls on Relative Permeability: Implications for Enhanced Oil Recovery and CO2 Storage

    Science.gov (United States)

    Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.

    2016-12-01

    Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability

    International Nuclear Information System (INIS)

    Ryu, K.S.; Nahm, S.H.; Park, J.S.; Yu, K.M.; Kim, Y.B.; Son, D.

    2002-01-01

    We present a new magnetic and non-destructive procedure to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. The method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive force. The measurement principle is based on the foundation harmonics voltage induced in a coil using a lock-in amplifier tuned to a frequency of the exciting one. Results obtained for reversible magnetic permeability and Vickers hardness on the aged sample show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel

  1. Effect of leukotriene receptor antagonists on vascular permeability during endotoxic shock

    International Nuclear Information System (INIS)

    Cook, J.A.; Li, E.J.; Spicer, K.M.; Wise, W.C.; Halushka, P.V.

    1990-01-01

    Evidence has accumulated that sulfidopeptide leukotrienes are significant pathogenic mediators of certain hematologic and hemodynamic sequelae of endotoxic shock. In the present study, the effects of a selective LTD4/E4 receptor antagonist, LY171883 (LY), or a selective LTD4 receptor antagonist, SKF-104353 (SKF), were assessed on splanchnic and pulmonary localization of 99mTechnetium-labeled human serum albumin (99mTc-HSA) in acute endotoxic shock in the rat. Dynamic gamma camera imaging of heart (H), midabdominal (GI), and lung regions of interest generated time activity curves for baseline and at 5-35 min after Salmonella enteritidis endotoxin (10 mg/kg, i.v.). Slopes of GI/H and lung/H activity (permeability index, GI/H or lung/H X 10(-3)/min) provided indices of intestinal and lung localization. Rats received LY (30 mg/kg, i.v.), LY vehicle (LY Veh), SKF (10 mg/kg), or SKF vehicle (SK Veh) 10 min prior to endotoxin or endotoxin vehicle. In rats receiving the LY Veh and endotoxin (n = 8) or SKF Veh and endotoxin (n = 12), the splanchnic permeability indices to 99mTc-HSA were increased 11.2-fold and 5.1-fold, respectively (P less than 0.05) compared to vehicle control groups not given endotoxin (n = 5). Pulmonary permeability index for 99mTc-HSA was increased (P less than 0.05) to a lesser extent (3.2-fold) by endotoxin compared to vehicle controls. Pretreatment with SKF reduced the mesenteric permeability index to control levels (P less than 0.05) during the 5-35 min time interval post-endotoxin. LY reduced the mesenteric permeability index by 70%. Pulmonary relative permeability to 99mTc-HSA was not affected by LY pretreatment. Both splanchnic and lung relative permeability to the isotope was transient; at 135-225 min post-endotoxin, splanchnic localization of 99mTc-HSA (n = 4) was not significantly different from vehicle controls in these vascular beds

  2. EDZ and permeability in clayey rocks

    International Nuclear Information System (INIS)

    Levasseur, Severine; Collin, Frederic; Charlier, Robert; Besuelle, Pierre; Chambon, Rene; Viggiani, Cino

    2010-01-01

    Document available in extended abstract form only. Deep geological layers are being considered as potential host rocks for the high level radioactivity waste disposals. During drilling in host rocks, an excavated damaged zone - EDZ is created. The fluid transmissivity may be modified in this damaged zone. This paper deals with the permeability evolution in relation with diffuse and/or localized crack propagation in the material. We mainly focus on argillaceous rocks and on some underground laboratories: Mol URL in Boom clay, Bure URL in Callovo-Oxfordian clay and Mont-Terri URL in Opalinus clay. First, observations of damage around galleries are summarized. Structure of damage in localized zone or in fracture has been observed at underground gallery scale within the excavation damaged zone (EDZ). The first challenge for a correct understanding of all the processes occurring within the EDZ is the characterization at the laboratory scale of the damage and localization processes. The observation of the initiation and propagation of the localized zones needs for advanced techniques. X-ray tomography is a non-destructive imaging technique that allows quantification of internal features of an object in 3D. If mechanical loading of a specimen is applied inside a X-ray CT apparatus, successive 3D images at different loading steps show the evolution of the specimen. However, in general volumetric strain in a shear band is small compared to the shear strain and, unfortunately, in tomographic images grey level is mainly sensitive to the local mass density field. Such a limitation has been recently overcome by complementing X-ray tomography with 3D Volumetric Digital Image Correlation (V-DIC) which allows the determination of the full strain tensor field. Then it is possible to further explore the progression of localized deformation in the specimen. The second challenge is the robust modelling of the strain localized process. In fact, modelling the damage process with finite

  3. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin

  4. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R 2 = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q 2 ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and

  5. Defining clogging potential for permeable concrete.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  7. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  8. An intelligent detecting system for permeability prediction of MBR.

    Science.gov (United States)

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  9. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  10. Microorganism Removal in Permeable Pavement Parking Lots ...

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  11. The effect of meniscus on the permeability of micro-post arrays

    International Nuclear Information System (INIS)

    Byon, Chan; Kim, Sung Jin

    2011-01-01

    This study aims to investigate the effect of meniscus curvature on the permeability of the micro-post arrays, which are widely used for applications of microfluidics. An analytical model that accounts for the meniscus curvature is developed. The model considers two common array types: quadratic and hexagonal arrays. The permeability of micro-post arrays is estimated using the capillary rate of rise experiment and numerical simulation. The results obtained from the analytical model match the experimental and numerical results within the error of 5% over the range of parameters commonly found in microfluidic applications (0.06 0.2), where d * and H * are the post-diameter and the post-height, respectively, which are normalized by the pitch. Based on the analytic results, the effects of the post-diameter, post-height and the contact angle on the permeability of post-arrays are investigated. It is shown that the previous permeability models based on the flat meniscus assumption overestimate the experimental value by 26% for the quadratic array and 24% for the hexagonal array when cos θ = 1, d * = 0.5 and H *=1. The effect of the meniscus curvature is shown to become more pronounced as the contact angle or the post-height decreases.

  12. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability

    International Nuclear Information System (INIS)

    Beard, L.P.; Nyquist, J.E.

    1998-01-01

    Where the magnetic permeability of rock or soil exceeds that of free space, the effect on airborne electromagnetic systems is to produce a frequency-independent shift in the in-phase response of the system while altering the quadrature response only slightly. The magnitude of the in-phase shift increases as (1) the relative magnetic permeability is increased, (2) the amount of magnetic material is increased, and (3) the airborne sensor gets nearer the earth's surface. Over resistive, magnetic ground, the shift may be evinced by negative in-phase measurements at low frequencies; but over more conductive ground, the same shift may go unnoticed because of the large positive in-phase response. If the airborne sensor is flown at low levels, the magnitude of the shift may be large enough to affect automatic inversion routines that do not take this shift into account, producing inaccurate estimated resistivities, usually overestimates. However, layered-earth inversion algorithms that incorporate magnetic permeability as an additional inversion parameter may improve the resistivity estimates. The authors demonstrate this improvement using data collected over hazardous waste sites near Oak Ridge, Tennessee, USA. Using resistivity inversion without magnetic permeability, the waste sites are almost invisible to the sensors. When magnetic permeability is included as an inversion parameter, the sites are detected, both by improved resistivity estimates and by estimated magnetic permeability

  13. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    Science.gov (United States)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  14. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    van Elburg, R. M.; Uil, J. J.; Mulder, C. J.; Heymans, H. S.

    1993-01-01

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  15. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; MULDER, CJJ; HEYMANS, HSA

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  16. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  17. Permeability and elastic properties of cracked glass under pressure

    Science.gov (United States)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  18. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  19. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  20. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Science.gov (United States)

    Degruyter, W.; Bachmann, O.; Burgisser, A.

    2010-01-01

    X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93-98 μm) and mean throat size (~23-29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.

  1. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  2. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  3. Third invitational well-testing symposium: well testing in low permeability environments

    Energy Technology Data Exchange (ETDEWEB)

    Doe, T.W.; Schwarz, W.J. (eds.)

    1981-03-01

    The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

  4. Third invitational well-testing symposium: well testing in low permeability environments

    International Nuclear Information System (INIS)

    Doe, T.W.; Schwarz, W.J.

    1981-03-01

    The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted

  5. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  6. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.

    Science.gov (United States)

    Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik

    2015-07-15

    The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Steady-state flow in a rock mass intersected by permeable fracture zones

    International Nuclear Information System (INIS)

    Lindbom, B.

    1986-12-01

    Level 1 of HYDROCOIN consists of seven well-defined test problems. This paper is concerned with Case 2, which is formulated as a generic groundwater flow situation often found in crystalline rock with highly permeable fracture zones in a less permeable rock mass. The case is two-dimensional and modelled with 8-noded, isoparametric, rectangular elements. According to the case definition, calculations of hydraulic head and particle tracking are performed. The computations are carried out with varying degree of discretisation in order to analyse possible impact on the result with respect to nodal density. Further calculations have been performed mainly devoted to mass balance deviations and how these are affected by permeability contrasts, varying degree of spatial discretisation and distortion of finite elements. The distribution of hydraulic head in the domain is less sensitive to differences in nodal density than the trajectories. The hydraulic heads show similar behaviour for three meshes with varying degrees of discretisation. The particle tracking seems to be more sensitive to the level of discretisation. The results obtained with a coarse and medium mesh indicate completely different solutions for one of the pathlines. The coarse mesh is too sparsely discretised for the specified problem. The local mass balance is evaluated for seven runs. The mass balance deviation seems to be considerably more sensitive to the level of discretisation than to both permeability contrasts and deformation of elements. The permeability contrasts between the rock mass and fracture zones vary from a factor of 1000 to 1 (homogeneous properties) with increments of a factor of 10. These calculations in fact give better mass balance with increasing permeability contrasts, contrary to what could be expected. (orig./HP)

  8. Do the recommended standards for in vitro biopharmaceutic classification of drug permeability meet the "passive transport" criterion for biowaivers?

    Science.gov (United States)

    Žakelj, Simon; Berginc, Katja; Roškar, Robert; Kraljič, Bor; Kristl, Albin

    2013-01-01

    BCS based biowaivers are recognized by major regulatory agencies. An application for a biowaiver can be supported by or even based on "in vitro" measurements of drug permeability. However, guidelines limit the application of biowaivers to drug substances that are transported only by passive mechanisms. Regarding published permeability data as well as measurements obtained in our institution, one can rarely observe drug substances that conform to this very strict criterion. Therefore, we measured the apparent permeability coefficients of 13 drugs recommended by FDA's Guidance to be used as standards for "in vitro" permeability classification. The asymmetry of permeability data determined for both directions (mucosal-to-serosal and serosalto- mucosal) through the rat small intestine revealed significant active transport for four out of the nine high-permeability standards and for all four low-permeability standard drugs. As could be expected, this asymmetry was abolished at 4°C on rat intestine. The permeability of all nine high-permeability, but none of the low permeability standards, was also much lower when measured with intestinal tissue, Caco-2 cell monolayers or artificial membranes at 4°C compared to standard conditions (37°C). Additionally, concurrent testing of several standard drugs revealed that membrane transport can be affected by the use of internal permeability standards. The implications of the results are discussed regarding the regulatory aspects of biopharmaceutical classification, good practice in drug permeability evaluation and regarding the general relevance of transport proteins with broad specificity in drug absorption.

  9. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  10. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  11. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  12. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines

    International Nuclear Information System (INIS)

    Zhang, Cun; Tu, Shihao; Zhang, Lei; Bai, Qingsheng; Yuan, Yong; Wang, Fangtian

    2016-01-01

    In order to understand the permeability evolution law of the gob by mining disturbances and obtain the permeability distribution of the fully compacted gob, comprehensive methods including theoretical analyses of monitoring data and numerical simulation are used to determine the permeability of gobs in the mining process. Based on current research, three zones of the vertical stress and permeability in the gob are introduced in this article, which are the caving rock mass accumulation zone, the gradually compacted zone and the fully compacted zone. A simple algorithm is written by using FISH language to be imported into the reservoir model. FISH language is an internal programming language in FLAC3D. It is possible to calculate the permeability at each zone with this algorithm in the mining process. Besides, we analyze the gas flow rates from seven gob gas ventholes (GGV) located on a longwall face operated in a mine of a Huainan coalfield in Huainan City, China. Combined with Darcy’s law, a calculation model of permeability around GGV in the gob is proposed. Using this model, the evolution law of permeability in the gob is deduced; the phases of permeability evolution are the decline stage and the stable stage. The result of the vertical stress monitoring data and good fitting effect of the permeability to the experimental data show that the permeability decline caused by the compaction of the gob is the principal reason for the decline stage. The stable stage indicates that the gob has been fully compacted, and the average period of full gob compaction is 47.75 d. The permeability in the middle of the compacted gob is much smaller than the permeability on the edge of the gob which presents an O shape trend. Besides, the little difference among the results of the numerical simulation, the permeability calculation model and other commonly used calculation models validate the correctness of the permeability calculation model and numerical simulation results

  13. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  14. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    Science.gov (United States)

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  15. Inclusion of Topological Measurements into Analytic Estimates of Effective Permeability in Fractured Media

    Science.gov (United States)

    Sævik, P. N.; Nixon, C. W.

    2017-11-01

    We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.

  16. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  17. Evaluation of permeability and swelling pressure of compacted bentonite using a calcium hydroxide solution

    International Nuclear Information System (INIS)

    Aoyagi, Takayoshi; Maeda, Munehiro; Mihara, Morihiro; Tanaka, Masuhiro

    1998-12-01

    Tests to determine the swelling pressure, permeability, compressive strength and elastic modulus of Ca-Na exchanged bentonite, Na-bentonite and Ca-bentonite at the Power Reactor and Nuclear Fuel Development Corporation have mainly used distilled water. However, disposal facilities for TRU waste will use cementateous material for packaging, backfill as well as structural support. In this case, a large amount of calcium will dissolve in groundwater flowing through the cementateous material. Therefore, it is important to investigate the mechanical properties of bentonite in calcium-rich water as part of the disposal research program for TRU waste. In order to understand the effect of the chemical composition of water on the basic mechanical properties of bentonite - part of evaluating the disposal concepts for TRU waste disposal - we tested the permeability of compacted bentonite under saturated conditions using a calcium hydroxide solution. The aqueous solution represents water dominated by the calcium component. Na-bentonite, Ca-Na exchanged bentonite and Ca-bentonite were used for swelling pressure measurement tests and permeability testing. Measures of the maximum and equilibrium swelling pressure as well as permeability we obtained. The dry density of bentonite was varied between tests. Results show that swelling pressure and permeability are dependent on dry density. In separate tests using Ca-bentonite, the bentonite-mixing rate was varied as an independent parameter. Results show that there is little change in the swelling pressure and permeability between tests using calcium hydroxide solution and distilled water for all bentonite types. (author)

  18. Damage-induced permeability changes around underground excavations

    International Nuclear Information System (INIS)

    Coll, C.

    2005-07-01

    The storage of nuclear waste in deep geological formations is now considered more and more as a potential solution. During excavation, a disturbed zone develops in which damaging can be important and which can lead eventually to the failure of the rock. Fluid flow and permeability in the rock mass can be significantly modified producing a possible security risk. Our work consisted in an experimental study of the hydro-mechanical coupling of two argillaceous rocks: Boom clay (Mol, Belgium) and Opalinus clay (Mont-Terri, Switzerland). Triaxial tests were performed in a saturated state to study the permeability evolution of both clays with isotropic and deviatoric stresses. Argillaceous rocks are geo-materials with complex behaviour governed by numerous coupled processes. Strong physico-chemical interactions between the fluid and the solid particles and their very low permeability required the modification of the experimental set up. Moreover, specific procedures were developed to measure permeability and to detect strain localisation in shear bands. We show that for Boom Clay, permeability is not significantly influenced by strain localisation. For Opalinus clay, fracturing can induce an increase of the permeability at low confining pressure. (author)

  19. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    Energy Technology Data Exchange (ETDEWEB)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  20. Ground-water flow in low permeability environments

    Science.gov (United States)

    Neuzil, Christopher E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow sytems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of pertroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters. These limitations have resulted in rather distinct small- and large-scale approaches to the problem. The first part of the review considers experimental investigations of low-permeability flow, including in situ testing; these are generally conducted on temporal and spatial scales which are relatively small compared with those of interest. Results from this work have provided increasingly detailed information about many aspects of the flow but leave certain questions unanswered. Recent advances in laboratory and in situ testing techniques have permitted measurements of permeability and storage properties in progressively “tighter” media and investigation of transient flow under these conditions. However, very large hydraulic gradients are still required for the tests; an observational gap exists for typical in situ gradients. The applicability of Darcy's law in this range is therefore untested, although claims of observed non-Darcian behavior appear flawed. Two important nonhydraulic

  1. Long-term Metal Performance of Three Permeable Pavements

    Science.gov (United States)

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  2. Permeable Pavement Research - Edison, New Jersey

    Science.gov (United States)

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  3. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  4. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  5. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  6. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    Science.gov (United States)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  7. Support vector regression to predict porosity and permeability: Effect of sample size

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2012-02-01

    Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function

  8. Characterization of the mechanical and hydraulic damage in the excavation damaged zone of MHM with gas permeability measurement

    International Nuclear Information System (INIS)

    Yang, D.

    2008-09-01

    On the feasibility evaluation of nuclear waste storage in deep formations, the essential issues are as follows: the stability of underground structures over the reversible period, the influence of cavity excavation on geomechanical properties of the wall rock and the variation of those properties during the different phases while storage realization. The work presented here covers the investigations on the variation of geomechanical properties of the approximately 500 m deep MHM in France (mudstone in the departments of Meuse/Haute-Marne), chosen as a potential medium for nuclear waste disposal by ANDRA. In order to measure the very low permeability of mudstone and to observe the dependency on saturation, a special test scheme on measurement of gas permeability has been developed. In the scheme, in situ referenced stresses have been chosen as the stresses acting on the solid matrix. The gas permeability has been determined with both analytical and numerical methods. To estimate the mechanical damage of storage induced by the excavation, laboratory tests on gas permeability have been conducted on samples recovered from different locations situated at different distances from the wall of the main access shaft of the MHM (from 0,1 m to 12,5 m). Results of gas permeability obtained under an isotropic stress of 11 MPa vary between 10 -21 and 10 -22 m 2 and do not show significant variations between damaged zones (near the wall) and intact zones (sample located 12 m from the wall). The observations in laboratory tests coincide with in situ damage characterizations. The variation of gas permeability under the cycle of loading and unloading is an order less than the initial value under the isotropic stress. Taking into account the precision of the testing system, this variation is not significant. The oviparous intact samples have been imposed different saturations by salt solutions (with a relative humidity from 25 % to 98 %) to form a cycle of de- and re-saturation. The

  9. Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

    Science.gov (United States)

    Dillard, Leslie A.; Essaid, Hedeff I.; Herkelrath, William N.

    1997-01-01

    Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.

  10. Update to Permeable Pavement Research at the Edison ...

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  11. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one.

    Science.gov (United States)

    Dahan, Arik; Beig, Avital; Lindley, David; Miller, Jonathan M

    2016-06-01

    Poor aqueous solubility is a major challenge in today's biopharmaceutics. While solubility-enabling formulations can significantly increase the apparent solubility of the drug, the concomitant effect on the drug's apparent permeability has been largely overlooked. The mathematical equation to describe the membrane permeability of a drug comprises the membrane/aqueous partition coefficient, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggesting that the solubility and the permeability are closely related, exhibit a certain interplay between them, and treating the one irrespectively of the other may be insufficient. In this article, an overview of this solubility-permeability interplay is provided, and the available data is analyzed in the context of the effort to maximize the overall drug exposure. Overall, depending on the type of solubility-permeability interplay, the permeability may decrease, remain unchanged, and even increase, in a way that may critically affect the formulation capability to improve the overall absorption. Therefore, an intelligent design of solubility-enabling formulation needs to consider both the solubility afforded by the formulation and the permeability in the new luminal environment resulting from the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  13. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    Science.gov (United States)

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.

    2017-03-01

    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  14. Determination of the permeability of tank basins with Zangar permeameter; Determinacao de permeabilidade em bacias de tanques com permeametro de Zangar

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Carlos Alberto Rodrigues; Vicente, Ana Paula Camargo de; Lopes, Jorge Antonio; Silveira Filho, Celso Rodrigues da [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This article addresses a subject that has been target of requirements from environmental agencies for renewal of licenses, expansions, or implementation of new enterprises. That subject refers to the checking of the permeability of tank basins and verifying its adequacy against certain criteria. The Brazilian standard that regulates those criteria is ABNT NBR 17505-2 - Flammable and Combustible Liquid Storage. In order to check compliance with the established criteria, it is best to perform geotechnical tests to check the permeability and main characteristics of the soil. Some difficulties may arise in the execution of those services, as for example, the scarce existence of qualified firms, relative complexity, high cost and considerable time for the execution. In that regard, this article is intended to present a differentiated methodology proposed by Zangar (1953) for the checking of the permeability of the basins and also a practical case applied to a petroleum by-product storage terminal. The methodology is complemented with the presentation of the results obtained in a plant containing iso-value curves, thereby getting a geographic representation of the permeability indexes of the basins. In the case study, 21 tests have been performed encompassing 7 tank basins. As a result therefrom, it was verified that 98.3% of the studied area met the criteria, with an average permeability of 6.84 x 10{sup -5} cm/s. With this paper, one may conclude that the proposed methodology is reliable, quick, low-cost and easily applicable, and may be used for checking the compliance of the tank basin permeability with the criterion of ABNT NBR 17505-2 standard. (author)

  15. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  16. A Review of Permeable Pavement Clogging Investigations and Recommended Maintenance Regimes

    Directory of Open Access Journals (Sweden)

    Mostafa Razzaghmanesh

    2018-03-01

    Full Text Available Understanding clogging mechanisms in permeable pavements can help optimize the required maintenance regime. In this review paper, methods for investigating clogging mechanisms are described. These include surface infiltration methods, the use of embedded sensors, and the development of modelling tools. Previously conducted surface infiltration tests indicate the importance of the age of a permeable pavement system and also local climatic conditions, including rainfall intensity. The results indicate that porous concrete generally has the highest infiltration capacity and this is followed by permeable interlocking concrete pavement and then porous asphalt. The measured infiltration rates decreased significantly even within two years of installation. There was an indirect relationship between surface infiltration rates and the age of the pavements. It was also found that the rainfall characteristics are important in selecting the type of pavement. Sensor technologies have been used mainly in the United States and there has been a reluctance to use such technologies in other parts of the world. Few studies have been conducted into modelling the changing performance of permeable pavement systems over time and there is a need to develop more general models. Various methods and machinery have been developed for cleaning and maintaining permeable pavements and there is no universally preferred approach currently available. Indeed, several of the commonly used maintenance methods have been shown to be relatively ineffective.

  17. Mathematic modeling of the method of measurement relative dielectric permeability

    Science.gov (United States)

    Plotnikova, I. V.; Chicherina, N. V.; Stepanov, A. B.

    2018-05-01

    The method of measuring relative permittivity’s and the position of the interface between layers of a liquid medium is considered in the article. An electric capacitor is a system consisting of two conductors that are separated by a dielectric layer. It is mathematically proven that at any given time it is possible to obtain the values of the relative permittivity in the layers of the liquid medium and to determine the level of the interface between the layers of the two-layer liquid. The estimation of measurement errors is made.

  18. Investigation on the Permeability Evolution of Gypsum Interlayer Under High Temperature and Triaxial Pressure

    Science.gov (United States)

    Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu

    2017-08-01

    reduced, which eventually leads to a decrease in permeability. When the inlet gas pressure is between 2 and 6 MPa, the Klinkenberg effect dribbles away, and the gas flow gradually obeys to the Darcy's law. Hence, the permeability increased with the increase in inlet gas pressure. (c) The curve of permeability versus temperature is divided into five stages based on its gradient. In the temperature range of 20-100 °C, the permeability of gypsum decreased slowly when the temperature decreased. From 100 to 200 °C, the permeability of gypsum increased dramatically when the temperature increased. However, a dramatic increase in permeability was observed from 200 to 450 °C. Subsequently, in the temperature range of 450-550 °C, due to closure of pores and fractures, the permeability of the specimens slowly lessened when the temperature increased. From 550 to 650 °C, the permeability of gypsum slightly increased when the temperature increased; (d) the micro-cracks and porosity obtained from the CT images show a high degree of consistency to the permeability evolution; (e) when compared to the permeability evolutions of sandstone, granite, and lignite, gypsum exhibits a stable evolution trend of permeability and has a much greater threshold temperature when its permeability increases sharply. The results of the paper may provide essential and valuable references for the design and construction of high-level radioactive wastes repository in bedded salt rock containing gypsum interlayers.

  19. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    Science.gov (United States)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  20. ABOUT CORRELATION BETWEEN THE PERCOLATION RATE OF MOISTURE THROUGH THE SEMI-PERMEABLE MEMBRANES AND THE STANDARD MEASUREMENTS OF THEIR PERMEABILITY OR EVAPORATIVE RESISTANCE

    Directory of Open Access Journals (Sweden)

    В.Б. Роганков

    2015-02-01

    Full Text Available A variety of test methods to estimate the water vapour transmission (WVT-rate of thin membranes do not provide, unfortunately, the reliable basis to compare the permeability of different fabrics. Their results are crucially dependent on the details and construction of experimental methodologies as well as on the accepted by the different authors conditions of measurement. In this work, we propose the universal approach and demonstrate its adequate realization to compare the transport properties of any semi-permeable membranes measured by the conventional test-methods. The purpose is to avoid any confusion in such procedure of comparison. We have analysed below the WVT-rates measured by six alternative test-methods, which have been applied step-by-step to six different fabrics. In opposite to the widespread search for a pair correlation between the above results obtained by any two methods we treat them, in total, for each fabric in terms of the reduced variables. This approach is based on the novel concept of the moisture percolation (MP-rate which combines the diffusion and convective contributions in a transport process. It leads to the well-established general estimates of the normalized WVT-rates measured by the standard test-methods. Another advantage of the developed approach is its thermodynamic consistency, which offers the appropriate fluctuation model to take into account the porosity of any semi-permeable membranes.

  1. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules.

    Science.gov (United States)

    Dave, Vivek S; Gupta, Deepak; Yu, Monica; Nguyen, Phuong; Varghese Gupta, Sheeba

    2017-02-01

    The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.

  2. The role of python eggshell permeability dynamics in a respiration-hydration trade-off.

    Science.gov (United States)

    Stahlschmidt, Zachary R; Heulin, Benoit; DeNardo, Dale F

    2010-01-01

    Parental care is taxonomically widespread because it improves developmental conditions and thus fitness of offspring. Although relatively simplistic compared with parental behaviors of other taxa, python egg-brooding behavior exemplifies parental care because it mediates a trade-off between embryonic respiration and hydration. However, because egg brooding increases gas-exchange resistance between embryonic and nest environments and because female pythons do not adjust their brooding behavior in response to the increasing metabolic requirements of developing offspring, python egg brooding imposes hypoxic costs on embryos during the late stages of incubation. We conducted a series of experiments to determine whether eggshells coadapted with brooding behavior to minimize the negative effects of developmental hypoxia. We tested the hypotheses that python eggshells (1) increase permeability over time to accommodate increasing embryonic respiration and (2) exhibit permeability plasticity in response to chronic hypoxia. Over incubation, we serially measured the atomic and structural components of Children's python (Antaresia childreni) eggshells as well as in vivo and in vitro gas exchange across eggshells. In support of our first hypothesis, A. childreni eggshells exhibited a reduced fibrous layer, became more permeable, and facilitated greater gas exchange as incubation progressed. Our second hypothesis was not supported, as incubation O(2) concentration did not affect the shells' permeabilities to O(2) and H(2)O vapor. Our results suggest that python eggshell permeability changes during incubation but that the alterations over time are fixed and independent of environmental conditions. These findings are of broad evolutionary interest because they demonstrate that, even in relatively simple parental-care models, successful parent-offspring relationships depend on adjustments made by both the parent (i.e., egg-brooding behavioral shifts) and the offspring (i

  3. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  4. Effect of aggregate grain size distribution on properties of permeable ...

    African Journals Online (AJOL)

    ) ratio on the mechanical properties of permeable concrete is investigated. The aim of this study is to prepare permeable concrete mixture with optimum properties in terms of strength and permeability. For this purpose, five different permeable ...

  5. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  6. Evaluation of the Membrane Permeability (PAMPA and Skin) of Benzimidazoles with Potential Cannabinoid Activity and their Relation with the Biopharmaceutics Classification System (BCS)

    OpenAIRE

    Alvarez-Figueroa, M. Javiera; Pessoa-Mahana, C. David; Palavecino-González, M. Elisa; Mella-Raipán, Jaime; Espinosa-Bustos, Cristián; Lagos-Muñoz, Manuel E.

    2011-01-01

    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying thes...

  7. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  8. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes.

    Science.gov (United States)

    Loch, Christian; Zakelj, Simon; Kristl, Albin; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne

    2012-08-30

    To treat ophthalmic diseases like glaucoma or inflammatory disorders topically applied ophthalmic formulations such as eye drops are usually used. In addition, novel ophthalmic implants releasing drug substances locally into different parts of the eye are available today. In the work presented here, the permeability coefficients of selected drugs (ciprofloxacin hydrochloride, lidocaine hydrochloride, timolol maleate) for ophthalmic tissues were determined using side-by-side diffusion chambers (so-called Ussing chambers). Sclera, conjunctiva, cornea, choroidea-retina-complex and a complex of conjunctiva-sclera-choroidea-retina were excised from fresh porcine, rabbit and bovine eyes. In the porcine eye tissues the highest P(app) values were obtained for conjunctiva with the exception of lidocaine. Therefore, it can be estimated that a certain amount of drug diffuses or is transported through conjunctiva after application. The P(app) values for sclera were also higher than those for cornea and even more, the surface area of sclera which is available for drug absorption is much larger than that of cornea when applying an implant. The obtained permeability coefficients for sclera and conjunctiva indicate that the administration of periocular implants can be an alternative to topically applied formulations. The complexes of the tissues were a significantly (p<0.01) stronger barrier to the investigated substances than the separated tissues. Distinct differences in permeability coefficients between the investigated animal tissues were observed. Overall the highest P(app) values for all mounted tissues were obtained with the rabbit, followed by porcine and bovine eyes. Because of these distinct interspecies differences one must be very careful when selecting the proper animal model for the permeability experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evaluation of permeability of compacted bentonite ground considering heterogeneity by geostatistics

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko; Kudo, Kohji; Hironaga, Michihiko; Nakagami, Motonori; Niwase, Kazuhito; Komatsu, Shin-ichi

    2007-01-01

    The permeability of the bentonite ground as an engineered barrier is possibly designed to the value which is lower than that determined in terms of required performance because of heterogeneous distribution of permeability in the ground, which might be considerable when the ground is created by the compaction method. The effect of heterogeneity in the ground on the permeability of the bentonite ground should be evaluated by overall permeability of the ground, whereas in practice, the effect is evaluated by the distribution of permeability in the ground. Thus, in this study, overall permeability of the bentonite ground is evaluated from the permeability of the bentonite ground is evaluated from the permeability distribution determined using the geostatistical method with the dry density data as well as permeability data of the undisturbed sample recovered from the bentonite ground. Consequently, it was proved through this study that possibility of overestimation of permeability of the bentonite ground can be reduced if the overall permeability is used. (author)

  10. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  11. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  12. Cell permeability beyond the rule of 5.

    Science.gov (United States)

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Investigating inlay permeability by means of labelled atoms

    Energy Technology Data Exchange (ETDEWEB)

    Rajchev, L; Chakmakov, D

    1979-01-01

    An isotope method was used in the study of marginal space permeability (space between cavity walls and obturation) and its relation to the qualities of cementing material. To this end, V class cavities were elaborated and microdentures preprared under unified conditions for recently extracted intact human teeth. The inlays were adjusted by being riveted at first and then cemented. Microdentures were fixed with ''Adhesor'' phosphate cement, zinc-eugenol paste or adhesive wax, applied upon the phase and part of the cavity wall. Twenty four hours later the teeth were covered with wax. The inlay and a strip around it remained uncovered and immersed in iodine 125 solution of sulphur 35-methionine. The teeth were then washed and incorporated in epoxide resin. Longitudinal incisions were made through the inlay and, after appropriate processing, autoradiography of the sections was made. The marginal space was shown to be permeable in a different degree, depending on the fixing material: whereas wax gluing makes it impermeable for either isotope, gluing with zinc-eugenol paste allows minor permeability for sulphur 35 and a rather high one for iodine 125. With phosphate cement gluing, iodine 125 reaches the cavity bottom, while penetration of sulphur 35 is rather limited.

  14. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis

    DEFF Research Database (Denmark)

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle Juhl

    2015-01-01

    in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison...... with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging...... fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent...

  15. Permeability, zonulin production, and enteropathy in dermatitis herpetiformis.

    Science.gov (United States)

    Smecuol, Edgardo; Sugai, Emilia; Niveloni, Sonia; Vázquez, Horacio; Pedreira, Silvia; Mazure, Roberto; Moreno, María Laura; Label, Marcelo; Mauriño, Eduardo; Fasano, Alessio; Meddings, Jon; Bai, Julio César

    2005-04-01

    Dermatitis herpetiformis (DH) is characterized by variable degrees of enteropathy and increased intestinal permeability. Zonulin, a regulator of tight junctions, seems to play a key role in the altered intestinal permeability that characterizes the early phase of celiac disease. Our aim was to assess both intestinal permeability and serum zonulin levels in a group of patients with DH having variable grades of enteropathy. We studied 18 DH patients diagnosed on the basis of characteristic immunoglobulin (Ig)A granular deposits in the dermal papillae of noninvolved skin. Results were compared with those of classic celiac patients, patients with linear IgA dermatosis, and healthy controls. According to Marsh's classification, 5 patients had no evidence of enteropathy (type 0), 4 patients had type II, 2 patients had type IIIb damage, and 7 patients had a more severe lesion (type IIIc). Intestinal permeability (lactulose/mannitol ratio [lac/man]) was abnormal in all patients with DH. Patients with more severe enteropathy had significantly greater permeability ( P zonulin concentration (enzyme-linked immunosorbent assay) for patients with DH was 2.1 +/- .3 ng/mg with 14 of 16 (87.5%) patients having abnormally increased values. In contrast, patients with linear IgA dermatosis had normal histology, normal intestinal permeability, and negative celiac serology. Increased intestinal permeability and zonulin up-regulation are common and concomitant findings among patients with DH, likely involved in pathogenesis. Increased permeability can be observed even in patients with no evidence of histologic damage in biopsy specimens. Patients with linear IgA dermatosis appear to be a distinct population with no evidence of gluten sensitivity.

  16. Drug-like properties and the causes of poor solubility and poor permeability.

    Science.gov (United States)

    Lipinski, C A

    2000-01-01

    There are currently about 10000 drug-like compounds. These are sparsely, rather than uniformly, distributed through chemistry space. True diversity does not exist in experimental combinatorial chemistry screening libraries. Absorption, distribution, metabolism, and excretion (ADME) and chemical reactivity-related toxicity is low, while biological receptor activity is higher dimensional in chemistry space, and this is partly explainable by evolutionary pressures on ADME to deal with endobiotics and exobiotics. ADME is hard to predict for large data sets because current ADME experimental screens are multi-mechanisms, and predictions get worse as more data accumulates. Currently, screening for biological receptor activity precedes or is concurrent with screening for properties related to "drugability." In the future, "drugability" screening may precede biological receptor activity screening. The level of permeability or solubility needed for oral absorption is related to potency. The relative importance of poor solubility and poor permeability towards the problem of poor oral absorption depends on the research approach used for lead generation. A "rational drug design" approach as exemplified by Merck advanced clinical candidates leads to time-dependent higher molecular weight, higher H-bonding properties, unchanged lipophilicity, and, hence, poorer permeability. A high throughput screening (HTS)-based approach as exemplified by unpublished data on Pfizer (Groton, CT) early candidates leads to higher molecular weight, unchanged H-bonding properties, higher lipophilicity, and, hence, poorer aqueous solubility.

  17. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  18. A study and development of a system for the determination of porus plates permeability

    International Nuclear Information System (INIS)

    Leitao Junior, C.B.; Zorzetto, L.F.

    1989-07-01

    A device employed for the study of flux in porous media and another one employed for the determination of permeability of porous plate are presented in this work. Experimental data and calculation obtained from the above cited systems are also presented. (author) [pt

  19. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    Science.gov (United States)

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4

  20. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo Peels

    Directory of Open Access Journals (Sweden)

    Ramón Pacheco-Ordaz

    2018-02-01

    Full Text Available Mango (Mangifera indica cv. Ataulfo peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5% when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s. In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  1. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  2. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    International Nuclear Information System (INIS)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.; Mathias, C.J.; Schuster, D.P.

    1987-01-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-( 68 Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of [ 68 Ga]citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escape rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury

  3. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  4. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  5. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  6. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  7. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... to formations with a significant fraction of fine particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using Kozeny’s equation...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  8. Relation between histamine release and dye permeability of pulmonary blood-air barrier in x-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, H [Kobe Univ. (Japan). School of Medicine

    1976-04-01

    The histamine-release kinetics and the influence of released histamine on the permeability of the pulmonary blood-air(BA) barrier during the early period after either whole-body or thoracic x irradiation of the rat were studied. Histamine contents of skin and lung of the irradiated rat decreased rapidly, reaching a minimum at 5 h, and this histamine depletion continued for at least 7 days. Conversely, in circulating blood histamine increased during the early period of 5 h and then decreased gradually. This early increase was linear up to 500R and then became saturated between 500 and 1,000R. Administration of polymixine B (5mg/100g body weight) to rats liberated histamine similarly. Rat sera containg histamine released soon after irradiation enhanced the capillary permeability of Evans blue(EB) in the guinea pig skin reaction, which was effectively countered by pretreatment of the guinea pig with anti-histaminic pyribenzamine (29..mu..g/100g body weight), but not by anti-serotonic chlorpromazine (0.3mg/100g body weight). Similarly, perhaps only the EB-bound serum albumin (EB-albumin), that was seen in alveolar perfusate, penetrated more through the pulmonary BA-barrier with increasing x-ray dose, in parallel with the increase in blood histamine. Pyribenzamine inhibited this effect effectively, but cysteamine (a radical scavenger) did so only partially. Thus, it seems possible that at soon after x irradiation the enhanced permeability of EB-albumin through the BA barrier of rat lung is due preferentially to the pharmacologic action of released histamine and subsidiarily to radiation damage to pulmonary cells.

  9. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  10. Effect of Viscous Instability on Unsteady-State Relative Permeability Effet de l'instabilité visqueuse sur la perméabilité relative en régime irrégulier

    Directory of Open Access Journals (Sweden)

    Sarma H. K.

    2006-11-01

    Full Text Available This paper presents the results of an experimental investigation into the relationship between the extent of viscous instability involved in a laboratory displacement and the relative permeability inferred from measured displacement data. Oil displacement experiments were conducted in a triaxially confined silica sand pack. The extent of viscous instability was varied by using mineral oils of different viscosities and by conducting the displacement runs at different flow rates. Relative permeabilities were calculated using both a history matching technique developed by R. M. Sigmund and F. G. McCaffery (8 and an explicit technique suggested by H. K. Sarma and R. G. Bentsen (14. Although, in principle, this explicit technique is similar to the JBN method (11, it is simpler to use in that, it does not require graphical or numerical differentiation of the experimental data. The technique uses two monotonic functional equations, which satisfy all physical conditions that can be imposed on the system, to smooth cumulative oil production and pressure drop histories. Furthermore, these functional equations can also be utilized to predict end-point displacement parameters, such as : Sor and kwor, for displacement experiments which are terminated before reaching the actual end-point. The results show that the two techniques for calculating relative permeabilities from unsteady-state displacement data provide essentially similar results, and that viscous instability significantly affects the relative permeability measurements. The breakthrough recovery, residual oil saturation and the end-point water permeability were all affected by the extent of viscous instability present during the displacement. It was found that these parameters show a systematic dependence on the extent of viscous instability as characterized by the instability number (Isr of E. J. Peters and D. L. Flock (19. Also, the results suggest that the relative permeability curves approach a

  11. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management

    International Nuclear Information System (INIS)

    Li, H; Harvey, J T; Holland, T J; Kayhanian, M

    2013-01-01

    To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ∼0.5 cm s −1 ). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ∼0.1 cm s −1 , which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15–35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2–7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management. (letter)

  12. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  13. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  14. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption.

    Science.gov (United States)

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-27

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Directory of Open Access Journals (Sweden)

    Oláh G

    2013-09-01

    Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease

  16. Long-term bioventing performance in low-permeability soils

    International Nuclear Information System (INIS)

    Phelps, M.B.; Stanin, F.T.; Downey, D.C.

    1995-01-01

    Short-term and long-term bioventing treatability testing has shown that in situ air injection and extraction is a practical method for sustaining increased oxygen levels and enhancing aerobic biodegradation of petroleum hydrocarbons in low-permeability soils. At several test sites, initial physical parameter analysis of soils and air permeability tests indicated that impacted soils (fine sandy silts and clays) had low air permeabilities. Measurements of depleted soil-gas oxygen levels and increased soil-gas carbon dioxide levels indicated that the natural process of aerobic biodegradation of petroleum hydrocarbons was oxygen-limited. Initial treatability testing consisted of air permeability tests to measure the permeability of the soils to air and in situ respiration tests to measure the rates at which native microorganisms could biodegrade the contaminants when provided with sufficient oxygen. During the long-term treatment period, active air injection or extraction systems were operated for 1 year or longer. Soil gas was periodically monitored within the treatment zone to evaluate the success of the bioventing systems in increasing soil-gas oxygen levels in the low-permeability soils. Follow-up respiration tests and soil and soil-gas sampling were conducted to evaluate changes in respiration rates and contaminant concentrations with time

  17. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  18. Study on Surface Permeability of Concrete under Immersion

    OpenAIRE

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  19. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  20. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    Science.gov (United States)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  1. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells

    International Nuclear Information System (INIS)

    Artursson, P.; Karlsson, J.

    1991-01-01

    Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10 - 8 to 5 x 10 - 5 cm/s. A good correlation was obtained between data on oral absorption in humans and the results in the Caco-2 model. Drugs that are completely absorbed in humans had permeability coefficients greater than 1 x 10 - 6 cm/s. Drugs that are absorbed to greater than 1% but less than 100% had permeability coefficients of 0.1-1.0 x 10 - 6 cm/s while drugs and peptides that are absorbed to less than 1% had permeability coefficients of less than or equal to 1 x 10 - 7 cm/s. The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption

  2. 基于压水试验的深部煤层底板岩层阻渗性能研究∗%Study on permeability barrier performance of deep coal seam floor based on packer permeability test

    Institute of Scientific and Technical Information of China (English)

    孙晓倩; 张冬; 张新武; 王言剑

    2014-01-01

    In situ field packer permeability test,being a reliable method to obtain the param-eters of permeability barrier performance of strata,was used to explore this performance of deep coal seam floor. A large amount of measured data were obtained after the test on two layers of floor strata. The test results showed that these two layers of floor strata could not seep in initial state due to stronger barrier performance until the fracture and connection led to seepage. Co MPared with the first and repeated packer permeability tests on these two layers of floor strata, the variation of water pressure in measured pore was associated with that in water injection hole, but the seepage pressure in the first time was higher than that in second time,showing that the permeability barrier performance of strata turned weaker after first packer permeability test and was easy to form seepage. Using permeability coefficient and permeability barrier strength as in-dexes,the permeability barrier performance of floor strata has been quantitatively evaluated,and the results showed that the tested strata was characterized with high barrier performance and weak permeability.%原位现场压水试验是获取岩层阻渗性能参数的可靠方法,为探究某煤矿深部煤层底板阻渗能力,采用现场压水试验方法对底板两段岩层进行了测试并获取了大量的实测数据。结果分析表明:该底板两测试段岩层在原始状态均不导渗,阻渗性较强,直至压裂导通才形成导渗条件;对两段岩层均进行了初次和重复两个压水过程,对比两次试验可知,测渗孔水压力与注水孔水压力的关联变化趋势大致相同,但初次压水的起始导渗水压明显高于重复压水,表明在初次压水后岩层的阻渗能力降低,更易形成导渗;采用渗透系数和阻渗强度作为指标,对底板岩层的阻渗性能进行了量化评价,结果表明测试岩层表现出明显的高阻弱渗的特点。

  3. In vivo analysis of intestinal permeability following hemorrhagic shock

    Science.gov (United States)

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic

  4. Octopus microvasculature: permeability to ferritin and carbon.

    Science.gov (United States)

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  5. Permeability After Impact Testing of Composite Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  6. Prediction of permeability changes in an excavation response zone

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Ishii, Takashi; Kuroda, Hidetaka; Tada, Hiroyuki

    1992-01-01

    In geologic disposal of radioactive wastes, stress changes due to cavern excavation may expand the existing fractures and create possible bypasses for groundwater. This paper proposes a simple method for predicting permeability changes in the excavation response zones. Numerical analyses using this method predict that the response zones created by cavern excavation would differ greatly in thickness and permeability depending on the depth of the cavern site and the initial in-situ stress, that when the cavern site is deeper, response zones would expand more and permeability would increases more, and that if the ratio of horizontal to vertical in-situ stress is small, extensive permeable zones at the crown and the bottom would occur, whereas if the ratio is large, extensive permeable zones would occur in the side walls. (orig.)

  7. Study on Surface Permeability of Concrete under Immersion.

    Science.gov (United States)

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-28

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations.

  8. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  9. Wood Permeability in Eucalyptus grandis and Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Raphael Nogueira Rezende

    2017-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the flow of air and water in Eucalyptus grandis and Eucalyptus dunnii wood. Wood was collected from four trees aged 37 years in an experimental plantation of the Federal University of Lavras, Brazil. Planks were cut off the basal logs to produce specimens for air and water permeability testing. Results indicated that the longitudinal permeability to air and water of E. grandis wood were, on average, 5% and 10% higher, respectively, than that of E. dunnii wood. E. grandis and E. dunnii wood showed neither air nor water flow in the test for permeability transversal to the fibers, and longitudinal permeability to air exceeded that to water by approximately 50 fold in both species.

  10. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  12. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    Science.gov (United States)

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  13. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  14. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability.

    Science.gov (United States)

    Mokkala, Kati; Röytiö, Henna; Munukka, Eveliina; Pietilä, Sami; Ekblad, Ulla; Rönnemaa, Tapani; Eerola, Erkki; Laiho, Asta; Laitinen, Kirsi

    2016-09-01

    Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. Women were divided into "low" (zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P zonulin group than those in the high zonulin group. The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal permeability, leading to improved metabolic health of both the mother and fetus. This trial was registered at clinicaltrials.gov as NCT

  15. Experimental study on the response characteristics of coal permeability to pore pressure under loading and unloading conditions

    Science.gov (United States)

    Ye, Zhiwei; Zhang, Lei; Hao, Dingyi; Zhang, Cun; Wang, Chen

    2017-10-01

    In order to study the response characteristics of coal permeability to pore pressure, seepage experiments under different simulated in situ stresses on loading and unloading paths are carried out using the self-developed Gas Flow and Displacement Testing Apparatus (GFDTA) system. Based on the analysis of the experimental data, the relationship between average pore pressure and permeability is found to basically obey the function distribution of a two degree polynomial. In this paper, two aspects of the relationship between permeability and pore pressure are explained: the Klinbenberg effect and expansion, and the penetration of the initial fracture. Under low pore pressure, the decrease in the Klinbenberg effect is the main reason for the decrease in permeability with increased pore pressure. Under relatively high pore pressure, the increase in pore pressure leads to the initial fracture expansion and penetration of the coal sample, which causes an increase in permeability. In order to evaluate the sensitivity of the permeability response to pore pressure changes, the permeability dispersion and pore pressure sensitivity coefficients are defined. After the sensitivity analysis, it was concluded that the loading history changed the fracture structure of the original coal sample and reduced its permeability sensitivity to pore pressure. Under low pore pressure, the Klinbenberg effect is the reason for the decrease in pore pressure sensitivity. Lastly, the permeability-pore pressure relationship is divided into three stages to describe the different response characteristics individually.

  16. Detection of semi-volatile organic compounds in permeable ...

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  17. Decomposing the permeability spectra of nanocrystalline finemet core

    Science.gov (United States)

    Varga, Lajos K.; Kovac, Jozef

    2018-04-01

    In this paper we present a theoretical and experimental investigation on the magnetization contributions to permeability spectra of normal annealed Finemet core with round type hysteresis curve. Real and imaginary parts of the permeability were determined as a function of exciting magnetic field (HAC) between 40 Hz -110 MHz using an Agilent 4294A type Precision Impedance Analyzer. The amplitude of the exciting field was below and around the coercive field of the sample. The spectra were decomposed using the Levenberg-Marquardt algorithm running under Origin 9 software in four contributions: i) eddy current; ii) Debye relaxation of magnetization rotation, iii) Debye relaxation of damped domain wall motion and iv) resonant type DW motion. For small exciting amplitudes the first two components dominate. The last two contributions connected to the DW appear for relative large HAC only, around the coercive force. All the contributions will be discussed in detail accentuating the role of eddy current that is not negligible even for the smallest applied exciting field.

  18. Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements.

    Science.gov (United States)

    Popescu, Viorel D; Hunter, Malcolm L

    2011-06-01

    Conservation of forest amphibians is dependent on finding the right balance between management for timber production and meeting species' habitat requirements. For many pond-breeding amphibians, successful dispersal of the juvenile stage is essential for long-term population persistence. We investigated the influence of timber-harvesting practices on the movements of juvenile wood frogs (Lithobates sylvaticus). We used a chronosequence of stands produced by clear-cutting to evaluate how stand age affects habitat permeability to movements. We conducted experimental releases of juveniles in 2008 (n = 350) and 2009 (n = 528) in unidirectional runways in four treatments: mature forest, recent clearcut, 11-year-old, and 20-year-old regeneration. The runways were 50 x 2.5-m enclosures extending into each treatment, perpendicular to a distinct edge, with four tracking stations at 10, 20, 30, and 40 m from the edge. We recorded the number of animals reaching each tracking station, and the proportion of animals changing their direction of movement at each distance. We found that the mature forest was 3.1 and 3.7 times more permeable than the 11-year-old regeneration and the recent clearcut, respectively. Animals actively avoided open-canopy habitats and sharp edges; significantly more animals returned toward the closed-canopy forest at 0 m and 10 m in the less permeable treatments. There were no significant differences in habitat permeability between the mature forest and the 20-year-old regeneration. Our study is the first to directly assess habitat permeability to juvenile amphibian movement in relation to various forestry practices. We argue that habitat permeability at this scale is largely driven by the behavior of animals in relation to habitat disturbance and that caution needs to be used when using spatial modeling and expert-derived permeability values to assess connectivity of amphibian populations. The effects of clear-cutting on the migratory success of juvenile

  19. A non-erasable magnetic memory based on the magnetic permeability

    International Nuclear Information System (INIS)

    Petrie, J.R.; Wieland, K.A.; Burke, R.A.; Newburgh, G.A.; Burnette, J.E.; Fischer, G.A.; Edelstein, A.S.

    2014-01-01

    A non-erasable memory based on using differences in the magnetic permeability is demonstrated. The method can potentially store information indefinitely. Initially the high permeability bits were 10–50 μm wide lines of sputtered permalloy (Ni 81 Fe 19 ) on a glass substrate. In a second writing technique a continuous film of amorphous, high permeability ferromagnetic Metglas (Fe 78 Si 13 B 9 ) was sputtered onto a similar glass substrate. Low permeability, crystalline 50 μm wide lines were then written in the film by laser heating. Both types of written media were read by applying an external probe field that is locally modified by the permeability of each bit. The modifications in the probe field were read by a nearby set of 10 micron wide magnetic tunnel junctions with a signal-to-noise ratio of up to 45 dB. This large response to changes in bit permeability is not altered after the media has been exposed to a 6400 Oe field. While being immediately applicable for data archiving and secure information storage, higher densities are possible with smaller read and write heads. - Highlights: • We demonstrate a non-erasable memory based on changes in the magnetic permeability. • Large change in permeability occur when Metglas changes from amorphous to crystalline. • Micron size regions of Metglas can be crystallized using a laser. • Permeability changes read by observing deviations of a probe field with an MTJ

  20. Detection of semi-volatile organic compounds in permeable pavement infiltrate

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) performs research on green infrastructure (GI) treatment options. One such treatment option is the use of permeable pavements. EEC constructed a parking lot comprised of three different permeable systems: permeable asphalt, porous ...

  1. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  2. Effect of desensitizing agents on dentin permeability.

    Science.gov (United States)

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  3. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  4. Prediction of the permeability of neutral drugs inferred from their solvation properties

    KAUST Repository

    Milanetti, Edoardo

    2015-12-10

    Motivation: Determination of drug absorption is an important component of the drug discovery and development process in that it plays a key role in the decision to promote drug candidates to clinical trials. We have developed a method that, on the basis of an analysis of the dynamic distribution of water molecules around a compound obtained by molecular dynamics simulations, can compute a parameter-free value that correlates very well with the compound permeability measured using the human colon adenocarcinoma (Caco-2) cell line assay. Results: The method has been tested on twenty-three neutral drugs for which a consistent set of experimental data is available. We show here that our method reproduces the experimental data better than other existing tools. Furthermore it provides a detailed view of the relationship between the hydration and the permeability properties of molecules.

  5. First results obtained about the hydrogeological behaviour of the Estana Lakes and their relation with Estopinan aquifer (Huesca, Spain); Primeros resultados obtenidos sobre el funcionamiento hidrogeologico de la Lagunas de Estana y su relacion con el acuifero de Estopinan (Huesca, Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.; Lamban, L. J.

    2009-07-01

    The study area is located in the Pyrenean Marginal Sierras. The main structural features are the Estopinan syncline, made of two permeable levels: Upper Cretaceous and Eocene, and the endo rheic karstic Lakes of Estana. In this work we present the first results obtained of the hydrogeochemical and isotopic ({delta}O{sup 1}8, {delta}H{sup 2} y H{sup 3}) groundwater description, made to determine, with other studies, the relation between Lakes of Estana and Estopinan syncline, as well as the general hydrological and hydrogeological functioning. This description allowed us to differentiate the groundwater main groups and to deduce qualitatively the chemical dominating processes, observing a larger regional chemical variability mainly attributed to the different permeable levels as well as mixing processes. On the other hand, there is exposed a geological cartography made in the surrounding area of the lakes, which suggest an improvement in the knowledge of the geology and hydrogeology of this area. (Author) 38 refs.

  6. 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy

    Directory of Open Access Journals (Sweden)

    N. Calonne

    2012-09-01

    Full Text Available We used three-dimensional (3-D images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K. This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res is computed from the specific surface area of snow (SSA and the ice density (ρi as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs and provide the following regression: K = (3.0 ± 0.3 res2 exp((−0.0130 ± 0.0003ρs. We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.

  7. Application of in vitro BBB model to measure permeability of nanoparticles

    International Nuclear Information System (INIS)

    Hanada, S; Kanaya, F; Yamamoto, K; Fujoka, K; Manome, Y; Inoue, Y

    2013-01-01

    In both pharmaceutical and toxicological fields, one of major issues has been the possibility of nanoparticle uptake to central nerve system. For the safe use of nanoparticles, it is integral to evaluate the permeability of nanoparticles through BBB. In our collaborative research group reported that a few nanoparticles accumulated in brain in animal experiment, as an in vitro model, we applied commercially available cell-based BBB model for establishing evaluation method, which is quick, quantitative and equivalent to in vivo assay. We assayed 30–1500 nm silica and surface charge dependent Qdots. Our results showed the size-dependency and the surface modification dependency. We compared our assay to several animal experiments. There are both equivalence and discrepancy with animal experiments. Our BBB model can be useful tools for evaluating size-dependent permeability, but not for surface modification-dependent permeability. Our BBB assay is non-serum assay and we have not adequately reflected the serum-related interaction between nanoparticles and cell surfaces. To clear up the discrepancy of our BBB model, serum-based assay and low-concentration detection will be needed.

  8. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  9. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.

    Science.gov (United States)

    Sun, Huadong; Pang, K Sandy

    2008-01-01

    We explored the properties of a catenary model that includes the basolateral (B), apical (A), and cellular compartments via simulations under linear and nonlinear conditions to understand the asymmetric observations arising from transporters, enzymes, and permeability in Caco-2 cells. The efflux ratio (EfR; P(app,B-->A)/P(app,A-->B)), obtained from the effective permeability from the A-->B and B-->A direction under linear conditions, was unity for passively permeable drugs whose transport does not involve transporters; the value was unaffected by cellular binding or metabolism, but increased with apical efflux. Metabolism was asymmetric, showing lesser metabolite accrual for the B-->A than A-->B direction because of inherent differences in the volumes for A and B. Moreover, the net flux (total - passive permeation) due to saturable apical efflux, absorption, or metabolism showed nonconformity to simple Michaelis-Menten kinetics against C(D,0), the loading donor concentration. EfR values differed with saturable apical efflux and metabolism (>1), as well as apical absorption (EfRs transport and metabolic data in Caco-2 cells.

  10. An experimental study of relative permeability hysteresis, capillary trapping characteristics, and capillary pressure of CO2/brine systems at reservoir conditions

    Science.gov (United States)

    Akbarabadi, Morteza

    We present the results of an extensive experimental study on the effects of hysteresis on permanent capillary trapping and relative permeability of CO2/brine and supercritical (sc)CO2+SO2/brine systems. We performed numerous unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, i.e., low and high-permeability Berea, Nugget sandstones, and Madison limestone carbonate rock sample. A state-of-the-art reservoir conditions core-flooding system was used to perform the tests. The core-flooding apparatus included a medical CT scanner to measure in-situ saturations. The scanner was rotated to the horizontal orientation allowing flow tests through vertically-placed core samples with about 3.8 cm diameter and 15 cm length. Both scCO2 /brine and gaseous CO2 (gCO2)/brine fluid systems were studied. The gaseous and supercritical CO2/brine experiments were carried out at 3.46 and 11 MPa back pressures and 20 and 55°C temperatures, respectively. Under the above-mentioned conditions, the gCO2 and scCO2 have 0.081 and 0.393 gr/cm3 densities, respectively. During unsteady-state tests, the samples were first saturated with brine and then flooded with CO2 (drainage) at different maximum flow rates. The drainage process was then followed by a low flow rate (0.375 cm 3/min) imbibition until residual CO2 saturation was achieved. Wide flow rate ranges of 0.25 to 20 cm3/min for scCO2 and 0.125 to 120 cm3min for gCO2 were used to investigate the variation of initial brine saturation (Swi) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swi. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO 2. During the steady-state experiments, after providing of fully-brine saturated core, scCO2 was injected along with brine to find the drainage curve and as

  11. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  12. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  13. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    Science.gov (United States)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  14. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong

    2016-01-01

    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member...... facies A and diagenetic facies B do not develop accumulation conditions with low accumulation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock. Also...

  15. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes

    Directory of Open Access Journals (Sweden)

    Maciej Hałasa

    2017-04-01

    Full Text Available Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey. Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test and stool zonulin concentration. Baseline L/M tests found that six of the participants (75% in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  16. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes.

    Science.gov (United States)

    Hałasa, Maciej; Maciejewska, Dominika; Baśkiewicz-Hałasa, Magdalena; Machaliński, Bogusław; Safranow, Krzysztof; Stachowska, Ewa

    2017-04-08

    Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  17. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.

    2011-01-01

    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  18. Permeable Pavement Research at the Edison Environmental Center

    Science.gov (United States)

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  19. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes

    International Nuclear Information System (INIS)

    Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira

    2011-01-01

    The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .

  20. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction.

    Science.gov (United States)

    Damms-Machado, Antje; Louis, Sandrine; Schnitzer, Anna; Volynets, Valentina; Rings, Andreas; Basrai, Maryam; Bischoff, Stephan C

    2017-01-01

    Obesity and associated metabolic disorders are related to impairments of the intestinal barrier. We examined lactulose:mannitol (Lac:Man) permeability in obese individuals with and without liver steatosis undergoing a weight-reduction program to test whether an effective weight-loss program improves gut barrier function and whether obese patients with or without liver steatosis differ in this function. Twenty-seven adult, nondiabetic individuals [mean ± SD body mass index (BMI; in kg/m 2 ): 43.7 ± 5.2; 78% with moderate or severe liver steatosis] were included in the follow-up intervention study (n = 13 by month 12). All patients reduced their weight to a mean ± SD BMI of 36.4 ± 5.1 within 12 mo. We assessed barrier functions by the oral Lac:Man and the fecal zonulin tests. Insulin resistance was assessed by the homeostatic model assessment index (HOMA), and liver steatosis by sonography and the fatty liver index (FLI). The Lac:Man ratio and circulating interleukin (IL) 6 concentration decreased during intervention from 0.080 (95% CI: 0.073, 0.093) to 0.027 (95% CI: 0.024, 0.034; P < 0.001) and from 4.2 ± 1.4 to 2.8 ± 1.6 pg/mL (P < 0.01), respectively. At study start, the Lac:Man ratio was higher in patients with moderate or severe steatosis than in those without any steatosis (P < 0.001). The Lac:Man ratio tended to correlate with HOMA (ρ = 0.55, P = 0.052), which correlated with FLI (ρ = 0.75, P < 0.01). A multiple-regression analysis led to a final model explaining FLI best through BMI, waist circumference, and the Lac:Man ratio. Intestinal permeability is increased in obese patients with steatosis compared with obese patients without. The increased permeability fell to within the previously reported normal range after weight reduction. The data suggest that a leaky gut barrier is linked with liver steatosis and could be a new target for future steatosis therapies. This trial was registered at clinicaltrials.gov as NCT01344525. © 2017 American Society

  1. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.

    Science.gov (United States)

    Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C

    2017-06-06

    Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Free flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes

    NARCIS (Netherlands)

    Kohlheyer, D.; Besselink, G.A.J.; Schlautmann, Stefan; Schasfoort, Richardus B.M.

    2006-01-01

    This paper describes a microfabricated free-flow electrophoresis device with integrated ion permeable membranes. In order to obtain continuous lanes of separated components an electrical field is applied perpendicular to the sample flow direction. This sample stream is sandwiched between two sheath

  3. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  4. Highly permeable, cement-bounded backfilling mortars for SMA repositories

    International Nuclear Information System (INIS)

    Jacobs, F.; Mayer, G.; Wittmann, F.H.

    1994-03-01

    In low- and intermediate-level waste repositories, gas is produced due e.g. to corrosion. This gas must be able to escape from the repository in order to prevent damage to the repository structure. A cement-based backfill should take over this function. For this purpose, the composition of cement-based materials was varied to study their influence on porosity and permeability. In parallel to this study the behaviour of fresh concrete, the liberation of the heat of hydration and the hardened concrete properties were investigated. To characterize the permeability of cement-based materials the following parameters are important: 1) composition of the material (pore fabric), 2) storage conditions (degree of saturation), 3) degree of hydration (age), 4) measuring fluid. A change in the composition of cement-based materials can vary the permeability by ten orders of magnitude. It is shown that, by using dense aggregates, the transport of the fluid takes place through the matrix and along the aggregate/matrix interface. By using porous aggregates the permeability can be increased by two orders of magnitude. In the case of a dense matrix, porous aggregates do not alter the permeability. Increasing the matrix content or interface content increases permeability. Hence light weight mortars are an obvious choice. Like-grained mixes showed higher permeabilities in combination with better mechanical properties but, in comparison to normal mixes, they showed worse flow properties. With the composition cement-: water-: aggregate content 1:0.4:5.33 the likegrained mix with aggregates ranging from 2 to 3 mm proved to be a suitable material. With a low compaction after 28 days this mix reaches a permeability of 4.10 -12 m 2 and an uniaxial cylinder compressive strength of 16 N/mm 2 . (author) 58 figs., 23 tabs., refs

  5. Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork

    International Nuclear Information System (INIS)

    Mei Xi; Ren Lin; Xu Qiang; Liu Zhi-Cheng; Zheng Wei

    2015-01-01

    As the aqueous humor leaves the eye, it first passes through the trabecular meshwork (TM). Increased flow resistance in this region causes elevation of intraocular pressure (IOP), which leads to the occurrence of glaucoma. To quantitatively evaluate the effect of high IOP on the configuration and hydraulic permeability of the TM, second harmonic generation (SHG) microscopy was used to image the microstructures of the TM and adjacent tissues in control (normal) and high IOP conditions. Enucleated rabbit eyes were perfused at a pressure of 60 mmHg to achieve the high IOP. Through the anterior chamber of the eye, in situ images were obtained from different depths beneath the surface of the TM. Porosity and specific surface area of the TM in control and high IOP conditions were then calculated to estimate the effect of the high pressure on the permeability of tissue in different depths. We further photographed the histological sections of the TM and compared the in situ images. The following results were obtained in the control condition, where the region of depth was less than 55 μm with crossed branching beams and large pores in the superficial TM. The deeper meshwork is a silk-like tissue with abundant fluorescence separating the small size of pores. The total thickness of pathway tissues composed of TM and juxtacanalicular (JCT) is more than 100 μm. After putting a high pressure on the inner wall of the eye, the TM region progressively collapses and decreases to be less than 40 μm. Fibers of the TM became dense, and the porosity at 34 μm in the high IOP condition is comparable to that at 105 μm in the control condition. As a consequent result, the permeability of the superficial TM decreases rapidly from 120 μm 2 to 49.6 μm 2 and that of deeper TM decreases from 1.66 μm 2 to 0.57 μm 2 . Heterogeneity reflected by descent in permeability reduces from 12.4 μm of the control condition to 3.74 μm of the high IOP condition. The persistently high IOP makes the

  6. Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Fisher, Quentin

    2015-01-01

    Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas...... the pore sizes in tight sandstones can range from nm to μm. Nuclear magnetic resonance (NMR) transverse relaxation was used to estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter required to relate NMR to pore size is estimated by combination of NMR...

  7. Nitrogen Transformations in Three Types of Permeable Pavement

    Science.gov (United States)

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  8. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  9. Hydrotropic solubilization of lipophilic drugs for oral delivery: The effects of urea and nicotinamide on carbamazepine solubility-permeability interplay

    Directory of Open Access Journals (Sweden)

    Avital Beig

    2016-10-01

    Full Text Available Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs' permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility-permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility-permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ~30-fold. A concomitant permeability decrease was evident both in-vitro and in-vivo (~17-fold for nicotinamide and ~9-fold for urea, revealing a solubility-permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility-permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility-permeability balance may promote the overall goal of the formulation to maximize oral drug exposure.

  10. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    Science.gov (United States)

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  11. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    Science.gov (United States)

    Razzaghmanesh, Mostafa; Borst, Michael

    2018-02-01

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary School, on Fort Riley, Kansas was selected for this study. An 80-space parking lot was built behind the school as part of an EPA collaboration with the U.S. Army. The parking lot design includes a permeable interlocking concrete pavement section along the downgradient edge. This study monitored the clogging progress of the pavement section using twelve water content reflectometers and three buried tipping bucket rain gauges. This clogging dynamic investigation was divided into three stages namely pre-clogged, transitional, and clogged. Recorded initial relative water content of all three stages were significantly and negatively correlated to antecedent dry weather periods with stronger correlations during clogged conditions. The peak relative water content correlation with peak rainfall 10-min intensity was significant for the water content reflectometers located on the western edge away from the eastern edge; this correlation was strongest during transition stage. Once clogged, rainfall measurements no longer correlated with the buried tipping bucket rain gauges. Both water content reflectometers and buried tipping bucket rain gauges showed the progress of surface clogging. For every 6 mm of rain, clogging advanced 1 mm across the surface. The results generally support the hypothesis that the clogging progresses from the upgradient to the downgradient edge. The magnitude of the contributing drainage area and rainfall characteristics are effective factors on rate and progression of clogging.

  12. A new structure of permeable pavement for mitigating urban heat island.

    Science.gov (United States)

    Liu, Yong; Li, Tian; Peng, Hangyu

    2018-09-01

    The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension.

    Science.gov (United States)

    Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R

    2009-02-15

    Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.

  14. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks

    Science.gov (United States)

    Pakzad, R.; Wang, S. Y.; Sloan, S. W.

    2018-04-01

    In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of

  15. Diagnosis of hydrostatic versus increased permeability pulmonary edema with chest radiographic criteria in critically ILL patients

    International Nuclear Information System (INIS)

    Aberle, D.R.; Wiener-Kronish, J.P.; Webb, W.R.; Matthay, M.A.

    1987-01-01

    To evaluate chest radiographic criteria in distinguishing mechanisms of pulmonary edema, the authors studied 45 intubated patients with extensive edema. Edema type was clinically classified by the ratio of alveolar edema-to-plasma protein concentration in association with compatible clinical/hemodynamic parameters. Chest films were scored as hydrostatic, permeability, or mixed by three readers in blinded fashion based on cardiac size, vascular pedicle width, distribution of edema, effusions, peribronchial cuffs, septal lines, or air bronchograms. Overall radiographic score accurately identified 87% of patients with hydrostatic edema but only 60% of those with permeability edema. Edema distribution was most discriminating, with a patchy peripheral pattern relatively specific for clinical permeability edema. Hydrostatic features on chest radiograph were common with permeability edema, including effusions (36%), widened pedicle (56%), cuffs (72%), or septa (40%). The authors conclude that the chest radiograph is limited in distinguishing edema mechanism in the face of extensive pulmonary edema

  16. Effect of vehicles and sodium lauryl sulphate on xenobiotic permeability and stratum corneum partitioning in porcine skin

    International Nuclear Information System (INIS)

    Merwe, Deon van der; Riviere, Jim E.

    2005-01-01

    Dermal contact with potentially toxic agricultural and industrial chemicals is a common hazard encountered in occupational, accidental spill and environmental contamination scenarios. Different solvents and chemical mixtures may influence dermal absorption. The effects of sodium lauryl sulphate (SLS) on the stratum corneum partitioning and permeability in porcine skin of 10 agricultural and industrial chemicals in water, ethanol and propylene glycol were investigated. The chemicals were phenol, p-nitrophenol, pentachlorophenol, methyl parathion, ethyl parathion, chlorpyrifos, fenthion, simazine, atrazine and propazine. SLS decreased partitioning into stratum corneum from water for lipophilic compounds, decreased partitioning from propylene glycol and did not alter partitioning from ethanol. SLS effects on permeability were less consistent, but generally decreased permeability from water, increased permeability from ethanol and had an inconsistent effect on permeability from propylene glycol. It was concluded that, for the compounds tested, partitioning into the stratum corneum was determined by the relative solubility of the solute in the donor solvent and the stratum corneum lipids. Permeability, however, reflected the result of successive, complex processes and was not predictable from stratum corneum partitioning alone. Addition of SLS to solvents altered partitioning and absorption characteristics across a range of compounds, which indicates that partition coefficients or skin permeability from neat chemical exposure should be used with caution in risk assessment procedures for chemical mixtures

  17. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.

    1977-01-01

    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  18. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.

    1978-01-01

    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  19. Preliminary study of the irradiation-induced modification of skin permeability

    International Nuclear Information System (INIS)

    Coelho, R.; Istin, M.

    1978-01-01

    Irradiation of the skin of an animal leads immediately to a strong increase in vascular permeability. If a dye is at once injected intraveinously it diffuses very rapidly in the irradiated zone, this becomes highly coloured and the colour intensity measurement gives a clue to the severity of the lesions produced. This phenomenon has been used in the past as a pharmacological test to study vascular permeability and is employed in this work to observe the effect of diosmine-titrated flavonoids on vascular permeability in inflammatory diseases. The capillary permeability increase due to local γ irradiation of rabbit skin has been accurately determined by measurement of the colouration observed after injection of Geigy Blue. Diosmine, injected intraperitoneally, protects the vascular system against increased permeability due to ionising radiations [fr

  20. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  1. Permeability analysis of Asbuton material used as core layers of water resistance in the body of dam

    Science.gov (United States)

    Rahim, H.; Tjaronge, M. W.; Thaha, A.; Djamaluddin, R.

    2017-11-01

    In order to increase consumption of the local materials and national products, large reserves of Asbuton material about 662.960 million tons in the Buton Islands became an alternative as a waterproof core layer in the body of dam. The Asbuton material was used in this research is Lawele Granular Asphalt (LGA). This study was an experimental study conducted in the laboratory by conducting density testing (content weight) and permeability on Asbuton material. Testing of the Asbuton material used Falling Head method to find out the permeability value of Asbuton material. The data of test result to be analyzed are the relation between compaction energy and density value also relation between density value and permeability value of Asbuton material. The result shows that increases the number of blow apply to the Asbuton material at each layer will increase the density of the Asbuton material. The density value of Asbuton material that satisfies the requirements for use as an impermeable core layer in the dam body is 1.53 grams/cm3. The increase the density value (the weight of the contents) of the Asbuton material will reduce its permeability value of the Asbuton material.

  2. Predicting permeability and electrical conductivity of sedimentary rocks from microgeometry

    International Nuclear Information System (INIS)

    Schlueter, E.M.; Cook, N.G.W.

    1991-02-01

    The determination of hydrologic parameters that characterize fluid flow through rock masses on a large scale (e.g., hydraulic conductivity, capillary pressure, and relative permeability) is crucial to activities such as the planning and control of enhanced oil recovery operations, and the design of nuclear waste repositories. Hydraulic permeability and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. The cross-sectional areas and perimeters of the individual pores are estimated from two-dimensional scanning electron micrographs of rock sections. The hydraulic and electrical conductivities of the individual pores are determined from these geometrical parameters, using Darcy's law and Ohm's law. Account is taken of the fact that the cross-sections are randomly oriented with respect to the channel axes, and for possible variation of cross-sectional area along the length of the pores. The effective medium theory from solid-state physics is then used to determine an effective average conductance of each pore. Finally, the pores are assumed to be arranged on a cubic lattice, which allows the calculation of overall macroscopic values for the permeability and the electrical conductivity. Preliminary results using Berea, Boise, Massilon and Saint-Gilles sandstones show reasonably close agreement between the predicted and measured transport properties. 12 refs., 5 figs., 1 tab

  3. Field-scale forward and back diffusion through low-permeability zones

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-07-01

    Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.

  4. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  5. Decomposing the permeability spectra of nanocrystalline finemet core

    Directory of Open Access Journals (Sweden)

    Lajos K. Varga

    2018-04-01

    Full Text Available In this paper we present a theoretical and experimental investigation on the magnetization contributions to permeability spectra of normal annealed Finemet core with round type hysteresis curve. Real and imaginary parts of the permeability were determined as a function of exciting magnetic field (HAC between 40 Hz -110 MHz using an Agilent 4294A type Precision Impedance Analyzer. The amplitude of the exciting field was below and around the coercive field of the sample. The spectra were decomposed using the Levenberg–Marquardt algorithm running under Origin 9 software in four contributions: i eddy current; ii Debye relaxation of magnetization rotation, iii Debye relaxation of damped domain wall motion and iv resonant type DW motion. For small exciting amplitudes the first two components dominate. The last two contributions connected to the DW appear for relative large HAC only, around the coercive force. All the contributions will be discussed in detail accentuating the role of eddy current that is not negligible even for the smallest applied exciting field.

  6. The secondary permeability of Italian clays. A review

    International Nuclear Information System (INIS)

    Gera, F.

    1998-01-01

    Over the years several studies have been performed in Italy on the permeability of various argillaceous formations for the purpose of assessing their potential utilization for the isolation of long-lived radioactive waste. An extensive survey was made of tunnels intersecting clay formations for the purpose of identifying water inflows and of interpreting them in relation to the nature of the water-bearing features present outside the lining. The main objective of the 'Faults in Clays' project was to improve the sensitivity and resolution of geophysical techniques for identifying and characterizing faults intersecting clay strata. The first obvious conclusion is that generalizations are not possible: argillaceous formations are characterized by extreme variability in respect to intrinsic properties, sedimentological and structural set-up, consolidation history and regional stress conditions. As a result of this complexity widely different permeability, for both gas and water, has been observed even in apparently similar materials. In addition, gas data indicate that flow, at a particular location, can vary also as a function of time. (R.P.)

  7. A permeability model for coal and other fractured, sorptive-elastic media

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E.P.; Christiansen, R.L. [Marathon Oil Co., Houston, TX (United States). Research & Development Facility

    2008-09-15

    This paper describes the derivation of a new equation that can be used to model the permeability behavior of a fractured, sorptive-elastic medium, such as coal, under variable stress conditions. The equation is applicable to confinement pressure schemes commonly used during the collection of permeability data in the laboratory. The model is derived for cubic geometry under biaxial or hydrostatic confining pressures. The model is designed to handle changes in permeability caused by adsorption and desorption of gases onto and from the matrix blocks in fractured media. The model equations can be used to calculate permeability changes caused by the production of methane (CH{sub 4}) from coal as well as the injection of gases, such as carbon dioxide, for sequestration in coal. Sensitivity analysis of the model found that each of the input variables can have a significant impact on the outcome of the permeability forecast as a function of changing pore pressure, thus, accurate input data are essential. The permeability model also can be used as a tool to determine input parameters for field simulations by curve fitting laboratory-generated permeability data. The new model is compared to two other widely used coal-permeability models using a hypothetical coal with average properties.

  8. Contributions to the numerical modeling of concrete structures cracking with creep and estimation of the permeability

    International Nuclear Information System (INIS)

    Dufour, F.

    2007-12-01

    The industrial context of this research work is to study the durability of the internal barriers of nuclear power plants. This paper is divided in two parts, the first part is relative to the crack-damage state and the second part to the creep consequences on the rupture properties of concrete. In the first part, the analysis of the experimental results, (carried out on a compression cylinder on which the radial permeability has been measured), shows that the permeability decreases until a deformation of half of those at the force peak, by re-closure of the preexisting microcracks in the material; then the permeability strongly increases until after the force peak by initiation, connexion and opening of the crack, and at last it increases less rapidly until the rupture because only the opening of the macro-cracks increases. In order to simulate these phenomena, two original methods are presented, in post-treatment phase, for estimating the leaks from a mechanical computing based on finite element methods. With the first method, it is possible to measure the permeability from the damage field and from a relation between the permeability and the damage which bind the Poiseuille law to an empirical law established for weak damages. The second method is on the deformations field from which the position and opening of the crack are calculated. The Poiseuille relation is then applied along the crack to estimate the leaks rates. The relation between the concrete creep and its mechanical characteristics is analyzed in the second part. In particular, are studied the creep consequences on the long term mechanical properties. After having given the experimental results which show essentially an embrittlement of the material after creep, a qualitative analysis by the bifurcations study is proposed, and then by a discrete numerical method to find again the same influence of the visco-elasticity on the rupture embrittlement experimentally observed. At last, the first results of

  9. An Experimental Study of Micron-Size Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer-Enhanced Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2005-12-22

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.

  10. Calculation of density and permeability of compacted crushed salt within an engineered shaft sealing system

    International Nuclear Information System (INIS)

    Loken, M.; Statham, W.

    1997-01-01

    Crushed salt from the host Salado Formation is proposed as a sealing material in one component of a multicomponent seal system design for the shafts of the Waste Isolation Pilot Plant (WIPP), a mined geological repository for storage and disposal of transuranic radioactive wastes located near Carlsbad, New Mexico. The crushed salt will be compacted and placed at a density approaching 90% of the intact density of the host Salado salt. Creep closure of the shaft will further compact the crushed salt over time, thereby reducing the crushed-salt permeability from the initial state and creating an effective long-term seal. A structural model and a fluid flow model have been developed to provide an estimate of crushed-salt reconsolidation rate as a function of depth, time, and pore pressure. Model results are obtained in terms of crushed-salt permeability as a function of time and depth within the salt column. Model results indicate that average salt column permeability will be reduced to 3.3 x 10 -20 m 2 in about 100 years, which provides for an acceptable long-term seal component

  11. Fast simulation of transport and adaptive permeability estimation in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berre, Inga

    2005-07-01

    The focus of the thesis is twofold: Both fast simulation of transport in porous media and adaptive estimation of permeability are considered. A short introduction that motivates the work on these topics is given in Chapter 1. In Chapter 2, the governing equations for one- and two-phase flow in porous media are presented. Overall numerical solution strategies for the two-phase flow model are also discussed briefly. The concepts of streamlines and time-of-flight are introduced in Chapter 3. Methods for computing streamlines and time-of-flight are also presented in this chapter. Subsequently, in Chapters 4 and 5, the focus is on simulation of transport in a time-of-flight perspective. In Chapter 4, transport of fluids along streamlines is considered. Chapter 5 introduces a different viewpoint based on the evolution of isocontours of the fluid saturation. While the first chapters focus on the forward problem, which consists in solving a mathematical model given the reservoir parameters, Chapters 6, 7 and 8 are devoted to the inverse problem of permeability estimation. An introduction to the problem of identifying spatial variability in reservoir permeability by inversion of dynamic production data is given in Chapter 6. In Chapter 7, adaptive multiscale strategies for permeability estimation are discussed. Subsequently, Chapter 8 presents a level-set approach for improving piecewise constant permeability representations. Finally, Chapter 9 summarizes the results obtained in the thesis; in addition, the chapter gives some recommendations and suggests directions for future work. Part II In Part II, the following papers are included in the order they were completed: Paper A: A Streamline Front Tracking Method for Two- and Three-Phase Flow Including Capillary Forces. I. Berre, H. K. Dahle, K. H. Karlsen, and H. F. Nordhaug. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 49

  12. Tomographic evidence for enhanced fracturing and permeability within the relatively aseismic Nemaha Fault Zone, Oklahoma

    Science.gov (United States)

    Stevens, N. T.; Keranen, K. M.; Lambert, C.

    2017-12-01

    Recent earthquakes in north central Oklahoma are dominantly hosted on unmapped basement faults away from and outside of the largest regional structure, the Nemaha Fault Zone (NFZ) [Lambert, 2016]. The NFZ itself remains largely aseismic, despite the presence of disposal wells and numerous faults. Here we present results from double-difference tomography using TomoDD [Zhang and Thurber, 2003] for the NFZ and the surrounding region, utilizing a seismic catalog of over 10,000 local events acquired by 144 seismic stations deployed between 2013 and 2017. Inversion results for shallow crustal depth, beneath the 2-3 km sedimentary cover, show compressional wavespeeds (Vp) of >6 km/sec and shear wavespeeds (Vs) >4 km/sec outside the NFZ, consistent with crystalline rock. Along the western margin of the NFZ, both Vp and Vs are reduced, and Vp/Vs gradients parallel the trend of major faults, suggesting enhanced fault density and potentially enhanced fluid pressure within the study region. Enhanced fracture density within the NFZ, and associated permeability enhancement, could reduce the effect of regional fluid pressurization from injection wells, contributing to the relative aseismicity of the NFZ.

  13. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    Science.gov (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  14. Update to permeable pavement research at the Edison Environmental Center - slides

    Science.gov (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  15. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  16. Hybrid green permeable pave with hexagonal modular pavement systems

    International Nuclear Information System (INIS)

    Rashid, M A; Abustan, I; Hamzah, M O

    2013-01-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  17. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  18. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hanne Mørck; Rassing, Margrethe Rømer

    2002-01-01

    The present study was conducted to investigate and compare the effect of pH and drug concentration on nicotine permeability across the TR146 cell culture model and porcine buccal mucosa in vitro. As a further characterization of the TR146 cell culture model, it was explored whether the results were...... comparable for bi-directional and uni-directional transport in the presence of a transmembrane pH gradient. Nicotine concentrations between 10(-5) and 10(-2) M were applied to the apical side of the TR146 cell culture model or the mucosal side of porcine buccal mucosa. Buffers with pH values of 5.5, 7.......4 and 8.1 were used to obtain different fractions of non- and mono-ionized nicotine. The apparent permeability (P(app)) of nicotine across both models increased significantly with increasing pH, and the P(app) values obtained with the two models could be correlated in a linear manner. With increasing...

  19. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  20. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    Science.gov (United States)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  1. Modeling studies of unsaturated flow with long-term permeability change at Yucca Mountain

    International Nuclear Information System (INIS)

    Zhang Chengyuan; Liu Xiaoyan; Liu Quansheng

    2008-01-01

    The amount of water seeping into the waste emplacement drifts is crucial for the performance of underground nuclear waste repository, since it controls the corrosion rates of waste packages and the mobilization rate of radionuclides. It is limited by water flow through drift vicinity. In the present work we study the potential rates of water flow around drifts as a function of predicted long-term change of permeability at Yucca Mountain, based on a dual-continuum model of the unsaturated flow in fractured rock mass. For stage of DECOVALEX Ⅳ, we used a simplified practical model on unsaturated flow in Yucca Mountain case simulation. These models contain main physical processes that should be considered, including thermal expansion, thermal radiation, water-rock coupling and stress-induced change of permeability. Comparative study with other DECOVALEX team's results shows that they are both good enough and flexible enough to include more physical processes. We can draw the conclusion that it is necessary to model stress-induced changes in permeability and relative processes in future studies, because there are obvious differences (in water saturation and water flux) between simulation cases with and without variable permeability, especially in areas very close to the drift. (authors)

  2. Effective stress law for the permeability and deformation of four porous limestones

    Science.gov (United States)

    Wang, Y.; Meng, F.; Wang, X.; Baud, P.; Wong, T. F.

    2017-12-01

    The effective stress behavior of a rock is related to the geometric of its pore space. In a microscopically homogeneous assemblage, effective stress coefficients for permeability, volumetric strain and porosity change are predicted to be equal to or less than unity. Experimental measurements are in basic agreement with this prediction, with exceptions particularly in clay-rich sandstones, for which effective stress coefficient for permeability up to 7 was documented. Little is known about carbonates, but Ghabezloo et al. [2009] studied the permeability of an oolitic limestone (from Nimes, France) with 17% porosity and reported effective stress coefficients up to 2.4. We investigated this phenomenon in Indiana, Leitha, Purbeck, and Thala limestones with porosities of 13-30%. Measurements were made at room temperature on water-saturated samples at confining and pore pressures of 7-15 MPa and 1-3 MPa, respectively. Unlike previous studies limited to the permeability, we also determined the effective stress coefficients for volumetric strain and porosity change. Indiana limestone is oolitic, and not surprisingly its behaviour was similar to Nimes limestone, with an effective stress coefficient for permeability of 2.5. Our Indiana limestone data showed that whereas the effective stress coefficient for volumetric strain was 1. Measurements on Purbeck and Thala limestones are consistent with these inequalities, with effective stress coefficients for permeability and porosity change >1 and that for volumetric strain <1. Even though Purbeck and Thala limestones are micritic with appreciable amount of quartz and dolomite, microstructural and mercury porosimetry data showed that their pore spaces are similar to the oolitic limestones, in that the pore size distribution is bimodal with significant fractions of both macropores and micropores. Berryman [1992] analyzed theoretically a rock made up of two porous constituents. Our new data are in agreement with inequalities he

  3. Assessing the permeability of engineered capillary networks in a 3D culture.

    Directory of Open Access Journals (Sweden)

    Stephanie J Grainger

    Full Text Available Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs or adipose-derived stem cells (AdSCs, much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal

  4. Development of a Long-Column Method to Test Constitutive Relations for LNAPL Movement in Two-Phase Systems

    Science.gov (United States)

    Oostrom, M.; Zhong, L.; Wietsma, T.; Covert, M.

    2007-12-01

    Multifluid relative permeability - saturation - capillary pressure (k-S-P) empirical constitutive models are components of numerical simulators that are used to predict fluid distributions following a nonaqueous phase liquid (NAPL) contamination event or during remediation. The S-P parameter values for these empirical models are either obtained from the literature or determined experimentally by fitting the models to measured data. Most of the experimental emphasis so far has been on testing the S-P component of the k-S-P constitutive relations. Due to the difficulties in obtaining quality relative permeability laboratory data for multiphase systems, testing of the k-S models that are used in multifluid flow simulators has been virtually non-existent. A new tool, the Multiple Location Saturation Pressure Apparatus (MLSPA), located in PNNL's EMSL Subsurface Flow and Transport Laboratory, has been developed to obtain data sets that can be used to test both S-P and k-S relationships for two-phase NAPL-water systems. The MLSPA is a long column (~1 m) equipped with several hydrophilic and hydrophobic pressure transducers. Fluid saturations are determined along the length of a column using a dual-energy gamma radiation system. Although the MLSPA is limited to porous media with a relatively small entry pressure and fairly homogeneous pore-size distributions, it offers the distinct advantage of obtaining S-P data at multiple locations. Besides for static determinations of S-P relations, the MLSPA offers the benefit that it can be used for more dynamic experiments where fluid pressures are changed more rapidly. The data sets produced by the dynamic experiments can be used in relative permeability models. Results of several experiments with crude-oil brine systems will be presented.

  5. Solubility and Permeability Studies of Aceclofenac in Different Oils

    African Journals Online (AJOL)

    The solubility and permeability of aceclofenac were compared with the hydroalcoholic solution of ... the use of lipid based systems such as micro- or .... carriers/vehicles for enhanced solubility and permeability ... modifications: A recent review.

  6. Matrix injection of relative permeability modifier for water control applied in Brazil basins; Injecao matricial de modificadores de permeabilidade relativa para controle de producao de agua aplicado nas bacias petroliferas brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, Flavio; Stefan, Rodolfo; Mendonca, Paulo; Ferreira, Antonio; Silva, Charles; Fonseca, Ana Isoila [BJ Services do Brasil Ltda., Macae, Rio de Janeiro, RJ (Brazil); Melo, Ricardo C.B. [BJ Services Company Africa Ltd., Angola (Angola)

    2008-07-01

    One of the biggest challenges for the oil industry, even at the beginning of well's production, and principally when the well is producing, is how to reduce and handling the produced water on this process. A conservative estimation says for each barrel of produced oil you have 5 or 6 barrels of formation's water. Some factors must be considerable to establish and maintain a carefully management of this effluent, for example the volume of produced water, which is always growing due to the reservoir maturation and for the secondary recovery process; salt content; residual oil and chemical products presence. Water production is the cause of several problems on wells, like scales, organic deposits or starting the process of formation's sand production induced by fines migration. As a consequence, a cost increment of production is observed due to hydrocarbon/water separation and destination of produced water. The same way, is extremely expensive to manage the even bigger volume, which demands efforts to re-inject the water, treatment which avoid or minimize possible environment impacts, development of new equipment and materials which helps and resists to the effects of produced water. Not inherent reservoir's cause can be several, like bad isolated water zones by cement fail, wrong determination of perforated interval, which is easier to use aid methods. When the water production is directly associated to reservoir, by conning, channeling and/or fingering, generally associated to mobility difference between water and oil, the nowadays most efficient treatment is the injection of relative permeability modifier. This paper will present techniques and results obtained with matrix injection in some fields by the use of the last generation of RPM (relative permeability modifier). (author)

  7. Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates

    Science.gov (United States)

    Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.

    2017-12-01

    Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.

  8. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability

    Science.gov (United States)

    Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.

    2018-06-01

    The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.

  9. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  10. Relating transport modeling to nanofiltration membrane fabrication: Navigating the permeability-selectivity trade-off in desalination pretreatment

    OpenAIRE

    Labban, Omar; Lienhard, John H

    2018-01-01

    Faced with a pressing need for membranes with a higher permeability and selectivity, the field of membrane technology can benefit from a systematic framework for designing membranes with the necessary physical characteristics. In this work, we present an approach through which transport modeling is employed in fabricating specialized nanofiltration membranes, that experimentally demonstrate enhanced selectivity. Specifically, the Donnan-Steric Pore Model with dielectric exclusion (DSPM-DE) is...

  11. Permeable Barrier Materials for Strontium Immobilization: - UFA Determination of Hydraulic Conductivity. - Column Sorption Experiments

    National Research Council Canada - National Science Library

    Moody, T

    1996-01-01

    Selected materials were tested to emulate a permeable barrier and to examine the: (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium in Hanford groundwater...

  12. Permeability of salt-crystal interfaces to brine

    International Nuclear Information System (INIS)

    Gilpatrick, L.O.; Baes, C.F. Jr.; Shor, A.J.; Canonico, C.M.

    1982-06-01

    To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80 0 C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface of the same permeability formed by plane parallel surfaces). This apparent thickness, initially as large as 10 μm, decreased to as little as 0.2 μm with exposure to stress and flowing brine. It decreased quickly with sudden increases in axial stress and usually increased, though not reversibly, with decreases in stress. The rate of increase in the reciprocal permeability with time was roughly proportional to the stress and to the square of the hydraulic pressure drop. Assuming similar apparent thicknesses for the grain boundaries in polycrystalline salt, permeabilities are predicted that are quite consistent with the low values reported for stressed core specimens

  13. Calculation of Permeability inside the Basket including one Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Hwan; Bang, Kyung Sik; Lee, Ju an; Choi, Woo Seok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the porous media model and the effective thermal conductivity were used to simply the fuel assembly. The methods of calculating permeability were compared considering the flow inside a basket which includes a nuclear fuel. Detailed fuel assembly was a computational modeling and the flow characteristics were investigated. The flow inside the basket which included a fuel assembly is analyzed by CFD. As the height of the fuel assembly increases, the pressure drop linearly increased. The inertia resistance could be neglected. Three methods to calculate the permeability were compared. The permeability by the friction factor is 50% less than the permeability by wall shear stress and pressure drop.

  14. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Han, M., E-mail: mangui@gmail.com [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Rozanov, K.N.; Zezyulina, P.A. [Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, Moscow (Russian Federation); Wu, Yan-Hui [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China)

    2015-06-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe{sub 3}(Si) with D0{sub 3} superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9.

  15. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    International Nuclear Information System (INIS)

    Han, M.; Rozanov, K.N.; Zezyulina, P.A.; Wu, Yan-Hui

    2015-01-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe 3 (Si) with D0 3 superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9

  16. Estimation of In Situ Stress and Permeability from an Extended Leak-off Test

    Science.gov (United States)

    Nghiep Quach, Quoc; Jo, Yeonguk; Chang, Chandong; Song, Insun

    2016-04-01

    Among many parameters needed to analyze a variety of geomechanical problems related to subsurface CO2 storage projects, two important ones are in situ stress states and permeability of the storage reservoirs and cap rocks. In situ stress is needed for investigating potential risk of fault slip in the reservoir systems and permeability is needed for assessing reservoir flow characteristics and sealing capability of cap rocks. We used an extended leak-off test (XLOT), which is often routinely conducted to assess borehole/casing integrity as well as fracture gradient, to estimate both in situ least principal stress magnitude and in situ permeability in a CO2 storage test site, offshore southeast Korea. The XLOT was conducted at a casing shoe depth (700 m below seafloor) within the cap rock consisting of mudstone, approximately 50 m above the interface between cap rock and storage reservoir. The test depth was cement-grouted and remained for 4 days for curing. Then the hole was further drilled below the casing shoe to create a 4 m open-hole interval at the bottom. Water was injected using hydraulic pump at an approximately constant flowrate into the bottom interval through the casing, during which pressure and flowrate were recorded continuously at the surface. The interval pressure (P) was increased linearly with time (t) as water was injected. At some point, the slope of P-t curve deviated from the linear trend, which indicates leak-off. Pressure reached its peak upon formation breakdown, followed by a gradual pressure decrease. Soon after the formation breakdown, the hole was shut-in by pump shut-off, from which we determined the instantaneous shut-in pressure (ISIP). The ISIP was taken to be the magnitude of the in situ least principal stress (S3), which was determined to be 12.1 MPa. This value is lower than the lithostatic vertical stress, indicating that the S3 is the least horizontal principal stress. The determined S3 magnitude will be used to characterize the

  17. Permeability criteria for effective function of passive countercurrent multiplier.

    Science.gov (United States)

    Layton, H E; Knepper, M A; Chou, C L

    1996-01-01

    The urine concentrating effect of the mammalian renal inner medulla has been attributed to countercurrent multiplication of a transepithelial osmotic difference arising from passive absorption of NaCl from thin ascending limbs of long loops of Henle. This study assesses, both mathematically and experimentally, whether the permeability criteria for effective function of this passive hypothesis are consistent with transport properties measured in long loops of Henle of chinchilla. Mathematical simulations incorporating loop of Henle transepithelial permeabilities idealized for the passive hypothesis generated a steep inner medullary osmotic gradient, confirming the fundamental feasibility of the passive hypothesis. However, when permeabilities measured in chinchilla were used, no inner medullary gradient was generated. A key parameter in the apparent failure of the passive hypothesis is the long-loop descending limb (LDL) urea permeability, which must be small to prevent significant transepithelial urea flux into inner medullary LDL. Consequently, experiments in isolated perfused thin LDL were conducted to determine whether the urea permeability may be lower under conditions more nearly resembling those in the inner medulla. LDL segments were dissected from 30-70% of the distance along the inner medullary axis of the chinchilla kidney. The factors tested were NaCl concentration (125-400 mM in perfusate and bath), urea concentration (5-500 mM in perfusate and bath), calcium concentration (2-8 mM in perfusate and bath), and protamine concentration (300 micrograms/ml in perfusate). None of these factors significantly altered the measured urea permeability, which exceeded 20 x 10(-5) cm/s for all conditions. Simulation results show that this moderately high urea permeability in LDL is an order of magnitude too high for effective operation of the passive countercurrent multiplier.

  18. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Energy Technology Data Exchange (ETDEWEB)

    ChiBin, Zhang; XiaoHui, Lin, E-mail: lxh60@seu.edu.cn; ZhaoMin, Wang; ChangBao, Wang

    2017-03-15

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5–8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall. - Highlights: • A model of MDCPs for IA-MDT in permeable microvessels was established. • An experimental device was established, the CE of MDCPs was measured. • The predicted CE of MDCPs was 5–8% higher in the IA-MDT model.

  19. Bovine Colostrum Supplementation During Running Training Increases Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    Grant D. Brinkworth

    2009-12-01

    Full Text Available Endurance exercise training can increase intestinal permeability which may contribute to the development of gastrointestinal symptoms in some athletes. Bovine colostrum (BC supplementation reduces intestinal permeability induced by non-steroidal anti-inflammatory drugs. This study aimed to determine whether BC could also reduce intestinal permeability induced by endurance exercise. Thirty healthy adult males (25.0 ± 4.7 yr; mean ± SD completed eight weeks of running three times per week for 45 minutes at their lactate threshold while consuming 60 g/day of BC, whey protein (WP or control (CON. Intestinal permeability was assessed at baseline and after eight weeks by measuring the ratio of urinary lactulose (L and rhamnose (R excretion. After eight weeks the L/R ratio increased significantly more in volunteers consuming BC (251 ± 140% compared with WP (21 ± 35%, P < 0.05 and CON (−7 ± 13%, P < 0.02. The increase in intestinal permeability with BC may have been due to BC inducing greater leakiness of tight junctions between enterocytes or by increasing macromolecular transport as it does in neonatal gut. Further research should investigate the potential for BC to increase intestinal macromolecular transport in adults.

  20. Effect of the aggregate grading on the concrete air permeability

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2014-09-01

    Full Text Available Great durability problems are being found in concrete structures related to the penetrability of aggressive agents through the concrete (ie. chloride penetration, sulphate attack, carbonation, freezing and thawing, and so on. Air permeability coefficient is used as an effective tool to estimate the potential durability of concrete structures due to its direct relation with the microstructure and the moisture content. This paper discusses the effect of the aggregate grading and water/cement ratio on the air permeability coefficient. An aggregate grading with more sand than coarse aggregates has resulted more beneficial from the point of view of concrete air permeability. This fact can be attributed to a denser skeleton formed by the finer aggregates. With fine aggregates, the higher water/cement ratio, the lower air permeability. However, the contrary was found with coarse aggregates. Overall, a temperature increase from 20 °C to 60 °C during preconditioning led to a Dair increase of 40–80%.Se han encontrado una gran cantidad de problemas de durabilidad de estructuras de hormigón relacionados con la penetración de agentes agresivos externos (es decir, penetración de cloruros, ataque por sulfatos, carbonatación, hielo-deshielo, etc.. El coeficiente de permeabilidad al aire se utiliza como una herramienta eficaz para estimar la durabilidad potencial de las estructuras de hormigón debido a su relación directa con su microestructura y contenido de humedad. Se discute el efecto de la gradación de los áridos y relación agua/cemento en el coeficiente de permeabilidad al aire. Con áridos más finos que gruesos, el resultado es más beneficioso, lo que se atribuye a que la arena forma un esqueleto más denso. Con áridos más finos, al aumentar la relación agua/cemento, disminuye la permeabilidad al aire; pero con áridos más gruesos se ha observado lo contrario. Cuando se pre-acondiciona de 20 °C a 60 °C, se produce un aumento del Dair

  1. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  2. Quantifying tidally driven benthic oxygen exchange across permeable sediments

    DEFF Research Database (Denmark)

    McGinnis, Daniel F.; Sommer, Stefan; Lorke, Andreas

    2014-01-01

    Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists...... of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive...... the variable sediment O-2 penetration depth (from approximate to 3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O-2 uptake. The O-2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange...

  3. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  4. Cerebral peritumoral oedema study: Does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis?

    International Nuclear Information System (INIS)

    Lehmann, Pierre; Saliou, Guillaume; Marco, Giovanni de; Monet, Pauline; Souraya, Stoquart-Elsankari; Bruniau, Alexis; Vallée, Jean Noel; Ducreux, Denis

    2012-01-01

    Our purpose was to differentiate glioblastoma from metastasis using a single dynamic MR sequence to assess perfusion and permeability parameters. 24 patients with glioblastoma or cerebral metastasis with peritumoral oedema were recruited and explored with a 3 T MR unit. Post processing used DPTools software. Regions of interest were drawn around contrast enhancement to assess relative cerebral blood volume and permeability parameters. Around the contrast enhancement Glioblastoma present high rCBV with modification of the permeability, metastasis present slight modified rCBV without modification of permeability. In conclusion, peritumoral T2 hypersignal exploration associating morphological MR and functional MR parameters can help to differentiate cerebral metastasis from glioblastoma.

  5. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    Science.gov (United States)

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  6. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    Science.gov (United States)

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  7. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1982-01-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in signficant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electroylte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1--10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subesquent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption

  8. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    Science.gov (United States)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage

  9. Hydrogeological evidence of low rock mass permeabilities in ordovician strata: Bruce nuclear site

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Roberts, R.M.; Avis, J.D.; Heagle, D.

    2011-01-01

    One of the key attributes contributing to the suitability of the Bruce nuclear site to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Waste (L&ILW) is the low permeability of the Ordovician host rock and of the overlying and underlying strata. The permeability of these rocks is so low that diffusion is a much more significant transport mechanism than advection. Hydrogeological evidence for the low permeability of the Ordovician strata comes from two principal sources, direct and indirect. Direct evidence of low permeability is provided by the hydraulic testing performed in deep boreholes, DGR-2 through DGR-6. Straddle-packer hydraulic testing was performed in 57 Ordovician intervals in these five holes. The testing provided continuous coverage using ~30-m straddle intervals of the Ordovician strata exposed in boreholes DGR-2, DGR-3, DGR-4, and DGR-5, while testing was targeted on discontinuous 10.2-m intervals in DGR-6. The average horizontal hydraulic conductivities of these intervals determined from the tests ranged from 2E-16 to 2E-10 m/s. The Lower Member of the Cobourg Formation, which is the proposed host formation for the DGR, was found to have a horizontal hydraulic conductivity of 4E-15 to 3E-14 m/s. The only horizontal hydraulic conductivity values measured that were greater than 2E-12 m/s are from the Black River Group, located at the base of the Ordovician sedimentary sequence. Indirect evidence of low permeability is provided by the observed distribution of hydraulic heads through the Ordovician sequence. Hydraulic head profiles, defined by hydraulic testing and confirmed by Westbay multilevel monitoring systems, show significant underpressures relative to a density-compensated hydrostatic condition throughout most of the Ordovician strata above the Black River Group, whereas the Black River Group is overpressured. Pressure differences of 1 MPa or more are observed between adjacent intervals in the boreholes. The observed

  10. Determination of Intrinsic Permeability for Packed Waste of Indonesian Solid Waste

    Directory of Open Access Journals (Sweden)

    Benno Rahardyan

    2010-11-01

    Full Text Available Gas permeability and intrinsic permeability are the major parameters to promote aeration for packed waste. The objectives of this research are to identify physical parameters of gas transfer from a various type of packed wastes and examine ventilation design theory for landfill to enhance waste stabilization. Method to determine value of gas permeability and intrinsic permeability for packed waste is by flushing the packed column containing various type and physical characteristics of wastes with an air pump. Permeability was calculated by measuring pressure gradient on sampling points of the column using inclined manometer at distance 10 cm, 23 cm, 46 cm, 69 cm, 92 cm and 115 cm from origin. Gas permeability is specifically relied on physical parameters of wastes as follows, density, moisture content, particle size and gas velocity on the surface of compacted waste layer. Compost has finer pore structure and smaller pore size than leaves as well as mixed organic (65% and inorganic wastes (35%. The experiment found the intrinsic permeability of leaves waste are in the order of 10-11 to 10-8 m2, 10-11 to 10-9 m2 for compost and 10-9 m2 for mixed organic (65% and inorganic wastes (35%.

  11. Modeling the Hydrologic Processes of a Permeable Pavement System

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  12. Performances of Metal Concentrations from Three Permeable Pavement Infiltrates

    Science.gov (United States)

    The U.S. Environmental Protection Agency designed and constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements: permeable interlocking concrete pavers, pervious concrete, and porous asphalt. Water sampling was con...

  13. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    Science.gov (United States)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might

  14. Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling

    DEFF Research Database (Denmark)

    Kessler, Adam J.; Glud, Ronnie N.; Cardenas, M. Bayani

    2012-01-01

    We measured denitrification in permeable sediments in a sealed flume tank with environmentally representative fluid flow and solute transport behavior using novel measurements. Numerical flow and reactive transport models representing the flume experiments were implemented to provide mechanistic...... insight into the coupled hydrodynamic and biogeochemical processes. There was broad agreement between the model results and experimental data. The model showed that the coupling between nitrification and denitrification was relatively weak in comparison to that in cohesive sediments. This was due...... of permeable sediments with nonmigratory ripples to remove bioavailable nitrogen from coastal ecosystems is lower than that of cohesive sediments. We conclude that while experimental measurements provide a good starting point for constraining key parameters, reactive transport models with realistic kinetic...

  15. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    Science.gov (United States)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  16. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  17. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Timóteo, MG (Brazil); Tello, Clédola Cássia Oliveira de, E-mail: tolentino@timoteo.cefetmg.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  18. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas

  19. On the Huygens principle for bianisotropic mediums with symmetric permittivity and permeability dyadics

    Energy Technology Data Exchange (ETDEWEB)

    Faryad, Muhammad, E-mail: muhammad.faryad@lums.edu.pk [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-02-19

    Mathematical statements of the Huygens principle relate the electric and magnetic field phasors at an arbitrary location in a source-free region enclosed by a surface to the tangential components of the electric and magnetic field phasors over that surface, via the dyadic Green functions applicable to the linear homogeneous medium occupying that region. We have mathematically formulated the Huygens principle for the electric and magnetic field phasors when the permittivity and permeability dyadics of the medium are symmetric, the symmetric parts of the two magnetoelectric dyadics of the medium are negative of each other, and both magnetoelectric dyadics also contain anti-symmetric terms. We have also formulated the Huygens principle for the electric (resp. magnetic) field phasor in a medium whose permittivity (resp. permeability) is scalar, the permeability (resp. permittivity) is symmetric, the symmetric parts of the two magnetoelectric dyadics reduce to dissimilar scalars, and anti-symmetric parts of the two magnetoelectric dyadics are identical. - Highlights: • The Huygens principle was formulated for bianistropic mediums when the permittivity and permeability dyadics of the medium are symmetric. • The formulation covers isotropic, biisotropic, and gyrotropic-like uniaxial mediums for which the Huygens principle is already available. • The formulation also covers new mediums like biaxial, chiro-omega, pseudo chiral, gyrotropic-like biaxial, and Lorentz reciprocal mediums.

  20. A multi-state magnetic memory dependent on the permeability of Metglas

    Science.gov (United States)

    Petrie, J. R.; Wieland, K. A.; Timmerwilke, J. M.; Barron, S. C.; Burke, R. A.; Newburgh, G. A.; Burnette, J. E.; Fischer, G. A.; Edelstein, A. S.

    2015-04-01

    A three-state magnetic memory was developed based on differences in the magnetic permeability of a soft ferromagnetic media, Metglas 2826MB (Fe40Ni38Mo4B18). By heating bits of a 250 nm thick Metglas film with 70-100 mW of laser power, we were able to tune the local microstructure, and hence, the permeability. Ternary memory states were created by using lower laser power to enhance the initial permeability through localized atomic rearrangement and higher power to reduce the permeability through crystallization. The permeability of the bits was read by detecting variations in an external 32 Oe probe field within 10 μm of the media via a magnetic tunnel junction read head. Compared to data based on remanent magnetization, these multi-permeability bits have enhanced insensitivity to unexpected field and temperature changes. We found that data was not corrupted after exposure to fields of 1 T or temperatures of 423 K, indicating the effectiveness of this multi-state approach for safely storing large amounts of data.

  1. A multi-state magnetic memory dependent on the permeability of Metglas

    International Nuclear Information System (INIS)

    Petrie, J. R.; Wieland, K. A.; Timmerwilke, J. M.; Burke, R. A.; Newburgh, G. A.; Fischer, G. A.; Edelstein, A. S.; Barron, S. C.; Burnette, J. E.

    2015-01-01

    A three-state magnetic memory was developed based on differences in the magnetic permeability of a soft ferromagnetic media, Metglas 2826MB (Fe 40 Ni 38 Mo 4 B 18 ). By heating bits of a 250 nm thick Metglas film with 70–100 mW of laser power, we were able to tune the local microstructure, and hence, the permeability. Ternary memory states were created by using lower laser power to enhance the initial permeability through localized atomic rearrangement and higher power to reduce the permeability through crystallization. The permeability of the bits was read by detecting variations in an external 32 Oe probe field within 10 μm of the media via a magnetic tunnel junction read head. Compared to data based on remanent magnetization, these multi-permeability bits have enhanced insensitivity to unexpected field and temperature changes. We found that data was not corrupted after exposure to fields of 1 T or temperatures of 423 K, indicating the effectiveness of this multi-state approach for safely storing large amounts of data

  2. Urban permeable pavement system design based on “sponge city” concept

    Science.gov (United States)

    Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.

    2017-08-01

    Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.

  3. Role of platelets in maintenance of pulmonary vascular permeability to protein

    International Nuclear Information System (INIS)

    Lo, S.K.; Burhop, K.E.; Kaplan, J.E.; Malik, A.B.

    1988-01-01

    The authors examined the role of platelets in maintenance of pulmonary vascular integrity by inducing thrombocytopenia in sheep using antiplatelet serum (APS). A causal relationship between thrombocytopenia and increase in pulmonary vascular permeability was established by platelet repletion using platelet-rich plasma (PRP). Sheep were chronically instrumented and lung lymph fistulas prepared to monitor pulmonary lymph flow (Q lym ). A balloon catheter was positioned in the left atrium to assess pulmonary vascular permeability to protein after raising the left atrial pressure (P la ). Thrombocytopenia was maintained for 3 days by daily intramuscular APS injections. In studies using cultured bovine pulmonary artery endothelial monolayers, transendothelia permeability of 125 I-labeled albumin was reduced 50 and 95%, respectively, when 2.5 x 10 7 or 5 x 10 7 platelets were added onto endothelial monolayers. However, addition of 5 x 10 6 platelets or 5 x 10 7 red blood cells did not reduce endothelial monolayer albumin permeability. Results indicate that platelets are required for the maintenance of pulmonary vascular permeability. Reduction in permeability appears to involve an interaction of platelets with the endothelium

  4. Effective High-Frequency Permeability of Compacted Metal Powders

    Science.gov (United States)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  5. Apparent permeability of electrical steel under PWM magnetisation

    International Nuclear Information System (INIS)

    Moses, A.J.; Leicht, J.; Anderson, P.

    2006-01-01

    In recent years much attention has been paid to material performance under pulse width modulation (PWM) excitation conditions, which is of increasing importance to motor applications particularly in energy efficient variable speed drive systems. It is well known that in general, losses increase significantly with reducing modulation index, the increase depending on parameters such as silicon contents, thickness and grain size. The effect of the PWM waveform on permeability has attracted little attention until now. So in this paper its influence on the permeability of electrical steel is analysed and characterised. A prediction approach based on the permeability under sine wave excitation and total harmonic distortion is introduced which results in errors below 10% for non-electrical steel at 1.5 T

  6. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  7. Computational Prediction of Blood-Brain Barrier Permeability Using Decision Tree Induction

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2012-08-01

    Full Text Available Predicting blood-brain barrier (BBB permeability is essential to drug development, as a molecule cannot exhibit pharmacological activity within the brain parenchyma without first transiting this barrier. Understanding the process of permeation, however, is complicated by a combination of both limited passive diffusion and active transport. Our aim here was to establish predictive models for BBB drug permeation that include both active and passive transport. A database of 153 compounds was compiled using in vivo surface permeability product (logPS values in rats as a quantitative parameter for BBB permeability. The open source Chemical Development Kit (CDK was used to calculate physico-chemical properties and descriptors. Predictive computational models were implemented by machine learning paradigms (decision tree induction on both descriptor sets. Models with a corrected classification rate (CCR of 90% were established. Mechanistic insight into BBB transport was provided by an Ant Colony Optimization (ACO-based binary classifier analysis to identify the most predictive chemical substructures. Decision trees revealed descriptors of lipophilicity (aLogP and charge (polar surface area, which were also previously described in models of passive diffusion. However, measures of molecular geometry and connectivity were found to be related to an active drug transport component.

  8. The fraction dose absorbed, in humans, and high jejunal human permeability relationship.

    Science.gov (United States)

    Dahan, Arik; Lennernäs, Hans; Amidon, Gordon L

    2012-06-04

    The drug intestinal permeability (P(eff)) measure has been widely used as one of the main factors governing both the rate and/or extent of drug absorption (F(abs)) in humans following oral administration. In this communication we emphasize the complexity behind and the care that must be taken with this in vivo P(eff) measurement. Intestinal permeability, considering the whole of the human intestine, is more complex than generally recognized, and this can lead to misjudgment regarding F(abs) and P(eff) in various settings, e.g. drug discovery, formulation design, drug development and regulation. Setting the adequate standard for the low/high permeability class boundary, the different experimental methods for the permeability measurement, and segmental-dependent permeability throughout the human intestine due to different mechanisms are some of the main points that are discussed. Overall, the use of jejunal P(eff) as a surrogate for extent of absorption is sound and scientifically justified; a compound with high jejunal P(eff) will have high F(abs), eliminating the risk for misclassification as a BCS class I drug. Much more care should be taken, however, when jejunal P(eff) does not support a high-permeability classification; a thorough examination may reveal high-permeability after all, attributable to e.g. segmental-dependent permeability due to degree of ionization or transporter expression. In this situation, the use of multiple permeability experimental methods, including the use of metabolism, which except for luminal degradation requires absorption, is prudent and encouraged.

  9. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    Science.gov (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  10. Transparent anodes for polymer photovoltaics: Oxygen permeability of PEDOT

    DEFF Research Database (Denmark)

    Andersen, M.; Carlé, Jon Eggert; Cruys-Bagger, N.

    2007-01-01

    The oxygen permeability of the transparent organic anode poly(3,4,-ethylene dioxythiophene) with paratoluenesulphonate as the anion (PEDOT:pTS) was determined to be 2.5 +/- 0.7 x 10(-15) cm(3) (STP) CM cm(-2) S-1 Pa-1, and is thus comparable in magnitude to the oxygen permeability of polyethylene......The oxygen permeability of the transparent organic anode poly(3,4,-ethylene dioxythiophene) with paratoluenesulphonate as the anion (PEDOT:pTS) was determined to be 2.5 +/- 0.7 x 10(-15) cm(3) (STP) CM cm(-2) S-1 Pa-1, and is thus comparable in magnitude to the oxygen permeability...... of polyethyleneterephthalate (PET). The oxygen diffusion through bilayers of polyethylene (PE) and PEDOT:pTS and bilayers of PET and PEDOT:pTS was established. The bilayer structures were applied as the carrier substrate and the transparent anode in polymer-based photovoltaic devices employing a mixture of poly(1-methoxy-4......-(2-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV) and [6,6]-phenyt-C-61-butanoicacidmethylester (PCBM) as the active layer and aluminium as the cathode. The oxygen permeability of the layers and the aluminium cathode was correlated with the lifetime of the solar cell devices. It was found that the performance...

  11. An integrated approach to permeability modeling using micro-models

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.H.; Leuangthong, O.; Deutsch, C.V. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    An important factor in predicting the performance of steam assisted gravity drainage (SAGD) well pairs is the spatial distribution of permeability. Complications that make the inference of a reliable porosity-permeability relationship impossible include the presence of short-scale variability in sand/shale sequences; preferential sampling of core data; and uncertainty in upscaling parameters. Micro-modelling is a simple and effective method for overcoming these complications. This paper proposed a micro-modeling approach to account for sampling bias, small laminated features with high permeability contrast, and uncertainty in upscaling parameters. The paper described the steps and challenges of micro-modeling and discussed the construction of binary mixture geo-blocks; flow simulation and upscaling; extended power law formalism (EPLF); and the application of micro-modeling and EPLF. An extended power-law formalism to account for changes in clean sand permeability as a function of macroscopic shale content was also proposed and tested against flow simulation results. There was close agreement between the model and simulation results. The proposed methodology was also applied to build the porosity-permeability relationship for laminated and brecciated facies of McMurray oil sands. Experimental data was in good agreement with the experimental data. 8 refs., 17 figs.

  12. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

    2012-09-15

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  13. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies.

    Science.gov (United States)

    Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M

    2012-01-01

    Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.

  14. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Science.gov (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  15. Analysis of heterogeneous characteristics in a geothermal area with low permeability and high temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Aragón-Aguilar

    2017-09-01

    Full Text Available An analytical methodology for reservoir characterization was applied in the central and southwestern zones of Los Humeros geothermal field (LHGF. This study involves analysis of temperature, pressure, enthalpy and permeability in wells and their distribution along the area. The wells located in the central western side of the geothermal field are productive, whereas those located at the central-eastern side are non-productive. Through temperature profiles, determined at steady state in the analyzed wells, it was observed that at bottom conditions (approximately 2300 m depth, temperatures vary between 280 and 360 °C. The temperatures are higher at the eastern side of central zone of LHGF. A review of transient pressure tests, laboratory measurements of core samples, and correlation of circulation losses during drilling suggest that permeability of the formation is low. The enthalpy behavior in productive wells shows a tendency of increase in the steam fraction. It was found that productivity behavior has inverse relation with permeability of rock formation. Further, it is observed that an imbalance exists between exploitation and recharge. It is concluded from the results that the wells located at central-eastern area have low permeability and high temperature, which indicates possibility of heat storage.

  16. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  17. Systematic Analysis of the Effect of Small Scale Permeability Heterogeneity on Hyporheic Exchange Flux and Residence Times

    Science.gov (United States)

    Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2014-12-01

    The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on

  18. Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: in vitro pharmaceutics and Caco-2 permeability investigations

    Directory of Open Access Journals (Sweden)

    Spinks CB

    2017-02-01

    Full Text Available Crystal B Spinks,1 Ahmed S Zidan,2,3 Mansoor A Khan,4 Muhammad J Habib,1 Patrick J Faustino2 1Department of Pharmaceutical Sciences, School of Pharmacy, Howard University, Washington, DC, 2Division of Product Quality Research, Office of Pharmaceutical Quality, Food and Drug Administration, Silver Spring, MD, USA; 3Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 4Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA Abstract: Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes would deliver this hydrophilic anti-HIV drug to the reticuloendothelial system for better therapeutic efficacy. The objectives of the current study were to prepare and pharmaceutically characterize model liposomal tenofovir formulations in an attempt to improve their bioavailability. The entrapment process was performed using film hydration method, and the formulations were characterized in terms of encapsulation efficiency and Caco-2 permeability. An efficient reverse-phase high-performance liquid chromatography method was developed and validated for tenofovir quantitation in both in vitro liposomal formulations and Caco-2 permeability samples. Separation was achieved isocratically on a Waters Symmetry C8 column using 10 mM Na2PO4/acetonitrile pH 7.4 (95:5 v/v. The flow rate was 1 mL/min with a 12 min elution time. Injection volume was 10 µL with ultraviolet detection at 270 nm. The method was validated according to United States Pharmacopeial Convention category I requirements. The obtained result showed that tenofovir encapsulation within the prepared liposomes was dependent on the employed amount of the positive charge-imparting agent. The obtained results indicated that

  19. Increasing the permeability of Escherichia coli using MAC13243

    DEFF Research Database (Denmark)

    Muheim, Claudio; Götzke, Hansjörg; Eriksson, Anna U.

    2017-01-01

    molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N...

  20. Investigation of negative permeability metamaterials for wireless power transfer

    Science.gov (United States)

    Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin

    2017-11-01

    In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  1. Investigation of negative permeability metamaterials for wireless power transfer

    Directory of Open Access Journals (Sweden)

    Wenhui Xin

    2017-11-01

    Full Text Available In order to enhance the transmission efficiency of wireless power transfer (WPT, a negative permeability metamaterials (NPM with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  2. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    International Nuclear Information System (INIS)

    Waber, H.N.; Hobbs, M.Y.; Frape, S.K.

    2013-01-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ 37 Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  3. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  4. Estimating the Permeability of Carbonate Rocks from the Fractal Properties of Moldic Pores using the Kozeny-Carman Equation

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2018-02-01

    Full Text Available Reservoir modeling of carbonate rocks requires a proper understanding of the pore space distribution and its relationship to permeability. Using a pigeonhole fractal model we characterize the fractal geometry of moldic pore spaces and extract the fractal dimension. We apply the Kozeny-Carman equation and equations relating the tortuosity and the porosity to the fractal dimension to derive an empirical relationship between permeability and porosity.

  5. The permeability evolution of tuffisites and outgassing from dense rhyolitic magma

    Science.gov (United States)

    Heap, M. J.; Tuffen, H.; Wadsworth, F. B.; Reuschlé, T.; Castro, J. M.; Schipper, C. I.

    2017-12-01

    Recent observations of rhyolitic lava effusion from eruptions in Chile indicate that simultaneous pyroclastic venting facilitates outgassing. Venting from conduit-plugging lava domes is pulsatory and occurs through shallow fracture networks that deliver pyroclastic debris and exsolved gases to the surface. However, these fractures become blocked as the particulate fracture infill sinters viscously, thus drastically reducing permeability. Tuffisites, fossilized debris-filled fractures of this venting process, are abundant in pyroclastic material ejected during hybrid explosive-effusive activity. Dense tuffisite-hosting obsidian bombs ejected from Volcán Chaitén (Chile) in 2008 afford an opportunity to better understand the permeability evolution of tuffisites within low-permeability conduit plugs, wherein gas mobility is reliant upon fracture pathways. We use laboratory measurements of the permeability and porosity of tuffisites that preserve different degrees of sintering, combined with a grainsize-based sintering model and constraints on pressure-time paths from H2O diffusion, to place first-order constraints on tuffisite permeability evolution. Inferred timescales of sintering-driven tuffisite compaction and permeability loss, spanning minutes to hours, coincide with observed vent pulsations during hybrid rhyolitic activity and, more broadly, timescales of pressurization accompanying silicic lava dome extrusion. We therefore conclude that sintering exerts a first-order control on fracture-assisted outgassing from low-permeability, conduit-plugging silicic magma.

  6. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity

    Science.gov (United States)

    Hollon, Justin; Leonard Puppa, Elaine; Greenwald, Bruce; Goldberg, Eric; Guerrerio, Anthony; Fasano, Alessio

    2015-01-01

    Background: Intestinal exposure to gliadin leads to zonulin upregulation and consequent disassembly of intercellular tight junctions and increased intestinal permeability. We aimed to study response to gliadin exposure, in terms of barrier function and cytokine secretion, using intestinal biopsies obtained from four groups: celiac patients with active disease (ACD), celiac patients in remission (RCD), non-celiac patients with gluten sensitivity (GS) and non-celiac controls (NC). Methods: Ex-vivo human duodenal biopsies were mounted in microsnapwells and luminally incubated with either gliadin or media alone. Changes in transepithelial electrical resistance were monitored over 120 min. Media was subsequently collected and cytokines quantified. Results: Intestinal explants from all groups (ACD (n = 6), RCD (n = 6), GS (n = 6), and NC (n = 5)) demonstrated a greater increase in permeability when exposed to gliadin vs. media alone. The increase in permeability in the ACD group was greater than in the RCD and NC groups. There was a greater increase in permeability in the GS group compared to the RCD group. There was no difference in permeability between the ACD and GS groups, between the RCD and NC groups, or between the NC and GS groups. IL-10 was significantly greater in the media of the NC group compared to the RCD and GS groups. Conclusions: Increased intestinal permeability after gliadin exposure occurs in all individuals. Following gliadin exposure, both patients with gluten sensitivity and those with active celiac disease demonstrate a greater increase in intestinal permeability than celiacs in disease remission. A higher concentration of IL-10 was measured in the media exposed to control explants compared to celiac disease in remission or gluten sensitivity. PMID:25734566

  7. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity

    Directory of Open Access Journals (Sweden)

    Justin Hollon

    2015-02-01

    Full Text Available Background: Intestinal exposure to gliadin leads to zonulin upregulation and consequent disassembly of intercellular tight junctions and increased intestinal permeability. We aimed to study response to gliadin exposure, in terms of barrier function and cytokine secretion, using intestinal biopsies obtained from four groups: celiac patients with active disease (ACD, celiac patients in remission (RCD, non-celiac patients with gluten sensitivity (GS and non-celiac controls (NC. Methods: Ex-vivo human duodenal biopsies were mounted in microsnapwells and luminally incubated with either gliadin or media alone. Changes in transepithelial electrical resistance were monitored over 120 min. Media was subsequently collected and cytokines quantified. Results: Intestinal explants from all groups (ACD (n = 6, RCD (n = 6, GS (n = 6, and NC (n = 5 demonstrated a greater increase in permeability when exposed to gliadin vs. media alone. The increase in permeability in the ACD group was greater than in the RCD and NC groups. There was a greater increase in permeability in the GS group compared to the RCD group. There was no difference in permeability between the ACD and GS groups, between the RCD and NC groups, or between the NC and GS groups. IL-10 was significantly greater in the media of the NC group compared to the RCD and GS groups. Conclusions: Increased intestinal permeability after gliadin exposure occurs in all individuals. Following gliadin exposure, both patients with gluten sensitivity and those with active celiac disease demonstrate a greater increase in intestinal permeability than celiacs in disease remission. A higher concentration of IL-10 was measured in the media exposed to control explants compared to celiac disease in remission or gluten sensitivity.

  8. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    Science.gov (United States)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  9. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  10. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.

    Science.gov (United States)

    Kuck, Jamie L; Bastarache, Julie A; Shaver, Ciara M; Fessel, Joshua P; Dikalov, Sergey I; May, James M; Ware, Lorraine B

    2018-01-01

    Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14 C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evaluation of blood--brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography

    International Nuclear Information System (INIS)

    Yen, C.K.; Budinger, T.F.

    1981-01-01

    Dynamic positron tomography of the brain with 82 Rb, obtained from a portable generator [ 82 Sr (25 days) -- 82 Rb (76 sec)], provides a means of studying blood-brain barrier (BBB) permeability in physiological and clinical investigations. The BBB in rhesus monkeys was opened unilaterally by intracarotid infusion of 3 M urea. This osmotic barrier opening allowed entry into the brain of intravenously administered rubidium chloride. The BBB opening was demonstrated noninvasively using 82 Rb and positron emission tomography and corroborated by the accumulation of 86 Rb in tissue samples. Positron emission tomography studies can be repeated every 5 min and indicate that dynamic tomography or static imaging can be used to study BBB permeability changes induced by a wide variety of noxious stimuli. Brain tumors in human subjects are readily detected because of the usual BBB permeability disruption in and around the tumors

  12. Factors Influencing Stormwater Mitigation in Permeable Pavement

    Directory of Open Access Journals (Sweden)

    Chun Yan Liu

    2017-12-01

    Full Text Available Permeable pavement (PP is used worldwide to mitigate surface runoff in urban areas. Various studies have examined the factors governing the hydrologic performance of PP. However, relatively little is known about the relative importance of these governing factors and the long-term hydrologic performance of PP. This study applied numerical models—calibrated and validated using existing experimental results—to simulate hundreds of event-based and two long-term rainfall scenarios for two designs of PP. Based on the event-based simulation results, rainfall intensity, rainfall volume, thickness of the storage layer and the hydraulic conductivity of the subgrade were identified as the most influential factors in PP runoff reduction. Over the long term, PP performed significantly better in a relatively drier climate (e.g., New York, reducing nearly 90% of runoff volume compared to 70% in a relatively wetter climate (e.g., Hong Kong. The two designs of PP examined performed differently, and the difference was more apparent in the relatively wetter climate. This study generated insights that will help the design and implementation of PP to mitigate stormwater worldwide.

  13. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    Science.gov (United States)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  14. Pulmonary and intestinal permeabilities in alcoholic hepatic cirrhosis

    International Nuclear Information System (INIS)

    De Botton, S.; Huglo, B.; Canva-Delacambre, V.; Colombel, J.F.; Beauchat, V.; Ziegels, P.; Prangere, T.; Steinling, M.; Machandise, X.; Wallaert, B.

    1997-01-01

    The aim of this prospective study was to evaluate simultaneously the intestinal permeability (IP), usually normal, and the pulmonary permeability, (PP) rather rarely studied, in patients afflicted with hepatic cirrhosis of alcoholic (HCA) origin. Thirty five non-smoker patients, afflicted with HCA, proved by biopsy, without pulmonary pathology and with normal pulmonary scanography were subject to our investigation. The pre-graft hepatic examination contained also respiratory functional explorations as well as bronchi-alveolar clearance (BAC) explorations. After inhalation of the DTPA- 99m Tc aerosols, a 20 min dynamical study in posterior-front condition was achieved. After exponential matching on the activity/time curve of the right lung, the half life (T 1/2 in min) and the Residual Activity at 10 min (RA in %) were calculated. The PI were than estimated and on the basis of urinary activity of EDTA- 51 Cr obtained on 24 h and expressed in % of the uptake activity, according to the Bjarnasson's technique. The results were compared (significant non-parametric tests if p 1/2 and 87.1% ± 6.7 vs 92.8% ± 2.6 (p < 0.002) for RA. It is significantly correlated with the total number of cells (r = -0.379) and with the number of lymphocytes (r = 0.351) in the BAC. For the first time an enhanced PP was observed in HCA, correlated with the increase in the number of cells at BAC

  15. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    International Nuclear Information System (INIS)

    Min, Ki-Bok; Stephansson, Ove

    2009-03-01

    second part of the study stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The present study is restricted to rock mass conditions found at repository level in SKB's Forsmark site

  16. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ki-Bok (School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide (Australia)); Stephansson, Ove (Steph Rock Consulting AB, Berlin (Germany))

    2009-03-15

    second part of the study stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The present study is restricted to rock mass conditions found at repository level in SKB's Forsmark site

  17. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  18. Composite binders for concrete with reduced permeability

    International Nuclear Information System (INIS)

    Fediuk, R; Yushin, A

    2016-01-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m 2 , it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa). (paper)

  19. Modeling of damage, permeability changes and pressure responses during excavation of the TSX tunnel in granitic rock at URL, Canada

    Science.gov (United States)

    Rutqvist, Jonny; Börgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son

    2009-05-01

    This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of a test tunnel associated with the tunnel sealing experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Four different numerical models were applied using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters, the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increase alongside the tunnel is a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis’ coefficient, α ≈ 0.2, a porosity of n ≈ 0.007, and a relatively low permeability of k ≈ 2 × 10-22 m2, which is consistent with the very tight, unfractured granite at the site.

  20. Groundwater protection from cadmium contamination by permeable reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Di Natale, F. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy)], E-mail: fdinatal@unina.it; Di Natale, M.; Greco, R. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy); Lancia, A. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy); Laudante, C.; Musmarra, D. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy)

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  1. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  2. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  3. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  4. Permeability of Granite Including Macro-Fracture Naturally Filled with Fine-Grained Minerals

    Science.gov (United States)

    Nara, Yoshitaka; Kato, Masaji; Niri, Ryuhei; Kohno, Masanori; Sato, Toshinori; Fukuda, Daisuke; Sato, Tsutomu; Takahashi, Manabu

    2018-03-01

    Information on the permeability of rock is essential for various geoengineering projects, such as geological disposal of radioactive wastes, hydrocarbon extraction, and natural hazard risk mitigation. It is especially important to investigate how fractures and pores influence the physical and transport properties of rock. Infiltration of groundwater through the damage zone fills fractures in granite with fine-grained minerals. However, the permeability of rock possessing a fracture naturally filled with fine-grained mineral grains has yet to be investigated. In this study, the permeabilities of granite samples, including a macro-fracture filled with clay and a mineral vein, are investigated. The permeability of granite with a fine-grained mineral vein agrees well with that of the intact sample, whereas the permeability of granite possessing a macro-fracture filled with clay is lower than that of the macro-fractured sample. The decrease in the permeability is due to the filling of fine-grained minerals and clay in the macro-fracture. It is concluded that the permeability of granite increases due to the existence of the fractures, but decreases upon filling them with fine-grained minerals.

  5. The potential of permeability damage during thermal recovery of Cold Lake bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Wiwchar, B.; Gunter, W. D. [Alberta Research Council, Devon, AB (Canada); Dudley, J. S. [Imperial Oil Resources, Calgary, AB (Canada)

    1999-09-01

    Methods and results of coreflood tests designed to evaluate permeability damage caused by Clearwater formation clays in the Cold Lake area of Alberta are described. Three periods of permeability damage were encountered, the first during and shortly after the core was heated to 250 degrees C. Experimental evidence suggests that thermally activated grain crushing and subsequent fines migration were responsible for this initial permeability loss. The second period of damage was a gradual process which resulted in 65 per cent and 78 percent of permeability loss for the two corefloods, respectively. This phase of the permeability damage was considered to have been the result of hydrothermal reactions (berthierine to Fe-saponite). The third period of permeability damage occurred when fresh water was injected into the core. This was attributed to osmotic swelling of the Fe-saponite. A comparison of field evidence with experimental results revealed certain discrepancies, suspected to be due to the kinetics of the reaction, including disruption of berthierine grain coats and permeability damage due to subsequent fines migration. To err on the safe side, it is recommended that thermal recovery wells should be completed away from berthierine-rich zones. 15 refs., 2 tabs., 7 figs.

  6. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  7. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  8. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.

    1992-01-01

    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  9. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid

  10. An HPLC-UV method for the measurement of permeability of marker drugs in the Caco-2 cell assay

    Directory of Open Access Journals (Sweden)

    J.M. Kratz

    2011-06-01

    Full Text Available The Caco-2 cell line has been used as a model to predict the in vitro permeability of the human intestinal barrier. The predictive potential of the assay relies on an appropriate in-house validation of the method. The objective of the present study was to develop a single HPLC-UV method for the identification and quantitation of marker drugs and to determine the suitability of the Caco-2 cell permeability assay. A simple chromatographic method was developed for the simultaneous determination of both passively (propranolol, carbamazepine, acyclovir, and hydrochlorothiazide and actively transported drugs (vinblastine and verapamil. Separation was achieved on a C18 column with step-gradient elution (acetonitrile and aqueous solution of ammonium acetate, pH 3.0 at a flow rate of 1.0 mL/min and UV detection at 275 nm during the total run time of 35 min. The method was validated and found to be specific, linear, precise, and accurate. This chromatographic system can be readily used on a routine basis and its utilization can be extended to other permeability models. The results obtained in the Caco-2 bi-directional transport experiments confirmed the validity of the assay, given that high and low permeability profiles were identified, and P-glycoprotein functionality was established.

  11. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  12. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines.

    Science.gov (United States)

    Volpe, Donna A

    2011-12-01

    The human colon adenocarcinoma Caco-2 and Madin-Darby canine kidney epithelial cell lines provide in vitro tools to assess a drug's permeability and transporter interactions during discovery and development. The cells, when cultured on semiporous filters, form confluent monolayers that model the intestinal epithelial barrier for permeability, transporter and drug-interaction assays. The applications of these assays in pharmaceutical research include qualitative prediction and ranking of absorption, determining mechanism(s) of permeability, formulation effects on drug permeability, and the potential for transporter-mediated drug-drug interactions. This review focuses on recent examples of Caco-2 and Madin-Darby canine kidney cells assays for drug permeability including transfected and knock-down cells, miniaturization and automation, and assay combinations to better understand and predict intestinal drug absorption.

  13. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    Science.gov (United States)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  14. Effect of temperature on damage and permeability of clayey soils and rocks

    International Nuclear Information System (INIS)

    Monfared, M.

    2011-04-01

    Storage of exothermic radioactive waste in deep low permeability geological formations such as clayey rocks and plastic clays is a solution considered for long term repositories. However the excavation of underground galleries creates a damaged zone (EDZ). The effect of the damage zone on the transport properties of the geological barrier has been widely studied. Within the framework of the TIMODAZ European project, emphasis has been put on the effect of temperature. As a partner of this project, the current work is performed to investigate the coupling effect between temperature, damage and permeability on Boom clay and Opalinus clay through an experimental study. View to the experimental difficulties related to the low permeability materials, a new hollow cylinder triaxial cell with short drainage path specifically designed to study the thermo-hydro-mechanical behaviour of very low permeable materials is developed during this work. The tests and the numerical analysis show that the short sample drainage path reduces significantly the time needed to re-saturate an initially unsaturated sample and it also permits to achieve drained conditions (i.e. negligible excess pore pressure during testing) with a higher loading rate. For Boom clay, the effect of the pore water thermal pressurisation on a sample with a pre-existing shear band is investigated. The undrained heating under shear stress decreases the effective stress on the sample which leads to its failure. An existing failure plane in the sample behaves like a preferential weakness plane which can be reactivated by pore water thermal pressurisation. The estimated shearing resistance along the sheared plane is smaller than that of the intact material. For the Opalinus clay-stone, drained heating on a saturated sample shows that this clay-stone behaves like a slightly over consolidated material (thermo-elasto-plastic behaviour) with transition from expansion to contraction at 65 C. The decrease of the permeability

  15. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  16. Increased intestinal permeability, measured by serum zonulin, is associated with metabolic risk markers in overweight pregnant women.

    Science.gov (United States)

    Mokkala, Kati; Pellonperä, Outi; Röytiö, Henna; Pussinen, Pirkko; Rönnemaa, Tapani; Laitinen, Kirsi

    2017-04-01

    Increased intestinal permeability with subsequent metabolic endotoxemia, i.e., elevated circulating levels of bacterial lipopolysaccharide, LPS, has been introduced as a novel initiator of obesity related metabolic disturbances in non-pregnant individuals. The objective was to investigate the extent to which intestinal permeability, measured by serum zonulin concentration, is related to metabolic endotoxemia and metabolic risk markers in overweight pregnant women. This was a cross-sectional study including 100 pregnant overweight women in early pregnancy. Serum zonulin was analyzed using ELISA, and markers for metabolic endotoxemia (LPS), inflammation (high-sensitive C-reactive protein and glycoprotein acetylation GlyA), glucose metabolism (fasting glucose and insulin), and lipid metabolism were measured. Higher serum zonulin concentration associated positively with LPS (P=0.02), inflammatory markers (Pzonulin quartiles). All the observed associations were confirmed (Pzonulin concentration, i.e., increased intestinal permeability, contributes to metabolic endotoxemia, systemic inflammation, and insulin resistance in overweight pregnant women. By reinforcing intestinal barrier, it may be possible to manipulate maternal metabolism during pregnancy with subsequent health benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Waber, H.N. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Hobbs, M.Y. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Nuclear Waste Management Organization (NWMO), 22 St. Clair Avenue East, M4T 2S3 Toronto, Ontario (Canada); Frape, S.K. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ{sup 37}Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  18. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    Science.gov (United States)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  19. Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan

    Science.gov (United States)

    Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.

    2006-12-01

    The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14

  20. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  1. Permeability testing of fractures in climax stock granite at the Nevada Test Site

    International Nuclear Information System (INIS)

    Murray, W.A.

    1980-01-01

    Permeability tests conducted in the Climax stock granitic rock mass indicate that the bulk rock permeability can be highly variable. If moderately to highly fractured zones are encountered, the permeability values may lie in the range of 10 -4 to 10 -1 darcies. If, on the other hand, only intact rock or healed fractures are encountered, the permeability is found to be less than 10 -9 darcies. In order to assess the thermomechanical effect on fracture permeability, discrete fractures will be packed off and tested periodically throughout the thermal cycle caused by the emplacement of spent nuclear fuel in the Climax stock

  2. Triple-porosity/permeability flow in faulted geothermal reservoirs: Two-dimensional effects

    Energy Technology Data Exchange (ETDEWEB)

    Cesar Suarez Arriaga, M. [Michoacan Univ. & CFE, Mich. (Mexico); Samaniego Verduzco, F. [National Autonomous Univ. of Mexico, Coyoacan (Mexico)

    1995-03-01

    An essential characteristic of some fractured geothermal reservoirs is noticeable when the drilled wells intersect an open fault or macrofracture. Several evidences observed, suggest that the fluid transport into this type of systems, occurs at least in three stages: flow between rock matrix and microfractures, flow between fractures and faults and flow between faults and wells. This pattern flow could define, by analogy to the classical double-porosity model, a triple-porosity, triple-permeability concept. From a mathematical modeling point of view, the non-linearity of the heterogeneous transport processes, occurring with abrupt changes on the petrophysical properties of the rock, makes impossible their exact or analytic solution. To simulate this phenomenon, a detailed two-dimensional geometric model was developed representing the matrix-fracture-fault system. The model was solved numerically using MULKOM with a H{sub 2}O=CO{sub 2} equation of state module. This approach helps to understand some real processes involved. Results obtained from this study, exhibit the importance of considering the triple porosity/permeability concept as a dominant mechanism producing, for example, strong pressure gradients between the reservoir and the bottom hole of some wells.

  3. Porosity, petrophysics and permeability of the Whitby Mudstone (UK)

    Science.gov (United States)

    Houben, M.; Barnhoorn, A.; Hardebol, N.; Ifada, M.; Boersma, Q.; Douma, L.; Peach, C. J.; Bertotti, G.; Drury, M. R.

    2016-12-01

    Typically pore diameters in shales range from the µm down to the nm scale and the effective permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural fracture network present. The length and spacing of mechanical induced and natural fractures is one of the factors controlling gas produtivity from unconventional reservoirs. Permeability of the Whitby Mudstone measured on 1 inch cores was linked to microstructure and combined with natural fracture spacing present in outcrops along the Yorkshire coast (UK) to get insight into possible fluid pathways from reservoir to well. We used a combination of different techniques to characterize the porosity (gas adsorption, Scanning Electron Microscopy), mineralogy (X-Ray Fluorescence, X-Ray Diffraction, Scanning Electron Microscopy) and permeability (pressure step decay) of the Whitby Mudstone. In addition, we mapped the natural fracture network as present in outcrops along the Yorkshire coast (UK) at the 10-2-101m scale. Mineralogically we are dealing with a rock that is high in clay content and has an average organic matter content of about 10%. Results show a low porosity (max. 7%) as well as low permeability for the Whitby Mudstone. The permeability, measured parallel to bedding, depends on the confining pressure and is 86 nanodarcy at 10 MPa effective confining pressure and decreases to 16 nanodarcy at 40 MPa effective confining pressure. At the scale of observation the average distance to nearest natural fracture is in the order of 0.13 meter and 90 percent of all matrix elements are spaced within 0.4 meter to the nearest fracture. By assuming darcy flow, a permeability of 100 nanodarcy and 10% of overpressure we calculated that for the Whitby mudstone most of the gas resides in the matrix for less than 60 days until it reaches the fracture network.

  4. Improvement of air permeability of Bubbfil nanofiber membrane

    Directory of Open Access Journals (Sweden)

    Wang Fei-Yan

    2018-01-01

    Full Text Available Nanofiber membranes always have extremely high filter efficiency and remarkably low pressure drop. In order to further improve air permeability of bubbfil nanofiber membranes, the plasma technology is used for surface treatment in this paper. The results show that plasma treatment can improve air permeability by 4.45%. Under higher power plasma treatment, earthworm like etchings are produced on the membrane surface with fractal dimensions of about 1.138.

  5. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    Science.gov (United States)

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary...

  6. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  7. Ammonia gas permeability of meat packaging materials.

    Science.gov (United States)

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  8. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    International Nuclear Information System (INIS)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-01-01

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described

  9. Caco-2 Permeability Studies and In Vitro hERG Liability Assessment of Tryptanthrin and Indolinone.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Moradi-Afrapoli, Fahimeh; Verjee, Sheela; Butterweck, Veronika; Hebeisen, Simon; Hettich, Timm; Schlotterbeck, Götz; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-08-01

    Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolinone (indolinone) were recently isolated from Isatis tinctoria as potent anti-inflammatory and antiallergic alkaloids, and shown to inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, and mast cell degranulation at low µM to nM concentrations. To assess their suitability for oral administration, we screened the compounds in an in vitro intestinal permeability assay using human colonic adenocarcinoma cells. For exact quantification of the compounds, validated UPLC-MS/MS methods were used. Tryptanthrin displayed high permeability (apparent permeability coefficient > 32.0 × 10(-6) cm/s) across the cell monolayer. The efflux ratio below 2 ( 10 µM) and indolinone (IC50 of 24.96 µM). The analysis of compounds using various in silico methods confirmed favorable pharmacokinetic properties, as well as a slight inhibition of the human ether-a-go-go-related gene potassium channel at micromolar concentrations. Georg Thieme Verlag KG Stuttgart · New York.

  10. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Lai, C.H.; Stow, S.H.

    1987-05-01

    Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made

  11. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods

    Directory of Open Access Journals (Sweden)

    Yinghong Qin

    2015-01-01

    Full Text Available Falling head method (FHM and constant head method (CHM are, respectively, used to test the water permeability of permeable concrete, using different water heads on the testing samples. The results indicate the apparent permeability of pervious concrete decreasing with the applied water head. The results also demonstrate the permeability measured from the FHM is lower than that from the CHM. The fundamental difference between the CHM and FHM is examined from the theory of fluid flowing through porous media. The testing results suggest that the water permeability of permeable concrete should be reported with the applied pressure and the associated testing method.

  12. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  13. Single-phase Near-well Permeability Upscaling and Productivity Index Calculation Methods

    Directory of Open Access Journals (Sweden)

    Seyed Shamsollah Noorbakhsh

    2014-10-01

    Full Text Available Reservoir models with many grid blocks suffer from long run time; it is hence important to deliberate a method to remedy this drawback. Usual upscaling methods are proved to fail to reproduce fine grid model behaviors in coarse grid models in well proximity. This is attributed to rapid pressure changes in the near-well region. Standard permeability upscaling methods are limited to systems with linear pressure changes; therefore, special near-well upscaling approaches based on the well index concept are proposed for these regions with non-linear pressure profile. No general rule is available to calculate the proper well index in different heterogeneity patterns and coarsening levels. In this paper, the available near-well upscaling methods are investigated for homogeneous and heterogeneous permeability models at different coarsening levels. It is observed that the existing well index methods have limited success in reproducing the well flow and pressure behavior of the reference fine grid models as the heterogeneity or coarsening level increases. Coarse-scale well indexes are determined such that fine and coarse scale results for pressure are in agreement. Both vertical and horizontal wells are investigated and, for the case of vertical homogeneous wells, a linear relationship between the default (Peaceman well index and the true (matched well index is obtained, which considerably reduces the error of the Peaceman well index. For the case of heterogeneous vertical wells, a multiplier remedies the error. Similar results are obtained for horizontal wells (both heterogeneous and homogeneous models.

  14. Studies on the relationship between epidermal cell turnover kinetics and permeability of hairless mouse skin

    International Nuclear Information System (INIS)

    Han, S.R.

    1988-01-01

    The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skin turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon

  15. Inflammasome Inhibition Suppresses Alveolar Cell Permeability Through Retention of Neuregulin-1 (NRG-1

    Directory of Open Access Journals (Sweden)

    Rajanbabu Venugopal

    2015-07-01

    Full Text Available Background: Neuregulin (NRG-1-human epidermal receptor (HER-2 signaling pathway is a key regulator of IL-1β-mediated pulmonary inflammation and epithelial permeability. The inflammasome is a newly discovered molecular platform required for caspase-1 activation and maturation of IL-1β. However, the role of the inflammasome in NRG-1-HER2 signaling-mediated alveolar cell permeability is unknown. Methods: The inflammasome was activated or inhibited in THP-1 cells; supernatants from these cells were added to A549 cells and human small airway epithelial cells (HSAEC. The protein expression of NRG-1 and phospho-HER2 (pHER2 were measured by Western blot analysis and epithelial permeability was measured using Lucifer yellow dye. Results: Results reveal that alveolar permeability in A549 cells and HSAEC is increased when treated with supernatants of inflammasome-activated THP-1 cells. Alveolar permeability is significantly suppressed when treated with supernatant of inflammasome-inhibited THP-1 cells. Inflammasome-mediated permeability is decreased when A549 cells and HSAEC are pretreated with IL-1β receptor antagonist (IL-1βRA. In addition, HER2 kinase inhibitor AG825 or NRG-1 inhibitor TAPI inhibits inflammasome-mediated permeability in A549 cells and HSAEC demonstrating critical roles of IL-1β, NRG-1, and HER2 in inflammasome-mediated alveolar permeability. Conclusion: These findings suggest that inflammasome-induced alveolar cell permeability is mediated by NRG-1/HER2 signaling through IL-1β regulation.

  16. Ph responsive permeability and Ion- exchange characteristics of (PE/EPDM)-g-PMAA membranes

    International Nuclear Information System (INIS)

    El- Awady, M.M.; El-Awady, N.I.; Eissa, A.M.

    2005-01-01

    Chemical grafting of methacrylic acid (MAA) on low density exchange membranes for recovery of different cations from their solutions was investigated. When the dialysis permeability of two solutes (glucose + urea) through the membrane were tested at different ph values and compared, glucose was found to be less efficient than urea for permeation through the membrane. The permeability response of such solute was noticed only at higher ph value (ph 8). The grafted film (membrane) with graft yield of 185% is experimentally adequate to permeate all molecules with radius of lower than 4.3 x 10 polyethylene blended with EPDM with a ratio (90/10) films was carried out using sodium bisulphite as initiator. Factors affecting grafting and the properties of the grafted films were studied in details and showed improved hydrophilic properties, good thermal stability and nearly unaffected strength properties which make them acceptable for practical uses.In the present work, the possibility of practical uses of such grafted films as ph-responsive membranes in a dialysis process and as ion--7 mm. Grafted membranes in different forms (COOH-form), (Na-methacrylate form) and (K methacrylate- form) were prepared to evaluate the membranes uptake selectivity to different mono, di-and trivalent cations from their solutions. The results obtained showed very good efficiency of the prepared membranes as compared with the values obtained for the commercial cation exchange resin (Dowex)

  17. Enhanced CAH dechlorination in a low permeability, variably-saturated medium

    Science.gov (United States)

    Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,

    2002-01-01

    An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.

  18. permeability of twenty-two small diameter hardwoods growing on southern pine sites

    Science.gov (United States)

    E.T. Choong; F.O. Tesora

    1974-01-01

    Gas permeability of hardwoods growing on southern pine sites is significantly affected by moisture content in the longitudinal direction. The ratio of permeability in the transverse to longitudinal directions is from 12,000:1 for post oak to over 1,000,000:1 for other oaks, but it is not affected by moisture. Although variation in longitudinal permeability varies...

  19. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...... groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8...

  20. Permeability of commercial solvents through living human skin

    DEFF Research Database (Denmark)

    Ursin, C; Hansen, C M; Van Dyk, J W

    1995-01-01

    A procedure has been developed for measuring the steady state rate of permeation of commercial solvents through living human skin. To get the most consistent results, it was necessary with some solvents to normalize the solvent permeation rate of a given skin sample with its [3H]water permeation...... rate. For other solvents this was not necessary, so the un-normalized data were used. High [3H]water permeation rate also was used as a criterion for "defective" skin samples that gave erroneous permeability rates, especially for solvents having slow permeability. The linearity of the steady state data...... was characterized by calculation of the "percent error of the slope." The following permeability rates (g/m2h) of single solvents were measured: dimethyl sulfoxide (DMSO), 176; N-methyl-2-pyrrolidone, 171; dimethyl acetamide, 107; methyl ethyl ketone, 53; methylene chloride, 24; [3H]water, 14.8; ethanol, 11...