Sample records for relative motion therebetween

  1. Brownian Motion and General Relativity

    O'Hara, Paul


    We construct a model of Brownian Motion on a pseudo-Riemannian manifold associated with general relativity. There are two aspects of the problem: The first is to define a sequence of stopping times associated with the Brownian "kicks" or impulses. The second is to define the dynamics of the particle along geodesics in between the Brownian kicks. When these two aspects are taken together, we can associate various distributions with the motion. We will find that the statistics of space-time events will obey a temperature dependent four dimensional Gaussian distribution defined over the quaternions which locally can be identified with Minkowski space. Analogously, the statistics of the 4-velocities will obey a kind of Maxwell-Juttner distribution. In contrast to previous work, our processes are characterized by two independent proper time variables defined with respect to the laboratory frame: a discrete one corresponding to the stopping times when the impulses take place and a continuous one corresponding to th...

  2. Motion Control along Relative Equilibria

    Nordkvist, Nikolaj


    The subject of this thesis is control of mechanical systems as they evolve along the steady motions called relative equilibria. These trajectories are of interest in theory and applications and have the characterizing property that the system's body-fixed velocity is constant. For example, constant...... on a Lie group is locally controllable along a relative equilibrium. These conditions subsume the well-known local controllability conditions for equilibrium points. Second, for systems that have fewer controls than degrees of freedom, we present a novel algorithm to control simple mechanical control...

  3. Projectile Motion in Special Relativity.

    Naddy, Cory J.; Dudley, Scott C.; Haaland, Ryan K.


    Explains the motion that occurs when a particle with an initial velocity to the right is acted upon by a constant downward force. Considers what happens when the speed of the particle approaches the speed of light in particular. (WRM)

  4. Relative motion in a debris cloud

    Kebe, Fatoumata


    After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.

  5. Relative motion correction to fission barriers

    Skalski, J


    We discuss the effect of kinetic energy of the relative motion becoming spurious for separate fragments on the selfconsistent mean-field fission barriers. The treatment of the relative motion in the cluster model is contrasted with the necessity of a simpler and approximate approach in the mean-field theory. A scheme of the energy correction to the Hartree-Fock is proposed. The results obtained with the effective Skyrme interaction SLy6 show that the correction, previously estimated as $\\sim$ 8 MeV in $A=70-100$ nuclei, amounts to 4 MeV in the medium heavy nucleus $^{198}$Hg and to null in $^{238}$U. However, the corrected barrier implies a shorter fission half-life of the latter nucleus. The same effect is expected to lower barriers for multipartition (i.e. ternary fission, etc) and make hyperdeformed minima less stable.

  6. Relative Motion Correction to Fission Barriers

    Skalski, J.

    We discuss the effect of kinetic energy of the relative motion becoming spurious for separate fragments on the selfconsistent mean-field fission barriers. The treatment of the relative motion in the cluster model is contrasted with the necessity of a simpler and approximate approach in the mean-field theory. A scheme of the energy correction to the Hartree-Fock is proposed. The results obtained with the effective Skyrme interaction SLy6 show that the correction, previously estimated as ~ 8 MeV in A = 70 - 100 nuclei, amounts to 4 MeV in the medium heavy nucleus 198Hg and to null in 238U. However, the corrected barrier implies a shorter fission half-life of the latter nucleus. The same effect is expected to lower barriers for multipartition (i.e. ternary fission, etc) and make hyperdeformed minima less stable.

  7. Mass and Motion in General Relativity

    Blanchet, Luc; Whiting, Bernard


    From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes.  In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an ove...

  8. Caribbean tectonics and relative plate motions

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.


    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  9. Bounded relative motion under zonal harmonics perturbations

    Baresi, Nicola; Scheeres, Daniel J.


    The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.

  10. Motion

    Graybill, George


    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  11. Analysis of accelerated motion in the theory of relativity

    Jones, R. T.


    Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.


    JinShuanggen; ZhuWenyao


    The circum-Pacific tectonic system that contains of convergent, divergent and transform boundaries, is the most active region of volcanoes and earthquakes in the world, and involves many important theoretical questions in geosciences. The relative motion and deformation of Pacific plate is still an active subject of research. In this note, we analyze the deformation of Pacific plate and obtain reliable results of the relative motion rates at the circum-Pacific boundaries based on space geodetic data, which reveals the present-day motion characteristics of Pacific plate.

  13. Vision System for Relative Motion Estimation from Optical Flow

    Sergey M. Sokolov


    Full Text Available For the recent years there was an increasing interest in different methods of motion analysis based on visual data acquisition. Vision systems, intended to obtain quantitative data regarding motion in real time are especially in demand. This paper talks about the vision systems that allow the receipt of information on relative object motion in real time. It is shown, that the algorithms solving a wide range of practical problems by definition of relative movement can be generated on the basis of the known algorithms of an optical flow calculation. One of the system's goals is the creation of economically efficient intellectual sensor prototype in order to estimate relative objects motion based on optic flow. The results of the experiments with a prototype system model are shown.

  14. Wear of connector contacts exposed to relative motion

    Wilk, R. A.

    Connectors play a significant role in the performance, cost, and reliability of electronic equipment. In connection with the development of the system interconnection design, a factor which is often overlooked is related to the importance of connector selection and mounting to minimize relative motion between contacts during vibration encountered in handling, transportation, and service. This motion can lead to the loss of protective coatings (gold and nickel) due to frictional wear. If this happens, fretting corrosion of the base metals may occur. The produced damage can adversely affect performance due to increased joint resistance, eventually causing intermittent contacts. The present investigation is concerned with the study of different style contacts (tuning fork, box, and circular) to determine their endurance and wear characteristics when exposed to relative motion created by vibration. All contacts investigated were fabricated from brass, beryllium copper, or phosphor bronze, and had .00127 mm minimum gold plating over .00127 mm minimum nickel plating.

  15. Special Theory of Relativity without special assumptions and tachyonic motion

    E. Kapuścik


    Full Text Available The most general form of transformations of space-time coordinates in Special Theory of Relativity based solely on physical assumptions is described. Only the linearity of space-time transformations and the constancy of the speed of light are used as assumptions. The application to tachyonic motion is indicated.

  16. Human heart rate variability relation is unchanged during motion sickness

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.


    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  17. Visual motion event related potentials distinguish aging and Alzheimer's disease.

    Fernandez, Roberto; Monacelli, Anthony; Duffy, Charles J


    Aging and Alzheimer's disease (AD) disrupt visuospatial processing and visual motion evoked potentials in a manner linked to navigational deficits. Our goal is to determine if aging and AD have distinct effects on visual cortical motion processing for navigation. We recorded visual motion event related potentials (ERPs) in young (YNC) and older normal controls (ONC), and early AD patients (EADs) who viewed rapidly changing optic flow stimuli that simulate naturalistic changes in heading direction, like those that occur when following a path of self-movement through the environment. After a random series of optic flow stimuli, a vertical motion stimulus was presented to verify sustained visual attention by demanding a rapid push-button response. Optic flow evokes robust ERPs that are delayed in aging and diminished in AD. The interspersed vertical motion stimuli yielded shorter N200 latencies in EADs, matching those in ONCs, but the EADs' N200 amplitudes remained small. Aging and AD have distinct effects on visual sensory processing: aging delays evoked response, whereas AD diminishes responsiveness.

  18. Spatiotemporal Relations and Modeling Motion Classes by Combined Topological and Directional Relations Method

    Nadeem Salamat; El-hadi Zahzah


    Defining spatiotemporal relations and modeling motion events are emerging issues of current research. Motion events are the subclasses of spatiotemporal relations, where stable and unstable spatio-temporal topological relations and temporal order of occurrence of a primitive event play an important role. In this paper, we proposed a theory of spatio-temporal relations based on topological and orientation perspective. This theory characterized the spatiotemporal relations into different classe...

  19. Relative-Motion Sensors and Actuators for Two Optical Tables

    Gursel, Yekta; McKenney, Elizabeth


    Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.

  20. Relating Brownian motion to diffusion with superparamagnetic colloids

    Darras, A.; Fiscina, J.; Vandewalle, N.; Lumay, G.


    An original experiment is introduced that allows students to relate the Brownian motion of a set of superparamagnetic colloidal particles to their macroscopic diffusion. An external and constant magnetic field is first applied to the colloidal suspension so that the particles self-organize into chains. When the magnetic field is removed, the particles then freely diffuse from their positions in the chain, starting from the same coordinate on the axis perpendicular to the initial chain. This configuration thus enables an observer to study the one dimensional diffusion process, while also observing the underlying Brownian motion of the microscopic particles. Moreover, by studying the evolution of the particle distribution, a measurement of the diffusion coefficient can be obtained. In addition, by repeating this measurement with fluids of various viscosities, the Stokes-Einstein relation may be illustrated.

  1. The difference between the perception of absolute and relative motion: A reaction time study

    J.B. Smeets (Jeroen); E. Brenner (Eli)


    textabstractWe used a reaction-time paradigm to examine the extent to which motion detection depends on relative motion. In the absence of relative motion, the responses could be described by a simple model based on the detection of a fixed change in position. If relative motion was present, the res

  2. Dynamics and control of Lorentz-augmented spacecraft relative motion

    Yan, Ye; Yang, Yueneng


    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  3. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel


    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  4. The problem of friction in two-dimensional relative motion

    Grech, D K; Grech, Dariusz; Mazur, Zygmunt


    We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.

  5. Fine-grained uncertainty relation under the relativistic motion

    Feng, Jun; Gould, Mark D; Fan, Heng


    One of the most important features of quantum theory is the uncertainty principle. Amount various uncertainty relations, the profound Fine-Grained Uncertainty Relation (FGUR) is used to distinguish the uncertainty inherent in obtaining any combination of outcomes for different measurements. In this paper, we explore this uncertainty relation in relativistic regime. For observer undergoes an uniform acceleration who immersed in an Unruh thermal bath, we show that the uncertainty bound is dependent on the acceleration parameter and choice of Unruh modes. Dramatically, we find that the measurements in Mutually Unbiased Bases (MUBs), sharing same uncertainty bound in inertial frame, could be distinguished from each other for a noninertial observer. On the other hand, once the Unruh decoherence is prevented by utilizing the cavity, the entanglement could be generated from nonuniform motion. We show that, for the observer restricted in a single rigid cavity, the uncertainty exhibits a periodic evolution with respec...

  6. Relative Proper Motions in the Rho Ophiuchi Cluster

    Wilking, Bruce A.; Vrba, Frederick J.; Sullivan, Timothy


    Near-infrared images optimized for astrometry have been obtained for four fields in the high-density L 1688 cloud core over a 12 year period. The targeted regions include deeply embedded young stellar objects (YSOs) and very low luminosity objects too faint and/or heavily veiled for spectroscopy. Relative proper motions in R.A. and decl. were computed for 111 sources and again for a subset of 65 YSOs, resulting in a mean proper motion of (0,0) for each field. Assuming each field has the same mean proper motion, YSOs in the four fields were combined to yield estimates of the velocity dispersions in R.A. and decl. that are consistent with 1.0 km s-1. These values appear to be independent of the evolutionary state of the YSOs. The observed velocity dispersions are consistent with the dispersion in radial velocity derived for optically visible YSOs at the periphery of the cloud core and are consistent with virial equilibrium. The higher velocity dispersion of the YSOs in the plane of the sky relative to that of dense cores may be a consequence of stellar encounters due to dense cores and filaments fragmenting to form small groups of stars or the global collapse of the L 1688 cloud core. An analysis of the differential magnitudes of objects over the 12 year baseline has not only confirmed the near-infrared variability for 29 YSOs established by prior studies, but has also identified 18 new variability candidates. Four of these have not been previously identified as YSOs and may be newly identified cluster members.

  7. Ground Motion Relations for the Upper Rhine Graben

    Calbini, V.; Granet, M.; Camelbeeck, T.


    Earthquake in Europe are primarily located within the Euro-Mediterranean domain. However, the Upper Rhine Graben (URG) region regularly suffers earthquakes which are felt physically by inhabitants and cause damage to private property and the industrial infrastructure. In 1356, a major earthquake (I0 = X) destroyed part of the city of Basel. Recently, several events having M > 5 have shaken this area. In the framework of an INTERREG III project funded by the European community, a microzonation study has been achieved across the "three borders" area including the cities of Basel and Mulhouse. In particular, the ground motion was studied. The URG, which belongs to the ECRIS (European Cenozoic Rift System), is characterized by rift-related sedimentary basins with several hundreds meters of tertiary sediments overlaying the basement. Such a subsurface geology leads to strong site effects. Predictive attenuation laws and their related uncertainties are evaluated considering strong motions records and velocimetric records from small to moderate local events (Magnitude ranging 3 related to a frequency dependant quality factor). Site effects are considered by using transfer functions calculated for each station. Finally, the relationships between Ml and Mw are investigated. The results show a dependence of these laws on the frequency band and a discrepancy with general laws obtained for western and central Europe. We shall discuss these results in the tectonic and geologic context of URG.

  8. An intracranial event-related potential study on transformational apparent motion. Does its neural processing differ from real motion?

    Bertrand, Josie-Anne; Lassonde, Maryse; Robert, Manon; Nguyen, Dang Khoa; Bertone, Armando; Doucet, Marie-Ève; Bouthillier, Alain; Lepore, Franco


    How the brain processes visual stimuli has been extensively studied using scalp surface electrodes and magnetic resonance imaging. Using these and other methods, complex gratings have been shown to activate the ventral visual stream, whereas moving stimuli preferentially activate the dorsal stream. In the current study, a first experiment assessed brain activations evoked by complex gratings using intracranial electroencephalography in 10 epileptic patients implanted with subdural electrodes. These stimuli of intermediate levels of complexity were presented in such a way that transformational apparent motion (TAM) was perceived. Responses from both the ventral and the dorsal pathways were obtained. The response characteristics of visual area 4 and the fusiform cortex were of similar amplitudes, suggesting that both ventral areas are recruited for the processing of complex gratings. On the other hand, TAM-induced responses of dorsal pathway areas were relatively noisier and of lower amplitudes, suggesting that TAM does not activate motion-specific structures to the same extent as does real motion. To test this hypothesis, we examined the activity evoked by TAM in comparison to the one produced by real motion in a patient implanted with the same subdural electrodes. Findings demonstrated that neural response to real motion was much stronger than that evoked by TAM, in both the primary visual cortex (V1) and other motion-sensitive areas within the dorsal pathway. These results support the conclusion that apparent motion, even if perceptually similar to real motion, is not processed in a similar manner.

  9. Motion sickness susceptibility related to ACTH, ADH and TSH

    Kohl, R. L.; Leach, C.; Homick, J. L.; Larochelle, F. T.


    The hypothesis that endogenous levels of certain hormones might be indicative of an individual's susceptibility to stressful motion is tested in a comparison of subjects classified as less prone to motion sickness with those of higher susceptibility. The levels of ACTH and vasopressin measured before exposure to stressful motion were twice as high in the less-suceptible group. No significant differences were noted in the levels of angiotensin, aldosterone, or TSH. The differences between the two groups were greater for a given hormone than for any of the changes induced by exposure to stressful motion.

  10. Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Jun Sun


    Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.

  11. Learning Grasp Strategies Composed of Contact Relative Motions

    Platt, Robert, Jr.


    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.

  12. Event-related alpha suppression in response to facial motion.

    Girges, Christine; Wright, Michael J; Spencer, Janine V; O'Brien, Justin M D


    While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors.

  13. A Live-Time Relation: Motion Graphics meets Classical Music

    Steijn, Arthur


    present segments of my work toward a working model for the process of design of visuals and motion graphics applied in spatial contexts. I show how various design elements and components: line and shape, tone and colour, time and timing, rhythm and movement interact with conceptualizations of space......, liveness and atmosphere. The design model will be a framework for both academic analytical studies as well as for designing time-based narratives and visual concepts involving motion graphics in spatial contexts. I focus on cases in which both pre-rendered, and live generated motion graphics are designed....... Of particular interest are the audio-visual parallels between motion graphics presented in the foyer, before, and the large-scale video projections, during the live concert. These parallels are studied through theory and using terminology derived from two different fields. One perspective includes ideas...

  14. The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion

    ZHANG Yi


    The integration method of a dynamical system of relative motion is studied,and the method of variation of parameters for the dynamical equations of relative motion is presented.First,the dynamic equations of relative motion are brought into the frame of generalized Birkhoffian systems and are expressed in the contravariant algebraic form.Second,an auxiliary system is constructed and its complete solution is found.Finally,the variation of parameters is given,and a complete solution of the problem is obtained by taking advantage of the properties of generalized canonical transformations.An example is given to illustrate the application of the results.An important direction in analytical dynamics is to present new and versatile integration methods for a complex mechanical system.The motion of a complex system may include the motion of a carrier,as well as the motion of a carried system relative to the carrier.Whittaker[1] studied the Lagrange equations of a holonomic system subject to uniform rotation constraints.Lur'e studied the dynamics of relative motion ofa holonomic system.[2] Mei took the dynamics of relative motion as a special topic to review and research in his monographs.[3-8] Over the past twenty years,research on the dynamics of relative motion has been fruitful.[3- 24]%The integration method of a dynamical system of relative motion is studied, and the method of variation of parameters for the dynamical equations of relative motion is presented. First, the dynamic equations of relative motion are brought into the frame of generalized Birkhoffan systems and are expressed in the contravariant algebraic form. Second, an auxiliary system is constructed and its complete solution is found. Finally, the variation of parameters is given, and a complete solution of the problem is obtained by taking advantage of the properties of generalized canonical transformations. An example is given to illustrate the application of the results.

  15. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.

    Savalia, Neil K; Agres, Phillip F; Chan, Micaela Y; Feczko, Eric J; Kennedy, Kristen M; Wig, Gagan S


    Motion-contaminated T1-weighted (T1w) magnetic resonance imaging (MRI) results in misestimates of brain structure. Because conventional T1w scans are not collected with direct measures of head motion, a practical alternative is needed to identify potential motion-induced bias in measures of brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20-89 years) were analyzed to reveal stable features of in-scanner head motion. The magnitude of head motion increased with age and exhibited within-participant stability across different fMRI scans. fMRI head motion was then related to measurements of both quality control (QC) and brain anatomy derived from a T1w structural image from the same scan session. A procedure was adopted to "flag" individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging procedure reliably reduced the influence of head motion on estimates of gray matter thickness across the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of gray matter thickness and volume in comparison to age- and gender-matched samples, resulting in inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter thickness differences were noted in numerous regions previously reported to undergo prominent atrophy with age. Recommendations are provided for mitigating this potential confound, and highlight how the procedure may lead to more accurate measurement and comparison of anatomical features. Hum Brain Mapp 38:472-492, 2017. © 2016 Wiley Periodicals, Inc.

  16. On Brownian motion in ideal gas and related principles

    Kuzovlev, Yuriy E.


    Brownian motion of particle interacting with atoms of ideal gas is discussed as a key problem of kinetics lying at the border between ``dead'' systems like the Lorentz gas or formal constructs of conceptual Boltzmannian kinetics and actual ``alive'' systems like mere gas possessing scaleless (1/f) fluctuations in their kinetic characteristics (e.g. in diffusuvity and mobility of the ``Brownian particle'').

  17. Use of a Computer Simulation To Develop Mental Simulations for Understanding Relative Motion Concepts.

    Monaghan, James M.; Clement, John


    Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…

  18. Algorithms, Visualization, and Mental Models: High School Students' Interactions with a Relative Motion Simulation.

    Monaghan, James M.; Clement, John


    Hypothesizes that the construction of visual models, resolution of these visual models with numeric models and, in many cases, rejection of commitments such as the belief in one true velocity, are necessary for students to form integrated mental models of relative motion events. Studies high school students' relative motion problem solving.…

  19. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria


    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  20. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria


    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  1. Stochastic calculus for fractional Brownian motion and related processes

    Mishura, Yuliya S


    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0

  2. Three-dimensional analysis of relationship between relative orientation and motion modes

    Fan Shijie a; Fan Hongqi a; Xiao Huaitie a; Fan Jianpeng b; Fu Qiang a


    Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of rela-tionship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  3. Three-dimensional analysis of relationship between relative orientation and motion modes

    Fan Shijie


    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  4. Differential cortical processing of local and global motion information in biological motion: an event-related potential study.

    Hirai, Masahiro; Kakigi, Ryusuke


    To reveal the neural dynamics underlying biological motion processing, we introduced a novel golf-swing point-light motion (PLM) stimulus with an adaptation paradigm and measured event-related potentials (ERPs). In the adaptation phase, PLM and scrambled PLM (sPLM) stimuli were presented; a static point-lights stimulus was also presented as a control condition. In the subsequent test phase, PLM or sPLM stimuli were presented. We measured ERPs from the onset of the test phase. Two negative components were observed and modulated differently: the amplitude of the N1 component was significantly attenuated by PLM and sPLM adaptation stimuli compared with the static point-light adaptation stimulus, whereas the amplitude of the N2 component in response to the PLM test stimulus was significantly attenuated only by the PLM adaptation stimulus. The amplitude of the N2 component in response to the PLM test stimulus was significantly larger than that in response to the sPLM test stimulus when a sPLM or static adaptation stimulus was used. These findings indicate that the N1 component is sensitive to local motion information while the N2 component is sensitive to the presence of a coherent form conveyed by global motion.

  5. Acquisition-related motion compensation for digital subtraction angiography.

    Ionasec, Razvan Ioan; Heigl, Benno; Hornegger, Joachim


    Subtraction methods in angiography are generally applied in order to enhance the visualization of blood vessels by eliminating bones and surrounding tissues from X-ray images. The main limitation of these methods is the sensitivity to patient movement, which leads to artifacts and reduces the clinical value of the subtraction images. In this paper we present a novel method for rigid motion compensation with primary application to road mapping, frequently used in image-guided interventions. Using the general concept of image-based registration, we optimize the physical position and orientation of the C-arm X-ray device, thought of as the rigid 3D transformation accounting for the patient movement. The registration is carried out using a hierarchical optimization strategy and a similarity measure based on the variance of intensity differences, which has been shown to be most suitable for fluoroscopic images. Performance evaluation demonstrated the capabilities of the proposed approach to compensate for potential intra-operative patient motion, being more resilient to the fundamental problems of pure image-based registration.

  6. Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity

    Franklin, Jerrold


    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…

  7. Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity

    Franklin, Jerrold


    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…

  8. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier


    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  9. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier


    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  10. The zonal motion of equatorial plasma bubbles relative to the background ionosphere

    Kil, Hyosub; Lee, Woo Kyoung; Kwak, Young-Sil; Zhang, Yongliang; Paxton, Larry J.; Milla, Marco


    The zonal motions of plasmas inside equatorial plasma bubbles are different from those in the background ionosphere. The difference was explained in terms of the tilt of bubbles by recent studies, but observational evidence of this hypothesis has not yet been provided. We examine this hypothesis and, at the same time, look for an alternative explanation on the basis of the coincident satellite and radar observations over Jicamarca (11.95°S, 76.87°W) in Peru. In the observations at premidnight by the first Republic of China satellite (altitude: 600 km, inclination: 35°), plasmas inside bubbles drift westward relative to ambient plasmas. The same phenomenon is identified by radar observations. However, the relative westward plasma motions inside bubbles occur regardless of the tilt of bubbles, and therefore, the tilt is not the primary cause of the deviation of the plasma motions inside bubbles. The zonal plasma motions in the topside are characterized by systematic eastward drifts, whereas the zonal motions of plasmas in the bottomside backscatter layer show a mixture of eastward and westward drifts. The zonal plasma motions inside backscatter plumes resemble those in the bottomside backscatter layer. These observations indicate that plasmas inside bubbles maintain the properties of the zonal plasma motions in the bottomside where the bubbles originate. With this assumption, the deviation of the zonal motions of plasmas inside bubbles from those of ambient plasmas is understood in terms of the difference of the zonal plasma flows in the bottomside and topside.

  11. Measured Data Processing Method For Relative Motions Between Two Side-by-side Ships

    Ping-an Shi


    Full Text Available In order to design and implement a wave compensation system to reduce the relative motion between two side-by-side ships in waves, a new method to process measured data of ship model test with contact measurement to study the characteristics of relative motion was presented. The reference co-ordinate systems and relative motions were defined, and the scheme of the model test was described. Then the Empirical Mode Decomposition(EMD adaptive filter were designed, the frequency domain integration transform method based upon Fast Fourier Transform(FFT were established. The procedure to transform acceleration signal into displacement was proposed and verified, and the processing results with and without EMD adaptive filter were compared. Finally, the relative motions consistent with reality were acquired, which indicates this method is effective for measured data processing.

  12. Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion

    CHEN Xiang-Wei; WANG Ming-Quan; WANG Xin-Min


    Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.

  13. Exact invariants and adiabatic invariants of dynamical system of relative motion

    Chen Xiang-Wei; Wang Xin-Min; Wang Ming-Quan


    Based on the theory of symmetries and conserved quantities, the exact inwriants and adiabatic inwriants of a dynamical system of relative motion are studied. The perturbation to symmetries for the dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.

  14. Characterization of Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes


    Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0182 TR-2015-0182 CHARACTERIZATION OF NON-LINEARIZED SPACECRAFT RELATIVE MOTION USING NONLINEAR NORMAL MODES Eric...STATEMENT. THOMAS LOVELL PAUL HAUSGEN, Ph.D. Program Manager Technical Advisor, Spacecraft Component Technology JOHN BEAUCHEMIN Chief Engineer

  15. Lie-Form Invariance of the Nonholonomic System of Relative Motion in Event Space


    In this paper, the Lie-form invariance of a nonholonomic system of relative motion in event space is studied.Firstly, the definition and the criterion of the Lie-form invariance of the nonholonomic system of relative motion in event space is given. Secondly, the Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. An example is given to illustrate the application of the results.

  16. Phonons in slow motion: dispersion relations in ultrathin Si membranes.

    Cuffe, John; Chávez, Emigdio; Shchepetov, Andrey; Chapuis, Pierre-Olivier; El Boudouti, El Houssaine; Alzina, Francesc; Kehoe, Timothy; Gomis-Bresco, Jordi; Dudek, Damian; Pennec, Yan; Djafari-Rouhani, Bahram; Prunnila, Mika; Ahopelto, Jouni; Sotomayor Torres, Clivia M


    We report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as ∼8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than 1 order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano- and microelectromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.

  17. Seismic motion attenuation relations in Sichuan and adjacent areas

    LEI Jian-cheng; GAO Meng-tan; YU Yan-xiang


    The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modern destructive earthquakes in SWCR and 40 in SCBR are gathered respectively. All their magnitude parameters are checked. Based on the statistic relations between epicentral intensity and magnitude as well as relation between sensible radius and magnitude, the near and far field seismic intensity attenuation features are represented and controlled. And then the seismic intensity attenuation relations along major axis, minor axis and mean axis are established separately. The systematic deviations of surface wave magnitude between China seismograph network and U.S. seismograph network are considered in this paper. By making use of the new attenuation relations of bedrock horizontal ground acceleration response spectrum in west U.S., the attenuation relations of bedrock horizontal ground acceleration response spectrum in SWCR and SCBR are digital transformed based on the attenuation model considering acceleration saturation of distance and magnitude in near field.

  18. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes

    Wessel, Paul; Kroenke, Loren W.


    The classic view of linear island chains as volcanic expressions of interactions between changing plate tectonic motions and fixed mantle plumes has come under renewed scrutiny. In particular, observed paleolatitudes from the Emperor seamounts imply that the Hawaii hotspot was > 5-15° further north during formation of these seamounts and that rapid retardation of its southward migration was the primary agent forming the angular Hawaii-Emperor bend. Supporting this view are predictions from fluid dynamic experiments that suggest the general mantle circulation may displace narrow mantle plumes; consequently the surface locations of hotspots are not fixed and may have varied considerably in the past. However, the locations and ages of available rock samples place fundamental limits on the relative motion between the Hawaii and Louisville hotspots. Here we use such data to estimate empirical age progression curves for separate chains and calculate the continuous variations in hotspot separations through time. While the data are sparse, the inferred inter-hotspot motion for ages > 55 Myr appears significant but the observed relative motion is only about half of what is predicted by mantle dynamics models. To reconcile the observed paleolatitudes with our observed relative motion requires either a larger contemporaneous southward motion of the Louisville hotspot than previously suggested or a moderate component of true polar wander.

  19. Poisson theory and integration method for a dynamical system of relative motion

    Zhang Yi; Shang Mei


    This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n - 1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.

  20. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David


    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P perception of unnatural (versus natural) motion (P perception is disrupted in DYT1

  1. The importance of perceived relative motion in the control of posture.

    Kelly, Jonathan W; Loomis, Jack M; Beall, Andrew C


    Two experiments investigated the role of optic flow in controlling posture. Both experiments measured postural sway in two virtual environments with different 3-D structure but the same optic flow. Observers attempted to maintain balance on one foot while viewing an object that appeared either rigid with respect to the environment or that appeared to move concomitantly with head movements. The apparent object motion concomitant with head motion was achieved by changing the perceived, but not physical, depth of the object. For both objects, the optic flow information was the same and only depth information was varied. Observers showed a decrease in stability (as measured by head sway) when viewing the object that appeared to move, suggesting that perceived relative motion, not optic flow, signals self-motion to the postural control system.

  2. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity

    Hoots, F. R.; Fitzpatrick, P. M.


    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  3. A review of some basic aspects related to integration of airplane’s equations of motion



    Full Text Available Numerical integration of the airplane’s equations of motion has long been considered among the most fundamental calculations in airplane’s analysis. Numerical algorithms have been implemented and experimentally validated. However, the need for superior speed and accuracy is still very topical, as, nowadays, various optimization algorithms rely heavily on data generated from the integration of the equations of motion and having access to larger amounts of data can increase the quality of the optimization. Now, for a number of decades, engineers have relied heavily on commercial codes based on automatically selected integration steps. However, optimally chosen constant integration steps can save time and allows for larger numbers of integrations to be performed. Yet, the basic papers that presented the fundamentals of numerical integration, as applied to airplane’s equations of motion are nowadays not easy to locate. Consequently, this paper presents a review of basic aspects related to the integration of airplane’s equation of motion. The discussion covers fundamentals of longitudinal and lateral-directional motion as well as the implementation of some numerical integration methods. The relation between numerical integration steps, accuracy, computational resource usage, numerical stability and their relation with the parameters describing the dynamic response of the airplane is considered and suggestions are presented for a faster yet accurate numerical integration.

  4. A Channel Rejection Method for Attenuating Motion-Related Artifacts in EEG Recordings during Walking.

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P


    Recording scalp electroencephalography (EEG) during human motion can introduce motion artifacts. Repetitive head movements can generate artifact patterns across scalp EEG sensors. There are many methods for identifying and rejecting bad channels and independent components from EEG datasets, but there is a lack of methods dedicated to evaluate specific intra-channel amplitude patterns for identifying motion-related artifacts. In this study, we proposed a template correlation rejection (TCR) as a novel method for identifying and rejecting EEG channels and independent components carrying motion-related artifacts. We recorded EEG data from 10 subjects during treadmill walking. The template correlation rejection method consists of creating templates of amplitude patterns and determining the fraction of total epochs presenting relevant correlation to the template. For EEG channels, the template correlation rejection removed channels presenting the majority of epochs (>75%) correlated to the template, and presenting pronounced amplitude in comparison to all recorded channels. For independent components, the template correlation rejection removed components presenting the majority of epochs correlated to the template. Evaluation of scalp maps and power spectra confirmed low neural content for the rejected components. We found that channels identified for rejection contained ~60% higher delta power, and had spectral properties locked to the gait phases. After rejecting the identified channels and running independent component analysis on the EEG datasets, the proposed method identified 4.3 ± 1.8 independent components (out of 198 ± 12) with substantive motion-related artifacts. These results indicate that template correlation rejection is an effective method for rejecting EEG channels contaminated with motion-related artifact during human locomotion.

  5. A Channel Rejection Method for Attenuating Motion-Related Artifacts in EEG Recordings during Walking

    Anderson S. Oliveira


    Full Text Available Recording scalp electroencephalography (EEG during human motion can introduce motion artifacts. Repetitive head movements can generate artifact patterns across scalp EEG sensors. There are many methods for identifying and rejecting bad channels and independent components from EEG datasets, but there is a lack of methods dedicated to evaluate specific intra-channel amplitude patterns for identifying motion-related artifacts. In this study, we proposed a template correlation rejection (TCR as a novel method for identifying and rejecting EEG channels and independent components carrying motion-related artifacts. We recorded EEG data from 10 subjects during treadmill walking. The template correlation rejection method consists of creating templates of amplitude patterns and determining the fraction of total epochs presenting relevant correlation to the template. For EEG channels, the template correlation rejection removed channels presenting the majority of epochs (>75% correlated to the template, and presenting pronounced amplitude in comparison to all recorded channels. For independent components, the template correlation rejection removed components presenting the majority of epochs correlated to the template. Evaluation of scalp maps and power spectra confirmed low neural content for the rejected components. We found that channels identified for rejection contained ~60% higher delta power, and had spectral properties locked to the gait phases. After rejecting the identified channels and running independent component analysis on the EEG datasets, the proposed method identified 4.3 ± 1.8 independent components (out of 198 ± 12 with substantive motion-related artifacts. These results indicate that template correlation rejection is an effective method for rejecting EEG channels contaminated with motion-related artifact during human locomotion.

  6. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Singh, R. P.; Ahmad, R.


    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  7. Does Lorentz Force Law Contradict the Principle and Theories of Relativity for Uniform Linear Motion?

    Unnikrishnan, C S


    I show that no force or torque is generated in cases involving a charge and a magnet with their relative velocity zero, in any inertial frame of reference. A recent suspicion of an anomalous torque and conflict with relativity in this case is rested. What is distilled as `Lorentz force' in standard electrodynamics, with relative velocity as the parameter, is an under-representation of two distinct physical phenomena, an effect due to Lorentz contraction and another due to the Ampere current-current interaction, rolled into one due to prejudice from special relativity applied only to linear motion. When both are included in the analysis of the problem there is no anomalous force or torque, ensuring the validity of Poincare's principle of relativity. The issue of validity of electrodynamics without the concept of absolute rest, however, is subtle and empirically open when general noninertial motion is considered, as I will discuss in another paper.

  8. The main properties and peculiarities of the Earth's motion relative to the center of mass

    Klimov, D. M.; Akulenko, L. D.; Kumakshev, S. A.


    The methods of theoretical and celestial mechanics and mathematical statistics have been used to prove that the Earth's motion relative to the center of mass, the polar wobble, in the principal approximation is a combination of two circumferences with a slow trend in the mean position corresponding to the annual and Chandler components. It has been established that the parameters (amplitude and phase shift) of the annual wobble are stable, while those of the Chandler component are less stable and undergo significant variations over the observed time intervals. It has been proven that the behavior of these polar motion parameters is attributable to the gravitational-tidal mechanisms of their excitation.

  9. On the dynamics and control of the relative motion between two spacecraft

    Yu, Shaohua


    The dynamics of the relative motion between two nearby spacecraft is investigated in a local orbital co-ordinate system. A phase plane analysis shows that a stable equilibrium state may exist in the motion. Based on this analysis, a control method called the range-rate control algorithm (RRCA) has been established. The controlled trajectory is stable and in a straight line. Furthermore, an omni-directional version of RRCA has also been introduced. The computation, measurement and propulsion scheme for the algorithm is very simple. As an illustrated example, the tethered satellite system as well as the in-orbit spacecraft rendezvous are simulated by the algorithm.

  10. Universal flow-density relation of single-file bicycle, pedestrian and car motion

    Zhang, Jun; Holl, Stefan; Boltes, Maik; Andresen, Erik; Schadschneider, Andreas; Seyfried, Armin


    The relation between flow and density, also known as the fundamental diagram, is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compare the results with previous studies for car and pedestrian motion in similar setups. In the space-time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite of their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.

  11. Universal flow-density relation of single-file bicycle, pedestrian and car motion

    Zhang, J., E-mail: [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Mehner, W., E-mail: [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Holl, S., E-mail: [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Boltes, M., E-mail: [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Andresen, E., E-mail: [Department of Computer Simulation for Fire Safety and Pedestrian Traffic, Bergische Universität Wuppertal, 42285 Wuppertal (Germany); Schadschneider, A., E-mail: [Institut für Theoretische Physik, Universität zu Köln, 50937 Köln (Germany); Seyfried, A., E-mail: [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Department of Computer Simulation for Fire Safety and Pedestrian Traffic, Bergische Universität Wuppertal, 42285 Wuppertal (Germany)


    The relation between flow and density is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compared the results with previous studies for car and pedestrian motion in similar setups. In the space–time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.

  12. On the motion of rotating bodies in field gravity theory and general relativity

    Baryshev, Yu V


    On the basis of Lagrangian formalism of relativistic field theory post-Newtonian equations of motion for a rotating body are derived in the frame of Feynman's quantum field gravity theory (FGT) and compared with corresponding geodesic equations in general relativity (GR). It is shown that in FGT the trajectory of a rotating test body does not depend on a choice of a coordinate system. The equation of translational motion of a gyroscope is applied to description of laboratory experiments with free falling rotating bodies and rotating bodies on a balance scale. Post-Newtonian relativistic effect of periodical modulation of the orbital motion of a rotating body is discussed for the case of planets of the solar system and for binary pulsars PSR B1913+16 and PSR B1259-63. In the case of binary pulsars with known spin orientations this effect gives a possibility to measure radiuses of neutron stars.

  13. Universal flow-density relation of single-file bicycle, pedestrian and car motion

    Zhang, J.; Mehner, W.; Holl, S.; Boltes, M.; Andresen, E.; Schadschneider, A.; Seyfried, A.


    The relation between flow and density is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compared the results with previous studies for car and pedestrian motion in similar setups. In the space-time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.

  14. Indifference to Chaotic Motion May Be Related to Social Disinterest in Children With Autism

    Haworth, Joshua; Kyvelidou, Anastasia; Fisher, Wayne; Stergiou, Nicholas


    Children with autism spectrum disorder tend to have little interest in the presence, actions, and motives of other persons. In addition, these children tend to present with a limited and overly redundant movement repertoire, often expressing hyperfixation and aversion to novelty. We explore whether this is related to a more fundamental lack of appreciation for various temporal dynamics, including periodic, chaotic, and aperiodic motion structures. Seven children with ASD (age, gender, and height matched with children without ASD) were asked to stand and watch the motion of a visual stimulus displayed on a large (55″) video monitor. Gaze and posture movements were recorded and assessed using cross recurrence quantification analysis for qualities of coordination, including rate and duration of bouts of coordination. Results showed that children with ASD do not express an affinity to chaotic motion of the stimulus in the same way as children without ASD. We contend that this indifference to chaotic motion is foundational to their general disinterest in biological motion.

  15. Children's looking preference for biological motion may be related to an affinity for mathematical chaos.

    Haworth, Joshua L; Kyvelidou, Anastasia; Fisher, Wayne; Stergiou, Nicholas


    Recognition of biological motion is pervasive in early child development. Further, viewing the movement behavior of others is a primary component of a child's acquisition of complex, robust movement repertoires, through imitation and real-time coordinated action. We theorize that inherent to biological movements are particular qualities of mathematical chaos and complexity. We further posit that this character affords the rich and complex inter-dynamics throughout early motor development. Specifically, we explored whether children's preference for biological motion may be related to an affinity for mathematical chaos. Cross recurrence quantification analysis (cRQA) was used to investigate the coordination of gaze and posture with various temporal structures (periodic, chaotic, and aperiodic) of the motion of an oscillating visual stimulus. Children appear to competently perceive and respond to chaotic motion, both in rate (cRQA-percent determinism) and duration (cRQA-maxline) of coordination. We interpret this to indicate that children not only recognize chaotic motion structures, but also have a preference for coordination with them. Further, stratification of our sample (by age) uncovers the suggestion that this preference may become refined with age.

  16. The relation of motion sickness to the spatial-temporal properties of velocity storage

    Dai, Mingjia; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard; Young, L. R. (Principal Investigator)


    Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45 degrees over 2 s to and from the upright position while being rotated at 138 degrees /s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the

  17. Relative Motion between the Rivera and North American Plates: Constraints from Focal Mechanisms

    Suárez, Gerardo; Jaramillo, Said H.; Bandy, William


    The direction and velocity of the Rivera Plate in western Mexico relative to the North American plate has been a source of controversy. The southeastern segment of this plate boundary has been the site of one of the largest subduction events observed in Mexico during the last 100 years: the 3 June 1932 earthquake (Mw 8.2). To the northwest of the rupture zone of the 1932 event, however, there are no other known large subduction events, either from the historical or instrumental record. We analyze all focal mechanisms in this northern segment of the plate boundary to define the direction of relative motion between these two plates. The largest event occurred beneath the Tres Marias Escarpment, the earthquake of 4 December 1948. The recomputed magnitude yields Mw 6.4. This event caused widespread damage in a penal colony on the Tres Marias Islands. Although the focal mechanism of the 1948 event is not well constrained, the first arrival data collected shows reverse faulting with P axes oriented in a NE-SW direction. This mechanism coincides with other two fault plane solutions of more recent events. These mechanisms indicate reverse faulting beneath the Tres Marias Escarpment. To the northwest of the Islas Marias, in area where no clear physiographic feature defines the plate limits, we identify a group of strike-slip events, where the E-W trending nodal plane indicates right-lateral motion. These mechanisms suggest that the relative motion between Rivera and North America may be taken up by right-lateral strike slip motion. The accuracy of the locations does not allow to define in detail the geometry of this plate boundary. The slip vectors determined from these focal mechanisms are compared with the flow lines resulting from the various poles of relative motion between Rivera and North America to constrain its location.

  18. Age-Related Impairment of Quality of Joint Motion in Vibroarthrographic Signal Analysis

    Dawid Bączkowicz


    Full Text Available Aging is associated with degenerative changes in articular surfaces leading to quantitative and qualitative impairment of joint motion. Therefore, the aim of this study is to evaluate an age-related quality of the patellofemoral joint (PFJ motion in the vibroarthrographic (VAG signal analysis. Two hundred and twenty individuals were enrolled in this study and divided into five groups according to age. The VAG signals were collected during flexion/extension knee motion using an acceleration sensor and described using four parameters (VMS, P1, P2, and H. We observed that values of parameters VMS, P1, and P2 increase in accordance with the age, but H level decreases. The most significant differences were achieved between the youngest and the oldest participants’ groups. Moreover, we show that parameters VMS, P1, and P2 positively correlate with age, contrary to negatively associated H parameter. Our results suggest that the impairment of joint motion is a result of age-related osteoarticular degenerative changes.

  19. Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

    Froyen, Vicky; Feldman, Jacob; Singh, Manish


    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.

  20. Einstein's equations from Einstein's inertial motion and Newton's law for relative acceleration

    Schmid, Christoph


    We show that Einstein's $R^{\\hat{0} \\hat{0}}$ equation for nonrelativistic matter and strong gravitational fields is identical with Newton's equation for relative radial acceleration of neighbouring freefalling particles, spherically averaged. These laws are explicitely identical with primary observer's (1) space-time slicing by radial 4-geodesics, (2) radially parallel Local Ortho-Normal Bases, LONBs, (3) Riemann normal 3-coordinates. Hats on indices denote LONBs. General relativity follows from Newton's law of relative acceleration, Einstein's inertial motion, Lorentz covariance, and energy-momentum conservation combined with Bianchi identity. The gravitational field equation of Newton-Gauss and Einstein's $R^{\\hat{0} \\hat{0}}$ equation are identical and linear in gravitational field for an inertial primary observer.--- Einstein's equivalence between fictitious forces and gravitational forces is formulated as equivalence theorem in the equations of motion. With this, the gravitational field equation of 19th...

  1. On the Relation of Earthquake Stress Drop and Ground Motion Variability

    Oth, A.; Miyake, H.; Bindi, D.


    The physical properties of the seismic source play a major role in the generation of earthquake ground motions. One of the key parameters typically used in this context is the so-called stress drop since it can be directly linked to the high-frequency spectral level of ground motion, and it is an important input parameter for ground motion modeling. At the same time, classically determined stress drop estimates from moment-corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than might be expected from the decomposition of ground motion variability into its between-event and within-event components following the random effects approach (Cotton et al., 2013). This discrepancy raises the question of whether classically determined stress drop variability is too large, which would have significant implications for ground motion prediction in seismic hazard analysis. We use the rich high-quality accelerometric databases available in Japan to derive non-parametric ground motion models on these data that serve as reference models. We then investigate the relation between the between-event terms for the individual earthquakes from these regressions with stress drop estimates determined nation-wide for crustal earthquakes. As a complement to the non-parametric models, we also apply a parametric mixed effects modeling approach to investigate the influence of between-event, between-region and between-sequence variability. The analysis is carried out for JMA equivalent seismic intensity, PGA and PGV data. Our results indicate a clear correlation of the between-event terms with stress drops estimates, both for non-parametric and parametric approaches - however with the interesting effect of the appearance of two major families of events with widely different stress drop, yet similar range of between-event terms. This effect is in agreement with the observation made by Cotton et al. (2013) that the between-event ground motion

  2. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska


    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  3. Long-term passive distance-bounded relative motion in the presence of TeX perturbations

    Chu, J.; Guo, J.; Gill, E.K.A.


    This paper presents closed-form solutions for the problem of long-term satellite relative motion in the presence of J2 perturbations, and introduces a design methodology for long-term passive distance-bounded relative motion. There are two key ingredients of closed-form solutions.One is the model of

  4. Conformal invariance and conserved quantities of dynamical system of relative motion

    Chen Xiang-Wei; Zhao Yong-Hong; Li Yan-Min


    This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion.The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simulta neously by the action of infinitesimal transformations.Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations.Finally an example is given to illustrate the application of the results.

  5. The theory of asynchronous relative motion I: time transformations and nonlinear corrections

    Roa, Javier; Peláez, Jesús


    Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.

  6. The theory of asynchronous relative motion I: time transformations and nonlinear corrections

    Roa, Javier; Peláez, Jesús


    Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.

  7. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions

  8. Development of attenuation relation for the near fault ground motion from the characteristic earthquake

    SHI Bao-ping; LIU Bo-yan; ZHANG Jian


    A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.

  9. Periodic motions of a satellite-gyrostat relative to its center of mass under the action of gravitational torque

    Sazonov, V. V.


    We investigated periodic motions of the axis of symmetry of a model satellite of the Earth, which are similar to the motions of the longitudinal axes of the Mir orbital station in 1999-2001 and the Foton-M3 satellite in 2007. The motions of these spacecraft represented weakly disturbed regular Euler precession with the angular momentum vector of motion relative to the center of mass close to the orbital plane. The direction of this vector during the motion was not practically changed. The model satellite represents an axisymmetric gyrostat with gyrostatic moment directed along the axis of symmetry. The satellite moves in a circular orbit and undergoes the action of the gravitational torque. The motion of the axis of symmetry of this satellite relative to the absolute space is described by fourth-order differential equations with periodic coefficients. The periodic solutions to this system with special symmetry properties are constructed using analytical and numerical methods.

  10. Regular and Chaotic Motion in General Relativity: The Case of a Massive Magnetic Dipole

    Kopáček, Ondřej; Karas, Vladimír; Kojima, Yasufumi


    Circular motion of particles, dust grains and fluids in the vicinity of compact objects has been investigated as a model for accretion of gaseous and dusty environment. Here we further discuss, within the framework of general relativity, figures of equilibrium of matter under the influence of combined gravitational and large-scale magnetic fields, assuming that the accreted material acquires a small electric charge due to interplay of plasma processes and photoionization. In particular, we employ an exact solution describing the massive magnetic dipole and we identify the regions of stable motion. We also investigate situations when the particle dynamics exhibits the onset of chaos. In order to characterize the measure of chaoticness we employ techniques of Poincar\\'e surfaces of section and of recurrence plots.

  11. Absolute and Relative Motion Measurements on a Model of a High-Speed Containership


    motivated a series of forced oscillation experiments on the SL-7 2 hull, designed to measure the various components of the rigid body equations of motion and...probes were originally designed to measure relative motion over a large range, from bottom emersion to deck immersion. However, their electronic... EXPERIEMTN : Zo/T = 0.037 0S•) 0.0746 0.1• 0.1100- 0.1470 OO 0 o o S I I I I I I I Fn -- 0.21’r- A8 ~ U’•’ 0ý Q.VL l 0 0 0 0 0 0 I I i i I i I Fn= 0.3 0.2 0

  12. Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases

    FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre


    This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.

  13. Long-Period Ground Motion Prediction Equations for Relative, Pseudo-Relative and Absolute Velocity Response Spectra in Japan

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.


    Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity ( based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between

  14. Experimenting relations between artists and scientists : the appropriation of motion sensors by dancers

    Fabienne MARTIN-JUCHAT


    Full Text Available We want to show here how recent innovations called Motion Capture, still being tested in laboratory on their potential uses, invite us to change our way to relate to the “technique”. We don’t want to question what the technique does to the social, nor what the social structures does to the technique, but we want to highlight the shifting principles that define interactions between technologies and humans. We therefore underline how using these motion sensors gives birth to different human modes of being present, co-present, or in a sensory and thymic interaction with technology. This article is based on experimental use tests, convoking both artists and engineers, questioning differently the relationship between technology, human and the interaction order. Our result is to question how using and being with these motion sensors, as a dancer, displace epistemological oppositions such as person/machine. It finally sheds light on how some others classical models can move, especially the semiotic decomposition of interaction processes and status.

  15. A new method for assessing relative dynamic motion of vertebral bodies during cyclic loading in vitro.

    Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K


    A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.


    MENG Xin; LI Jun-feng; GAO Yun-feng


    A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the relative orbit trajectory and geometric properties of satellite formation can be easily analyzed. First,the relative orbital elements are derived, and pointed out: if the eccentricity of the leading satellite is a small value, the relative orbit trajectory is determined by the intersection between an elliptic cylinder and a plane in the leading satellite orbit frame reference; and the parameters that describe the elliptic cylinder and the plane can be used to obtain the relative orbit trajectory and the relative orbital elements. Second, by analyzing the effects of gravitational perturbations on the relative orbit using the relative orbital elements,it is found that the propagation of a relative orbit consists of two parts: one is the drift of the elliptic cylinder; and the other is the rotation of the plane resulted from the rotation of the normal of the plane. Meanwhile, the analytic formulae for the drift and rotation rates of a relative trajectory under gravitational perturbations are presented. Finally, the relative orbit trajectory and the corresponding changes were analyzed with respect to the J2 perturbation.

  17. Ab initio study of edge effect on relative motion of walls in carbon nanotubes.

    Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V


    Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt∕nut pairs and nanobearings is discussed.

  18. Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion

    Xie Yin-Li; Jia Li-Qun; Luo Shao-Kai


    Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.

  19. The use of symmetrized valence and relative motion coordinates for crystal potentials

    McMurry, H. L.; Hansen, Flemming Yssing


    Symmetrized valence coordinates are linear combinations of conventional valence coordinates which display the symmetry of a set of atoms bound by the valence bonds. Relative motion coordinates are relative translations, or relative rotations, of two or more strongly bonded groups of atoms among...... which relatively weak forces act. They are useful for expressing interactions between molecules in molecular crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates defined by these procedures possess elements of symmetry in common with the bonding...... interaction constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily zero. They may be small, also, for coordinates which belong to different representations of the local symmetry when this is not the same as for the crystal. Procedures are given for defining...

  20. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Rosati Giulio


    visuomotor perturbation, whereas controller-task-related sound feedback did not. This result was particularly interesting, as the subjects relied more on auditory augmentation of the visualized target motion (which was altered with respect to arm motion by the visuomotor perturbation, rather than on sound feedback provided in the controller space, i.e., information directly related to the effective target motion of their arm. Conclusions Our results indicate that auditory augmentation of visual feedback can be beneficial during the execution of upper limb movement exercises. In particular, we found that continuous task-related information provided through sound, in addition to visual feedback can improve not only performance but also the learning of a novel visuomotor perturbation. However, error-related information provided through sound did not improve performance and negatively affected learning in the presence of the visuomotor perturbation.

  1. The Paradigm of Projectile Motion and its Consequences for Special Relativity. Making Sense of Physics

    Klevgard, Paul A


    The classical (Newtonian) concept of projectile motion underwent a series of seemingly minor changes and adjustments between the discovery of the quantum (Planck, 1900) and the early codification of quantum theory (Dirac, 1928). The goal of physicists in this period was to keep change to a minimum and preserve as much as possible of the traditional projectile paradigm (TPP). These adjustments were successful in masking an all-out projectile paradigm crisis, but they have left us with a conceptual muddle. This has been especially deleterious for special relativity and our understanding of space contraction and time dilation.

  2. Noether Symmetry and Noether Conserved Quantity of Nielsen Equation for Dynamical Systems of Relative Motion

    XIE Yin-Li; YANG Xin-Fang; JIA Li-Qun


    Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied.The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given.Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained.Finally, an example is given to illustrate the application of the results.PACS numbers: 11.30.-j, 45.20.Jj, 02.20.Sv

  3. A GPS estimate of relative motion between North and South America

    Dixon, Timothy H.; Mao, Ailin

    GPS velocity data are used to estimate the Euler vector describing rigid body motion of North America relative to South America. Assuming the boundary between the North and South American plates is located near the Fifteen Twenty fracture zone in the equatorial Atlantic, the Euler vector predicts extension across the Royal Trough up to 1 mm/yr, and convergence across the Barracuda Ridge at about 2 mm/yr, in agreement with geological estimates averaged over tens of millions of years. Further west, convergence between North and South America at rates up to 8 mm/yr may contribute to deformation of the Caribbean plate along its southwest boundary with South America.

  4. Weather-related Ground Motions Recorded by Taiwan Broadband Seismic Network Stations

    Yang, C. F.; Chi, W. C.; Lai, Y. J.


    Broadband seismometers record ground motions, which can be induced by weather-related processes. Analyzing such signals might help to better understand those natural processes. Here, we used continuous seismic data, meteorological data and stream data to analyze the weather-related ground motions during typhoon cases and rainy season case in Taiwan. We detected some long period seismic signals at the station Mahsi (MASB) during three meteorological cases (Typhoon Kalmaegi in 2008, Typhoon Morakot in 2009 and the East Asian rainy season in 2012). The amplitude of the seismic waveform correlated with the amount of the precipitation and the derivative of water level and discharge in the nearby river. According to the relationships of waveforms in main and minor rainfall events, we derived apparent source time functions (ASTFs) and used the ASTFs to estimate and quantify the precipitation of main rainfall events in the cases. The estimated precipitation has high correlation coefficients (> 0.82) with the observation. It shows that the long period seismic data may be applied to rainfall monitoring.

  5. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    Luquette, Richard J.


    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  6. Special relativity and superluminal motions: a discussion of some recent experiments

    Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione


    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.

  7. The forms of three-order Lagrangian equation in relative motion

    Ma Shan-Jun; Liu Ming-Ping; Huang Pei-Tian


    In this paper, the general expressions of three-order Lagrangian equations in a motional coordinate system are obtained. In coordinate systems with some specific forms of motion, the expressions corresponding to these equations are also presented.

  8. Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors

    Sondre Sanden Tordal


    Full Text Available This paper presents a novel approach for estimating the relative motion between two moving offshore vessels. The method is based on a sensor fusion algorithm including a vision system and two motion reference units (MRUs. The vision system makes use of the open-source computer vision library OpenCV and a cube with Aruco markers placed onto each of the cube sides. The Extended Quaternion Kalman Filter (EQKF is used for bad pose rejection for the vision system. The presented sensor fusion algorithm is based on the Indirect Feedforward Kalman Filter for error estimation. The system is self-calibrating in the sense that the Aruco cube can be placed in an arbitrary location on the secondary vessel. Experimental 6-DOF results demonstrate the accuracy and efficiency of the proposed sensor fusion method compared with the internal joint sensors of two Stewart platforms and the industrial robot. The standard deviation error was found to be 31mm or better when the Arcuo cube was placed at three different locations.

  9. Review of seismicity and ground motion studies related to development of seismic design at SRS

    Stephenson, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Acree, J.R. [Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC (United States)


    The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA`s developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented.

  10. Universal current-velocity relation of skyrmion motion in chiral magnets

    Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto


    Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.


    Guangqian WANG; Xudong FU; Xingkui WANG


    Formulating underlying mechanisms of concentrated solid-liquid flows is essential for simulation of various industrial processes and natural phenomena. A generalized constitutive model for particle motion in flows with low to moderate solids concentrations is developed. This generalized model facilitates characterization of inelastic collisions, particle-fluid interactions, and shearing effects.Moderately concentrated simple shear flows of a sand-water mixture are analyzed, and comparisons of model predictions and experimental data are in good agreement. This model exhibits sound performance in characterizing particle motion for wide ranges of concentration and shear rate, and may supply a reasonable and competent alternative to previous models developed for dilute and rapid-granular flows when applied to moderately concentrated situations. The concentration approaches zero (C → 0) asymptote is observed at a relatively high shear rate in model predictions.Assumption of low collisional dissipation of the particle phase as C → 0 is more reasonable for this observation, compared to that without the interstitial fluid effect. Accurately modeling energy dissipation is important for characterizing the stability of dilute simple shear flows of solid-liquid mixtures. Incorporating friction forces will also facilitate improvement of the applicability of this generalized model to flows at extremely high concentrations.

  12. [Comment on “Changes in relative sea level”] Changes in sea level: The question of secular motion

    Dickman, S. R.

    I am writing this note in reference to one paragraph of a generally interesting report, “Changes in Relative Mean Sea Level’ [by the IAPSO Advisory Committee on Tides and Mean Sea Level], which appeared in the November 5, 1985 issue of Eos [p. 754]. In this paragraph the authors question the nature and even existence of the secular motion of the earth's rotation pole. The paragraph states that because of supposed extreme irregularities in the observed (ILS) motion, “it may even be that the entire apparent secular motion of the pole is an artifact of systematic efforts [this word should probably read ‘errors’] in the ILS” data.

  13. Motion of small bodies in general relativity: foundations and implementations of the self-force

    Pound, Adam


    Extreme mass-ratio inspirals, in which solar-mass compact bodies spiral into supermassive black holes, are an important potential source for gravitational wave detectors. Because of the extreme mass-ratio, one can model these systems using perturbation theory. However, in order to relate the motion of the small body to the emitted waveform, one requires a model that is accurate on extremely long timescales. Additionally, in order to avoid intractable divergences, one requires a model that treats the small body as asymptotically small rather than exactly pointlike. Both of these difficulties can be resolved by using techniques of singular perturbation theory. I begin this dissertation with an analysis of singular perturbation theory on manifolds, including the common techniques of matched asymptotic expansions and two-timescale expansions. I then formulate a systematic asymptotic expansion in which the metric perturbation due to the body is expanded while a representative worldline is held fixed, and I contras...

  14. Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit

    Cho, Hancheol; Park, Sang-Young; Choi, Kyu-Hong


    The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.

  15. Effect of head and jaw position on respiratory-related motion of the genioglossus.

    Cai, Mingshu; Brown, Elizabeth C; Hatt, Alice; Cheng, Shaokoon; Bilston, Lynne E


    Head and jaw position influence upper airway patency and electromyographic (EMG) activity of the main upper airway dilator muscle, the genioglossus. However, it is not known whether changes in genioglossus EMG activity translate into altered muscle movement during respiration. The aim of this study was to determine the influence of head and jaw position on dilatory motion of the genioglossus in healthy adult men during quiet breathing by measuring the displacement of the posterior tongue in six positions--neutral, head extension, head rotation, head flexion, mouth opening, and mandibular advancement. Respiratory-related motion of the genioglossus was imaged with spatial modulation of magnetization (SPAMM) in 12 awake male participants. Tissue displacement was quantified with harmonic phase (HARP) analysis. The genioglossus moved anteriorly beginning immediately before or during inspiration, and there was greater movement in the oropharynx than in the velopharynx in all positions. Anterior displacements of the oropharyngeal tongue varied between neutral head position (0.81 ± 0.41 mm), head flexion (0.62 ± 0.45 mm), extension (0.39 ± 0.19 mm), axial rotation (0.39 ± 0.2 mm), mouth open (1.24 ± 0.72 mm), and mandibular advancement (1.08 ± 0.65 mm). Anteroposterior displacement increased in the mouth-open position and decreased in the rotated position relative to cross-sectional area (CSA) (P = 0.002 and 0.02, respectively), but CSA did not independently predict anteroposterior movement overall (P = 0.057). The findings of this study suggest that head position influences airway dilation during inspiration and may contribute to variation in airway patency in different head positions. Copyright © 2016 the American Physiological Society.

  16. Particle motion measured at an operational wind turbine in relation to hearing sensitivity in fish.

    Sigray, Peter; Andersson, Mathias H


    The effect of sound pressure on the hearing of fish has been extensively investigated in laboratory studies as well as in field trials in contrast to particle motion where few studies have been carried out. To improve this dearth of knowledge, an instrument for measuring particle motion was developed and used in a field trial. The particle motion is measured using a neutrally buoyant sphere, which co-oscillates with the fluid motion. The unit was deployed in close vicinity to a wind turbine foundation at Utgrunden wind farm in the Baltic Sea. Measurements of particle motion were undertaken at different distances from the turbine as well as at varying wind speeds. Levels of particle motion were compared to audiograms for cod (Gadus morhua L.) and plaice (Pleuronectes platessa L.).

  17. Gauged motion in general relativity and in Kaluza-Klein theories

    Nouri-Zonoz, M; Nouri-Zonoz, Mohammad; Tavanfar, Ali Reza


    In a recent paper [1] a new generalization of Killing motion, the {\\it gauged motion}, has been introduced for stationary spacetimes where it was shown that the physical symmetries of such spacetimes are well described through this new symmetry. In this article after a more detailed study in stationary case we present the definition of gauged motion for general spacetimes. The definition is based on the gauged Lie derivative induced by a threading family of observers and the relevant reparametrization invariance. We also extend the gauged motion to the case of Kaluza-Klein theories.

  18. Survey on normal distributions,central limit theorem,Brownian motion and the related stochastic calculus under sublinear expectations


    This is a survey on normal distributions and the related central limit theorem under sublinear expectation.We also present Brownian motion under sublinear expectations and the related stochastic calculus of It?’s type.The results provide new and robust tools for the problem of probability model uncertainty arising in financial risk,statistics and other industrial problems.

  19. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations

    PENG ShiGe


    This is a survey on normal distributions and the related central limit theorem under sublinear expectation. We also present Brownian motion under sublinear expectations and the related stochastic calculus of Ito's type. The results provide new and robust tools for the problem of probability model uncertainty arising in financial risk, statistics and other industrial problems.

  20. On the integrability of the motion of 3D-Swinging Atwood machine and related problems

    Elmandouh, A.A., E-mail: [Department of Mathematics and Statistics, Faculty of Science, King Faisal University, P.O. Box 400, Al-Ahsaa 31982 (Saudi Arabia); Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)


    In the present article, we study the problem of the motion of 3D- Swinging Atwood machine. A new integrable case for this problem is announced. We point out a new integrable case describing the motion of a heavy particle on a titled cone.

  1. Relative motions of fragments of the split comets. I - A new approach

    Sekanina, Z.


    A hypothesis is proposed which interprets the relative motion of two fragments of a split comet in terms of a slight difference between their effective solar attraction rather than in terms of the impulse imparted to them at separation. A quantitative version of this hypothesis is formulated by assuming that the difference in effective solar attraction varies with heliocentric distance in direct proportion to the actual solar attraction so that the ratio of the two forces is constant and equal to a measure of the relative effect between the two fragments under consideration. Results obtained using this formulation are compared with observational evidence on the split comets P/Biela, Liais 1860 I, 1882 II, P/Brooks 2 1889 V, Swift 1899 I, Kopff 1905 IV, Mellish 1915 II, Taylor 1916 I, 1947 XII, Wirtanen 1957 VI, Ikeya-Seki 1965 VIII, Kohoutek 1970 III, and West 1975n. The hypothesis is found to fail only in the case of comet Wirtanen 1957 VI. Some unusual phenomena associated with split comets are examined.

  2. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E


    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  3. Judgements about the relation between force and trajectory variables in verbally described ballistic projectile motion.

    White, Peter A


    How accurate are explicit judgements about familiar forms of object motion, and how are they made? Participants judged the relations between force exerted in kicking a soccer ball and variables that define the trajectory of the ball: launch angle, maximum height attained, and maximum distance reached. Judgements tended to conform to a simple heuristic that judged force tends to increase as maximum height and maximum distance increase, with launch angle not being influential. Support was also found for the converse prediction, that judged maximum height and distance tend to increase as the amount of force described in the kick increases. The observed judgemental tendencies did not resemble the objective relations, in which force is a function of interactions between the trajectory variables. This adds to a body of research indicating that practical knowledge based on experiences of actions on objects is not available to the processes that generate judgements in higher cognition and that such judgements are generated by simple rules that do not capture the objective interactions between the physical variables.

  4. An instrumented spacial linkage for monitoring relative three-dimensional motion between fracture fragments.

    Gardner, T N; Evans, M; Kyberd, P J


    A mechanical linkage with electro-magnetic sensors (a displacement transducer) is described, which may be used to measure accurately the relative motion at a bony junction such as a fracture. The linkage may be fixed to bone screws of externally-fixated fractures during routine patient activity, to measure three-dimensional inter fragmentary displacements arising from dynamic loading. Movements of the linkage are monitored by six Hall Effect devices for the six degrees of freedom (three orthogonal translations and three rotations about the translating axes). Measurements are made within error bounds of +/- 0.025 mm and +/- 0.025 deg over a range of 5 mm for the two orthogonal transverse translations, 8 mm for axial translation and 8 deg for the three rotations. Movements at the linkage, remote from the fracture, are then translated mathematically to the fracture site, assuming rigid screw contact with the bone. Displacements of the distal fragment in relation to the proximal, at the fracture center, can then be expressed anatomically through anterior, medial, and distal translations, and rotations in the sagittal, coronal, or transverse planes.

  5. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    Hogan, Erik A.; Schaub, Hanspeter


    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  6. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)


    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  7. Relativistic Dynamics of Relative Motions (I): Post-Newtonian Extension of the Hill-Clohessy-Wiltshire Equations

    Xu, Peng


    With continuous advances in technologies related to deep space ranging and satellite gravity gradiometry, corrections from general relativity to the dynamics of relative orbital motions will certainly become important. In this work, we extend,in a systematic way, the Hill-Clohessy-Wiltshire Equations to include the complete first order post-Newtonian effects from general relativity. Within certain short time limit, post-Newtonian corrections to general periodic solutions of the Hill-Clohessy-Wiltshire Equations are also worked out.

  8. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports.

    Van Dillen, Linda R; Bloom, Nancy J; Gombatto, Sara P; Susco, Thomas M


    To examine whether passive hip rotation motion was different between people with and without low back pain (LBP) who regularly participate in sports that require repeated rotation of the trunk and hips. We hypothesized that people with LBP would have less total hip rotation motion and more asymmetry of motion between sides than people without LBP. Two group, case-control. University-based musculoskeletal analysis laboratory. Forty-eight subjects (35 males, 13 females; mean age: 26.56+/-7.44 years) who reported regular participation in a rotation-related sport participated. Two groups were compared; people with LBP (N=24) and people without LBP (N=24; NoLBP). Data were collected on participant-related, LBP-related, sport-related and activity-related variables. Measures of passive hip rotation range of motion were obtained. The differences between the LBP and NoLBP groups were examined. People with and without a history of LBP were the same with regard to all participant-related, sport-related and activity-related variables. The LBP group had significantly less total rotation (P=.035) and more asymmetry of total rotation, right hip versus left hip, (P=.022) than the NoLBP group. Left total hip rotation was more limited than right total hip rotation in the LBP group (P=.004). There were no significant differences in left and right total hip rotation for the NoLBP group (P=.323). Among people who participate in rotation-related sports, those with LBP had less overall passive hip rotation motion and more asymmetry of rotation between sides than people without LBP. These findings suggest that the specific directional demands imposed on the hip and trunk during regularly performed activities may be an important consideration in deciding which impairments may be most relevant to test and to consider in prevention and intervention strategies.

  9. Can headway reduction in fog be explained by impaired perception of relative motion?

    Caro, Stéphane; Cavallo, Viola; Marendaz, Christian; Boer, Erwin R; Vienne, Fabrice


    The goal of this study was to provide a better understanding of driver behavior in fog. Impaired perception of changes in headway is hypothesized to be one of the reasons for shorter following distances in foggy conditions as compared with clear weather. In the experiments described here, we measured response time for discriminating between whether the vehicle ahead is getting closer or farther away. Several visibility conditions were studied, ranging from a no-fog condition to a condition in which the vehicle could be seen only by its rear fog lights. Fog conditions increased response times when the outline of the vehicle was barely visible or not visible at all. The longer response times in fog were attributable to the low contrast of the vehicle outline when still visible and to the smaller spacing between the two lights when the outline could not be properly perceived. Moreover, response times were found to be shorter for shorter following distances and for faster accelerations. Reducing headway could be a way for drivers to achieve faster discrimination of relative motion in foggy weather. More specifically, shortening one's following distance until visibility of the lead vehicle changes from bad to good may have a perceptual control benefit, insofar as the response time gain compensates for the reduction in headway under these conditions. Potential applications include improving traffic safety. The results provide a possible explanation for close following in fog and point out the importance of rear-light design under these conditions.

  10. Multiple routes to mental animation: language and functional relations drive motion processing for static images.

    Coventry, Kenny R; Christophel, Thomas B; Fehr, Thorsten; Valdés-Conroy, Berenice; Herrmann, Manfred


    When looking at static visual images, people often exhibit mental animation, anticipating visual events that have not yet happened. But what determines when mental animation occurs? Measuring mental animation using localized brain function (visual motion processing in the middle temporal and middle superior temporal areas, MT+), we demonstrated that animating static pictures of objects is dependent both on the functionally relevant spatial arrangement that objects have with one another (e.g., a bottle above a glass vs. a glass above a bottle) and on the linguistic judgment to be made about those objects (e.g., "Is the bottle above the glass?" vs. "Is the bottle bigger than the glass?"). Furthermore, we showed that mental animation is driven by functional relations and language separately in the right hemisphere of the brain but conjointly in the left hemisphere. Mental animation is not a unitary construct; the predictions humans make about the visual world are driven flexibly, with hemispheric asymmetry in the routes to MT+ activation.

  11. Equation of motion of canonical tensor model and Hamilton-Jacobi equation of general relativity

    Chen, Hua; Sato, Yuki


    The canonical tensor model (CTM) is a rank-three tensor model formulated as a totally constrained system in the canonical formalism. The constraint algebra of CTM has a similar structure as that of the ADM formalism of general relativity, and is studied as a discretized model for quantum gravity. In this paper, we analyze the classical equation of motion (EOM) of CTM in a formal continuum limit through a derivative expansion of the tensor up to the forth order, and show that it is the same as the EOM of a coupled system of gravity and a scalar field derived from the Hamilton-Jacobi equation with an appropriate choice of an action. The action contains a scalar field potential of an exponential form, and the system classically respects a dilatational symmetry. We find that the system has a critical dimension, given by six, over which it becomes unstable due to the wrong sign of the scalar kinetic term. In six dimensions, de Sitter spacetime becomes a solution to the EOM, signaling the emergence of a conformal s...

  12. Canonical transformations relating the oscillator and Coulomb problems and their relevance for collective motions

    Moshinsky, M.; Seligman, T.H.


    The present paper can be viewed from two standpoints. The first is that it derives the canonical transformation that takes the Hamiltonian of the Coulomb problem (in the Fock--Bargmann formulation) into that of the harmonic oscillator, while transforming the angular momenta of both problems into each other. The second is the one in which the solution of the previous problem is required if we wish to find the canonical transformation relating microscopic and macroscopic collective models, where the former is derived from a system of A particles moving in two dimensions and interacting through harmonic oscillator forces. The canonical transformation shows the existence of a U(3) symmetry group in the microscopic collective model corresponding to that of the three-dimensional oscillator which is the Hamiltonian of the macroscopic collective model. The importance of this result rests on the fact that had the motion of the particles taken place in the physical three-dimensional space, rather than the hypothetical two-dimensional one discussed here, the symmetry group would have been U(6) rather than U(3). Thus, the group theoretical structure of an s-d boson picture or, equivalently, of a generalized Bohr--Mottelson approach, is present implicitly in an A-body system interacting through harmonic oscillator forces.

  13. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.


    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  14. Examining the effect of transverse motion on retinal biometric identifiers relating to shipboard security mechanisms.


    Approved for public release; distribution is unlimited The use of retinal biometric identifiers as security devices in shipboard applications was investigated with the use of the DOT 7.5(new version) and DAISY 7. 5( old version) scanners of the Eye-Dentify Co. of Beaverton, Oregon. Motion testing was the primary purpose of the thesis. It was the first occurance of dynamic testing on any type of retinal pattern recognition device. A transverse motion(only) simulator tha...

  15. Effect of the Four-Step Learning Cycle Model on Students' Understanding of Concepts Related to Simple Harmonic Motion

    Madu, B. C.


    The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…

  16. Friction of Teflon-S-coated Ti-6Al-4V under conditions of oscillatory relative motion

    Ligterink, D.J.; Verkerke, Gijsbertus Jacob; de Gee, A.W.J.


    An extendable prosthesis for implantation in a human leg has been developed. The friction forces during extension of the prosthesis must be low, so a coating of Teflon-S was applied to the sliding surfaces. During walking, damage can occur as a result of oscillatory relative motion. Therefore experi

  17. Recent achievements in the Hamiltonian treatment of the dynamics and motion of compact binaries in general relativity

    Schäfer, Gerhard [Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut, Max-Wien-Pl. 1, D-07743 Jena, EU (Germany)


    The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.

  18. Age-related changes in cervical sagittal range of motion and alignment.

    Park, Moon Soo; Moon, Seong-Hwan; Lee, Hwan-Mo; Kim, Tae-Hwan; Oh, Jae Keun; Nam, Ji Hoon; Riew, K Daniel


    Study Design Retrospective cohort study. Objective To compare sagittal cervical range of motion (ROM) and alignment in young versus middle-aged adults. Methods One hundred four asymptomatic adults were selected randomly out of 791 subjects who underwent lateral cervical radiographs in neutral, flexion, and extension positions. They were divided into two groups: young (age 20 to 29, 52 people) and middle-aged adults (age 50 to 59, 52 people). We determined the ROMs of upper cervical (occipital-C2 angle), midcervical (C2-C7 angle), and cervicothoracic spine (cervicosternal angle). We compared the alignment differences of the two groups by calculating the distances between C2 and C7 plumb lines, and C2 central-offset distance. Results In neutral position, there was no significant difference between young and middle-aged adults. However, in flexion, C2-C7 angle, distance between C2-C7 plumb lines, and C2 central-offset distance decreased with age. In extension, C2-C7 angle and C2 central-offset distance decreased with age. During flexion and extension, midcervical ROM and the range of C2 central-offset distance decreased in the middle-aged group. However, there was no difference between the two age groups in the ROM of the upper cervical and the cervicothoracic regions during flexion and extension. Conclusion We found that, despite of the presence of age-related cervical alignment changes, the only difference between the two groups was in the sagittal ROM of the midcervical spine during flexion and extension. Only the ROM of the midcervical spine appears to change significantly, consistent with findings that these levels are most likely to develop both symptomatic and asymptomatic degenerative changes.

  19. A Simple Time Domain Collocation Method to Precisely Search for the Periodic Orbits of Satellite Relative Motion

    Xiaokui Yue


    Full Text Available A numerical approach for obtaining periodic orbits of satellite relative motion is proposed, based on using the time domain collocation (TDC method to search for the periodic solutions of an exact J2 nonlinear relative model. The initial conditions for periodic relative orbits of the Clohessy-Wiltshire (C-W equations or Tschauner-Hempel (T-H equations can be refined with this approach to generate nearly bounded orbits. With these orbits, a method based on the least-squares principle is then proposed to generate projected closed orbit (PCO, which is a reference for the relative motion control. Numerical simulations reveal that the presented TDC searching scheme is effective and simple, and the projected closed orbit is very fuel saving.

  20. Strong Earthquake Motion Estimates for the UCSB Campus, and Related Response of the Engineering 1 Building

    Archuleta, R.; Bonilla, F.; Doroudian, M.; Elgamal, A.; Hueze, F.


    This is the second report on the UC/CLC Campus Earthquake Program (CEP), concerning the estimation of exposure of the U.C. Santa Barbara campus to strong earthquake motions (Phase 2 study). The main results of Phase 1 are summarized in the current report. This document describes the studies which resulted in site-specific strong motion estimates for the Engineering I site, and discusses the potential impact of these motions on the building. The main elements of Phase 2 are: (1) determining that a M 6.8 earthquake on the North Channel-Pitas Point (NCPP) fault is the largest threat to the campus. Its recurrence interval is estimated at 350 to 525 years; (2) recording earthquakes from that fault on March 23, 1998 (M 3.2) and May 14, 1999 (M 3.2) at the new UCSB seismic station; (3) using these recordings as empirical Green's functions (EGF) in scenario earthquake simulations which provided strong motion estimates (seismic syntheses) at a depth of 74 m under the Engineering I site; 240 such simulations were performed, each with the same seismic moment, but giving a broad range of motions that were analyzed for their mean and standard deviation; (4) laboratory testing, at U.C. Berkeley and U.C. Los Angeles, of soil samples obtained from drilling at the UCSB station site, to determine their response to earthquake-type loading; (5) performing nonlinear soil dynamic calculations, using the soil properties determined in-situ and in the laboratory, to calculate the surface strong motions resulting from the seismic syntheses at depth; (6) comparing these CEP-generated strong motion estimates to acceleration spectra based on the application of state-of-practice methods - the IBC 2000 code, UBC 97 code and Probabilistic Seismic Hazard Analysis (PSHA), this comparison will be used to formulate design-basis spectra for future buildings and retrofits at UCSB; and (7) comparing the response of the Engineering I building to the CEP ground motion estimates and to the design

  1. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution.

    Well, Lennart; Rausch, Vanessa Hanna; Adam, Gerhard; Henes, Frank Oliver; Bannas, Peter


    Purpose Varying frequencies (5 - 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results. Materials and Methods Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were  0.05). Conclusion We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM. Key Points:  · Gadoxetate disodium causes TSM in a relevant number of patients.. · The frequency of TSM is similar between the USA, Japan and Germany.. · To date, no validated risk factors for TSM could be identified.. Citation Format · Well L, Rausch VH, Adam G et al. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution. Fortschr Röntgenstr 2017; 189: 651 - 660. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Comparison of impact forces, accelerations and ankle range of motion in surfing-related landing tasks.

    Lundgren, Lina E; Tran, Tai T; Nimphius, Sophia; Raymond, Ellen; Secomb, Josh L; Farley, Oliver R L; Newton, Robert U; Sheppard, Jeremy M


    This study aimed to describe the impact forces, accelerations and ankle range of motion in five different landing tasks that are used in training and testing for competitive surfing athletes, to assist coaches in the prescription of landing task progression and monitoring training load. Eleven competitive surfing athletes aged 24 ± 7 years participated, and inertial motion sensors were fixed to the anterior aspect of the feet, mid-tibial shafts, sacrum and eighth thoracic vertebrae on these athletes. Three tasks were performed landing on force plates and two tasks in a modified gymnastics set-up used for land-based aerial training. Peak landing force, resultant peak acceleration and front and rear side ankle dorsiflexion ranges of motion during landing were determined. The peak acceleration was approximately 50% higher when performing aerial training using a mini-trampoline and landing on a soft-density foam board, compared to a similar landing off a 50 cm box. Furthermore, the ankle ranges of motion during the gymnastic type landings were significantly lower than the other landing types (P ≤ 0.05 and P ≤ 0.001), for front and rear sides, respectively. Conclusively, increased task complexity and specificity of the sport increased the tibial peak acceleration, indicating greater training load.

  3. Indexical Relations and Sound Motion Pictures in L2 Curricula: The Dynamic Role of the Teacher

    Chen, Liang; Oller, John W., Jr.


    Well-chosen sound motion pictures (SMPs) can be excellent language teaching tools for presenting facts and providing comprehensible input in the target language. They give access to content and authentic surface forms in the target language as well as to the associations between them. SMPs also allow repeated exposures, but they are rarely…

  4. Relating lateralization of eye use to body motion in the avoidance behavior of the chameleon (Chamaeleo chameleon.

    Avichai Lustig

    Full Text Available Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation. We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i eye use and body motion were, each, lateralized at the tested group level (N = 26, (ii in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups, (iii the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i in the left-biased sub-group, eye use is not lateralized, (ii in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.

  5. Earth Oblateness and Relative Sun Motion Considerations in the Determination of an Ideal Orbit for the Nimbus Meteorological Satellite

    Bandeen, William R.


    It is desired that the Nimbus meteorological satellite always cross the equator around local noon and, half-an-orbit later, cross the equator in the other direction around local midnight. The application of the phenomenon of nodal regression toward this end is discussed, and an analysis of the parameters angles of inclination, periods, and heights of such "ideal" circular orbits is presented. Also, the relative motion of the apparent versus the fictitious mean sun is briefly discussed.

  6. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.


    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  7. Simulation paradoxes related to a fractional Brownian motion with small Hurst index

    Makogin, Vitalii


    We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed $N$, the error of approximation $\\mathbf {E}\\max_{t\\in[0,1]}B^H(t)-\\mathbf {E}\\max_{i=\\overline{1,N}}B^H(i/N)$ grows rapidly to $\\infty$ as the Hurst index tends to 0.

  8. Age-Related Changes in Cervical Sagittal Range of Motion and Alignment

    Park, Moon Soo; Moon, Seong-Hwan; Lee, Hwan-Mo; Kim, Tae-Hwan; Oh, Jae Keun; Nam, Ji Hoon; Riew, K. Daniel


    Study Design Retrospective cohort study. Objective To compare sagittal cervical range of motion (ROM) and alignment in young versus middle-aged adults. Methods One hundred four asymptomatic adults were selected randomly out of 791 subjects who underwent lateral cervical radiographs in neutral, flexion, and extension positions. They were divided into two groups: young (age 20 to 29, 52 people) and middle-aged adults (age 50 to 59, 52 people). We determined the ROMs of upper cervical (occipital...

  9. Vortical Motions of Baryonic Gas in the Cosmic Web: Growth History and Scaling Relation

    Zhu, Weishan


    The vortical motions of the baryonic gas residing in large scale structures are investigated by cosmological hydrodynamic simulations. Proceeding in the formation of the cosmic web, the vortical motions of baryonic matter are pumped up by baroclinity in two stages, i.e., the formation of sheets, and filaments. The mean curl velocity are about $< 1$, 1-10, 10-150, 5-50 km/s in voids, sheets, filaments and knots at $z=0$, respectively. The scaling of the vortical velocity of gas can be well described by the She-Leveque hierarchical turbulence model in the range of $l<0.65(1.50) h^{-1}$ Mpc in simulation of box size 25(100) $h^{-1}$ Mpc. The fractal Hausdorff dimension of vortical motions, $d$, revealed by velocity structure functions, is $\\sim 2.1-2.3$($\\sim 1.8-2.1$). It is slightly larger than the fractal dimension of mass distribution in filaments, $\\textit{D}^f \\sim 1.9-2.2$, and smaller than the fractal dimension of sheets, $\\textit{D}^s \\sim 2.4-2.7$. The vortical kinetic energy of baryonic gas is m...

  10. Isla Guadalupe, Mexico (GUAX, SCIGN/PBO) a Relative Constraint for California Borderland and Northern Gulf of California Motions.

    Gonzalez-Garcia, J. J.


    Using ITRF2000 as a common reference frame link, I analyzed survey mode and permanent GPS published results, together with SOPAC public data and results (, in order to evaluate relative present day crustal deformation in California and northern Mexico. The crustal velocity field of Mexico (Marquez-Azua and DeMets, 2003) obtained from continuous GPS measurements conducted by Instituto Nacional de Geografia e Informatica (INEGI) for 1993-2001, was partially used. The preferred model for an instantaneous rigid motion between North-America and Pacific plates (NAPA), is obtained using results of Isla Guadalupe GPS surveys (1991-2002) giving a new constraint for Pacific plate (PA) motion (Gonzalez-Garcia et al., 2003). It produces an apparent reduction of 1 mm/yr in the absolute motion in the border zone between PA and North-America (NA) plates in this region, as compared with other GPS models (v.g. Prawirodirdjo and Bock, 2004); and it is 3 mm/yr higher than NNRNUVEL-1A. In the PA reference frame, westernmost islands from San Francisco (FARB), Los Angeles (MIG1), and Ensenada (GUAX); give current residuals of 1.8, 1.7 and 0.9 mm/yr and azimuths that are consistent with local tectonic setting, respectively. In the NA reference frame, besides the confirmation of 2 mm/yr E-W extension for the southern Basin and Range province in northern Mexico; a present day deformation rate of 40.5 mm/yr between San Felipe, Baja California (SFBC) and Hermosillo, Sonora, is obtained. This rate agrees with a 6.3 to 6.7 Ma for the "initiation of a full sea-floor spreading" in the northern Gulf of California. SFBC has a 7 mm/yr motion in the PA reference frame, giving then, a full NAPA theoretical absolute motion of 47.5 mm/yr. For Puerto Penasco, Sonora (PENA) there is a NAPA motion of 46.2 mm/yr and a residual of 1.2 mm/yr in the NA reference frame, this site is located only 75 km to the northeast from the Wagner basin center. For southern Isla Guadalupe (GUAX) there

  11. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking

    Saunders, Jeffrey A.


    Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194

  12. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    Ge, Y; Colvill, E; O’Brien, R; Keall, P [Radiation Physics Laboratory, University of Sydney, NSW (Australia); Booth, J [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW (Australia)


    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eye view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs

  13. An Exploration of the Perception of Dance and Its Relation to Biomechanical Motion: A Systematic Review and Narrative Synthesis.

    Chang, Michael; Halaki, Mark; Adams, Roger; Cobley, Stephen; Lee, Kwee-Yum; O'Dwyer, Nicholas


    In dance, the goals of actions are not always clearly defined. Investigations into the perceived quality of dance actions and their relation to biomechanical motion should give insight into the performance of dance actions and their goals. The purpose of this review was to explore and document current literature concerning dance perception and its relation to the biomechanics of motion. Seven studies were included in the review. The study results showed systematic differences between expert, non-expert, and novice dancers in biomechanical and perceptual measures, both of which also varied according to the actions expressed in dance. Biomechanical and perceptual variables were found to be correlated in all the studies in the review. Significant relations were observed between kinematic variables such as amplitude, speed, and variability of movement, and perceptual measures of beauty and performance quality. However, in general, there were no clear trends in these relations. Instead, the evidence suggests that perceptual ratings of dance may be specific to both the task (the skill of the particular action) and the context (the music and staging). The results also suggest that the human perceptual system is sensitive to skillful movements and neuromuscular coordination. Since the value perceived by audiences appears to be related to dance action goals and the coordination of dance elements, practitioners could place a priority on development and execution of those factors.

  14. Design of relative motion and attitude profiles for three-dimensional resident space object imaging with a laser rangefinder

    Nayak, M.; Beck, J.; Udrea, B.

    This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit

  15. Studies of some problems related to atomic ordering, molecular motion and pair distribution function

    Levashov, Valentin A.

    In this thesis the results of my work on three out of four projects on which I was working during my Ph.D. under supervision of Prof. M. F. Thorpe are summarized. The first project was devoted to the study of properties of a model that was developed to reproduce the ordering of ions in layered double hydroxides. In the model two types of positive ions occupy the sites of triangular lattice. The ordering of ions is assumed to occur due to the long-range Coulomb interaction. The charge neutrality is provided by the negative background charge, which is assumed to be the same at every site of the lattice. General properties of the model in 1d and 2d were studied and the phase diagrams were obtained. The obtained results predict multiple phase separations in this system of charges that can, in particularly, affect the stability of the layered double hydroxides. Some properties of the atomic pair distribution function (PDF) were studied during my work on the second project. Traditionally PDF was used to study atomic ordering at small distances, while it was assumed that at large distances PDF is featureless. Puzzled by the observation that PDF calculated for the crystalline Ni does not decay at large distances we studied the behavior, in particularly the origin of decay, of PDF at large distances. The obtained results potentially could be used to measure the amount of imperfections in crystalline materials and to test instrumental resolution in X-ray and neutron diffraction experiments. During my work on the third project we were developing a technique that would allow accurate calculation of PDF for the flexible molecules. Since quantum mechanical calculations are complicated and computationally demanding in calculations of PDF for molecules in liquid or gaseous phases, classical methods, like molecular dynamics are usually employed. Thus, quantum mechanical effects, like zero-point atomic motion, are usually ignored. However, it is necessary to take into account the

  16. Human motion characteristics in relation to feeling familiar or frightened during an announced short interaction with a proactive humanoid

    Ritta eBaddoura


    Full Text Available During an unannounced encounter between two humans and a proactive humanoid (called NAO, we study the dependencies between the human partners’ affective experience (measured via the answers to a questionnaire particularly regarding feeling familiar and feeling frightened, and their arm and head motion (frequency and smoothness using Inertial Measurement Units (IMU. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing and goodbye (moving its arm. The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO’s behavior varies from one partner to the other (Smooth with X vs. Resisting with Y. The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a strong negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The Principal Component Analysis (PCA suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants’ experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.

  17. Human motion characteristics in relation to feeling familiar or frightened during an announced short interaction with a proactive humanoid.

    Baddoura, Ritta; Venture, Gentiane


    During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.

  18. The relative weight of shape and non-rigid motion cues in object perception: a model of the parameters underlying dynamic object discrimination.

    Vuong, Quoc C; Friedman, Alinda; Read, Jenny C A


    Shape and motion are two dominant cues for object recognition, but it can be difficult to investigate their relative quantitative contribution to the recognition process. In the present study, we combined shape and non-rigid motion morphing to investigate the relative contributions of both types of cues to the discrimination of dynamic objects. In Experiment 1, we validated a novel parameter-based motion morphing technique using a single-part three-dimensional object. We then combined shape morphing with the novel motion morphing technique to pairs of multipart objects to create a joint shape and motion similarity space. In Experiment 2, participants were shown pairs of morphed objects from this space and responded "same" on the basis of motion-only, shape-only, or both cues. Both cue types influenced judgments: When responding to only one cue, the other cue could be ignored, although shape cues were more difficult to ignore. When responding on the basis of both cues, there was an overall bias to weight shape cues more than motion cues. Overall, our results suggest that shape influences discrimination more than motion even when both cue types have been made quantitatively equivalent in terms of their individual discriminability.

  19. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)


    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  20. Dynamic social adaptation of motion-related neurons in primate parietal cortex.

    Naotaka Fujii

    Full Text Available Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.

  1. Passive hip movement measurements related to dynamic motion during gait in hip osteoarthritis.

    Baker, Matt; Moreside, Janice; Wong, Ivan; Rutherford, Derek J


    Reduced sagittal plane range of motion (ROM) has been reported in individuals with hip osteoarthritis (OA) both during walking and passive testing. The purpose of this study was to determine if a relationship exists between hip extension ROM recorded during gait and passive hip extension ROM in individuals with moderate and severe hip OA, in comparison to an asymptomatic group. Sagittal plane hip ROM was calculated using skin surface marker trajectories captured during treadmill walking at self-selected speed. Passive hip ROM was measured using standardized position and recording procedures with a goniometer. Sagittal plane extension, flexion, and overall ROM were measured dynamically and passively. A two-way mixed model analysis of variance determined significant differences between groups and between passive and dynamic ROM (α = 0.05). Pearson correlations determined relationships between passive and dynamic ROM. Significant group by ROM interactions were found for flexion and extension ROM (p passive ROM compared to the other groups and greater passive than dynamic ROM (p passive ROM existed between all three groups (p passive hip extension were found in the moderate (r = 0.596) and severe OA (r = 0.586) groups, and no correlation was found in the asymptomatic group (r = 0.139). Passive ROM explains variance in dynamic ROM measurements obtained during gait in individuals with moderate and severe hip OA which have implications for the design of treatment strategies targeting walking pathomechanics. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1790-1797, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.


    BAO Lin; HU Jin-song; YU Yong-liang; CHENG Peng; XU Bo-qing; TONG Bing-gang


    Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite clement analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.

  3. Visual motion processing in migraine: Enhanced motion after-effects are related to display contrast, visual symptoms, visual triggers and attack frequency.

    Shepherd, Alex J; Joly-Mascheroni, Ramiro M


    Background Visual after-effects are illusions that occur after prolonged viewing of visual displays. The motion after-effect (MAE), for example, is an illusory impression of motion after viewing moving displays: subsequently, stationary displays appear to drift in the opposite direction. After-effects have been used extensively in basic vision research and in clinical settings, and are enhanced in migraine. Objective The objective of this article is to assess associations between ( 1 ) MAE duration and visual symptoms experienced during/between migraine/headache attacks, and ( 2 ) visual stimuli reported as migraine/headache triggers. Methods The MAE was elicited after viewing motion for 45 seconds. MAE duration was tested for three test contrast displays (high, medium, low). Participants also completed a headache questionnaire that included migraine/headache triggers. Results For each test contrast, the MAE was prolonged in migraine. MAE duration was associated with photophobia; visual triggers (flicker, striped patterns); and migraine or headache frequency. Conclusions Group differences on various visual tasks have been attributed to abnormal cortical processing in migraine, such as hyperexcitability, heightened responsiveness and/or a lack of intra-cortical inhibition. The results are not consistent with hyperexcitability simply from a general lack of inhibition. Alternative multi-stage models are discussed and suggestions for further research are recommended, including visual tests in clinical assessments/clinical trials.

  4. A novel model and estimation method for the individual random component of earthquake ground-motion relations

    Raschke, Mathias


    In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke (2013a), with the sample of random difference xi=ln(Y1)-ln(Y2), in which Y1 and Y2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure the distribution of difference xi was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference xi of the sample o...

  5. Bayesian noise-reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ˜20 Ma: Implications for Nubia/Somalia relative motion

    Iaffaldano, Giampiero; Hawkins, Rhys; Sambridge, Malcolm


    of Nubia/Somalia relative motion since the Early Neogene is of particular importance in the Earth Sciences, because it (i) impacts on inferences on African dynamic topography; and (ii) allows us to link plate kinematics within the Indian realm with those within the Atlantic basin. The contemporary Nubia/Somalia motion is well known from geodetic observations. Precise estimates of the past-3.2-Myr average motion are also available from paleo-magnetic observations. However, little is known of the Nubia/Somalia motion prior to ˜3.2 Ma, chiefly because the Southwest Indian Ridge spread slowly, posing a challenge to precisely identify magnetic lineations. This also makes the few observations available particularly prone to noise. Here we reconstruct Nubia/Somalia relative motions since ˜20 Ma from the alternative plate-circuit Nubia-Arabia-Somalia. We resort to trans-dimensional hierarchical Bayesian Inference, which has proved effective in reducing finite-rotation noise, to unravel the Arabia/Somalia and Arabia/Nubia motions. We combine the resulting kinematics to reconstruct the Nubia/Somalia relative motion since ˜20 Ma. We verify the validity of the approach by comparing our reconstruction with the available record for the past ˜3.2 Myr, obtained through Antarctica. Results indicate that prior to ˜11 Ma the total motion between Nubia and Somalia was faster than today. Furthermore, it featured a significant strike-slip component along the Nubia/Somalia boundary. It is only since ˜11 Ma that Nubia diverges away from Somalia at slower rates, comparable to the present-day one. Kinematic changes of some 20% might have occurred in the period leading to the present-day, but plate-motion steadiness is also warranted within the uncertainties.

  6. Correlation of horizontal and vertical components of strong ground motion for response-history analysis of safety-related nuclear facilities

    Huang, Yin-Nan, E-mail: [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)


    Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.

  7. Effective Sensing Regions and Connectivity of Agents Undergoing Periodic Relative Motions

    Swain, D.; Cao, M.; Leonard, N.E.


    Time-varying graphs are widely used to model communication and sensing in multi-agent systems such as mobile sensor networks and dynamic animal groups. Connectivity is often determined by the presence of neighbors in a sensing region defined by relative position and/or bearing. We present a method f

  8. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    Wakou, Jun'ichi; Isobe, Masaharu


    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.

  9. Constraining the angular momentum of the Sun with planetary orbital motions and general relativity

    Iorio, Lorenzo


    The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation and evolution. On average, helioseismology yields S = 1.92 10^41 kg m^2 s^-1 for the angular momentum of the Sun. We constrain it in a model-independent, dynamical way by using the gravitomagnetic Lense-Thirring effect predicted by general relativity for the orbit of a test particle moving around a central rotating body. The correction to the standard Einsteinian/Newtonian precession of the longitude of the perihelion $ of Mercury, recently inferred by a team of astronomers from a fit of dynamical models of the forces acting on the planets of the solar system to a long data record, amounts to 0.4 +/- 0.6 mas cty^-1. The modeled forces did not include the Lense-Thirring effect itself, which is expected to be as large as -2.0 mas cty^-1 for the perihelion of Mercury from helioseismological values of S?. By assuming the validity of general relativity, from its theoretical prediction for the gravitom...

  10. The Integrals of Motion for the Deformed W-Algebra $W_{qt}(sl_N^)$ II: Proof of the commutation relations

    Kojima, T


    We explicitly construct two classes of infinitly many commutative operators in terms of the deformed W-algebra $W_{qt}(sl_N^)$, and give proofs of the commutation relations of these operators. We call one of them local integrals of motion and the other nonlocal one, since they can be regarded as elliptic deformation of local and nonlocal integrals of motion for the $W_N$ algebra.

  11. Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints

    Wang Xiao-Xiao; Sun Xian-Ting; Zhang Mei-Ling; Han Yue-Lin; Jia Li-Qun


    The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.

  12. Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint

    Wang Xiao-Xiao; Sun Xian-Ting; Zhang Mei-Ling; Xie Yin-Li; Jia Li-Qun


    The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied.The differential equations of motion of the Nielsen equation for the system,the definition and the criterion of Lie symmetry,and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained.An example is given to illustrate the application of the results.

  13. Constraining the Angular Momentum of the Sun with Planetary Orbital Motions and General Relativity

    Iorio, L.


    The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation, and evolution. Helioseismology yields S_{⊙}= 1.92×10^{41} kg m^{2 s^{-1}} for the angular momentum of the Sun. We show how it should be possible to constrain it in a near future by using the gravitomagnetic Lense-Thirring effect predicted by General Relativity for the orbit of a test particle moving around a central rotating body. We also discuss the present-day situation in view of the latest determinations of the supplementary perihelion precession [InlineEquation not available: see fulltext.] of Mercury. A fit by Fienga et al. ( Celestial Mech. Dynamical Astron. 111, 363, 2011) of the dynamical models of several standard forces acting on the planets of the solar system to a long data record yielded [InlineEquation not available: see fulltext.] milliarcseconds per century. The modeled forces did not include the Lense-Thirring effect itself, which is expected to be as large as [InlineEquation not available: see fulltext.] from helioseismology-based values of S ⊙. By assuming the validity of General Relativity, from its theoretical prediction for the gravitomagnetic perihelion precession of Mercury, one can straightforwardly infer S_{⊙}≤0.95×10^{41} kg m^{2 s^{-1}}. It disagrees with the currently available values from helioseismology. Possible sources for the present discrepancy are examined. Given the current level of accuracy in the Mercury ephemerides, the gravitomagnetic force of the Sun should be included in their force models. MESSENGER, in orbit around Mercury since March 2011, will collect science data until 2013, while BepiColombo, to be launched in 2015, should reach Mercury in 2022 for a year-long science phase: the analysis of their data will be important in effectively constraining S ⊙ in about a decade or, perhaps, even less.

  14. War on Film: Military History Education. Video tapes, Motion Pictures, and Related Audiovisual Aids


    ultimately leading them into war anl their own r truction as a people. This film traces their tragic saga . 1).4. Navy Decline, the New Navy and the War With...stolen from us. We never touched a pen. We never sold our land. It was stolen." This is the tragic but heroic saga of Indian-United States relations as it...war as it was experienced by the foot soliiers, in Vietnam. The story vitews a twilight amibush by the Vietcong, a dawn raid by Marines, the death of’ a

  15. Rigid motions: action-angles, relative cohomology and polynomials with roots on the unit circle

    Francoise, Jean Pierre; Gallavotti, Giovanni


    Revisiting canonical integration of the classical solid near a uniform rotation, canonical action angle coordinates, hyperbolic and elliptic, are constructed in terms of various power series with coefficients which are polynomials in a variable $r^2$ depending on the inertia moments. Normal forms are derived via the analysis of a relative cohomology problem and shown to be obtainable without the use of ellitptic integrals (unlike the derivation of the action-angles). Results and conjectures also emerge about the properties of the above polynomials and the location of their roots. In particular a class of polynomials with all roots on the unit circle arises.

  16. Visual processing of biological motion in children and adolescents with attention-deficit/hyperactivity disorder: an event related potential-study.

    Anne Kröger

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD. However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion-recently discussed as a marker of social cognition-was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD.

  17. Spacecraft Formation Control: Managing Line-of-Sight Drift Based on the Dynamics of Relative Motion

    Luquette, Richard J.; Sammer. Robert M.


    In a quest to improve space-based observational capability, an increasing number of investigators are proposing missions with precision formation flying architectures. Typical missions include the Micro- Arcsecond X-ray Imaging Mission (MAXIM), Stellar Imager (SI), and the New Worlds Observer (NWO). Missions designed to explore targets in deep-space generally require holding a formation configuration fixed in inertial space during science observation. Analysis in this paper is specifically aimed at the NWO architecture, characterizing the natural drift of the line-of-sight and the separation range for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2) libration point. Analysis employs a linear form of the relative dynamics associated with an n-body gravity field. The study is designed to identify favorable observation directions, characterized by minimal line-of-sight drift, along the mission timeline.

  18. The fundamental manifold of spiral galaxies: ordered versus random motions and the morphology dependence of the Tully-Fisher relation

    Tonini, C.; Jones, D. H.; Mould, J.; Webster, R. L.; Danilovich, T.; Ozbilgen, S.


    We investigate the morphology dependence of the Tully-Fisher (TF) relation, and the expansion of the relation into a three-dimensional manifold defined by luminosity, total circular velocity and a third dynamical parameter, to fully characterize spiral galaxies across all morphological types. We use a full semi-analytic hierarchical model (based on Croton et al.), built on cosmological simulations of structure formation, to model galaxy evolution and build the theoretical TF relation. With this tool, we analyse a unique data set of galaxies for which we cross-match luminosity with total circular velocity and central velocity dispersion. We provide a theoretical framework to calculate such measurable quantities from hierarchical semi-analytic models. We establish the morphology dependence of the TF relation in both model and data. We analyse the dynamical properties of the model galaxies and determine that the parameter σ/VC, i.e. the ratio between random and total motions defined by velocity dispersion and circular velocity, accurately characterizes the varying slope of the TF relation for different model galaxy types. We apply these dynamical cuts to the observed galaxies and find indeed that such selection produces a differential slope of the TF relation. The TF slope in different ranges of σ/VC is consistent with that for the traditional photometric classification in Sa, Sb and Sc. We conclude that σ/VC is a good parameter to classify galaxy type, and we argue that such classification based on dynamics more closely mirrors the physical properties of the observed galaxies, compared to visual (photometric) classification. We also argue that dynamical classification is useful for samples where eye inspection is not reliable or impractical. We conclude that σ/VC is a suitable parameter to characterize the hierarchical assembly history that determines the disc-to-bulge ratio, and to expand the TF relation into a three-dimensional manifold, defined by luminosity

  19. Indicial functions and flutter derivatives: A generalized approach to the motion-related wind loads

    de Miranda, S.; Patruno, L.; Ubertini, F.; Vairo, G.


    This paper presents a general time-domain description of the loads acting on a moving cylindrical body immersed in a two-dimensional low-speed flow, aiming to consistently extend the framework of thin airfoil theory to mildly bluff sections, such as those usually employed for decks of modern long-span bridges. In order to systematically accommodate typical features of bluff-body aerodynamics, the classical Theodorsen and Wagner results are reorganized within a unified dimensionless approach, and generalized preserving their main formal structure. Accordingly, circulatory and non-circulatory contributions are separately described and superimposed, and generalized downwash-related terms are introduced. The strong duality between time-domain and frequency-domain representations is focused, and direct relationships between proper Wagner-like indicial functions and Theodorsen-like circulatory functions are deduced. Thereby, following the Scanlan formulation for bridge deck sections, flutter derivatives are represented by superimposing circulatory and non-circulatory effects, resulting in a frequency-domain description fully consistent with the Theodorsen's theory.

  20. Interfractional Seminal Vesicle Motion Relative to the Prostate Gland for Image-guided Radiotherapy for Prostate Cancer with/without Androgen Deprivation Therapy: A Retrospective Cohort Study.

    Waki, Takahiro; Katsui, Kuniaki; Mitsuhashi, Toshiharu; Ogata, Takeshi; Katayama, Norihisa; Takemoto, Mitsuhiro; Nasu, Yasutomo; Kumon, Hiromi; Kanazawa, Susumu


    We investigated differences in seminal vesicle (SV) length and interfractional SV motion relative to the prostate gland in prostate cancer patients. We compared 32 patients who received androgen deprivation therapy (ADT) before radiotherapy with 12 patients receiving radiotherapy alone at Okayama University Hospital in August 2008-July 2011. We examined the right and left SVs' length and motion by computed tomography (CT) to determine the ADT's effects and analyzed 347 CT scans in a multiple linear regression model. The ADT patients' SV length was significantly shorter than the non-ADT patients'. The differences in right and left SV lengths between the ADT and non-ADT patients were 6.8 mm (95% CI 2.0-11.7 mm) and 7.2 mm (95% CI 3.1- 11.3 mm) respectively in an adjusted regression model. SV motion did not differ between the ADT and non- ADT patients in terms of interfractional motion of the SV tips and the SVs' center relative to the prostate gland. The ADT patients had significantly shorter SVs compared to the non-ADT patients, but no difference in SV motion was observed. SV interfractional motion should thus be compensated using the same planning margins, regardless of whether ADT is used.

  1. Classifying Motion.

    Duzen, Carl; And Others


    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  2. The 2001 Mw7.7 Bhuj, India Earthquake and Eastern North American Ground-Motion Attenuation Relations: Seismic Hazard Implications

    Cramer, C. H.; Bhattacharya, S. N.; Kumar, A.


    It has been suggested that the Mw7.7 2001 Bhuj, India earthquake occurred in a stable continental region with ground-motion attenuation properties similar to eastern North America (ENA). No strong motion recordings for M7 or greater earthquakes have been recorded in ENA, so, if the two regions share similar properties, then observations from the Bhuj earthquake provide important information for hazard assessments in ENA as well as India. This thesis can be tested using seismic data for the Bhuj mainshock. The Indian Meteorological Department recorded accelerograph and broadband seismograph data at distances of 500 to 1800 km. Accelerograph and engineering seismoscope data were recorded at distances of 40 to 1100 km by the Department of Earthquake Engineering at the Indian Institute of Technology, Roorkee. We have processed the accelerograph and broadband data for response spectral accelerations and corrected them to a common NEHRP site class using Joyner and Boore (2000) site factors. The geologic conditions at each recording site were determined using the geologic map of India and categorized as Quaternary sediments, Tertiary sediments, or hard rock. Comparisons were then made to available ENA ground-motion attenuation relations. For peak ground acceleration (PGA) and 1.0 s spectral acceleration (Sa), the geologically-corrected Bhuj data generally fall among the ENA ground-motion attenuation relations. The Bhuj mainshock ground-motion data agree with the collective predictions of the ENA relations given the random uncertainty in ground-motion measurements of a factor of two or more plus the ground-motion attenuation relation modeling uncertainty. From an engineering perspective, this comparison supports the thesis that seismic-wave attenuation in stable continental India is similar to eastern North America.

  3. Next Generation Attenuation of Ground Motions in Ilan, Taiwan: Establishment and Analysis of Attenuation Relations for Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV)

    Liu, K.


    An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was

  4. 基于运动相对性的六足机器人机体运动规划%Body Motion Planning for a Hexapod Robot Based on Relative Motion

    李满宏; 张明路; 张建华; 张小俊


    将处于支撑相的六足机器人视为时变的并联机构进行运动学分析,给出了姿态给定情况下机体工作空间的确定方法及边界方程。在此基础上基于运动相对性原理,提出将机体的运动规划转化为足端轨迹规划的方法,从而简化机体运动规划中逆解的求取问题,并通过仿真与实验进行了验证。结果表明:六足机器人在支撑相内机体的工作空间为至多是支撑腿条数个空心球体的交集,利用运动相对性原理对支撑相内机体的运动规划问题进行转化简便、可行。%A hexapod robot in support phase was regarded as a time-varying parallel mechanism to make the kinematics analysis.The determination methods and boundary equations of the workspace were described herein for the hexapod robot whose body posture was given.Based on the relative mo-tion theory,a method to transform body motion planning into foot trajectory planning was presented to simplify the issue of body motion planning.Simulation and experimental results show that the workspace for the hexapod robot in support phase is the intersection of the hollow spheres whose number is up to the number of the support legs and using the principles of relative motion to trans-form the issue of body motion planning in support phase it is simple and feasible.


    Ayla Sayli


    Full Text Available Data science for engineers is the most recent research area which suggests to analyse large data sets in order to find data analytics and use them for better designing and modelling. Ship design practice reveals that conceptual ship design is critically important for a successful basic design. Conceptual ship design needs to identify the true set of design variables influencing vessel performance and costs to define the best possible basic design by the use of performance prediction model. This model can be constructed by design engineers. The main idea of this paper comes from this crucial idea to determine relational classification of a set of small vessels using their hull form parameters and performance characteristics defined by transfer functions of heave and pitch motions and of absolute vertical acceleration, by our in-house software application based on K-Means algorithm from data mining. This application is implemented in the C# programming language on Microsoft SQL Server database. We also use the Elbow method to estimate the true number of clusters for K-Means algorithm. The computational results show that the considered set of small vessels can be clustered in three categories according to their functional relations of their hull form parameters and transfer functions considering all cases of three loading conditions, seven ship speeds as non-dimensional Froude numbers (Fn and nine wave-length to ship-length values (λ/L.

  6. Dose/volume-response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions

    Thor, Maria; Apte, Aditya; Deasy, Joseph O; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul


    Background and purpose Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. Materials and methods The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. Results The differences in associations using the planned over the motion- inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55–70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs=0.12–0.21; Rs=0.11–0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs=0.13, p=0.02). Conclusion Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power. PMID:24231236

  7. Visual Processing of Biological Motion in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: An Event Related Potential-Study

    Kröger, Anne; Hof, Katharina; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz; Freitag, Christine M.; Bender, Stephan


    Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD). However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion–recently discussed as a marker of social cognition–was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD. PMID:24520402

  8. Recent rapid shortening of crust across the Tianshan Mts. and relative motion of tectonic blocks in the north and south


    Based on the multiple-epoch Global Positioning System observations during a period from 1992 to 1999, we document directly a rapid crustal shortening of ~20 mm/a across the western Tianshan Mts. (76°E), in contrast to a 4 mm/a convergent rate across the eastern Tianshan Mts. (87°E)and the north-south convergence across the mountain belt descends laterally from west to east. The direction of current crustal movement inferred by GPS sites along the southern flank of the Tianshan Mts. is approximately perpendicular to the easterly-trending mountain belt, indicating that the Tarim Basin thrust almost rightly into the Tianshan Mts. The Tarim Basin accommodates nearly no or a minor, if any, crustal deformation and rotates clockwise, as a rigid body in a whole, at a rate of 0.64°/Ma around a Euler pole at 95.7°E, 40.3°N (Anxi, Gansu) with respect to the stable Siberia. The relative motion between the Kazakh platform and the Dzungarian Basin is quite apparent. The Dzungar should be regarded as an independent active block from the view of the Asia tectonic settings.

  9. Is latero-medial patellar mobility related to the range of motion of the knee joint after total knee arthroplasty?

    Ota, Susumu; Nakashima, Takeshi; Morisaka, Ayako; Omachi, Takaaki; Ida, Kunio; Kawamura, Morio


    Diminished range of motion (ROM) of the knee joint after total knee arthroplasty (TKA) is thought to be related to reduced patellar mobility. This has not been confirmed clinically due to a lack of quantitative methods adequate for measuring patellar mobility. We investigated the relationship between patellar mobility by a reported quantitative method and knee joint ROM after TKA. Forty-nine patients [osteoarthritis--OA: 29 knees; rheumatoid arthritis--RA: 20 knees] were examined after TKA. Respective medial and lateral patellar mobility was measured 1 and 6 months postoperatively using a patellofemoral arthrometer (PFA). Knee joint ROM was also measured in each of those 2 sessions. Although the flexion and extension of the knee joints improved significantly from 1 to 6 months after TKA, the medial and lateral patellar displacements (LPDs) failed to improve during that same period. Moreover, only the changes in knee flexion and medial patellar displacement (MPD) between the two sessions were positively correlated (r = 0.31, p knee ROM after TKA.

  10. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations.

    Ferrara, Matthew; Arnold, Gregory; Stuff, Mark


    This paper describes an invariant-based shape- and motion reconstruction algorithm for 3D-to-1D orthographically projected range data taken from unknown viewpoints. The algorithm exploits the object-image relation that arises in echo-based range data and represents a simplification and unification of previous work in the literature. Unlike one proposed approach, this method does not require uniqueness constraints, which makes its algorithmic form independent of the translation removal process (centroid removal, range alignment, etc.). The new algorithm, which simultaneously incorporates every projection and does not use an initialization in the optimization process, requires fewer calculations and is more straightforward than the previous approach. Additionally, the new algorithm is shown to be the natural extension of the approach developed by Tomasi and Kanade for 3D-to-2D orthographically projected data and is applied to a realistic inverse synthetic aperture radar imaging scenario, as well as experiments with varying amounts of aperture diversity and noise.

  11. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke

    Jianping Hu


    Full Text Available Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery

  12. Prospectively ECG Gated CT pulmonary angiography versus helical ungated CT pulmonary angiography: Impact on cardiac related motion artifacts and patient radiation dose

    Shuman, William P., E-mail: [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Leipsic, Jonathon A., E-mail: [University of British Columbia and St. Paul' s Hospital, Department of Radiology, 1081 Burrard Street, Vancouver, BC, V6Z1Y6 (Canada); Busey, Janet M., E-mail: [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Green, Douglas E., E-mail: [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Pipavath, Sudhakar N., E-mail: [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Hague, Cameron J., E-mail: [University of British Columbia and St. Paul' s Hospital, Department of Radiology, 1081 Burrard Street, Vancouver, BC, V6Z1Y6 (Canada); Koprowicz, Kent M., E-mail: [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States)


    Objective: To compare prospectively ECG gated CT pulmonary angiography (CTPA) with routine helical ungated CTPA for cardiac related motion artifacts and patient radiation dose. Subjects and methods: Twenty patients with signs and symptoms suspicious for pulmonary embolism and who had a heart rate below 85 were scanned with prospectively ECG gated CTPA. These gated exams were matched for several clinical parameters to exams from twenty similar clinical patients scanned with routine ungated helical CTPA. Three blinded independent reviewers subjectively evaluated all exams for overall pulmonary artery enhancement and for several cardiac motion related artifacts, including vessel blurring, intravascular shading, and double line. Reviewers also measured pulmonary artery intravascular density and image noise. Patient radiation dose for each technique was compared. Fourteen clinical prospectively ECG gated CTPA exams from a second institution were evaluated for the same parameters. Results: Prospectively ECG gated CTPA resulted in significantly decreased motion-related image artifact scores in lung segments adjacent to the heart compared to ungated CTPA. Measured image noise was not significantly different between the two types of CTPA exams. Effective dose was 28% less for prospectively ECG gated CTPA (4.9 mSv versus 6.8 mSv, p = 0.02). Similar results were found in the prospectively ECG gated exams from the second institution. Conclusion: Compared to routine helical ungated CTPA, prospectively ECG gated CTPA may result in less cardiac related motion artifact in lung segments adjacent to the heart and significantly less patient radiation dose.

  13. Structural motion engineering

    Connor, Jerome


    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  14. Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints

    Wang Xiao-Xiao; Han Yue-Lin; Zhang Mei-Ling; Jia Li-Qun


    Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.

  15. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method.

    Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla


    Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.

  16. Analysis of Relative Motion between Femoral Head and Acetabular Cup and Advances in Computation of the Wear Factor for the Prosthetic Hip Joint

    O. Calonius


    Full Text Available The amount and type of wear produced in the prosthetic hip joint depends on the type of relative motion between the femoral head and the acetabular cup. Wear particles removed from the bearing surfaces of the joint can cause adverse tissue reactions resulting in osteolysis and ultimately in loosening of the fixation of the implant. When designing a simulator for evaluation of prospective materials for artificial hip joints it is important to verify that the type of relative motion at the articulation is similar to that produced in walking, involving continually changing direction of sliding. This paper is an overview of recent research done at Helsinki University of Technology on the analysis of the relationship between relative motion and wear in the prosthetic hip joint.To analyze the relative motion, software for computing tracks, referred to as slide tracks, drawn on the counterface by marker points on the bearing surface was developed and experimentally verified. The overall relative motion of the joint was illustrated by a slide track pattern, produced by many points. The patterns resulting from walking motion and from motion produced in ten contemporary hip simulator types were compared. The slide track computations were not limited to illustrational purposes but offered a basis for computing variations of sliding distances, sliding speeds and direction of sliding during a cycle. This was done for the slide track termed the force track, drawn by the resultant contact force. In addition, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This track integral of load had so far not been determined for the majority of contemporary hip simulators. The track integral can be used in determining the wear factor, making it possible to compare clinical wear rates with those produced by hip simulators. The computation of the wear factor was subsequently improved by replacing the track

  17. Circular orbits and related quasi-harmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    Tursunov, Arman; Kološ, Martin


    We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...

  18. Automated correction of spin-history related motion artefacts in fMRI : Simulated and phantom data

    Muresan, Lucian; Renken, Remco; Roerdink, Jos B.T.M.; Duifhuis, Hendrikus


    This paper concerns the problem of correcting spin-history artefacts in fMRI data. We focus on the influence of through-plane motion on the history of magnetization. A change in object position will disrupt the tissue’s steady-state magnetization. The disruption will propagate to the next few acquir

  19. On the characteristics of the equations of motion for a bubbly flow and the related problem of critical flow

    Prosperetti, A.; Wijngaarden, van L.


    For the study of transients in gas-liquid flows, the equations of the so-called separated flow model are inadequate, because they possess, in the general case where gas and liquid move at different velocities, complex characteristics. This paper is concerned with the equations of motion for bubbly f

  20. Measurement of visual motion

    Hildreth, E.C.


    This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.

  1. Fractional motions

    Eliazar, Iddo I., E-mail: [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)


    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  2. Torsional vestibulo-ocular reflex measurements for identifying otolith asymmetries possibly related to space motion sickness susceptibility

    Peterka, Robert J.

    Recent studies by Diamond and Markham 1,2 have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal by von Baumgarten and Thümler 3 which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.

  3. The use of a 3D sensor (Kinect) for robot motion compensation : The applicability in relation to medical applications

    Kvalbein, Martin


    The use of robotic systems for remote ultrasound diagnostics has emerged over the last years. This thesis looks into the possibility of integrating the Kinect sensor from Microsoft into a semi-autonomous robotic system for ultrasound diagnostics, with the intention to give the robotic system visual feedback to compensate for patient motion. In the first part of this thesis, a series of tests have been performed to explore the Kinect's sensor capabilities, with focus on accuracy, precis...

  4. C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes.

    Koller, Heiko; Acosta, Frank; Forstner, Rosemarie; Zenner, Juliane; Resch, Herbert; Tauber, Mark; Lederer, Stefan; Auffarth, Alexander; Hitzl, Wolfgang


    Knowledge on the outcome of C2-fractures is founded on heterogenous samples with cross-sectional outcome assessment focusing on union rates, complications and technical concerns related to surgical treatment. Reproducible clinical and functional outcome assessments are scant. Validated generic and disease specific outcome measures were rarely applied. Therefore, the aim of the current study is to investigate the radiographic, functional and clinical outcome of a patient sample with C2-fractures. Out of a consecutive series of 121 patients with C2 fractures, 44 met strict inclusion criteria and 35 patients with C2-fractures treated either nonsurgically or surgically with motion-preserving techniques were surveyed. Outcome analysis included validated measures (SF-36, NPDI, CSOQ), and a functional CT-scanning protocol for the evaluation of C1-2 rotation and alignment. Mean follow-up was 64 months and mean age of patients was 52 years. Classification of C2-fractures at injury was performed using a detailed morphological description: 24 patients had odontoid fractures type II or III, 18 patients had fracture patterns involving the vertebral body and 11 included a dislocated or a burst lateral mass fracture. Thirty-one percent of patients were treated with a halo, 34% with a Philadelphia collar and 34% had anterior odontoid screw fixation. At follow-up mean atlantoaxial rotation in left and right head position was 20.2 degrees and 20.6 degrees, respectively. According to the classification system of posttreatment C2-alignment established by our group in part I of the C2-fracture study project, mean malunion score was 2.8 points. In 49% of patients the fractures healed in anatomical shape or with mild malalignment. In 51% fractures healed with moderate or severe malalignment. Self-rated outcome was excellent or good in 65% of patients and moderate or poor in 35%. The raw data of varying nuances allow for comparison in future benchmark studies and metaanalysis. Detailed

  5. Einstein's $R^{\\hat{0} \\hat{0}}$ equation for non-relativistic sources derived from Einstein's inertial motion and the Newtonian law for relative acceleration



    With Einstein's inertial motion (free-falling and non-rotating relative to gyroscopes), geodesics for non-relativistic particles can intersect repeatedly, allowing one to compute the space-time curvature $R^{\\hat{0} \\hat{0}}$ exactly. Einstein's $R^{\\hat{0} \\hat{0}}$ for strong gravitational fields and for relativistic source-matter is identical with the Newtonian expression for the relative radial acceleration of neighboring free-falling test-particles, spherically averaged.--- Einstein's field equations follow from Newtonian experiments, local Lorentz-covariance, and energy-momentum conservation combined with the Bianchi identity.

  6. A Doppler Radar Observation of a Cold Front: Three-Dimensional Air Circulation, Related Precipitation System, and Associated Wavelike Motions.

    Testud, J.; Amayenc, P.; Chong, M.; Nutten, B.; Sauvaget, A.


    This paper is based on the observation of a cold front using a C-band Doppler radar. The extent of the precipitation system associated with the front allowed collection of Doppler radar data during 12 consecutive hours. The methodology for data acquisition presently used is conical scanning. The data analysis has been extended to the case of a nonuniform distribution of tracers.The air circulation is presented in a reference frame moving at the speed of the front. A pronounced cross-frontal circulation is found to be associated with significant cross-frontal acceleration. The thermal structure across the front is reconstructed by means of the equations of motion.From the vertical velocity field an estimate of the height-integrated condensation rate is made. It is found to agree with the rainfall rate inferred from the radar reflectivity data.Also, large-amplitude small-scale motions are detected and identified as a well-characterized atmospheric wave. Theoretical considerations support the explanation that it is the manifestation of a dynamical instability of the shear flow within the frontal zone.

  7. Motion control systems

    Sabanovic, Asif


    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  8. Collective motion

    Vicsek, Tamás; Zafeiris, Anna


    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  9. Backside nonconformity and locking restraints affect liner/shell load transfer mechanisms and relative motion in modular acetabular components for total hip replacement.

    Kurtz, S M; Ochoa, J A; White, C V; Srivastav, S; Cournoyer, J


    Nonconformity between the polyethylene liner and the metal shell may exist in modular acetabular components by design, due to manufacturing tolerances, or from locking mechanisms that attach the polyethylene liner to the metal shell. Relative motion at the liner/shell interface has been associated with backside wear, which may contribute to osteolysis which has been clinically observed near screw holes. The purpose of this study was to investigate the effect of nonconformity and locking restraints on the liner/shell relative motion and load transfer mechanisms in a commercially available, metal-backed acetabular component with a polar fenestration. The finite element method was used to explore the hypothesis that backside nonconformity and locking restraints play important roles in long-term surface damage mechanisms that are unique to modular components, such as backside wear and liner extrusion through screw holes. The three-body quasi-static contact problem was solved using a commercially available explicit finite element code, which modeled contact between the femoral head, polyethylene liner, and the metal shell. Four sets of liner boundary conditions were investigated: no restraints, rim restraints, equatorial restraints, and both rim and equatorial restraints. The finite element model with a conforming shell predicted between 8.5 and 12.8 microm of incremental extrusion of the polyethylene through the polar fenestration, consistent with in vitro experiments of the same design under identical loading conditions. Furthermore, idealized rim and/or equatorial liner restraints were found to share up to 71% of the load across the liner/shell interface. Consequently, the results of this study demonstrate that backside nonconformity and locking restraints substantially influence backside relative motion as well as load transfer at the liner/shell interface.

  10. Equilibrium Points and Related Periodic Motions in the Restricted Three-Body Problem with Angular Velocity and Radiation Effects

    E. A. Perdios


    Full Text Available The paper deals with a modification of the restricted three-body problem in which the angular velocity variation is considered in the case where the primaries are sources of radiation. In particular, the existence and stability of its equilibrium points in the plane of motion of the primaries are studied. We find that this problem admits the well-known five planar equilibria of the classical problem with the difference that the corresponding collinear points may be stable depending on the parameters of the problem. For all planar equilibria, sufficient parametric conditions for their stability have been established which are used for the numerical determination of the stability regions in various parametric planes. Also, for certain values of the parameters of the problem for which the equilibrium points are stable, the short and long period families have been computed. To do so, semianalytical expressions have been found for the determination of appropriate initial conditions. Special attention has been given to the continuation of the long period family, in the case of the classical restricted three-body problem, where we show numerically that periodic orbits of the short period family, which are bifurcation points with the long period family, are connected through the characteristic curve of the long period family.

  11. Motion segmentation method for hybrid characteristic on human motion.

    Lau, Newman; Wong, Ben; Chow, Daniel


    Motion segmentation and analysis are used to improve the process of classification of motion and information gathered on repetitive or periodic characteristic. The classification result is useful for ergonomic and postural safety analysis, since repetitive motion is known to be related to certain musculoskeletal disorders. Past studies mainly focused on motion segmentation on particular motion characteristic with certain prior knowledge on static or periodic property of motion, which narrowed method's applicability. This paper attempts to introduce a method to tackle human joint motion without having prior knowledge. The motion is segmented by a two-pass algorithm. Recursive least square (RLS) is firstly used to estimate possible segments on the input human-motion set. Further, period identification and extra segmentation process are applied to produce meaningful segments. Each of the result segments is modeled by a damped harmonic model, with frequency, amplitude and duration produced as parameters for ergonomic evaluation and other human factor studies such as task safety evaluation and sport analysis. Experiments show that the method can handle periodic, random and mixed characteristics on human motion, which can also be extended to the usage in repetitive motion in workflow and irregular periodic motion like sport movement.

  12. Mathisson's helical motions demystified

    Costa, L Filipe O; Zilhão, Miguel


    The motion of spinning test particles in general relativity is described by Mathisson-Papapetrou-Dixon equations, which are undetermined up to a spin supplementary condition, the latter being today still an open question. The Mathisson-Pirani (MP) condition is known to lead to rather mysterious helical motions which have been deemed unphysical, and for this reason discarded. We show that these assessments are unfounded and originate from a subtle (but crucial) misconception. We discuss the kinematical explanation of the helical motions, and dynamically interpret them through the concept of hidden momentum, which has an electromagnetic analogue. We also show that, contrary to previous claims, the frequency of the helical motions coincides exactly with the zitterbewegung frequency of the Dirac equation for the electron.

  13. Engineering description of the OMS/RCS/DAP modes used in the HP-9825A High Fidelity Relative Motion Program (HFRMP)

    Wilson, S. W.


    Simplified mathematical models are reported for the space shuttle's Orbital Maneuvering System (OMS), Reaction Control System (RCS), and on-orbit Digital Autopilot (DAP) that have been incorporated in the High-Fidelity Relative Motion Program (HFRMP) for the HP-9825A desk-top calculator. Comparisons were made between data generated by the HFRMP and by the Space Shuttle Functional Simulator (SSFS), which models the cited shuttle systems in much greater detail. These data include propellant requirements for representative translational maneuvers, rotational maneuvers, and attitude maintenance options. Also included are data relating to on-orbit trajectory deviations induced by RCS translational cross coupling. Potential close-range stationkeeping problems that are suggested by HFRMP simulations of 80 millisecond (as opposed to 40 millisecond) DAP cycle effects are described. The principal function of the HFRMP is to serve as a flight design tool in the area of proximity operations.

  14. Perpetual Motion Machine

    D. Tsaousis


    Full Text Available Ever since the first century A.D. there have been relative descriptions of known devices as well as manufactures for the creation of perpetual motion machines. Although physics has led, with two thermodynamic laws, to the opinion that a perpetual motion machine is impossible to be manufactured, inventors of every age and educational level appear to claim that they have invented something «entirely new» or they have improved somebody else’s invention, which «will function henceforth perpetually»! However the fact of the failure in manufacturing a perpetual motion machine till now, it does not mean that countless historical elements for these fictional machines become indifferent. The discussion on every version of a perpetual motion machine on the one hand gives the chance to comprehend the inventor’s of each period level of knowledge and his way of thinking, and on the other hand, to locate the points where this «perpetual motion machine» clashes with the laws of nature and that’s why it is impossible to have been manufactured or have functioned. The presentation of a new «perpetual motion machine» has excited our interest to locate its weak points. According to the designer of it the machine functions with the work produced by the buoyant force

  15. C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes

    Koller, Heiko; Acosta, Frank; Forstner, Rosemarie; Zenner, Juliane; Resch,Herbert; Tauber, Mark; Lederer, Stefan; Auffarth, Alexander; Hitzl, Wolfgang


    Knowledge on the outcome of C2-fractures is founded on heterogenous samples with cross-sectional outcome assessment focusing on union rates, complications and technical concerns related to surgical treatment. Reproducible clinical and functional outcome assessments are scant. Validated generic and disease specific outcome measures were rarely applied. Therefore, the aim of the current study is to investigate the radiographic, functional and clinical outcome of a patient sample with C2-fractur...

  16. Words putting pain in motion: The generalization of pain-related fear within an artificial stimulus category

    Marc Patrick Bennett


    Full Text Available Patients with chronic pain are often fearful of movements that never featured in painful episodes. This study examined whether a neutral movement’s conceptual relationship with pain-relevant stimuli could precipitate pain-related fear; a process known as symbolic generalization. As a secondary objective, we also compared experiential and verbal fear learning in the generalization of pain-related fear. We conducted an experimental study with 80 healthy participants who were recruited through an online experimental management system (Mage = 23.04 years, SD = 6.80 years. First, two artificial categories were established wherein nonsense words and joystick arm movements were equivalent. Using a between-groups design, nonsense words from one category were paired with either an electrocutaneous stimulus (pain-US or threatening information, while nonsense words from the other category were paired with no pain-US or safety information. During a final testing phase, participants were prompted to perform specific joystick arm movements that were never followed by a pain-US, although they were informed that it could occur. The results showed that movements equivalent to the pain-relevant nonsense words evoked heightened pain-related fear as measured by pain-US expectancy, fear of pain, and unpleasantness ratings. Also, experience with the pain-US evinced stronger acquisition and generalization compared to experience with threatening information. The clinical importance and theoretical implications of these findings are discussed.

  17. Comparison of Stochastic Theory and DNS for the Relative Motion of High-Inertia Particle Pairs in Isotropic Turbulence

    Rani, Sarma; Dhariwal, Rohit; Koch, Donald


    In an earlier work, we derived closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary.The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large scale eddies. Two diffusivity expressions were obtained based on whether the pair center of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. A quantitative analysis of the stochastic theory is performed through a comparison of the pair statistics obtained using Langevin simulations with those from DNS. Langevin simulations of particle pair dispersion were performed using the diffusivity closures for four particle Stokes numbers based on the Kolmogorov time-scale, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Statistics such as RDF, PDF, variance and kurtosis of particle-pair relative velocities were computed using both Langevin and DNS runs, and compared.

  18. 狮子盘球中的功能转换关系%Relation between energy and work in the motion of lion running ball



    以人在球体上走动引起球体向前滚动为例,利用牛顿定律和功能转换原理,说明人-球系统中内力与外力、动力与阻力之间的关系.尽管阻碍球体滚动的地面摩擦是人-球系统向前运动的必要条件,且作为外力与系统动量变化率相等,但从运动的能量来源和因果关系考察,人与球体之间的内力作用才是系统运动的根本原因,而系统动能的增加来自于人体克服重力所做的功.%With the instance of lion running ball, the relation among internal force, external force , dynamics and resistance is studied Based on Newtonian laws and the principle of energy and work. The friction which obstacles the relative motion between hall and land is the necessary condition for the motion of runner - ball system, and is equal to the ratio of system momentum in horizontal direction. However, the internal force between runner and ball in vertical direction is the real dynamic to drive the ball rotating and moving forward.The kinetic energy of the system comes from work provided by the runner against gravity.

  19. PROMOTIONS: PROper MOTION Software

    Caleb Wherry, John; Sahai, R.


    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  20. Patient self-assessed shoulder comfort and function and active motion are not closely related to surgically documented rotator cuff tear integrity.

    Hsu, Jason E; Tang, Anna; Matsen, Frederick A


    The rationale for rotator cuff repair surgery is that better integrity of the cuff should be associated with better comfort and function. However, in patients with cuff disease, there is not good evidence that the degree of rotator cuff integrity is closely associated with the shoulder's comfort, function, or active motion. The goal of this study was to explore these relationships in shoulders with surgically documented cuff disease. In 55 shoulders having surgery for cuff-related symptoms, we correlated the preoperative Simple Shoulder Test score with the objectively measured preoperative active shoulder motion and with the integrity of the cuff observed at surgery. The 16 shoulders with tendinosis or partial-thickness tears had an average Simple Shoulder Test score of 3.7 ± 3.3, active abduction of 111° ± 38°, and active flexion of 115° ± 36°. The corresponding values were 3.6 ± 2.8, 94° ± 47°, and 94° ± 52° for the 22 full-thickness supraspinatus tears and 3.9 ± 2.7, 89° ± 39°, and 100° ± 39° for the 17 supraspinatus and infraspinatus tears. In this study, surgically observed cuff integrity was not strongly associated with the shoulder's comfort or function. Whereas surgeons often seek to improve the integrity of the rotator cuff, the management of patients with rotator cuff disorders needs to be informed by a better understanding of the factors other than cuff integrity that influence the comfort and functioning of shoulders with cuff disease. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Perpetual Motion Machine

    D. Tsaousis


    Ever since the first century A.D. there have been relative descriptions of known devices as well as manufactures for the creation of perpetual motion machines. Although physics has led, with two thermodynamic laws, to the opinion that a perpetual motion machine is impossible to be manufactured, inventors of every age and educational level appear to claim that they have invented something «entirely new» or they have improved somebody else’s invention, which «will function henceforth perpetuall...

  2. Algorithmic Issues in Modeling Motion

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.


    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory...

  3. A Relative-Motion Microworld.


    Resnick , R. and Halliday , Da Physics, Part I. John Wiley and Sons, 1977. [Shanon 76] Shanon, B. Aristotelianism, Newtonianism and the Physics of the...The following demonstration is used: TO DEMO :VIEWFROM :R :W MAKETURTLE "RUNNER 0 60 90 :RED MAKETURTLE " WALKER 0 40 90 :GREEN MAKETURTLE "EARTH 0 0 0...YELLOW SETMOTION "RUNNER [FORWARD :R] SETMOTION " WALKER [FORWARD :WJ SETMOTION "EARTH ( ] MAKEFRAME :VIEWFROM MOVE [RUNNER WALKER EARTH] END This

  4. Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study.

    Pu-Xuan Lu

    Full Text Available PURPOSE: This study was aimed to determine whether pure molecular-based diffusion coefficient (D and perfusion-related diffusion parameters (perfusion fraction f, perfusion-related diffusion coefficient D* differ in healthy livers and fibrotic livers through intra-voxel incoherent motion (IVIM MR imaging. MATERIAL AND METHODS: 17 healthy volunteers and 34 patients with histopathologically confirmed liver fibrosis patients (stage 1 = 14, stage 2 = 8, stage 3 & 4 = 12, METAVIR grading were included. Liver MR imaging was performed at 1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest based quantification of IVIM parameters were performed. RESULTS: D, f, and D* in healthy volunteer livers and patient livers were 1.096±0.155 vs 0.917±0.152 (10(-3 mm2/s, p = 0.0015, 0.164±0.021 vs 0.123±0.029 (p<0.0001, and 13.085±2.943 vs 9.423±1.737 (10(-3 mm2/s, p<0.0001 respectively, all significantly lower in fibrotic livers. As the fibrosis severity progressed, D, f, and D* values decreased, with a trend significant for f and D*. CONCLUSION: Fibrotic liver is associated with lower pure molecular diffusion, lower perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f and D* in the liver is significantly associated liver fibrosis severity.

  5. Motion Simulator


    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  6. Motion coherence and direction discrimination in healthy aging.

    Pilz, Karin S; Miller, Louisa; Agnew, Hannah C


    Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.

  7. Chronic Neck Pain and Cervico-Craniofacial Pain Patients Express Similar Levels of Neck Pain-Related Disability, Pain Catastrophizing, and Cervical Range of Motion

    Muñoz-García, Daniel; Gil-Martínez, Alfonso; López-López, Almudena; Lopez-de-Uralde-Villanueva, Ibai; La Touche, Roy; Fernández-Carnero, Josué


    Background. Neck pain (NP) is strongly associated with cervico-craniofacial pain (CCFP). The primary aim of the present study was to compare the neck pain-related disability, pain catastrophizing, and cervical and mandibular ROM between patients with chronic mechanical NP and patients with CCFP, as well as asymptomatic subjects. Methods. A total of 64 participants formed three groups. All participants underwent a clinical examination evaluating the cervical range of motion and maximum mouth opening, neck disability index (NDI), and psychological factor of Pain Catastrophizing Scale (PCS). Results. There were no statistically significant differences between patients with NP and CCFP for NDI and PCS (P > 0.05). One- way ANOVA revealed significant differences for all ROM measurements. The post hoc analysis showed no statistically significant differences in cervical extension and rotation between the two patient groups (P > 0.05). The Pearson correlation analysis shows a moderate positive association between NDI and the PCS for the group of patients with NP and CCFP. Conclusion. The CCFP and NP patient groups have similar neck disability levels and limitation in cervical ROM in extension and rotation. Both groups had positively correlated the NDI with the PCS. PMID:27119020

  8. Chronic Neck Pain and Cervico-Craniofacial Pain Patients Express Similar Levels of Neck Pain-Related Disability, Pain Catastrophizing, and Cervical Range of Motion

    Daniel Muñoz-García


    Full Text Available Background. Neck pain (NP is strongly associated with cervico-craniofacial pain (CCFP. The primary aim of the present study was to compare the neck pain-related disability, pain catastrophizing, and cervical and mandibular ROM between patients with chronic mechanical NP and patients with CCFP, as well as asymptomatic subjects. Methods. A total of 64 participants formed three groups. All participants underwent a clinical examination evaluating the cervical range of motion and maximum mouth opening, neck disability index (NDI, and psychological factor of Pain Catastrophizing Scale (PCS. Results. There were no statistically significant differences between patients with NP and CCFP for NDI and PCS (P>0.05. One- way ANOVA revealed significant differences for all ROM measurements. The post hoc analysis showed no statistically significant differences in cervical extension and rotation between the two patient groups (P>0.05. The Pearson correlation analysis shows a moderate positive association between NDI and the PCS for the group of patients with NP and CCFP. Conclusion. The CCFP and NP patient groups have similar neck disability levels and limitation in cervical ROM in extension and rotation. Both groups had positively correlated the NDI with the PCS.

  9. Chronic Neck Pain and Cervico-Craniofacial Pain Patients Express Similar Levels of Neck Pain-Related Disability, Pain Catastrophizing, and Cervical Range of Motion.

    Muñoz-García, Daniel; Gil-Martínez, Alfonso; López-López, Almudena; Lopez-de-Uralde-Villanueva, Ibai; La Touche, Roy; Fernández-Carnero, Josué


    Background. Neck pain (NP) is strongly associated with cervico-craniofacial pain (CCFP). The primary aim of the present study was to compare the neck pain-related disability, pain catastrophizing, and cervical and mandibular ROM between patients with chronic mechanical NP and patients with CCFP, as well as asymptomatic subjects. Methods. A total of 64 participants formed three groups. All participants underwent a clinical examination evaluating the cervical range of motion and maximum mouth opening, neck disability index (NDI), and psychological factor of Pain Catastrophizing Scale (PCS). Results. There were no statistically significant differences between patients with NP and CCFP for NDI and PCS (P > 0.05). One- way ANOVA revealed significant differences for all ROM measurements. The post hoc analysis showed no statistically significant differences in cervical extension and rotation between the two patient groups (P > 0.05). The Pearson correlation analysis shows a moderate positive association between NDI and the PCS for the group of patients with NP and CCFP. Conclusion. The CCFP and NP patient groups have similar neck disability levels and limitation in cervical ROM in extension and rotation. Both groups had positively correlated the NDI with the PCS.

  10. Modeling and synthesis of strong ground motion

    S T G Raghu Kanth


    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

  11. Auditory Motion Elicits a Visual Motion Aftereffect

    Christopher C. Berger


    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  12. Motion control report


    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  13. The impact of joint range of motion limitations on health-related quality of life in patients with haemophilia A: a prospective study.

    Chen, C M; Huang, K C; Chen, C C; Huang, S U; Huang, C E; Chen, Y Y; Hsu, S L


    In patients with haemophilia A, repeated occurrences of haemarthrosis and synovitis lead to limitations in range of motion (ROM) of major joints. However, the effect of limitations in joint ROM on health-related quality of life (HRQOL) in these patients has not been studied previously. The aim of this study was to assess the impact of ROM limitations of 10 major joints (bilateral shoulders, elbows, hips, knees and ankles), combined with other possibly influential factors, on HRQOL in patients with haemophilia A. The ROM limitations in 13 movements and pain intensity of the 10 major joints were measured. The socio-demographic and clinical data were recorded. Short-Form 36 was used as the HRQOL measurement. Eighteen patients (mean age: 36.9 years) were included. Hip ROM limitations, knee ROM limitations and hip pain intensity predicted physical functioning scale (P < 0.001; adjusted R2 = 0.553). Shoulder ROM limitations and age predicted role limitation were due to emotional problems scale (P < 0.001; adjusted R2 = 0.373). Elbow ROM limitations and haemophilia severity predicted mental health scale (P = 0.001; adjusted R2 = 0.320). Hip ROM limitations predicted social functioning scale (P = 0.041; adjusted R2 = 0.091). Educational level and elbow ROM limitations predicted vitality scale (P < 0.001; adjusted R2 = 0.416). The ROM limitations of hip, knee, shoulder and elbow could be predictors for HRQOL in patients with haemophilia A. Improving ROM of major joints could be an appropriate treatment strategy to enhance HRQOL in these patients.

  14. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer

    Tu, R.; Wang, R.; Ge, M.; Walter, T. R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T.


    detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (microelectromechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analyzed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers.

  15. Analytical Analysis of Motion Separability

    Marjan Hadian Jazi


    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  16. Negotiation in Motion

    Jensen, Ole B.


    related to interaction, mobility, and transit that focus on notions of the “mobile with,” “negotiation in motion,” “mobile sense making,” and “temporary congregations.” The theoretical approach aims at seeing public transit spaces as sites where cars, pedestrians, mopeds, and bikes on a regular basis...... “negotiate” not only routes in and across the space but also express dynamic flows of interaction in motion. The claim is that what seems like ordinary urban movement patterns are more than this. By moving in the city among buildings, objects, and people, one interacts with the “environment,” making sense...

  17. Prevalence of shoulder pain in Swedish flatwater kayakers and its relation to range of motion and scapula stability of the shoulder joint.

    Johansson, Anette; Svantesson, Ulla; Tannerstedt, Jörgen; Alricsson, Marie


    Few studies have investigated the incidence of injuries in kayakers. The aim was to study the prevalence of shoulder pain in competitive flatwater kayakers and to evaluate any differences in range of motion or scapula stability of the shoulder joint among kayakers with or without the history of shoulder pain. Thirty-one kayakers were participated in the study, and a questionnaire including background data was used. Shoulder range of motion was measured with a goniometer, and the participants were observed for scapula dyskinesis in flexion and abduction. Of the participating kayakers, 54.8% (n = 17) had experienced shoulder pain. Kayakers who had experienced shoulder pain showed a significantly lower degree of internal rotational range of motion versus kayakers with no reported shoulder pain, with a mean degree of internal rotation in the right shoulder 49.3 vs. 60.0 (P = 0.017) and the left shoulder 51.9 vs. 66.0 (P = 0.000). Kayakers who had experienced shoulder pain were also observed with a scapular dyskinesis (n = 15 of 17 kayakers) to a significantly higher degree (P = 0.001) than kayakers with no reported shoulder pain. Findings suggest that screening for scapular dyskinesis and testing for rotational range of motion in the shoulder joint is essential in order to treat and maybe prevent shoulder pain in kayakers.

  18. Feeling Motion

    Thelle, Mikkel


    The article relates the study of mobility history to the fields of history of emotion and affect theory in the promotion of a cross-disciplinary research agenda. Taking as its point of departure a workshop in Copenhagen on feeling and space, the text draws lines and points of potential interface...

  19. Range of motion after thoracolumbar corpectomy

    Gehrchen, Poul Martin; Hegde, Sajan K; Moldavsky, Mark


    ; (2) ATLP with one cross-connector and spacer; (3) ATLP with spacer. Data were normalized to intact (100 %) and statistical analysis was used to determine between-group significances. RESULTS: Both constructs reduced motion compared to intact in flexion-extension and lateral bending. Axial rotation...... motion became unstable after the corpectomy and motion was greater than intact, even with two cross-connectors with both systems. Relative to their respective intact groups, LP DRS significantly reduced motion compared to analogous DRS in flexion-extension. The addition of cross-connectors reduced motion...

  20. Motion in radiotherapy

    Korreman, Stine Sofia


    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPET...

  1. Motion sickness: a negative reinforcement model.

    Bowins, Brad


    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  2. Branner-Hubbard Motions and attracting dynamics

    Petersen, Carsten Lunde; Tan, Lei


    We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics.......We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics....

  3. Branner-Hubbard motions and attracting dynamics

    Petersen, Carsten Lunde; Tan, Lei

    We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics.......We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics....

  4. Remarks on the motion of macroscopic and microscopic spinning particles in relativity; Remarques sur le mouvement des particules a spin macroscopiques et microscopiques en relativite

    Micoulaut, R. [Commissariat a l' Energie Atomique, Limeil-Brevannes (France). Centre d' Etudes


    The Papapetrou equations of motion of a spinning particle do not allow the unequivocal determination of the world-line described by the particle. The motion should be completely determined in adding a supplementary condition. For macroscopic particles, characterized by the conditions of Corinaldesi-Papapetrou and Tulczyjew, moving in a Schwarzschild field we obtain additional term in the expression for the advance of perihelion. For microscopic particles we summarize the results obtained using the conditions of Weyssenhoff, Nakano, Hoenl-Papapetrou and Wessel. (author) [French] Les equations de Papapetrou decrivant le mouvement d'une particule a spin ne permettent pas de fixer de maniere univoque la ligne d'univers que parcourt la particule. Le mouvement sera completement determine en imposant une condition supplementaire arbitraire. Pour des particules macroscopiques, caracterisees par les conditions de Corinaldesi-Papapetrou et Tulczyjew, se deplacant dans un champ de Schwarzschild on obtient un terme supplementaire dans l'expression de l'avance du perihelie. Pour les particules microscopiques on rappellera rapidement les resultats obtenus en utilisant les conditions simples de Weyssenhoff, Nakano, Hoenl-Papapetrou et Wessel. (auteur)

  5. Dizziness and Motion Sickness

    ... ENTCareers Marketplace Find an ENT Doctor Near You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient ... vision or speech, or hearing loss. What is dizziness? Dizziness can be described in many ways, such ...

  6. Operator Fractional Brownian Motion and Martingale Differences

    Hongshuai Dai


    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  7. Ambiguity in Tactile Apparent Motion Perception

    Emanuela Liaci; Michael Bach; Ludger Tebartz Van Elst; Heinrich, Sven P; Jürgen Kornmeier


    Background In von Schiller’s Stroboscopic Alternative Motion (SAM) stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio (“AR”, i.e. the relation between vertical and horizontal dot distances). Further, with equal horizontal and vertical dot distances (A...

  8. Objects in Motion

    Damonte, Kathleen


    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  9. Detecting Free-Mass Common-Mode Motion Induced by Incident Gravitational Waves: Testing General Relativity and Source Direction via Fox-Smith and Michelson Interferometers

    Tobar, Michael Edmund; Kuroda, Kazuaki


    In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of canceling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.

  10. Infrasonic induced ground motions

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  11. Smoothing Motion Estimates for Radar Motion Compensation.

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  12. Rolling Shutter Motion Deblurring

    Su, Shuochen


    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  13. Apsidal motion in eclipsing binary GG Orionis

    Yilan, E.; Bulut, I.


    The study of apsidal motion in binary stars with eccentric orbit is well known as an important source of information for the stellar internal structure as well as the possibility of verification of general relativity. In this study, the apsidal motion of the eccentric eclipsing binary GG Ori (P = 6.631 days, e = 0.22) has been analyzed using the times of minimum light taken from the literature and databases and the elements of apsidal motion have been computed. The method described by Giménez and García-Pelayo (1983) has been used for the apsidal motion analysis.

  14. Restoration of nonlinear motion-distorted composite frame

    Yitzhaky, Yitzhak; Stern, Adrian; Kopeika, Norman S.


    A composite frame image is an interlaced composition of two sub-image odd and even fields. Such image type is common in many imaging systems that produce video sequences. When relative motion between the camera and the scene occurs during the imaging process, two types of distortion degrade the image: the edge 'staircase effect' due to the shifted appearances of the objects in successive fields, and blur due to the scene motion during each field exposure. This paper deals with restoration of composite frame images degraded by motion. In contrast to other previous works that dealt with only uniform velocity motion, here we consider a more general case of nonlinear motion. Since conventional motion identification techniques used in other works can not be employed in the case of nonlinear motion, a new method for identification of the motion from each field is used. Results of motion identification and image restoration for various motion types are presented.

  15. Motion in gauge theories of gravity

    Tresguerres, Romualdo


    A description of motion is proposed, adapted to the composite bundle interpretation of Poincar\\'e Gauge Theory. Reference frames, relative positions and time evolution are characterized in gauge-theoretical terms. The approach is illustrated by an appropriate formulation of the familiar example of orbital motion induced by Schwarzschild spacetime.

  16. Coordinating control of multiple rigid bodies based on motion primitives

    Fan Wu; Zhi-Yong Geng


    This paper studies the problem of coordinated motion generation for a group of rigid bodies.Two classes of coordinated motion primitives,relative equilibria and maneuvers,are given as building blocks for generating coordinated motions.In a motion-primitive based planning framework,a control method is proposed for the robust execution of a coordinated motion plan in the presence of perturbations,The control method combines the relative equilibria stabilization with maneuver design,and results in a closeloop motion planning framework.The performance of the control method has been illustrated through a numerical simulation.

  17. 中国核电工程场地设计地震动参数确定相关问题%The issues related to determination of site specific design ground motion for nuclear power plants in China

    李小军; 贺秋梅; 侯春林


      基于中国核电工程选址和建设的实际工作,探讨了核电工程场地设计地震动参数确定几个环节中的关键问题,包括不同地震危险性分析方法的采用、地震动衰减关系的选取和设计地震动参数的综合取值等.分析了地震动衰减关系不确定性和弥散地震衰减关系等问题处理方式的变迁,比较分析了地震危险性分析确定性方法中构造地震、弥散地震的计算结果和概率方法计算结果的差异及对设计地震动参数确定的控制作用.研究表明:a.综合考虑地震危险性分析的确定性方法和概率方法的计算结果已成为中国核电工程场地地震安全性评价中确定设计地震动参数的基本思路,其中弥散地震是一个需要特殊考虑的问题;b.确定性方法和概率方法计算结果对场地设计地震动参数的控制作用受区域地震活动性强弱的影响;c.在地震活动性较弱的地区,确定性方法特别是弥散地震计算结果基本上控制着场地设计地震动参数的取值,而在地震活动性相对较强的地区,更倾向于由概率方法计算结果控制.%Based on the recent practical work of evaluation of seismic safety for the nuclear power plant site selection and construction in China,some key issues were discussed involved in the determination of site specific design ground motion for nuclear power plants,including the seismic hazard analysis methods,the ground motion attenuation relations,and the methods of determining design ground motion parameter. The coun-termeasure change was analyzed to consider the uncertainty of ground motion attenuation relation and the ground motion attenuation relation of diffuse earthquake;the differences were discussed between the computed results from the probabilistic method and the approaches of the diffuse earthquakes and tectonic earthquakes in the deter-ministic method,and their controlling effects were also discussed

  18. Moribund sperm in frozen-thawed semen, and sperm motion end points post-thaw and post-swim-up, are related to fertility in Holstein AI bulls.

    Shojaei, H; Kroetsch, T; Wilde, R; Blondin, P; Kastelic, J P; Thundathil, J C


    The objectives were to compare testicular physical characteristics and post-thaw sperm characteristics and their associations with fertility in Holstein bulls used for AI. Ten Holstein bulls (4-5 y old) were classified as either high-fertility (HF) or low-fertility (LF; n = 5 each), based on adjusted 56-d non-return rates [non-return rate (NRR); range (mean ± SD): 55.6 ± 4.6 to 71.8 ± 1.3%). Testicular physical characteristics were not significantly different between the two groups. Four ejaculates were collected from each bull and cryopreserved. Several indexes of sperm motion (based on computer-assisted sperm analysis) at post-thaw and post-swim-up were correlated with NRR. Sperm from HF bulls were in transition to a hyperactivated motility pattern, whereas those from LF bulls had only a forward progressive motility pattern. In HF vs LF bulls, there was a greater percentage of viable sperm after thawing (60.6 ± 9.7 vs 49.5 ± 8.0%, P fertility (r = 0.45, P fertility. In conclusion, fertility of Holstein bulls maintained in a commercial AI center was not predicted by testicular physical characteristics, but it was associated with differences in moribund sperm in the inseminate, as well as characteristics of sperm post-thaw and after swim-up. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A Motion Planning Approach to Studying Molecular Motions

    Amato, Nancy M.


    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  20. Modeling and analysis of roll motion for high temperature ladle carrier vehicles based on relative motion theory%基于相对运动理论的高温铁水运输车侧倾运动建模与特征分析

    张卫东; 李向华; 邓华


    根据牛顿定律的相对运动理论,考虑重载高温铁水运输车车身阻尼以及惯性积较大的情况,建立该车的整车动力学模型,对模型进行计算和数值仿真.研究结果表明:大的惯性积使得高温铁水运输车侧倾振动的振动频率增大了约10%,振幅减小了约5%,而转向半径和轴间间距对侧倾振动的影响很小.%Based on the Newton's Law of relative motion, the model of a high temperature ladle carrier vehicle was built while the body's products of inertia were taken into account. Model calculation and numeric simulations were made. The results show that the frequency of the roll vibration increases by about 10% while the amplitude decreases by about 5%. The turning radius and shaft distances have little effect on the roll motion.

  1. Saturn's Periodic Magnetosphere: The Relation Between Periodic Hot Plasma Injections, a Rotating Partial Ring Current, Global Magnetic Field Distortions, Plasmapause Motion, and Radio Emissions

    Brandt, P. C.; Mitchell, D. G.; Gurnett, D. A.; Persoon, A. M.; Tsyganenko, N. A.


    It has been know for some time that the large-scale energetic particle injections (~3-200 keV) on the nigh side of Saturn observed by Cassini/INCA are closely tracked by the periodic Saturn Kilometric Radiation (SKR). The resulting energetic particle pressure is comparable to that of the colder plasma and it therefore distorts the global magnetic field significantly as the energetic particle population drifts around Saturn. In this presentation we discuss the important consequences this has for the large-scale dynamics and configuration of the entire inner magnetosphere of Saturn. We begin by reviewing the observational correlations between remote, global INCA observations of energetic particles, magnetic field distortions, and radio emissions. We present examples of how the magnetic field measurements and the INCA observations show direct implications of a rotating 3D electrical current system associated with, not only, the energetic particle pressure, but also with an interhemispheric field-aligned current (FAC) system. Recently, we found an intriguing high correlation also between the periodic motion of the high-latitude plasmapause-like boundary reported by Gurnett et al. [2011] and the energetic particles observed remotely by INCA that are periodically injected on the night side and then drift around Saturn according to their energy. In our preliminary analysis we see a direct correlation in at least 75% of the case with the center of drifting energetic particle distribution [Brandt et al., 2010] and the encounter with the rotating plasmapause-like density boundary [Gurnett et al., 2011]. However, the remaining, low-correlation cases suggest that we do not fully understand the global, 3D current system that produces the periodic perturbations in Saturn's magnetosphere. We will use these observations to constrain the underlying 3D current system and in particular, assess the role of interhemispheric FACs in reproducing the observations.

  2. The perception of object versus objectless motion.

    Hock, Howard S; Nichols, David F


    Wertheimer, M. (Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161-265, 1912) classical distinction between beta (object) and phi (objectless) motion is elaborated here in a series of experiments concerning competition between two qualitatively different motion percepts, induced by sequential changes in luminance for two-dimensional geometric objects composed of rectangular surfaces. One of these percepts is of spreading-luminance motion that continuously sweeps across the entire object; it exhibits shape invariance and is perceived most strongly for fast speeds. Significantly for the characterization of phi as objectless motion, the spreading luminance does not involve surface boundaries or any other feature; the percept is driven solely by spatiotemporal changes in luminance. Alternatively, and for relatively slow speeds, a discrete series of edge motions can be perceived in the direction opposite to spreading-luminance motion. Akin to beta motion, the edges appear to move through intermediate positions within the object's changing surfaces. Significantly for the characterization of beta as object motion, edge motion exhibits shape dependence and is based on the detection of oppositely signed changes in contrast (i.e., counterchange) for features essential to the determination of an object's shape, the boundaries separating its surfaces. These results are consistent with area MT neurons that differ with respect to speed preference Newsome et al (Journal of Neurophysiology, 55:1340-1351, 1986) and shape dependence Zeki (Journal of Physiology, 236:549-573, 1974).

  3. Mental imagery of gravitational motion.

    Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco


    There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Brain Image Motion Correction

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus


    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  5. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max


    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  6. Humans perceive object motion in world coordinates during obstacle avoidance.

    Fajen, Brett R; Parade, Melissa S; Matthis, Jonathan S


    A fundamental question about locomotion in the presence of moving objects is whether movements are guided based upon perceived object motion in an observer-centered or world-centered reference frame. The former captures object motion relative to the moving observer and depends on both observer and object motion. The latter captures object motion relative to the stationary environment and is independent of observer motion. Subjects walked through a virtual environment (VE) viewed through a head-mounted display and indicated whether they would pass in front of or behind a moving obstacle that was on course to cross their future path. Subjects' movement through the VE was manipulated such that object motion in observer coordinates was affected while object motion in world coordinates was the same. We found that when moving observers choose routes around moving obstacles, they rely on object motion perceived in world coordinates. This entails a process, which has been called flow parsing (Rushton & Warren, 2005; Warren & Rushton, 2009a), that recovers the component of optic flow due to object motion independent of self-motion. We found that when self-motion is real and actively generated, the process by which object motion is recovered relies on both visual and nonvisual information to factor out the influence of self-motion. The remaining component contains information about object motion in world coordinates that is needed to guide locomotion.

  7. Key frame extraction based on spatiotemporal motion trajectory

    Zhang, Yunzuo; Tao, Ran; Zhang, Feng


    Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.

  8. Evidence for relative motions between the Indian and Australian Plates during the last 20 m.y. from plate tectonic reconstructions: Implications for the deformation of the Indo-Australian Plate

    Royer, Jean-Yves; Chang, Ted


    We use plate tectonic reconstructions to establish whether motions between India and Australia occurred since chron 18 (43 Ma). We test the Africa/Antarctica/Australia/India plate circuit closure at chrons 5 (10 Ma), 6 (21 Ma) and 13 (36 Ma) using a compilation of magnetic anomalies and fracture zone traces from the Southeast, Southwest, Central Indian and the Carlsberg ridges. Additional reconstructions at chrons 23 (55 Ma) and 26 (61 Ma) are used to estimate the overall motion between India and Australia. Relative motions between the Indian and Australian plates are estimated using the plate circuit India → Africa → Australia. A new statistical approach, based on spherical regression analyses, is used to assess the uncertainty of the "best-fitting" finite rotations from the uncertainties in the data. The uncertainty in a rotation is described by a covariance matrix directly related to the geometry of the reconstructed plate boundary, to the distribution and estimated errors of the data points along it. Our parameterization of the rotations allows for simple combination of the rotation uncertainties along a plate circuit path. Results for chron 5 are remarkably consistent with present-day kinematics in the Indian Ocean, except that the Arabian and Indian plates are found to be separate plates. Comparisons of the motions between the Indian and African plates across the Carlsberg Ridge with that between the Australian and African plates across the Central Indian Ridge evidence a significant counterclockwise rotation of the Australian plate relative to the Indian plate about a pole located in the Central Indian Basin. The determinations are consistent for chrons 26, 13, 6 and 5. Determination at chron 23 is different but questionable due to the small number of available data. We propose two alternative solutions that both predict convergence within the Wharton and Central Indian basins and extension in the vicinity of the Chagos-Laccadive Ridge. The first

  9. Motion compensator for holographic motion picture camera

    Kurtz, R. L.


    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  10. Body Motion and Graphing.

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy


    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  11. Teaching Projectile Motion

    Summers, M. K.


    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  12. Stochastic ground motion simulation

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan


    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  13. Coriolis effects and motion sickness modelling.

    Bles, W


    Coriolis effects are notorious in relation to disorientation and motion sickness in aircrew. A review is provided of experimental data on these Coriolis effects, including the modulatory effects of adding visual or somatosensory rotatory motion information. A vector analysis of the consequences of head movements during somatosensory, visual and/or vestibular rotatory motion stimulation revealed that the more the sensed angular velocity vector after the head movements is aligned with the gravitoinertial force vector, the less nauseating effects are experienced. It is demonstrated that this is a special case of the subjective vertical conflict theory on motion sickness that assumes that motion sickness may be provoked if a discrepancy is detected between the subjective vertical and the sensed vertical as determined on the basis of incoming sensory information.

  14. Perception of complex motion in humans and pigeons (Columba livia).

    Nankoo, Jean-François; Madan, Christopher R; Spetch, Marcia L; Wylie, Douglas R


    In the primate visual system, local motion signals are pooled to create a global motion percept. Like primates, many birds are highly dependent on vision for their survival, yet relatively little is known about motion perception in birds. We used random-dot stimuli to investigate pigeons' ability to detect complex motion (radial, rotation, and spiral) compared to humans. Our human participants had a significantly lower threshold for rotational and radial motion when compared to spiral motion. The data from the pigeons, however, showed that the pigeons were most sensitive to rotational motion and least sensitive to radial motion, while sensitivity for spiral motion was intermediate. We followed up the pigeon results with an investigation of the effect of display aperture shape for rotational motion and velocity gradient for radial motion. We found no effect of shape of the aperture on thresholds, but did observe that radial motion containing accelerating dots improved thresholds. However, this improvement did not reach the thresholds levels observed for rotational motion. In sum, our experiments demonstrate that the pooling mechanism in the pigeon motion system is most efficient for rotation.

  15. Magnetic flux density from the relative circular motion of stars and partially ionized gas in the Galaxy mid-plane vicinity

    Jałocha, Joanna; Pękala, Jan; Sikora, Szymon; Kutschera, Marek


    Observations suggest a slower stellar rotation relative to gas rotation in the outer part of the Milky Way Galaxy. This difference could be attributed to an interaction with the interstellar magnetic field. In a simple model, fields of order 10 micro Gauss are then required, consistently with the observed values. This coincidence suggests a tool for estimating magnetic fields in spiral galaxies. A North-South asymmetry in the rotation of gas in the Galaxy could be of magnetic origin too.

  16. A dynamic human motion: coordination analysis.

    Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid


    This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments.

  17. Parent-Child Talk about Motion: Links to Children's Development of Motion Event Language

    Hohenstein, Jill


    This study investigated the motion event language children and their parents engaged in while playing a board game. Children are sensitive to differences in manner and path at infancy, yet adult-like motion event expression appears relatively late in development. While multiple studies have examined how exposure to parent speech generally relates…

  18. Scalable motion vector coding

    Barbarien, Joeri; Munteanu, Adrian; Verdicchio, Fabio; Andreopoulos, Yiannis; Cornelis, Jan P.; Schelkens, Peter


    Modern video coding applications require transmission of video data over variable-bandwidth channels to a variety of terminals with different screen resolutions and available computational power. Scalable video coding is needed to optimally support these applications. Recently proposed wavelet-based video codecs employing spatial domain motion compensated temporal filtering (SDMCTF) provide quality, resolution and frame-rate scalability while delivering compression performance comparable to that of the state-of-the-art non-scalable H.264-codec. These codecs require scalable coding of the motion vectors in order to support a large range of bit-rates with optimal compression efficiency. Scalable motion vector coding algorithms based on the integer wavelet transform followed by embedded coding of the wavelet coefficients were recently proposed. In this paper, a new and fundamentally different scalable motion vector codec (MVC) using median-based motion vector prediction is proposed. Extensive experimental results demonstrate that the proposed MVC systematically outperforms the wavelet-based state-of-the-art solutions. To be able to take advantage of the proposed scalable MVC, a rate allocation mechanism capable of optimally dividing the available rate among texture and motion information is required. Two rate allocation strategies are proposed and compared. The proposed MVC and rate allocation schemes are incorporated into an SDMCTF-based video codec and the benefits of scalable motion vector coding are experimentally demonstrated.

  19. Inflation and Cyclotron Motion

    Greensite, Jeff


    We consider, in the context of a braneworld cosmology, the motion of the universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that conditions on the flatness of the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field.

  20. Projectile Motion Details.

    Schnick, Jeffrey W.


    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  1. Projectile Motion with Mathematica.

    de Alwis, Tilak


    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  2. A Projectile Motion Bullseye.

    Lamb, William G.


    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  3. Travelers' Health: Motion Sickness

    ... Disease Directory Resources Resources for Travelers Adventure Travel Animal Safety Blood Clots Bug Bites Business Travel Cold ... motion sickness. Adding distractions—controlling breathing, listening to music, or using aromatherapy scents such as mint or ...

  4. Toying with Motion.

    Galus, Pamela J.


    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  5. Vision and Motion Pictures.

    Grambo, Gregory


    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  6. Coupled transverse motion

    Teng, L.C.


    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  7. Motion parallax contribution to perception of self-motion and depth.

    Hanes, Douglas A; Keller, Julia; McCollum, Gin


    The object of this study is to mathematically specify important characteristics of visual flow during translation of the eye for the perception of depth and self-motion. We address various strategies by which the central nervous system may estimate self-motion and depth from motion parallax, using equations for the visual velocity field generated by translation of the eye through space. Our results focus on information provided by the movement and deformation of three-dimensional objects and on local flow behavior around a fixated point. All of these issues are addressed mathematically in terms of definite equations for the optic flow. This formal characterization of the visual information presented to the observer is then considered in parallel with other sensory cues to self-motion in order to see how these contribute to the effective use of visual motion parallax, and how parallactic flow can, conversely, contribute to the sense of self-motion. This article will focus on a central case, for understanding of motion parallax in spacious real-world environments, of monocular visual cues observable during pure horizontal translation of the eye through a stationary environment. We suggest that the global optokinetic stimulus associated with visual motion parallax must converge in significant fashion with vestibular and proprioceptive pathways that carry signals related to self-motion. Suggestions of experiments to test some of the predictions of this study are made.

  8. Incipient Motion of Sediment Under Currents

    DOU Guoren


    Summarized in the paper are the author′s studies on incipient motion of sediment in recent 40years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are important for fine particles. The relations between three stages of incipient motion are defined by use of instantaneous velocity. Formulas for initial velocity and critical shear stress are given and overall verified by the author′s and others′ experimental data

  9. Measurement and Quantification of Gross Human Shoulder Motion

    Jeremy T. Newkirk


    Full Text Available The shoulder girdle plays an important role in the large pointing workspace that humans enjoy. The goal of this work was to characterize the human shoulder girdle motion in relation to the arm. The overall motion of the human shoulder girdle was characterized based on motion studies completed on test subjects during voluntary (natural/unforced motion. The collected data from the experiments were used to develop surface fit equations that represent the position and orientation of the glenohumeral joint for a given humeral pointing direction. These equations completely quantify gross human shoulder girdle motion relative to the humerus. The equations are presented along with goodness-of-fit results that indicate the equations well approximate the motion of the human glenohumeral joint. This is the first time the motion has been quantified for the entire workspace, and the equations provide a reference against which to compare future work.

  10. Conserved linear dynamics of single-molecule Brownian motion

    Serag, Maged F.


    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  11. Motion Belts: Visualization of Human Motion Data on a Timeline

    Yasuda, Hiroshi; Kaihara, Ryota; Saito, Suguru; Nakajima, Masayuki

    Because motion capture system enabled us to capture a number of human motions, the demand for a method to easily browse the captured motion database has been increasing. In this paper, we propose a method to generate simple visual outlines of motion clips, for the purpose of efficient motion data browsing. Our method unfolds a motion clip into a 2D stripe of keyframes along a timeline that is based on semantic keyframe extraction and the best view point selection for each keyframes. With our visualization, timing and order of actions in the motions are clearly visible and the contents of multiple motions are easily comparable. In addition, because our method is applicable for a wide variety of motions, it can generate outlines for a large amount of motions fully automatically.

  12. L’argumentation à la Cour d’Assises brésilienne : les émotions dans le genre du rapport de police Argumentation at the Brazilian criminal court: emotions and power relations in the police report

    Helcira Maria Rodrigues de Lima


    Full Text Available Dans cet article tiré d’une étude plus globale sur le fonctionnement du discours véhiculé dans et par la Cour d’Assises au Brésil, notre objectif est d’entamer une réflexion sur le rôle de l’émotion dans la construction argumentative des discours constitutifs de cette instance judiciaire, en tenant compte des relations de pouvoir qu’elle instaure. Pour cela on procède à l’analyse du « Boletim de Ocorrências » (BO, document rédigé par un policier sur les lieux du crime et qui constitue la première mise en scène de l’affaire criminelle.In this paper, which is part of a wider research about how discourse functions within the criminal court in Brazil, we investigate the role of emotion in the argumentative construction of the discourse of the court, taking into account the power relations of the latter. Thus, we analyze the “Boletim de Ocorrências” or “BO�����, a police report written on the scene of the crime and which represents the first “stage setting” of the “criminal case”.

  13. 豆状囊尾蚴的头节在相对静止与运动状态时的超微结构变化%Ultrastructural Changes of Scolex on Cysticercus pisiformis during Relative Rest and Motion States

    潘耀谦; 张柳平; 王帅; 李瑞珍; 刘志科; 孙玉倩; Javaid Ali Gadahi; 刘兴友


    [目的]观察豆状囊尾蚴的头节在相对静止与运动时超微结构的变化。[方法]本研究用扫描电镜对位于囊泡内的头节和经人工培养后从囊泡内翻出头节的超微结构变化进行了比较观察。[结果]处于相对静止状态的头节从正面观察时,带有皮肌柱和齿钩的顶突呈伞状,覆盖于头节的前端。从侧面观察,齿钩具有鹿角样的分支,覆盖头节的齿钩仅有一排。4个吸盘呈洞穴状,位于顶突之后,均等地分布在头节的四周。当头节处于运动状态时,顶突上的皮肌柱收缩,鹿角样的齿钩向周围伸展,吸盘也发生环形和纵行收缩。[结论]豆状囊尾蚴的头节在相对静止与运动时的超微结构有明显的改变,这种变化有利于豆状囊尾蚴对宿主的侵袭。%[Objective] This study aimed to research the ultra-morphological changes of scolex of Cysticercus pisiformis during the relative rest and motion states. [Method] The ultrastructure changes of scolex located in cyst and evaginated from cyst after cultivation were comparatively observed by scanning electron microscope. [Result] When the scolex was in the relative rest state, observed from the top, the rostel um with the tegument muscular column that connected to tooth-hook looked like the umbrel a and covered on the front end of the scolex. Viewed from the side of the scolex, the tooth-hook on the rostel um looked like the antler branch and had only one row. Four suckers looked like cavities, and were located in the back of the rostel um and distributed around the scolex in the equidistance. When the scolex was in the motion states, the tegument muscular column on the rostel um contracted, the antler-like tooth-hook extended to periphery, and the sucker also made the ring-like and longitudinal-like contraction. [Conclusion] Ultrastructure of the scolex of C. pisiformis changed apparently during relative rest and motion states. Those changes help


    Florian Ion Tiberiu Petrescu


    Full Text Available This paper presents the dynamic, original, machine motion equations. The equation of motion of the machine that generates angular speed of the shaft (which varies with position and rotation speed is deduced by conservation kinetic energy of the machine. An additional variation of angular speed is added by multiplying by the coefficient dynamic D (generated by the forces out of mechanism and or by the forces generated by the elasticity of the system. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses, while the dynamic coefficient introduces the variation of w with forces acting in the mechanism. Deriving the first equation of motion of the machine one can obtain the second equation of motion dynamic. From the second equation of motion of the machine it determines the angular acceleration of the shaft. It shows the distribution of the forces on the mechanism to the internal combustion heat engines. Dynamic, the velocities can be distributed in the same way as forces. Practically, in the dynamic regimes, the velocities have the same timing as the forces. Calculations should be made for an engine with a single cylinder. Originally exemplification is done for a classic distribution mechanism, and then even the module B distribution mechanism of an Otto engine type.

  15. The Particle--Motion Problem.

    Demana, Franklin; Waits, Bert K.


    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  16. Ambiguity in Tactile Apparent Motion Perception.

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  17. Relative Motion Modeling and Autonomous Navigation Accuracy


    Model Expansion; Earth Gravitational Perturbation; Goddard Mission Analysis Tool; GMAT ; Hamiltonian Methods; LEO Orbits; Lunar-solar Perturbations...54  4.1.3  Numerical Verification using GMAT and a Graphical User Interface (GUI) ......... 58  4.2  Non-Earth Gravitational...and short period ... 52  Figure 3. Difference between the Kaula and GMAT with 20x20 gravity field without J22 secular and short period terms

  18. Generating Concise Rules for Human Motion Retrieval

    Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru

    This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.


    O. Motlagh


    Full Text Available Artificial potential fields (APF are well established for reactive navigation of mobile robots. This paper describes a fast and robust fuzzy-APF on an ActivMedia AmigoBot. Obstacle-related information is fuzzified by using sensory fusion, which results in a shorter runtime. In addition, the membership functions of obstacle direction and range have been merged into one function, obtaining a smaller block of rules. The system is tested in virtual environments with non-concave obstacles. Then, the paper describes a new approach to motion modelling where the motion of intelligent travellers is modelled by consecutive path segments. In previous work, the authors described a reliable motion modelling technique using causal inference of fuzzy cognitive maps (FCM which has been efficiently modified for the purpose of this contribution. Results and analysis are given to demonstrate the efficiency and accuracy of the proposed motion modelling algorithm.

  20. Muscle Motion Solenoid Actuator

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  1. Exploring the motion advantage: evaluating the contribution of familiarity and differences in facial motion.

    Butcher, Natalie; Lander, Karen


    Seeing a face move can improve familiar face recognition, face matching, and learning. More specifically, familiarity with a face may facilitate the learning of an individual's "dynamic facial signature". In the outlined research we examine the relationship between participant ratings of familiarity, the distinctiveness of motion, the amount of facial motion, and the recognition of familiar moving faces (Experiment 1) as well as the magnitude of the motion advantage (Experiment 2). Significant positive correlations were found between all factors. Findings suggest that faces rated as moving a lot and in a distinctive manner benefited the most from being seen in motion. Additionally findings indicate that facial motion information becomes a more important cue to recognition the more familiar a face is, suggesting that "dynamic facial signatures" continue to be learnt over time and integrated within the face representation. Results are discussed in relation to theoretical explanations of the moving face advantage.

  2. Ship Roll Motion Control

    Perez, Tristan; Blanke, Mogens


    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  3. Method through motion

    Steijn, Arthur


    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...

  4. Leap Motion development essentials

    Spiegelmock, Mischa


    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  5. 3D motion analysis via energy minimization

    Wedel, Andreas


    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  6. Hand in motion reveals mind in motion

    Jonathan eFreeman


    Full Text Available Recently, researchers have measured hand movements en route to choices on a screen to understand the dynamics of a broad range of psychological processes. We review this growing body of research and explain how manual action exposes the real-time unfolding of underlying cognitive processing. We describe how simple hand motions may be used to continuously index participants’ tentative commitments to different choice alternatives during the evolution of a behavioral response. As such, hand-tracking can provide unusually high-fidelity, real-time motor traces of the mind. These motor traces cast novel theoretical and empirical light onto a wide range of phenomena and serve as a potential bridge between far-reaching areas of psychological science—from language, to high-level cognition and learning, to social cognitive processes.

  7. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    Ratzlaff, Michael; Nawrot, Mark


    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions.

  8. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    Ernst, Floris


    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  9. Modulation of Motion Perception of Ipsilateral Tactile Stimuli Using Sound

    Yuika Suzuki


    Full Text Available We report the modulation of tactile motion perception by presenting static sounds with two alternately and repeatedly presented vibrotactile stimuli for the perception of tactile apparent motion. Previous research on tactile motion perception has used direction judgment tasks for apparent motion that consist of two non-repeating, or more than two repeating stimuli. However, the direction of two repeating apparent motion stimuli has been considered too ambiguous to be judged. The present study shows that the additional presentation of sounds with manipulated timings could help to determine the perceived direction of tactile motion despite the ambiguity in the interpretation of tactile stimuli at ipsilateral locations. Furthermore, we found that there is a limited alternation rate for tactile stimuli that can be used to achieve significant modulation using sound. We relate the temporal properties observed during crossmodal effects in tactile motion perception, to those observed during some other crossmodal phenomena.

  10. The sparkling Universe: a scenario for cosmic void motions

    Ceccarelli, Laura; Ruiz, Andrés N.; Lares, Marcelo; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.; Garcia Lambas, Diego


    Cosmic voids are prominent features of the Universe, encoding relevant information of the growth and evolution of structure through their dynamics. Here, we perform a statistical study of the global motion of cosmic voids using both a numerical simulation and observational data. Their relation to large-scale mass flows and the physical effects that drive those motions. We analyse the bulk motions of voids, finding void mean bulk velocities in the range 300-400 km s-1, depending on void size and the large-scale environment. Statistically, small voids move faster, and voids in relatively higher density environments have higher bulk velocities. Also, we find large-scale overdensities (underdensities) along (opposite to) the void motion direction, suggesting that void motions respond to a pull-push mechanism. Our analysis suggests that their relative motions are generated by large-scale density fluctuations. In agreement with linear theory, voids embedded in low (high) density regions mutually recede (attract) each other, providing the general mechanism to understand the bimodal behaviour of void motions. We have also inferred void motions in the Sloan Digital Sky Survey using linear theory, finding that their estimated motions are in qualitatively agreement with the results of the simulation. Our results suggest a scenario of galaxies and galaxy systems flowing away from void centres with the additional, and more relevant, contribution of the void bulk motion to the total velocity.

  11. Markerless Motion Tracking

    Brooks, Anthony Lewis; Czarowicz, Alex


    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  12. A Harmonic Motion Experiment

    Gluck, P.; Krakower, Zeev


    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  13. Projectile Motion Revisited.

    Lucie, Pierre


    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  14. MotionsFloorball

    Vorup, Jacob; Seidelin, Kåre

    Med denne "opskriftsbog" er I nu klar til at begynde med MotionsFloorball. Ingen vellykket middagsret tilbereder som bekendt sig selv - de vigtigste ingredienser til et succesfuldt forløb er vilje og handlingskraft. Tilsættes værktøjerne og vidensdelen fra denne bog, er der dog ikke langt fra tanke...

  15. Nuclear motion is classical

    Frank, Irmgard


    The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.

  16. Wiimote Experiments: Circular Motion

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary


    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  17. Noncommutative Brownian motion

    Santos, Willien O; Souza, Andre M C


    We investigate the Brownian motion of a particle in a two-dimensional noncommutative (NC) space. Using the standard NC algebra embodied by the sympletic Weyl-Moyal formalism we find that noncommutativity induces a non-vanishing correlation between both coordinates at different times. The effect itself stands as a signature of spatial noncommutativity and offers further alternatives to experimentally detect the phenomena.

  18. Markerless Motion Tracking

    Brooks, Anthony Lewis; Czarowicz, Alex


    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  19. High School Students' Understanding of Projectile Motion Concepts

    Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin


    The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…

  20. Virtual Dance and Motion-Capture

    Marc Boucher


    Full Text Available A general view of various ways in which virtual dance can be understood is presented in the first part of this article. It then appraises the uses of the term “virtual” in previous studies of digital dance. A more in-depth view of virtual dance as it relates to motion-capture is offered, and key issues are discussed regarding computer animation, digital imaging, motion signature, virtual reality and interactivity. The paper proposes that some forms of virtual dance be defined in relation to both digital technologies and contemporary theories of virtuality.

  1. Motion contrast using optical coherence tomography

    Fingler, Jeffrey Paul

    Diagnosis of ophthalmic diseases like age-related macular degeneration is very important for treatment of the disease as well as the development of future treatments. Optical coherence tomography (OCT) is an optical interference technique which can measure the three-dimensional structural information of the reflecting layers within a sample. In retinal imaging, OCT is used as the primary diagnostic tool for structural abnormalities such as retinal holes and detachments. The contrast within the images of this technique is based upon reflectivity changes from different regions of the retina. This thesis demonstrates the developments of methods used to produce additional contrast to the structural OCT images based on the tiny fluctuations of motion experienced by the mobile scatterers within a sample. Motion contrast was observed for motions smaller than 50 nm in images of a variety of samples. Initial contrast method demonstrations used Brownian motion differences to separate regions of a mobile Intralipid solution from a static agarose gel, chosen in concentration to minimize reflectivity contrast. Zebrafish embryos in the range of 3-4 days post fertilization were imaged using several motion contrast methods to determine the capabilities of identifying regions of vascular flow. Vasculature identification was demonstrated in zebrafish for blood vessels of all orientations as small as 10 microns in diameter. Mouse retinal imaging utilized the same motion contrast methods to determine the contrast capabilities for motions associated with vasculature within the retina. Improved contrast imaging techniques demonstrated comparable images to fluorescein angiography, the gold standard of retinal vascular imaging. Future studies can improve the demonstrated contrast analysis techniques and apply them towards human retinal motion contrast imaging for ophthalmic diagnostic purposes.

  2. Experimental Study on Silt Incipient Motion Under Wave Action


    Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.

  3. Animating with Stop Motion Pro

    Sawicki, Mark


    Animating with Stop Motion Pro is comprehensive, hands-on guide to achieving professional results with Stop Motion Pro 7.0 software. Gone are the days of stop motion guesswork and waiting to see the finalized result of your meticulous, labor intensive animations. With the push of a mouse button and the Stop Motion Pro software, animators have ten times the capability of simple camera stop motion capture. Re-visualize stop motion character movements, graph these movements and composite characters into a flawless animations with the techniques and step by step tutorials featured in Animating wit

  4. Multi-Directional Motion Adaptation

    David Patrick McGovern


    Full Text Available The direction aftereffect (DAE is a phenomenon whereby prolonged exposure to a moving stimulus biases the perceived direction of subsequent stimuli. It is believed to arise through a selective suppression of directionally tuned neurons in the visual cortex, causing shifts in the population response away from the adapted direction. Whereas most studies consider only unidirectional adaptation, here we examine how concurrent adaptation to multiple directions affects the DAE. Observers were required to judge whether a random dot kinematogram (RDK moved clockwise or counter-clockwise relative to upwards. In different conditions, observers adapted to a stimulus comprised of directions drawn from a distribution or to bidirectional motion. Increasing the variance of normally distributed directions reduced the magnitude of the peak DAE and broadened its tuning profile. Asymmetric sampling of Gaussian and uniform distributions resulted in shifts of DAE tuning profiles consistent with changes in the perceived global direction of the adapting stimulus. Discrimination thresholds were elevated by an amount that related to the magnitude of the bias. For bidirectional adaptors, adding dots in directions away from the adapting motion led to a pronounced reduction in the DAE. This reduction was observed when dots were added in opposite or orthogonal directions to the adaptor suggesting that it may arise via inhibition from a broadly tuned normalisation pool. Preliminary simulations with a population coding model, where the gain of a direction-selective neuron is inversely proportional to its response to the adapting stimulus, suggest that it provides a parsimonious account of these adaptation effects.

  5. Attentional Networks and Biological Motion

    Chandramouli Chandrasekaran


    Full Text Available Our ability to see meaningful actions when presented with pointlight traces of human movement is commonly referred to as the perception of biological motion. While traditionalexplanations have emphasized the spontaneous and automatic nature of this ability, morerecent findings suggest that attention may play a larger role than is typically assumed. Intwo studies we show that the speed and accuracy of responding to point-light stimuli is highly correlated with the ability to control selective attention. In our first experiment we measured thresholds for determining the walking direction of a masked point-light figure, and performance on a range of attention-related tasks in the same set of observers. Mask-density thresholds for the direction discrimination task varied quite considerably from observer to observer and this variation was highly correlated with performance on both Stroop and flanker interference tasks. Other components of attention, such as orienting, alerting and visual search efficiency, showed no such relationship. In a second experiment, we examined the relationship between the ability to determine the orientation of unmasked point-light actions and Stroop interference, again finding a strong correlation. Our results are consistent with previous research suggesting that biological motion processing may requite attention, and specifically implicate networks of attention related to executive control and selection.

  6. Type of object motion facilitates word mapping by preverbal infants.

    Matatyaho-Bullaro, Dalit J; Gogate, Lakshmi; Mason, Zachary; Cadavid, Steven; Abdel-Mottaleb, Mohammed


    This study assessed whether specific types of object motion, which predominate in maternal naming to preverbal infants, facilitate word mapping by infants. A total of 60 full-term 8-month-old infants were habituated to two spoken words, /bæf/ and /wem/, synchronous with the handheld motions of a toy dragonfly and a fish or a lamb chop and a squiggly. They were presented in one of four experimental motion conditions-shaking, looming, upward, and sideways-and one all-motion control condition. Infants were then given a test that consisted of two mismatch (change) and two control (no-change) trials, counterbalanced for order. Results revealed that infants learned the word-object relations (i.e., looked longer on the mismatch trials relative to the control trials) in the shaking and looming motion conditions but not in the upward, sideways, and all-motion conditions. Infants learned the word-object relations in the looming and shaking conditions likely because these motions foreground the object for the infants. Thus, the type of gesture an adult uses matters during naming when preverbal infants are beginning to map words onto objects. The results suggest that preverbal infants learn word-object relations within an embodied system involving matches between infants' perception of motion and specific motion properties of caregivers' naming.

  7. Motion of Confined Particles

    Miller, David E


    We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.

  8. Weigh - in - motion (WIM)

    Todorović Neven B.; Subotić Marko M.


    The biggest wealth of every country lies in its transportation infrastructure so the protection of negative impacts on infrastructure must be provided. The progress of sensor technology proposes today several types of weigh-in-motion systems, which have been tested for their efficiency, accuracy and cost-effectiveness. Technologies of piezoelectric sensors, bending plates and load cells are used for a number of applications comprising weigh enforcement, traffic data collection, bridge and tol...

  9. Chaotic Motion in the Solar System and Beyond

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)


    The motion of planetary bodies is the archetypal clockwork system. Indeed, clocks and calendars were developed to keep track of the relative motions of the Earth, the Sun and the Moon. However, studies over the past few decades imply that this predictable regularity does not extend to small bodies, nor does it apply to the precise trajectories of the planets themselves over long timescale.s. Various examples of chaotic motion within our Solar System and, extrasolar planetary systems will be discussed.

  10. Relativity

    Brewster, Hilary D


    The theory of relativity has become a cornerstone of modern physics. Over the course of time it has been scrutinized in a multitude of experiments and has always been verified with high accuracy. The correctness of this theory can no longer be called into question. Right after its discovery by Albert Einstein in 1905, special relativity was only gradually accepted because it made numerous predictions contradicting common sense, fervently castigated by Einstein, and also defied experiment for too long a time. It was only with the advent of particle or high energy physics that matter could be ac

  11. Relativity

    Einstein, Albert


    Time magazine's ""Man of the Century"", Albert Einstein is the founder of modern physics and his theory of relativity is the most important scientific idea of the modern era. In this short book, Einstein explains, using the minimum of mathematical terms, the basic ideas and principles of the theory that has shaped the world we live in today. Unsurpassed by any subsequent books on relativity, this remains the most popular and useful exposition of Einstein's immense contribution to human knowledge.With a new foreword by Derek Raine.

  12. Recording ground motions where people live

    Cranswick, E.; Gardner, B.; Hammond, S.; Banfill, R.

    The 1989 Loma Prieta, Calif., earthquake caused spectacular damage to structures up to 100 km away in the San Francisco Bay sedimentary basin, including the Cypress Street viaduct overpass, the Bay Bridge, and buildings in the San Francisco Marina district. Although the few mainshock ground motions recorded in the northern San Francisco Bay area were “significantly larger … than would be expected from the pre-existing data set,” none were recorded at the sites of these damaged structures [Hanks and Krawinkler, 1991].Loma Prieta aftershocks produced order-of-magnitude variations of ground motions related to sedimentary basin response over distances of 1-2 km and less [Cranswick et al., 1990]. In densely populated neighborhoods, these distances can encompass the residences of thousands of people, but it is very unlikely that these neighborhoods are monitored by even one seismograph. In the last decade, the complexity of computer models used to simulate high-frequency ground motions has increased by several orders of magnitude [e.g., Frankel and Vidale, 1992], but the number of seismograph stations—hence, the spatial density of the sampling of ground motion data—has remained relatively unchanged. Seismologists must therefore infer the nature of the ground motions in the great unknown regions between observation points.

  13. Tactile perception of nonpainful unpleasantness in relation to perceived roughness: effects of inter-element spacing and speed of relative motion of rigid 2-D raised-dot patterns at two body loci.

    Kitada, Ryo; Sadato, Norihiro; Lederman, Susan J


    Rigid surfaces consisting of spatially jittered 2-D raised-dot patterns with different inter-element spacings were moved back and forth across the skin at three different speeds (10-fold range). Within each psychophysical experiment, participants numerically estimated the perceived magnitude of either unpleasantness (nonpainful) or roughness of 2-D raised-dot surfaces applied to two stationary body sites (experiment 1: fingers; experiment 2: forearm). The psychophysical functions for the two types of perceptual judgment were highly similar at both body loci; more specifically, the perceived magnitude of unpleasantness and roughness both increased monotonically as a power function of increasing inter-element spacing, with the rate of growth declining at the upper end of the continuum. These results suggest that inter-element spacing is a critical determinant of the perceived magnitude of unpleasantness (nonpainful), as well as of roughness. Each perceptual judgment also increased as a function of increasing relative speed at both body loci. However, the magnitude of this effect was significantly greater for perceived unpleasantness than for perceived roughness; conversely, the speed effect was significantly greater on the forearm than on the fingers. Several possible explanations for these findings are considered.

  14. Force and motion

    Robertson, William C


    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  15. Analysis of genetic map of N. crassa by probability method and relative motion method%概率法及相对运动法对链孢霉的连锁遗传作图分析



    针对遗传学教材关于链孢霉的连锁遗传分析中的三个问题:(1)两对等位基因是否连锁;(2)是否位于着丝粒同侧;(3)着丝粒与nic重组率、nic与ade间的重组率、着丝粒与ade间的重组率三者间不存在等式关系.对于(1)、(2)两个问题分别采用概率法给予解答,对于(3)运用相对运动的观点给了三者各自的计算方法及三者间等式关系,即着丝粒与nic重组率+nic与ade间重组率=着丝粒与ade间的重组率.%This article on the "genetics" materials on c N. crassa chain genetic analysis of three issues : ( 1 ) whether two pairs of allele chain or not, (2) are they located in centromere of the same side, (3) reorganization rate among centromere and the nic and ade-rate are not existent equality. The two issues of ( 1 ) and (2), we answered by probability method ,but as for (3) relative motion method of the three respective perspectives to the calculation method and three-equation, reorganization rate namely: centromere and nic + ade and nic = centro- mere and ade.

  16. Analytical Solution of Two-Point Boundary Value Problem for Spacecraft Relative Motion%航天器相对运动的两点边界值问题解析解

    苑云霞; 岳晓奎; 娄云峰


    The two-point boundary value problem (TPBVP) of a leader-follower spacecraft formation flying was studied. Aiming at unperturbed elliptical reference orbits, the state transfer matrix representing actual relative position and velocity was derived, and the first-order analytical solution of TPBVP is obtained, which can deal with the problems of the specified rendezvous time, fuel optimization and compromise between fuel and time, and is applicable to the periodic and non-periodic relative motion. The simulation results show that the normalized accuracy of this solution achieves 10~6 level. Furthermore, the fuel cost of relative transfer increases with eccentricity increasing, and decreases with semi-major axis increasing, and appears periodic change with initial true anomaly increasing, and decreases as the transfer time increasing.%针对无摄椭圆轨道,推导了表示真实相对位置速度的状态转移矩阵,进而推导出了相对运动两点边界值问题的一阶解析解.所得结果不仅可指定转移时间、还可在时间范围内进行全局的燃料优化或在时间和燃料两者间折中;对于周期和非周期的相对运动均适用.仿真结果表明此解的归一化精度达到10-6.进一步的仿真发现相对转移过程的燃料消耗会随目标轨道偏心率的增加而增加;随长半轴的增加而减少;随初始真近点角的增加呈现周期性变化;随着转移时间增加,燃料消耗的总趋势是减少的.

  17. Recent developments in motion planning

    Overmars, M.H.


    Motion planning is becoming an important topic in many application areas, ranging from robotics to virtual environments and games. In this paper I review some recent results in motion planning, concentrating on the probabilistic roadmap approach that has proven to be very successful for many motion

  18. In vivo motion of the scaphotrapezio-trapezoidal (STT) joint.

    Sonenblum, S E; Crisco, J J; Kang, L; Akelman, E


    It has previously been shown that the articulation of the scaphotrapezio-trapezoidal (STT) joint can be modeled such that the trapezoid and trapezium are tightly linked and move together on a single path relative to the scaphoid during all directions of wrist motion. The simplicity of such a model is fascinating, but it leaves unanswered why two distinct carpal bones would have a mutually articulating surface if there were no motion between them, and how such a simplistic model of STT joint motion translates into the more complex global carpal motion. We performed an in vivo analysis of the trapezoids and trapeziums of 10 subjects (20 wrists) using a markerless bone registration technique. In particular, we analyzed the centroid spacing, centroid displacements, kinematics, and postures of the trapezoid and trapezium relative to the scaphoid. We found that, on a gross level, the in vivo STT motion was consistent with that reported in vitro. In addition, we found that the magnitude of trapezoid and trapezium motion was dependent upon the direction of wrist motion. However, we also found that when small rotations and displacements are considered there were small but statistically significant relative motions between the trapezoid and trapezium (0.4 mm in maximum flexion, 0.3 mm in radial deviation and at least 10 degrees in flexion extension and ulnar deviation) as well as slight off-path rotations. The results of this study indicate that the STT joint should be considered a mobile joint with motions more complex than previously appreciated.

  19. Measurement of modulation induced by interaction between bubble motion and liquid-phase motion in the decaying turbulence formed by an oscillating-grid

    Yasuyuki Nagami; Takayuki Saito


    In multiphase flows,dynamical gas-liquid interactions are essential for in-depth understanding of their multi-scale phenomena and complicated structures.The purpose of the present study is to clearly extract the modulation in bubble motion and liquid motion induced by bubble-liquid interaction and to discuss the relations between bubble motion and liquid-phase motion.For this particular purpose,the decaying turbulence formed in a cylindrical acrylic pipe (diameter 149 mm,height 600 mm) by using an oscillatinggrid was employed.Uniform single bubbles were launched from an in-house bubble launching device into the decaying turbulence.By comparing the bubble motion in the stagnant water with that in the oscillating-grid decaying turbulence,the transition of the 2D bubble motion (i.e.,zigzagging motion)to 3D motion was enhanced in the latter.In addition,the initial conditions of the bubble motion that was not influenced by the ambient turbulence were carefully confirmed.In the area where the bubble motion started to translate from 2D motion into 3D motion,the modulation of ambient liquid-phase motion was obtained by PIV/LIF measurement.By combining these results,we quantitatively discussed the modulation of the bubble motion and ambient liquid-phase motion and considered the dominant factor for the enhancement to be the bubble-liquid interaction.

  20. Conditional replenishment using motion prediction

    Hein, D. N.; Jones, H. W., Jr.


    Conditional replenishment is an interframe video compression method that uses correlation in time to reduce video transmission rates. This method works by detecting and sending only the changing portions of the image and by having the receiver use the video data from the previous frame for the non-changing portion. The amount of compression that can be achieved through this technique depends to a large extent on the rate of change within the image, and can vary from 10 to 1 to less than 2 to 1. An additional 3 to 1 reduction in rate is obtained by the intraframe coding of data blocks using a 2-dimensional variable rate Hadamard transform coder. A further additional 2 to 1 rate reduction is achieved by using motion prediction. Motion prediction works by measuring the relative displacements of a subpicture from one frame to the next. The subpicture can then be transmitted by sending only the value of the 2-dimensional displacement. Computer simulations have demonstrated that data rates of 2 to 4 Mega-bits/second can be achieved while still retaining good fidelity in the image.

  1. Biological motion distorts size perception

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.


    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions - stimuli whose size is consistently misperceived - do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  2. Biological motion distorts size perception

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.


    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size. PMID:28205639

  3. Generalized functionals of Brownian motion

    N. U. Ahmed


    Full Text Available In this paper we discuss some recent developments in the theory of generalized functionals of Brownian motion. First we give a brief summary of the Wiener-Ito multiple Integrals. We discuss some of their basic properties, and related functional analysis on Wiener measure space. then we discuss the generalized functionals constructed by Hida. The generalized functionals of Hida are based on L2-Sobolev spaces, thereby, admitting only Hs, s∈R valued kernels in the multiple stochastic integrals. These functionals are much more general than the classical Wiener-Ito class. The more recent development, due to the author, introduces a much more broad class of generalized functionals which are based on Lp-Sobolev spaces admitting kernels from the spaces p,s, s∈R. This allows analysis of a very broad class of nonlinear functionals of Brownian motion, which can not be handled by either the Wiener-Ito class or the Hida class. For s≤0, they represent generalized functionals on the Wiener measure space like Schwarz distributions on finite dimensional spaces. In this paper we also introduce some further generalizations, and construct a locally convex topological vector space of generalized functionals. We also present some discussion on the applications of these results.

  4. Variational Optical Flow Algorithms for Motion Estimation

    Tu, Z.


    Motion is an intrinsic character of the world and an inherent part of our visual experience, which gives essential source of information to a wide variety of visual tasks, and directly affects the subsequent image processing and other related applications. Since Horn and Schunck (HS) proposed the op

  5. Variational Optical Flow Algorithms for Motion Estimation

    Tu, Z.


    Motion is an intrinsic character of the world and an inherent part of our visual experience, which gives essential source of information to a wide variety of visual tasks, and directly affects the subsequent image processing and other related applications. Since Horn and Schunck (HS) proposed the

  6. Simulation of ground motion using the stochastic method

    Boore, D.M.


    A simple and powerful method for simulating ground motions is to combine parametric or functional descriptions of the ground motion's amplitude spectrum with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to the distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers (generally, f>0.1 Hz), and it is widely used to predict ground motions for regions of the world in which recordings of motion from potentially damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms. This provides a means by which the results of the rigorous studies reported in other papers in this volume can be incorporated into practical predictions of ground motion.

  7. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Demming, Anna


    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  8. Photon motion in the ECSK theory

    Castagnino, M.; Levinas, M.


    Working within the scheme of the Einstein-Cartan-Sciama-Kibble Theory (ECSK) we find the trajectory of the photon up to its third order with respect to the velocity of slow motion sources. For the general case, discrepancies from the predictions of General Relativity (GR) are found. We apply the results to a model of polarized spin and find that in this particular case ECSK and GR theories coincide. We also perform a multipole expansion of the gravitational potentials in order to find the motion of photons far away from localized sources.

  9. The Impact of Older Age and Sex on Motion Discrimination.

    Conlon, Elizabeth G; Power, Garry F; Hine, Trevor J; Rahaley, Nicole


    Background/Study Context: Reports of age-related differences on motion discrimination tasks have produced inconsistent findings concerning the influence of sex. Some studies have reported that older women have higher thresholds than older men, with others finding that women have higher motion thresholds regardless of age group. Reports of the age at which declines in motion discrimination first occur also differ, with some studies reporting declines only in groups aged over 70 years, with others reporting that age-related decline occurs at a younger age. The current study aimed to determine whether the sex differences found occur because relative to men, women have greater difficulty extracting motion signals from noise (Experiment 1) or have greater difficulty making use of the available motion cues (Experiment 2) in these complex moving stimuli. In addition, the influence of these manipulations on groups aged under and over 70 years was explored. Motion discrimination measures were obtained using 39 older adults aged between 60 and 85 years (21 women) and 40 younger adults aged between 20 and 45 years (20 women). In Experiment 1, coherent motion and relative motion displacement thresholds were obtained. In Experiment 2, coherent motion thresholds were obtained for stimuli containing either 150 or 600 dots. In Experiment 1, the older group had significantly higher thresholds on the relative motion displacement and coherent motion tasks than a younger group. No differences in motion sensitivity were found in the older groups aged under or over 70 years. Women regardless of age group had significantly higher thresholds than men on both tasks. In Experiment 2, the older group had higher coherence thresholds than the younger group, and the number of dots presented had no influence on thresholds, for the older group or older women specifically. In the younger group, women had higher coherence thresholds than men with presentation of 150 but not 600 dots. There

  10. Human motion simulation predictive dynamics

    Abdel-Malek, Karim


    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  11. Computer vision analysis of image motion by variational methods

    Mitiche, Amar


    This book presents a unified view of image motion analysis under the variational framework. Variational methods, rooted in physics and mechanics, but appearing in many other domains, such as statistics, control, and computer vision, address a problem from an optimization standpoint, i.e., they formulate it as the optimization of an objective function or functional. The methods of image motion analysis described in this book use the calculus of variations to minimize (or maximize) an objective functional which transcribes all of the constraints that characterize the desired motion variables. The book addresses the four core subjects of motion analysis: Motion estimation, detection, tracking, and three-dimensional interpretation. Each topic is covered in a dedicated chapter. The presentation is prefaced by an introductory chapter which discusses the purpose of motion analysis. Further, a chapter is included which gives the basic tools and formulae related to curvature, Euler Lagrange equations, unconstrained de...

  12. Rizatriptan reduces vestibular-induced motion sickness in migraineurs.

    Furman, Joseph M; Marcus, Dawn A; Balaban, Carey D


    A previous pilot study suggested that rizatriptan reduces motion sickness induced by complex vestibular stimulation. In this double-blind, randomized, placebo-controlled study we measured motion sickness in response to a complex vestibular stimulus following pretreatment with either rizatriptan or a placebo. Subjects included 25 migraineurs with or without migraine-related dizziness (23 females) aged 21-45 years (31.0 ± 7.8 years). Motion sickness was induced by off-vertical axis rotation in darkness, which stimulates both the semicircular canals and otolith organs of the vestibular apparatus. Results indicated that of the 15 subjects who experienced vestibular-induced motion sickness when pretreated with placebo, 13 showed a decrease in motion sickness following pretreatment with rizatriptan as compared to pretreatment with placebo (P rizatriptan, reduces vestibular-induced motion sickness by influencing serotonergic vestibular-autonomic projections.

  13. Scaling registration of multiview range scans via motion averaging

    Zhu, Jihua; Zhu, Li; Jiang, Zutao; Li, Zhongyu; Li, Chen; Zhang, Fan


    Three-dimensional modeling of scene or object requires registration of multiple range scans, which are obtained by range sensor from different viewpoints. An approach is proposed for scaling registration of multiview range scans via motion averaging. First, it presents a method to estimate overlap percentages of all scan pairs involved in multiview registration. Then, a variant of iterative closest point algorithm is presented to calculate relative motions (scaling transformations) for these scan pairs, which contain high overlap percentages. Subsequently, the proposed motion averaging algorithm can transform these relative motions into global motions of multiview registration. In addition, it also introduces the parallel computation to increase the efficiency of multiview registration. Furthermore, it presents the error criterion for accuracy evaluation of multiview registration result, which can make it easy to compare results of different multiview registration approaches. Experimental results carried out with public available datasets demonstrate its superiority over related approaches.

  14. Gauge and motion in perturbation theory

    Pound, Adam


    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain \\emph{effective} vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasise that the approximations' governing equations can be formulated in an invariant manner...

  15. Non radial motions in a CDM model

    Gambera, M


    We show how non-radial motions, originating in the outskirts of clusters of galaxies, may reduce the discrepancy between the Cold Dark Matter (CDM) predicted X-ray temperature distribution function of clusters of galaxies and the observed one and also the discrepancy between the CDM predicted two-point correlation function of clusters of galaxies and that observed. We compare Edge et al. (1990) and Henry & Arnaud (1991) data with the distribution function of X-ray temperature, calculated using Press- Schechter's (1974 - hereafter PS) theory and Evrard's (1990) prescriptions for the mass-temperature relation and taking account of the non-radial motions originating from the gravitational interaction of the quadrupole moment of the protocluster with the tidal field of the matter of the neighboring protostructures. We find that the model produces a reasonable clusters temperature distribution. We compare the two-point cluster correlation function which takes account of the non-radial motions both with that ob...

  16. No priming for global motion in crowding.

    Pavan, Andrea; Gall, Martin G; Manassi, Mauro; Greenlee, Mark W


    There is psychophysical evidence that low-level priming, e.g., from oriented gratings, as well as high-level semantic priming, survives crowding. We investigated priming for global translational motion in crowded and noncrowded conditions. The results indicated that reliable motion priming occurs in the noncrowded condition, but motion priming does not survive crowding. Crowding persisted despite variations in the direction of the flankers with respect to the prime's direction. Motion priming was still absent under crowding when 85% of the flankers moved in the same direction as the prime. Crowding also persisted despite variations in the speed of the flankers relative to the prime even when the flankers' speed was four times slower than the speed of the prime. However, a priming effect was evident when the prime's spatial location was precued and its distance to the flankers increased, suggesting a release from crowding. These results suggest that transient attention induced by precueing the spatial location of the prime may improve subjects' ability to discriminate its direction. Spatial cueing could act to decrease the integration field, thereby diminishing the influence of nearby distracters. In an additional experiment in which we used fewer flankers, we found a priming effect under conditions in which the interelement distance varied between flankers and prime. Overall, the results suggest that motion priming is strongly affected by crowding, but transient attention can partially retrieve such facilitation.


    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)


    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  18. Motion analysis report

    Badler, N. I.


    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  19. Motion dynamics of submersibles

    Kalske, Seppo


    A literature survey of motion dynamics of subsea vehicles of a general shape was performed. Hydrodynamic tests were carried out with an existing tethered remotely operated vehicle and with its full scale model. The experiments give data of maneuvering capabilities, and of hydrodynamic characteristics of small subsea vehicles. A simulation method was developed on this basis to compute the vehicle trajectory in the time domain as a function of different control commands. The method can be applied to any subsea vehicle controlled by thruster units.

  20. Evaporation in motion

    Machrafi, Hatim; Colinet, Pierre; Dauby, Pierre


    This work presents fluid dynamics videos obtained via numerical (CFD) calculations using ComSol (finite elements method) software, showing the evaporation of HFE7100 (3M company refrigerant) into a nitrogen gas flow along the liquid interface. The overall temperature evolution and liquid motion, which is caused by surface-tension (Marangoni) and buoyancy (Rayleigh) instability mechanisms, are shown as well. Flow behavior in the liquid caused by the aforementioned instability mechanisms can be nicely seen. Finally, these observations are made for three liquid thicknesses in order to appreciate the qualitative influence of confinement.

  1. Electromechanical motion devices

    Krause, Paul C; Pekarek, Steven D


    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  2. Robust global motion estimation


    A global motion estimation method based on robust statistics is presented in this paper. By using tracked feature points instead of whole image pixels to estimate parameters the process speeds up. To further speed up the process and avoid numerical instability, an alterative description of the problem is given, and three types of solution to the problem are compared. By using a two step process, the robustness of the estimator is also improved. Automatic initial value selection is an advantage of this method. The proposed approach is illustrated by a set of examples, which shows good results with high speed.

  3. On the Superluminal Motion of Radio-Loud AGNs

    Zhi-Bin Zhang; Yi-Zhen Zhang


    Apparent superluminal motion of different radio-loud AGNs are similarly related with beaming effect. The cosmological expanding effect would play no part in the superluminal motion of radio galaxies, BL Lacertae objects as well as quasars.Meanwhile, we confirm that estimates for apparent velocity app and Doppler boosting factor based on multi-wavelength combination and variability are comparable.

  4. Organization of contour from motion processing in primate visual cortex

    Lamme, V.A.F.; van Dijk, B.W.; Spekreijse, H.


    Investigated where contour from motion processing occurs by recording visual evoked potential (VEP) to a stimulus designed to signal the presence of relative motion-sensitive mechanisms. Two human Ss and 3 monkeys participated in the study and had VEP measured on the scalp and intracortically, respe

  5. ToF camera ego-motion estimation

    Ratshidaho, T


    Full Text Available We present three approaches for ego-motion estimation using Time-of-Flight (ToF) camera data. Ego-motion is defined as a process of estimating a camera’s pose (position and orientation) relative to some initial pose using the camera’s image...

  6. Relativistic Motion of Spinning Particles in a Gravitational Field

    Chicone, C.; Mashhoon, B.; Punsly, B.


    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed.

  7. Relativistic motion of spinning particles in a gravitational field

    Chicone, C.; Mashhoon, B.; Punsly, B.


    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed.

  8. Motion, frames of reference, dead horses, and metaphysics (comment on Stoffregen & Bardy, 2001)

    Wertheim, A.H.


    Various annoyingly incorrect statements of Stoffregen & Bardy are corrected, for example, that perception researchers commonly use the term "absolute motion" to denote motion without any frame of reference, confuse earth-relative and gravity-relative motion, err with respect to the frame of

  9. Motion, frames of reference, dead horses, and metaphysics (comment on Stoffregen & Bardy, 2001)

    Wertheim, A.H.


    Various annoyingly incorrect statements of Stoffregen & Bardy are corrected, for example, that perception researchers commonly use the term "absolute motion" to denote motion without any frame of reference, confuse earth-relative and gravity-relative motion, err with respect to the frame of referenc

  10. Differential effect of visual motion adaption upon visual cortical excitability.

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer


    The objectives of this study were 1) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing.NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency.

  11. Motion of the Scotia sea plates

    Thomas, C.; Livermore, R.; Pollitz, F.


    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  12. Computer animation of Phanerozoic plate motions

    Scotese, C.R. (Univ. of Texas, Arlington, TX (United States). Dept. of Geology)


    Since 1985, the PALEOMAP Project, in collaboration with research groups both in the US and abroad, has assembled a digital model that describes global plate motions during the last 600 million years. In this paper the authors present a series of computer animations that dynamically illustrates the movement of continents and terranes, and the evolution of the ocean basins since the breakup of the late Precambrian supercontinent. These animations depict the motion of the plates from both equatorial and polar perspectives. Mesozoic and Cenozoic plate tectonic reconstructions are based on a synthesis of linear magnetic anomalies, fracture zone locations, intracontinental rifts, collision and thrust belts, and zones of strike-slip. Paleozoic plate reconstructions, though more speculative, are based on evidence of past subduction, continental collision, and inferred sea floor spreading. The relative longitudinal positions of the continents during the Paleozoic and the width of intervening oceans have been adjusted to best explain changing biogeographic and paleoclimatic patterns. A new paleomagnetic/hot spot reference frame has been constructed that combines paleomagnetic data compiled by Rob Van der Voo (1992) with inferred motion relative to a fixed frame of hot spots. Using probable Early Mesozoic and Paleozoic hot spot tracks on the major continents, the authors have extended plate motions relative to the hot spot reference frame back to 400 million years.

  13. Localised Plate Motion on Venus

    Ghail, R. C.


    The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.

  14. The moving minimum audible angle is smaller during self motion than during source motion.

    W. Owen eBrimijoin


    Full Text Available We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system – in a manner not unlike the vestibulo-ocular reflex – works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion.We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create head-stabilized signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA. This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this self-motion condition we measured MMAA in a second source-motion condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition.For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues.

  15. Stochastic Blind Motion Deblurring

    Xiao, Lei


    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  16. Fast and Simple Motion Tracking Unit with Motion Estimation

    Hyeon-cheol YANG; Yoon-sup KIM; Seong-soo LEE; Sang-keun OH; Sung-hwa KIM; Doo-won CHOI


    Surveillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires expensive DSPs or embedded processors. This paper proposes a novel motion tracking unit based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FPGAs) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveillance system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking unit is 100 MHz.

  17. New motion illusion caused by pictorial motion lines.

    Kawabe, Takahiro; Miura, Kayo


    Motion lines (MLs) are a pictorial technique used to represent object movement in a still picture. This study explored how MLs contribute to motion perception. In Experiment 1, we reported the creation of a motion illusion caused by MLs: random displacements of objects with MLs on each frame were perceived as unidirectional global motion along the pictorial motion direction implied by MLs. In Experiment 2, we showed that the illusory global motion in the peripheral visual field captured the perceived motion direction of random displacement of objects without MLs in the central visual field, and confirmed that the results in Experiment 1 did not stem simply from response bias, but resulted from perceptual processing. In Experiment 3, we showed that the spatial arrangement of orientation information rather than ML length is important for the illusory global motion. Our results indicate that the ML effect is based on perceptual processing rather than response bias, and that comparison of neighboring orientation components may underlie the determination of pictorial motion direction with MLs.

  18. Smelling directions: olfaction modulates ambiguous visual motion perception.

    Kuang, Shenbing; Zhang, Tao


    Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway.

  19. Strong motion duration and earthquake magnitude relationships

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)


    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  20. Ground Motion Prediction Models for Caucasus Region

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino


    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  1. Electric Wheelchair Controlled by Human Body Motion Interface

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  2. Neural mechanisms of uncon-scious visual motion priming


    The neural correlates of the motion priming were examined in normal young subjects using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI). Visual motion perception can be uncon-sciously biased in favor of a particular direction by a pre-ceding motion in that direction. Motion priming first in-volved an enhancement of ERP amplitude about 100 ms fol-lowing the onset of motion. The amplitudes of ERP compo-nents after 350 ms were also increased. The fMRI results suggest that the early-latency effect reflects modulation of neural responses in extrastriate cortex. Higher-level visual processing areas, including cortical regions MT/MST and the intraparietal cortices were also activated. The findings provide direct evidence that unconscious priming of motion perception is the result of interaction of direction-selective neural responses to motion stimuli. The results cannot be accounted for by refractoriness of neural responses, but in-stead support a theory of motion priming based on motion opponency, as proposed in computational models.

  3. Weigh - in - motion (WIM

    Todorović Neven B.


    Full Text Available The biggest wealth of every country lies in its transportation infrastructure so the protection of negative impacts on infrastructure must be provided. The progress of sensor technology proposes today several types of weigh-in-motion systems, which have been tested for their efficiency, accuracy and cost-effectiveness. Technologies of piezoelectric sensors, bending plates and load cells are used for a number of applications comprising weigh enforcement, traffic data collection, bridge and toll control systems and so on. Advantages of using WIM technology are various and its benefits affects all road users (transport companies, public, public transport authorities. Potential of WIM application has been recognized in the leading EU countries, so the existence of the numerous WIM projects.

  4. Cosmology as geodesic motion

    Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Wohlfarth, Mattias N R [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)


    For gravity coupled to N scalar fields, with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N + 1)-dimensional 'augmented' target space of Lorentzian signature (1, N), timelike if V > 0, null if V = 0 and spacelike if V < 0. Accelerating cosmologies correspond to timelike geodesics that lie within an 'acceleration subcone' of the 'lightcone'. Non-flat (k = {+-}1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N + 2, of signature (1, N + 1) for k = -1 and signature (2, N) for k = +1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behaviour for other potentials of current interest is deduced by comparison.

  5. Cosmology as Geodesic Motion

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.


    For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `extended target space' of Lorentzian signature (1,N), timelike if V>0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N+2, of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. We illustrate these results for various potentials of current interest, including exponential and inverse power potentials.

  6. Multivariate respiratory motion prediction

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.


    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  7. The relation between respiratory motion artifact correction and lung standardized uptake value%呼吸运动伪影的校正及其与肺部SUV的关系

    尹立杰; 刘晓建; 刘杰; 续蕊; 颜珏


    PET/CT在疾病诊断和疗效评价上起着重要作用,但是呼吸运动伪影给病变的诊断及治疗带来困扰,临床有多种方法可以用来对呼吸运动伪影进行校正,其中应用最广泛的是呼吸门控技术.其对呼吸运动伪影校正后可以明显提高肺部病变的最大标准化摄取值,从而提高图像质量及诊断的准确性.%PET/CT is playing an important role in disease diagnosis and therapeutic evaluation.But the respiratory motion artifact may bring trouble in diagnosis and therapy.There are many methods to correct the respiratory motion artifact.Respiratory gated PET/CT is applied most extensively of them.Using respiratory gated PET/CT to correct respiratory motion artifact can increase the maximum standardized uptake value of lung lesion obviously,thereby improving the quality of image and accuracy of diagnosis.

  8. 3D Motion Estimation and Motion Fusion by Affine Region Matching

    魏国庆; 马颂德


    In this paper,a new method is presented for 3D motion estimation by image region correspondences using stereo cameras.Under the weak perspectivity assumption.we first employ the moment tensor theory (Cyganski and Orr[11]) to compute the monocular affine transformations relating images taken by the same camera at different time instants and the binocular affine transformations relating images taken by different cameras at the same time instant.We then show that 3D motion can be recovered from these 2D transformations.A space-time fusion strategy is proposed to aim at robust results.No knowledge of point correspondences if requred in the above processes and the computations involved are linear.To find corresponding image regions,new affine invariants,which show stronger invariance,are derived in term of tensor contraction theory.Experiments on real motion images are conducted to verify the proposed method.

  9. Stabilization of coordinated motion for underwater vehicles

    Fan Wu; Zhi-Yong Geng


    This paper presents a coordinating and stabilizing control law for a group of underwater vehicles with unstable dynamics. The coordinating law is derived from a potential that only depends on the relative configuration of the underwater vehicles. Being coordinated, the group behaves like one mechanical system with symmetry, and we focus on stabilizing a family of coordinated motions, called relative equilibria. The stabilizing law is derived using energy shaping to stabilize the relative equilibria which involve each vehicle translating along its longest (unstable) axis without spinning,while maintaining a relative configuration within the group.The proposed control law is physically motivated and avoids the linearization or cancellation of nonlinearities.

  10. Respiratory impact on motion sickness induced by linear motion

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.


    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency ra

  11. Method of manufacturing a motion simulator, and a motion simulator

    Beukers, A.; Van Baten, T.; Advani, S.K.


    A method of manufacturing a motion simulator, which motion simulator has a deck and a number of deck-supporting legs (2) that are pivotally connected with the deck in first pivot points (4), the legs being actively and continuously length-adjustable, such that the deck is capable of describing a mot

  12. Approximations of fractional Brownian motion

    Li, Yuqiang; 10.3150/10-BEJ319


    Approximations of fractional Brownian motion using Poisson processes whose parameter sets have the same dimensions as the approximated processes have been studied in the literature. In this paper, a special approximation to the one-parameter fractional Brownian motion is constructed using a two-parameter Poisson process. The proof involves the tightness and identification of finite-dimensional distributions.

  13. Recent developments in motion planning

    Overmars, M.H.


    Motion planning is becoming an important topic in many application areas, ranging from robotics to virtual environments and games. In this paper I review some recent results in motion planning, concentrating on the probabilistic roadmap approach that has proven to be very successful for many

  14. Gauge and motion in perturbation theory

    Pound, Adam


    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.

  15. GPU-based video motion magnification

    DomŻał, Mariusz; Jedrasiak, Karol; Sobel, Dawid; Ryt, Artur; Nawrat, Aleksander


    Video motion magnification (VMM) allows people see otherwise not visible subtle changes in surrounding world. VMM is also capable of hiding them with a modified version of the algorithm. It is possible to magnify motion related to breathing of patients in hospital to observe it or extinguish it and extract other information from stabilized image sequence for example blood flow. In both cases we would like to perform calculations in real time. Unfortunately, the VMM algorithm requires a great amount of computing power. In the article we suggest that VMM algorithm can be parallelized (each thread processes one pixel) and in order to prove that we implemented the algorithm on GPU using CUDA technology. CPU is used only to grab, write, display frame and schedule work for GPU. Each GPU kernel performs spatial decomposition, reconstruction and motion amplification. In this work we presented approach that achieves a significant speedup over existing methods and allow to VMM process video in real-time. This solution can be used as preprocessing for other algorithms in more complex systems or can find application wherever real time motion magnification would be useful. It is worth to mention that the implementation runs on most modern desktops and laptops compatible with CUDA technology.


    R. A. Méndez


    Full Text Available We have determined the proper motion of the Large Magellanic Cloud (LMC relative to a background quasistellar object, using observations carried out in seven epochs (six years of base time. Our proper motion value agrees well with most results obtained by other authors and indicates that the LMC is not a member of a proposed stream of galaxies with similar orbits around our galaxy. Using published values of the radial velocity for the center of the LMC, in combination with the transverse velocity vector derived from our measured proper motion, we have calculated the absolute space velocity of the LMC. This value, along with some assumptions regarding the mass distribution of the Galaxy, has in turn been used to calculate the mass of the latter. This work is part of a program to study the space motion of the Magellanic Clouds system and its relationship to the Milky Way (MW. This knowledge is essential to understand the nature, origin and evolution of this system as well as the origin and evolution of the outer parts of the MW.

  17. Motion-corrected Fourier ptychography

    Bian, Liheng; Guo, Kaikai; Suo, Jinli; Yang, Changhuei; Chen, Feng; Dai, Qionghai


    Fourier ptychography (FP) is a recently proposed computational imaging technique for high space-bandwidth product imaging. In real setups such as endoscope and transmission electron microscope, the common sample motion largely degrades the FP reconstruction and limits its practicability. In this paper, we propose a novel FP reconstruction method to efficiently correct for unknown sample motion. Specifically, we adaptively update the sample's Fourier spectrum from low spatial-frequency regions towards high spatial-frequency ones, with an additional motion recovery and phase-offset compensation procedure for each sub-spectrum. Benefiting from the phase retrieval redundancy theory, the required large overlap between adjacent sub-spectra offers an accurate guide for successful motion recovery. Experimental results on both simulated data and real captured data show that the proposed method can correct for unknown sample motion with its standard deviation being up to 10% of the field-of-view scale. We have released...

  18. Brownian Motion Theory and Experiment

    Basu, K; Basu, Kasturi; Baishya, Kopinjol


    Brownian motion is the perpetual irregular motion exhibited by small particles immersed in a fluid. Such random motion of the particles is produced by statistical fluctuations in the collisions they suffer with the molecules of the surrounding fluid. Brownian motion of particles in a fluid (like milk particles in water) can be observed under a microscope. Here we describe a simple experimental set-up to observe Brownian motion and a method of determining the diffusion coefficient of the Brownian particles, based on a theory due to Smoluchowski. While looking through the microscope we focus attention on a fixed small volume, and record the number of particles that are trapped in that volume, at regular intervals of time. This gives us a time-series data, which is enough to determine the diffusion coefficient of the particles to a good degree of accuracy.

  19. Entropic forces in Brownian motion

    Roos, Nico


    The interest in the concept of entropic forces has risen considerably since E. Verlinde proposed to interpret the force in Newton s second law and Gravity as entropic forces. Brownian motion, the motion of a small particle (pollen) driven by random impulses from the surrounding molecules, may be the first example of a stochastic process in which such forces are expected to emerge. In this note it is shown that at least two types of entropic motion can be identified in the case of 3D Brownian motion (or random walk). This yields simple derivations of known results of Brownian motion, Hook s law and, applying an external (nonradial) force, Curie s law and the Langevin-Debye equation.

  20. Vessel, motion platform, method for compensating motions of a vessel and use of a stewart platform

    Van der Tempel, J.; Salzmann, D.J.C.; Koch, J.; Gerner. F.; Goebel, A.J.


    A vessel (1) with a motion compensation platform (4), which platform is provided with at least one carrier (6) for bearing, moving and/or transferring a load, actuators (5) for moving the carrier relative to the vessel, preferably in six degrees of freedom, a control system for driving the actuators

  1. Developmental changes in children's understanding of horizontal projectile motion.

    Mou, Yi; Zhu, Liqi; Chen, Zhe


    This study investigated 5- to 13-year-old children's performance in solving horizontal projectile motion problems, in which they predicted the trajectory of a carried object released from a carrier in three different contexts. The results revealed that 5- and 8-year-olds' trajectory predictions were easily distracted by salient contextual features (e.g. the relative spatial locations between objects), whereas a proportion of 11- and 13-year-olds' performance suggested the engagement of the impetus concept in trajectory prediction. The impetus concept is a typical misconception of inertial motion that assumes that motion is caused by force. Children's performance across ages suggested that their naïve knowledge of projectile motion was neither well-developed and coherent nor completely fragmented. Instead, this study presented the dynamic process in which children with age gradually overcame the influences of contextual features and consistently used the impetus concept across motion problems.

  2. Detection and measurement of retinal blood vessel pulsatile motion

    Xiao, Di; Frost, Shaun; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi


    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. Pulsatile properties caused by cardiac rhythm, such as spontaneous venous pulsation (SVP) and pulsatile motion of small arterioles, can be visualized by dynamic retinal imaging techniques and provide clinical significance. In this paper, we aim at vessel pulsatile motion detection and measurement. We proposed a novel approach for pulsatile motion measurement of retinal blood vessels by applying retinal image registration, blood vessel detection and blood vessel motion detection and measurement on infrared retinal image sequences. The performance of the proposed methods was evaluated on 8 image sequences with 240 images. A preliminary result has demonstrated the good performance of the method for blood vessel pulsatile motion observation and measurement.

  3. Frequency dependence of allowable differences in visual and vestibular motion cues in a simulator

    Wentink, M.; Correia Grácio, B.J.; Bles, W.


    In the real world in which we move around, inertial and visual motion are usually equal; what you see is what you feel. In a simulator, however, this is usually not the case. On the contrary, due to the relatively small motion space of even the largest simulators, the inertial motion cues must be

  4. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly


    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Switched Systems and Motion Coordination: Combinatorial Challenges

    Sadovsky, Alexander V.


    Problems of routing commercial air traffic in a terminal airspace encounter different constraints: separation assurance, aircraft performance limitations, regulations. The general setting of these problems is that of a switched control system. Such a system combines the differentiable motion of the aircraft with the combinatorial choices of choosing precedence when traffic routes merge and choosing branches when the routes diverge. This presentation gives an overview of the problem, the ATM context, related literature, and directions for future research.

  6. Several methods of smoothing motion capture data

    Qi, Jingjing; Miao, Zhenjiang; Wang, Zhifei; Zhang, Shujun


    Human motion capture and editing technologies are widely used in computer animation production. We can acquire original motion data by human motion capture system, and then process it by motion editing system. However, noise embed in original motion data maybe introduced by extracting the target, three-dimensional reconstruction process, optimizing algorithm and devices itself in human motion capture system. The motion data must be modified before used to make videos, otherwise the animation figures will be jerky and their behavior is unnatural. Therefore, motion smoothing is essential. In this paper, we compare and summarize three methods of smoothing original motion capture data.

  7. Motion Model Employment using interacting Motion Model Algorithm

    Hussain, Dil Muhammad Akbar


    model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...... be employed to increase the coverage.  Finally, the combined estimate is obtained using posteriori probabilities from different filter models.   The implemented approach provides an adaptive scheme for selecting various number of motion models.  Motion model description is important as it defines the kind...

  8. Regional lumbar motion and patient-rated outcomes

    Mieritz, Rune M; Bronfort, Gert; Hartvigsen, Jan


    OBJECTIVE: The purpose of this study was to examine the relationship in change scores between regional lumbar motion and patient-rated pain of the previous week and back-related function in chronic low back pain patients enrolled in a randomized clinical trial and treated with either exercise...... therapy or spinal manipulation using 6 different motion parameters. METHODS: Regional lumbar motions were sampled using a 6 degrees of freedom instrumented spatial linkage system in 199 participants at baseline and 12-week follow-up. The regional lumbar motion data were analyzed as a total cohort as well...... as relative to subgroup stratifications; back pain only vs back and leg pain, and treatment modality. For identifying clinically meaningful improvements in the measurements of back pain and back-related function, we used a 30% threshold. RESULTS: The relationship between change scores in patient...

  9. A true polar wander model for Neoproterozoic plate motions

    Ripperdan, R.L. (Weizmann Inst. of Science, Rehovot (Israel))


    Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motions between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.

  10. Marker-Free Human Motion Capture

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  11. Local site effects on weak and strong ground motion

    Aki, Keiiti


    This is a review of the current state of the art in characterizing effects of local geology on ground motion. A new horizon is clear in this aspect of strong motion studies. Non-linear amplification at sediment sites appears to be more pervasive than seismologists used to think. Several recent observations about the weak motion and the strong motion suggest that the non-linear amplification at sediment sites may be very common. First, on average, the amplification is always greater at the younger sediment sites for all frequencies up to 12 Hz, in the case of weak motion; while the relation is reversed for frequencies higher than 5 Hz, in the case of strong motion. Secondly, the application of the amplification factor determined from weak motion overestimates significantly the strong motion at sediment sites observed during the Loma Prieta earthquake within the epicentral distance of about 50 km. Thirdly, the variance of peak ground acceleration around the mean curve decreases with the increasing earthquake magnitude. Finally, the above non-linear effects are expected from geotechnical studies both in the magnitude of departure from the linear prediction and in the threshold acceleration level beyond which the non-linearity begins.

  12. Muon motion in titanium hydride

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.


    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  13. Motion Model Employment using interacting Motion Model Algorithm

    Hussain, Dil Muhammad Akbar


    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each...... model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...... be employed to increase the coverage.  Finally, the combined estimate is obtained using posteriori probabilities from different filter models.   The implemented approach provides an adaptive scheme for selecting various number of motion models.  Motion model description is important as it defines the kind...

  14. From fractional Brownian motion to multifractional and multistable motion

    Falconer, Kenneth


    Fractional Brownian motion, introduced by Benoit Mandelbrot and John Van Ness in 1968, has had a major impact on stochastic processes and their applications. We survey a few of the many developments that have stemmed from their ideas. In particular we discuss the local structure of fractional and multifractional Brownian, stable and multistable processes, emphasising the `diagonal' construction of such processes. In all this, the ubiquity and centrality of fractional Brownian motion is striking.

  15. Adaptive Motion Compensation in Radiotherapy

    Murphy, Martin J


    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  16. Video-Based Motion Analysis

    French, Paul; Peterson, Joel; Arrighi, Julie


    Video-based motion analysis has recently become very popular in introductory physics classes. This paper outlines general recommendations regarding equipment and software; videography issues such as scaling, shutter speed, lighting, background, and camera distance; as well as other methodological aspects. Also described are the measurement and modeling of the gravitational, drag, and Magnus forces on 1) a spherical projectile undergoing one-dimensional motion and 2) a spinning spherical projectile undergoing motion within a plane. Measurement and correction methods are devised for four common, major sources of error: parallax, lens distortion, discretization, and improper scaling.

  17. Sparse MRI for motion correction

    Yang, Zai; Xie, Lihua


    MR image sparsity/compressibility has been widely exploited for imaging acceleration with the development of compressed sensing. A sparsity-based approach to rigid-body motion correction is presented for the first time in this paper. A motion is sought after such that the compensated MR image is maximally sparse/compressible among the infinite candidates. Iterative algorithms are proposed that jointly estimate the motion and the image content. The proposed method has a lot of merits, such as no need of additional data and loose requirement for the sampling sequence. Promising results are presented to demonstrate its performance.

  18. Protein folding by motion planning

    Thomas, Shawna; Song, Guang; Amato, Nancy M.


    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L. This research was supported in part by NSF CAREER Award CCR-9624315, NSF Grants ACI-9872126, EIA-9975018, EIA-0103742, EIA-9805823, ACR-0113971, CCR-0113974, EIA-9810937, EIA-0079874 and the Texas Higher Education Coordinating Board grant ATP-000512-0261-2001. ST was supported in part by an NSF Graduate Research Fellowship. GS was supported in part by an IBM PhD Fellowship.

  19. Semantic Mapping and Motion Planning with Turtlebot Roomba

    Aslam Butt, Rizwan; Usman Ali, Syed M.


    In this paper, we have successfully demonstrated the semantic mapping and motion planning experiments on Turtlebot Robot using Microsoft Kinect in ROS environment. Moreover, we have also performed the comparative studies on various sampling based motion planning algorithms with Turtlebot in Open Motion Planning Library. Our comparative analysis revealed that Expansive Space Trees (EST) surmounted all other approaches with respect to memory occupation and processing time. We have also tried to summarize the related concepts of autonomous robotics which we hope would be helpful for beginners.

  20. Faster than light motion does not imply time travel

    Andréka, H; Németi, I; Stannett, M; Székely, G


    Seeing the many examples in the literature of causality violations based on faster-than- light (FTL) signals one naturally thinks that FTL motion leads inevitably to the possibility of time travel. We show that this logical inference is invalid by demonstrating a model, based on (3+1)-dimensional Minkowski spacetime, in which FTL motion is permitted (in every direction without any limitation on speed) yet which does not admit time travel. Moreover, the Principle of Relativity is true in this model in the sense that all observers are equivalent. In short, FTL motion does not imply time travel after all.

  1. Motion/imagery secure cloud enterprise architecture analysis

    DeLay, John L.


    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.


    GAN Fangjian; LIU Zhengshi; REN Chuansheng; ZHANG Ping


    Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with. It is revealed that the reasons of the error are formed and the relations of the error are delivered. A motion equation of robot's termination with the error is established, and then, an error matrix and an error compensation matrix of the motion equation are also defined. An on-line error's compensation method is put forward to decrease the displacement error, which is a degree of millimeter, shown by the result of Simulation of PUMA562 robot.

  3. The INGV Real Time Strong Motion Database

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo


    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD ( was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (, an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  4. The plane motion control of the quadrocopter

    A. N. Kanatnikov


    Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].

  5. Equations of motion in relativistic gravity

    Lämmerzahl, Claus; Schutz, Bernard


     The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...

  6. Dance notations and robot motion

    Abe, Naoko


    How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics ...

  7. Weigh-in-Motion Stations

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  8. Rolling motion in moving droplets

    Sumesh P Thampi; Rama Govindarajan


    Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling motion for any intermediate shape, and recently obtained a universal curve for the amount of roll as a function of a shape parameter using hybrid lattice Boltzmann simulations. In this paper, we discuss the linear relationship which is expected between the Capillary and Bond numbers, and provide detailed confirmation by simulations. We also show that the viscosity of the surrounding medium can qualitatively affect dynamics. Our results provide an answer to a natural question of whether drops roll or slide on a surface and carry implications for various applications where rolling motion may or may not be preferred.

  9. Molecular motion in restricted geometries

    Siddharth Gautam; S Mitra; R Mukhopadhyay


    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time scales involved in the motion and the geometry of motion can be studied using QENS. Molecular dynamics (MD) simulation not only provides insight into the details of the different types of motion possible but also does not suffer limitations of the experimental set-up. Here we report the effect of confinement on molecular dynamics in various restricted geometries as studied by QENS and MD simulations: An example where the QENS technique provided direct evidence of phase transition associated with change in the dynamical behaviour of the molecules is also discussed.

  10. Brownian Motion, "Diverse and Undulating"

    Duplantier, Bertrand


    We describe in detail the history of Brownian motion, as well as the contributions of Einstein, Sutherland, Smoluchowski, Bachelier, Perrin and Langevin to its theory. The always topical importance in physics of the theory of Brownian motion is illustrated by recent biophysical experiments, where it serves, for instance, for the measurement of the pulling force on a single DNA molecule. In a second part, we stress the mathematical importance of the theory of Brownian motion, illustrated by two chosen examples. The by-now classic representation of the Newtonian potential by Brownian motion is explained in an elementary way. We conclude with the description of recent progress seen in the geometry of the planar Brownian curve. At its heart lie the concepts of conformal invariance and multifractality, associated with the potential theory of the Brownian curve itself.

  11. Video summarization using motion descriptors

    Divakaran, Ajay; Peker, Kadir A.; Sun, Huifang


    We describe a technique for video summarization that uses motion descriptors computed in the compressed domain to speed up conventional color based video summarization technique. The basic hypothesis of the work is that the intensity of motion activity of a video segment is a direct indication of its 'summarizability.' We present experimental verification of this hypothesis. We are thus able to quickly identify easy to summarize segments of a video sequence since they have a low intensity of motion activity. Moreover, the compressed domain extraction of motion activity intensity is much simpler than the color-based calculations. We are able to easily summarize these segments by simply choosing a key-frame at random from each low- activity segment. We can then apply conventional color-based summarization techniques to the remaining segments. We are thus able to speed up color-based summarization techniques by reducing the number of segments on which computationally more expensive color-based computation is needed.

  12. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)


    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  13. Role of orientation reference selection in motion sickness

    Peterka, Robert J.; Black, F. Owen


    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness

  14. Quantification and clinical relevance of head motion during computed tomography.

    Wagner, Arne; Schicho, Kurt; Kainberger, Franz; Birkfellner, Wolfgang; Grampp, Stephan; Ewers, Rolf


    To quantify the 3-dimensional translation and rotation components of head motion during computed tomography and to analyze the influence of such motion on perceptible artifacts and distortion of volume image data sets. Using high-precision optoelectronic motion-capture technology, changes in patient head position during axial CT scanning were registered in 20 cases and 2 phantoms with a spatial relative resolution better than 0.003 cm. Statistical analysis was performed on a base of 6-dimensional measurement-vectors, each with 3 translation and 3 rotation values. Because of the recording frequency of the tracking system, more than 80000 values were included in a statistical analysis. All 20 patients had head motion during the CT scanning, with only 4 of 20 patients showing perceptible motion artifacts. The frequency, the extent, and the direction of the movements did not correlate with either the observations made by the radiologic staff or with the patient's subjective estimation of comfort. Translation movements of the head during CT accounted for a maximum of 0.5 cm and rotations of more than 2 degrees without perceptible motion artifacts. The extent of positional changes of the head was found to correlate with the duration of scanning (Pearson's correlation coefficient: 0.647 for translation shifts, 0.453 for rotation shifts). The mean direction of head motion could be characterized predominantly as a rotation around the longitudinal axis of the body (xy plane) at a significance level of 0.01. Computed tomography evaluations of the head performed without rigid fixation suffer a spatial distortion of the volume image data sets, caused by interimage motion. The absence of motion artifacts is not correlated with the absence of motion.

  15. MotionCast for mobile wireless networks

    Wang, Xinbing


    MotionCast for Mobile Wireless Networks provides an overview on the research for mobile ad-hoc networks regarding capacity and connectivity. Wireless ad-hoc networks are useful when there is a lack of infrastructure for communication. The proposed notion “MotionCast” is for the capacity analysis of multicast in MANET. A new kind of connectivity (k;m)-connectivity, is also defined, and its critical transmission range for i.i.d. (independently and identically distributed) and random walk mobility models are derived respectively. This book also investigates the related issues of connectivity in mobile and static circumstances. In addition, it provides a survey of the capacity scaling research, which gives a good summary of this field.

  16. Anisotropic stellar models admitting conformal motion

    Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali


    We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.

  17. Microlensing Parallax for Observers in Heliocentric Motion

    Novati, S Calchi


    Motivated by the ongoing Spitzer observational campaign, and the forecoming K2 one, we revisit, working in an heliocentric reference frame, the geometrical foundation for the analysis of the microlensing parallax, as measured with the simultaneous observation of the same microlensing event from two observers with relative distance of order AU. For the case of observers at rest we discuss the well known fourfold microlensing parallax degeneracy and determine an equation for the degenerate directions of the lens trajectory. For the case of observers in motion, we write down an extension of the Gould (1994) relationship between the microlensing parallax and the observable quantities and, at the same time, we highlight the functional dependence of these same quantities from the timescale of the underlying microlensing event. Furthermore, through a series of examples, we show the importance of taking into account the motion of the observers to correctly recover the parameters of the underlying microlensing event. ...

  18. Geodesic motion in a stationary dihole spacetime

    Dubeibe, F L


    The knowledge of the properties of the different exact solutions modeling binary systems, is a necessary step towards the classification of physically suitable solutions and its corresponding limits of applicability. In the present paper, we perform an analysis of the geodesics around two counter--rotating Kerr--Newman black holes endowed with opposite electric charges, which achieve equilibrium by means of a strut between their constituents. We find that bounded and unbounded orbits are possible. However, test particles may cross between the black holes only if their angular momentum equals zero, otherwise, there exist a repulsive potential, which prohibits such orbits. Two important aspects are pointed out for these trajectories: ({\\it i}) the motion of photons is affected once crossing the strut; and ({\\it ii}) massive particles exhibit oscillatory motion, as a first analog of the Sitnikov problem in general relativity. The radius of the innermost stable circular orbit as a function of the physical paramet...

  19. Orbital Motion in Outer Solar System

    Klacka, J; Klacka, Jozef; Gajdosik, Martin


    Motion of a point mass in gravitational fields of the Sun and of the galactic disk is studied. Fundamental features of the motion are found by investigating the time-averaged differential equations for orbital evolution. Several types of possible orbits are mathematically exactly derived in a strictly analytical way. The relation $a^{3} ~ P^{2} = f (e_{0}, i_{0}, \\omega_{0})$ between semimajor axis a and period P of the change of osculating orbital elements is found (the index 0 denotes initial values of the quantities). Due to conservation of energy in potential fields a is a constant. Moreover, the component of angular momentum perpendicular to the galactic plane is conserved. Due to these facts the system of equations reduces to two equations for either (e, $\\omega$), or (i, $\\omega$) (the length of the ascending node does not enter the equations for a, e, i, $\\omega$ and is not solved here).

  20. Analytical Analysis of Motion Separability

    Marjan Hadian Jazi; Alireza Bab-Hadiashar; Reza Hoseinnezhad


    Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility an...

  1. Solar Radiation and Asteroidal Motion

    Klacka, J


    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  2. Neural Basis of Motion Perception


    Oxford University, England. 11. Interviewed on BBC television ("Antenna"). Debate with Daniel C. Dennett . Aired on August 8, 1992. 12. Interviewed on PBS...integrated approach to vision. We have had two goals in mind: (1) To develoN~onceptual links between neurophysiology and perception ; (2) Fo develop specific...range of new "natural constraints" that govern the perception of shape-from shading structure from motion and motion correspondence. Also, we have

  3. On the Crab Proper Motion

    Caraveo, P A; Caraveo, Patrizia A; Mignani, Roberto


    Owing to the dramatic evolution of telescopes as well as optical detectors in the last 20 yrs, we are now able to measure anew the proper motion of the Crab pulsar, after the classical result of Wyckoff and Murray (1977) in a time span 40 times shorter. The proper motion is aligned with the axis of symmetry of the inner Crab nebula and, presumably, with the pulsar spin axis.

  4. Estimation, transmission, and distribution of motion information in future image communication networks

    Chupeau, Bertrand


    There is no doubt that in a near future a large number of image processing techniques will be based on motion compensation, making thus very common the cascading of several 'motion compensated' devices in the same image chain. A reference scheme for the optimum use of motion compensation in future image communication networks is presented. Motion estimation is performed once only, at a very early stage of the process chain, then motion information is encoded, transmitted in a separate data channel and distributed to the cascaded motion compensated processes. The distribution scenario must take into consideration the various transformations performed on the image signal since its origination so that the motion information distributed is always consistent with the pictures to process. The problems of the representation of motion relatively to a given source image signal and of its adjustment to new frame rate environments are especially addressed.

  5. The New Method for CNC Trajectory Machining Motion Planning Based on Reference Time

    JIANG Yongmin; XU Mingheng


    In order to make motion planning fitting practice, many characteristic of CNC trajectory motion are discussed, such as the geometric function, the motion and the time. It is found that the relation between orbit function and motional parameter, so the differential equation about the trajectory motion be set-up by the goal of trajectory motion. The actual motion process is defined as reference time to link planning and practice. Present a new movement planning method based on self-defining time. At rest state, the differential simultaneous equation can be calculated according geometric characteristic analysis, it can be get that simple function consisted of coordinate and reference time variants. At motive state, dynamic parameter can be worked out according practical value of reference time, It is proved by experiment and simulation that it is a good way to control geometry and motion comprehensively, to reduce computation times and to increase the ability of environmental adaptation for path planning

  6. Motion-mode energy method for vehicle dynamics analysis and control

    Zhang, Nong; Wang, Lifu; Du, Haiping


    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  7. Rigid Body Motion in Stereo 3D Simulation

    Zabunov, Svetoslav


    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  8. Emergent Property in Macromolecular Motion



    In this paper, the model of inverse cascade fractal super-blocks along one direction (in the positive or negative) in the 3-dimensional space is developed to describe the self-similar motion in macromolecular system. Microscopically the cohesive and dispersed states of the motion blocks are co-existent states with vastly different probability of occurrence.Experimental results and theoretical analysis show that the microscopic cohesive state energy and dispersed state energy of each motion block are respectively equal to the macroscopic glassy state energy kT8 and molten state energy kTm of the system. This singularity unveils topologically the nonintegrability, mathematically the anholonomy, and macroscopically the emergent property. This singularity also reveals that the glass, viscoelastic and melt states are three distinct emergent properties of macromolecular motion from a macroscopic viewpoint. The fractal concept of excluded volume is introduced to depict the random motion at various scales in the system. The Hausdorff dimensions of the excluded volune and the motion blocks are both found equal to 3/2.

  9. Primary visual cortex activity along the apparent-motion trace reflects illusory perception.

    Lars Muckli


    Full Text Available The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1 is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex.

  10. Efficient Motion Planning and Control for Underwater Gliders

    Mahmoudian, Nina


    Underwater gliders are highly efficient, winged autonomous underwater vehicles that propel themselves by modifying their buoyancy and their center of mass. The center of mass is controlled by a set of servo-actuators which move one or more internal masses relative to the vehicle's frame. Underwater gliders are so efficient because they spend most of their time in stable, steady motion, expending control energy only when changing their equilibrium state. Motion control thus reduces to varyin...

  11. Gamma-stability and vortex motion in type II superconductors

    Kurzke, Matthias; Spirn, Daniel


    We consider a time-dependent Ginzburg-Landau equation for superconductors with a strictly complex relaxation parameter, and derive motion laws for the vortices in the case of a finite number of vortices in a bounded magnetic field. The motion laws correspond to the flux-flow Hall effect. As our main tool, we develop a quantitative {gamma}-stability result relating the Ginzburg-Landau energy to the renormalized energy. (orig.)

  12. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.


    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for

  13. The "motion silencing" illusion results from global motion and crowding.

    Turi, Marco; Burr, David


    Suchow and Alvarez (2011) recently devised a striking illusion, where objects changing in color, luminance, size, or shape appear to stop changing when they move. They refer to the illusion as "motion silencing of awareness to visual change." Here we present evidence that the illusion results from two perceptual processes: global motion and crowding. We adapted Suchow and Alvarez's stimulus to three concentric rings of dots, a central ring of "target dots" flanked on either side by similarly moving flanker dots. Subjects had to identify in which of two presentations the target dots were continuously changing (sinusoidally) in size, as distinct from the other interval in which size was constant. The results show: (a) Motion silencing depends on target speed, with a threshold around 0.2 rotations per second (corresponding to about 10°/s linear motion). (b) Silencing depends on both target-flanker spacing and eccentricity, with critical spacing about half eccentricity, consistent with Bouma's law. (c) The critical spacing was independent of stimulus size, again consistent with Bouma's law. (d) Critical spacing depended strongly on contrast polarity. All results imply that the "motion silencing" illusion may result from crowding.

  14. Heat Motion in Matter.

    Dash, J. G .

    This monograph was written for the Conference on the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is designed for college students who are non-physics majors, and is organized in sections of increasing sophistication. Section 1 presents ideas related to the kinetic theory of gases. Section 2…

  15. The undulating spiral motion of celestial bodies in solar system relative to a certain point on the earth (Ⅰ)---the derivation and simulation analysis of spiral motion equation of the sun and the moon relative to a certain point on the earth%太阳系天体相对地球某点的波动式螺线运动(Ⅰ)--太阳、月球相对地球某点螺线运动方程推导及模拟分析

    李嘉; 李琳; 张勇军; 李钦豪


    为研究太阳系天体相对地球某点的运动规律,首先建立了地心黄道坐标系,并将太阳绕地球的圆周运动转换为太阳绕地心的余弦波动,同时将此余弦波动作为标准余弦曲线.将太阳绕地球的运动分解为波动和“自转”,并分双波动坐标轴和波动-螺面坐标轴分析,推导出太阳对地球赤道某点的波动式螺线运动轨迹方程,同时进行计算机模拟与分析,得到了太阳对地球某纬度某点的波动式螺线运动轨迹方程.以此类推,推导出月球对地球某点的波动式螺线运动轨迹方程,并分别进行计算机模拟与分析.结果表明,太阳、月球相对于地球某点的运动轨迹为与幅值与角度相关的波动式螺线,向x轴方向等速传播,并且:①在双波动坐标轴下分析,太阳、月球在z轴上的波动极其细微,可以近似为经典力学中的平面波动;螺线呈周期性变化,且在坐标3个平面上的投影均为周期性波动函数;整体传播呈现薄膜状波动面;月球运动变化方向复杂.②在波动-螺面坐标轴下分析,x轴与z轴数量级可比拟,z轴与x轴最大幅值之比约等于2/5;螺线波动是由起始点沿阿基米德螺线绕余弦波动面的周期性传播,螺线旋转角速度同地球自转角速度,旋转线速度与太阳、月球1年中波动的周期数相关;整体传播呈现薄膜状波动面.③太阳、月球相对于地球上某纬度c某点与赤道某点,在波动-螺面坐标轴下分析,螺线方程不变,在双波动坐标轴下分析,将太阳、月球相对于赤道某点的螺线参数方程的z轴表达式中的cos (0.37π)换为cos (0.37π+c)得到相对于某纬度c某点的螺线参数方程.%In order to study the motion of celestial bodies in solar system relative to a certain point on the Earth, a geocentric ecliptic coordinate axis was built at first , and the sun's circling


    YU Kai-ping; ZHANG Guang; ZHOU Jing-jun; ZOU Wang; LI Zhen-wang


    The pitching motions of supercavitating vehicles could not be avoided due to the lost water buoyancy.In order to have some insight for the design of the supercavitating vehicles,the fixed frequency and free pitching motions are investigated.A numerical predicting method based on the relative motion principle and the non-inertia coordinate system is proposed to simulate the free pitching motions of supercavitating vehicles in the longitudinal plane.Homogeneous and two fluid multiphase models are used to predict the natural and the ventilated supercavitating flows.In the fixed frequency pitching motions,a variety of working conditions are considered,including the pitching angular velocities and the supercavity scales and the results are found to be consistent with the available experimental results in literature.The mesh deformation technology controlled by the moment of momentum equation is adopted to study the free pitching motions and finally to obtain the planing states proposed by Savchenko.The numerical method is validated for predicting the pitching motions of supercavitating vehicles and is found to enjoy better calculation efficiency as comparing with the mesh regeneration technology.

  17. Success and Failure of Parliamentary Motions: A Social Dilemma Approach.

    Roel Popping

    Full Text Available Parliamentary motions are a vital and frequently used element of political control in democratic regimes. Despite their high incidence and potential impact on the political fate of a government and its policies, we know relatively little about the conditions under which parliamentary motions are likely to be accepted or rejected. Current collective decision-making models use a voting power framework in which power and influence of the involved parties are the main predictors. We propose an alternative, social dilemma approach, according to which a motion's likelihood to be accepted depends on the severity of the social dilemma underlying the decision issue. Actor- and dilemma-centered hypotheses are developed and tested with data from a stratified random sample of 822 motions that have been voted upon in the Dutch Parliament between September 2009 and February 2011. The social dilemma structure of each motion is extracted through content coding, applying a cognitive mapping technique developed by Anthony, Heckathorn and Maser. Logistic regression analyses are in line with both, actor-centered and social-dilemma centered approaches, though the latter show stronger effect sizes. Motions have a lower chance to be accepted if voting potential is low, the proposer is not from the voting party, and if the problem underlying the motion reflects a prisoner's dilemma or a pure competition game as compared to a coordination game. The number of proposing parties or a battle of the sexes structure does not significantly affect the outcome.

  18. Bubble motion measurements during foam drainage and coarsening.

    Maurdev, G; Saint-Jalmes, A; Langevin, D


    We have studied bubble motion within a column of foam allowed to undergo free drainage. We have measured bubble motion upward with time and as a function of their initial positions. Depending on the gas used, which sets the coarsening and drainage rates, different bubble upward motion types have been identified (constant speed, acceleration or deceleration) and explained in relation with liquid downward flows. The proofs of the consistency between bubble upward motion and liquid downward flow are obtained both by comparing the bubble motion curves to the liquid drainage ones, and by comparing the time variations of the liquid fraction extracted from bubble motion to direct liquid fraction measurements by electrical conductimetry. The agreement between bubble position tracking and electrical conductivity shows in particular that it is possible to determine the drainage regime from such simple bubble motion measurements. This work also allowed us to demonstrate a special case of foam coarsening and expansion, occurring when the foam gas is less soluble than the outside one, caused by diffusion of this external gas into the foam. All these results allow us to build a picture of drainage and coarsening seen from the bubble point of view.

  19. Motion sickness history, food neophobia, and sensation seeking.

    Alley, Thomas R; Willet, Kathleen A; Muth, Eric R


    Motion sickness is believed to be caused by conflicting sensory signals, a situation that mimics the effects of ingesting certain toxins. Thus, one might suspect that individuals who have experienced a relatively high frequency of motion sickness may be particularly vigilant about avoiding anything that produces nausea, induding potentially nauseating toxins. Consequently, they may be more resistant to trying new foods, i.e., be more food neophobic, since unfamiliar foods can have unexpected adverse effects due to toxins or allergens. Likewise, many highly stimulating experiences can trigger motion sickness, so individuals who are more susceptible may be more prone to avoid such experiences, i.e., be less sensation seeking. Finally, it was expected that food neophobia would be more frequent in individuals low on sensation seeking tendencies. Self-reported motion sickness history in 308 adults (M= 18.8 yr.; SD = 1.6) was correlated with scores on the Arnett Inventory of Sensation Seeking and the Food Neophobia Scale. As predicted, greater history of motion sickness was associated with lower Sensation Seeking scores. Food Neophobia was not correlated with motion sickness history but, as expected, was negatively correlated (r = -.42) with scores on Sensation Seeking. Further research is recommended that measures actual sensitivity to motion sickness.

  20. Acromioclavicular motion after surgical reconstruction.

    Motta, Pierorazio; Bruno, Laura; Maderni, Alberto; Tosco, Piermario; Mariotti, Umberto


    A retrospective long-term study was carried out to determine whether there was any correlation between the clinical motion of the acromioclavicular joint evaluated by a test we set up using 90° of abduction and 0° of external rotation against resistance [90°/0°RTest] and the cross arm test (compared to the healthy side) and full return to everyday activities after surgical repair. A clinical and radiographic evaluation was carried out on 51/80 subjects at a 5.4-year mean follow-up, treated for acromioclavicular joint dislocation with an extra-articular artificial loop, between 2000 and 2006. The 25 subjects with ossifications obtained a normal acromioclavicular joint motion, on both the horizontal and vertical planes. There was a correlation between the normal motion of the reconstructed acromioclavicular joint (compared to the healthy side) in these 25 patients and full clinical recovery, whilst there was no correlation between the Constant score, the simple shoulder test, the radiographic evaluation on one hand and the clinical motion of the joint on the other. Two patients had recurrent dislocation. Three had mobilization of the screws without reduction loss, or negative clinical outcome. A postoperative radiographic evaluation should be correlated with a clinical evaluation of the acromioclavicular joint motion (normal, hypermobile, unstable). Normal acromioclavicular joint motion was observed in subjects who developed significant ossifications. The study shows that the clinical evaluation of acromioclavicular joint motion is a simple and trustworthy method to assess the clinical result of a surgical repair. Diagnostic study investigating a diagnostic test, Level III.

  1. Motion in alternative theories of gravity

    Esposito-Farese, Gilles


    Although general relativity (GR) passes all present experimental tests with flying colors, it remains important to study alternative theories of gravity for several theoretical and phenomenological reasons that we recall in these lecture notes. The various possible ways of modifying GR are presented, and we notably show that the motion of massive bodies may be changed even if one assumes that matter is minimally coupled to the metric as in GR. This is illustrated with the particular case of scalar-tensor theories of gravity, whose Fokker action is discussed, and we also mention the consequences of the no-hair theorem on the motion of black holes. The finite size of the bodies modifies their motion with respect to pointlike particles, and we give a simple argument showing that the corresponding effects are generically much larger in alternative theories than in GR. We also discuss possible modifications of Newtonian dynamics (MOND) at large distances, which have been proposed to avoid the dark matter hypothesi...

  2. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Milana Damjenić


    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  3. Vision System Measures Motions of Robot and External Objects

    Talukder, Ashit; Matthies, Larry


    A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem

  4. Range of motion and cervical myofascial pain.

    Wilke, J; Niederer, D; Fleckenstein, J; Vogt, L; Banzer, W


    Several studies investigating myofascial pain syndrome include assessments of range of motion (ROM) as a diagnostic criterion. However, the value of ROM in this context has not yet been evaluated in controlled clinical studies. We aimed to examine whether patients with myofascial pain syndrome display alterations of ROM when compared to healthy subjects. Twenty-two individuals (13 females, 9 males; aged 33.4 ± 13.9 yrs) afflicted with active myofascial trigger points in the upper trapezius muscle as well as 22 age and sex matched healthy controls were included. All subjects underwent an examination of maximal active cervical ROM in flexion/extension assessed by means of a 3D ultrasonic movement analysis system (30 Hz; Zebris CMS 70). In the patients group, pressure pain threshold (PPT) of the trigger points was determined using a pressure algometer. Maximum range of motion in the sagittal plane did not differ between individuals with MTrP (125.9 ± 23.2°, 95% CI: 116.2-135.6°) and asymptomatic subjects (128.2 ± 20.4°, 95% CI: 119.7-136.7°; p > .05). In patients, PPT (1.7 ± .6, 95% CI: 1.5-1.9) was not correlated with cervical mobility (r = -.13; p > .05). Based on these pilot data, range of motion in flexion/extension is not a valid criterion for the detection of myofascial trigger points. Additional research incorporating movement amplitudes in other anatomical planes and additional afflicted muscles should be conducted in order to further delineate the relative impact of MTrP on range of motion.

  5. Motion perception modelling in flight simulation

    Groen, E.L.; Hosman, R.J.A.W.; Bos, J.E.; Dominicus, J.W.


    Motion cueing algorithms are indispensable to transform aircraft motions into simulator motions. Usually, such algorithms apply to the whole flight envelope. Since a motion base should stay within its six degrees of freedom workspace, the parameter settings necessarily involve concessions, which may

  6. Estimation of visual motion in image sequences

    Larsen, Rasmus


    The problem of estimation of visual motion from sequences of images has been considered within a framework consisting of three stages of processing. First the extraction of motion invariants, secondly a local measurement of visual motion, and third integration of local measurements in conjunction...... satellite images based on the estimated motion field is shown....

  7. Ridge-spotting: A new test for Pacific absolute plate motion models

    Wessel, Paul; Müller, R. Dietmar


    Relative plate motions provide high-resolution descriptions of motions of plates relative to other plates. Yet geodynamically, motions of plates relative to the mantle are required since such motions can be attributed to forces (e.g., slab pull and ridge push) acting upon the plates. Various reference frames have been proposed, such as the hot spot reference frame, to link plate motions to a mantle framework. Unfortunately, both accuracy and precision of absolute plate motion models lag behind those of relative plate motion models. Consequently, it is paramount to use relative plate motions in improving our understanding of absolute plate motions. A new technique called "ridge-spotting" combines absolute and relative plate motions and examines the viability of proposed absolute plate motion models. We test the method on six published Pacific absolute plate motions models, including fixed and moving hot spot models as well as a geodynamically derived model. Ridge-spotting reconstructs the Pacific-Farallon and Pacific-Antarctica ridge systems over the last 80 Myr. All six absolute plate motion models predict large amounts of northward migration and monotonic clockwise rotation for the Pacific-Farallon ridge. A geodynamic implication of our ridge migration predictions is that the suggestion that the Pacific-Farallon ridge may have been pinned by a large mantle upwelling is not supported. Unexpected or erratic ridge behaviors may be tied to limitations in the models themselves or (for Indo-Atlantic models) discrepancies in the plate circuits used to project models into the Pacific realm. Ridge-spotting is promising and will be extended to include more plates and other ocean basins.

  8. The Hawaii-Emperor Bend: Plate motion, plume motion, or both?

    Wessel, P.


    The Hawaii-Emperor Bend (HEB) has become a lightening rod for studies of absolute plate motion (APM). Initially seen as the clearest evidence for an APM change over an approximately stationary hotspot, recent studies have suggested that the HEB represents no change in APM motion at all. Instead, it has been proposed that there was a rapid retardation of the southward motion of the underlying Hawaii plume at ~ 50 Ma while the Pacific plate continued its otherwise undisturbed westward motion. Some even see this development as further evidence that the hotspot hypothesis is fundamentally flawed and that no plumes exist. Although several lines of inquiry have lead to the revised interpretations of the HEB signature, there are in particular two principal observations that have prompted this proposed major revision: (a) Paleolatitudes inferred from basalt samples recovered from drill cores at several sites along the Emperor chain systematically imply a volcanic origin much further north than the present latitude of the Hawaiian hotspot, and (b) the age progressions along the Emperor and Louisville chains inferred from dated rock samples appear to diverge for ages older than ~55 Ma when a fixed hotspot reference frame is used to relate the two age progressions. While the latter discrepancy can be modeled with relative minor changes in the inter-hotspot distance between Hawaii and Louisville or by appealing to limited hotspot-ridge interactions, the paleolatitude anomaly at 78 Ma is almost 15 degrees. Unless this anomaly only partially reflects plume motion, its sheer magnitude may require a significant revision of Pacific tectonic history and could ultimately drive a stake through the heart of the hotspot hypothesis; critical new data on Louisville seamount paleolatitudes are required to resolve this puzzle. The HEB itself is constrained to have formed around 50-47 Ma, i.e., approximately Chron 21, which is a known period of significant and global plate reorganizations

  9. Perceptual atoms: proximal motion vector-structures and the perception of object motion in depth

    Hershenson Maurice


    Full Text Available A framework is proposed for analyzing the perception of motion in depth produced by simple proximal motion patterns of two to four points. The framework includes input structure, perceptual system constraints, and a depth scaling mechanism. The input is relational stimulation described by two proximal dimensions, orientation and separation, that can change or remain constant over the course of a motion pattern. Combinations of change or no-change in these dimensions yield four basic patterns of proximal stimulation: parallel, circular, perspective, and parallax. These primary patterns initiate automatic processing mechanisms - a unity constraint that treats pairs of points as connected and a rigidity constraint that treats the connection as rigid. When the constraints are activated by perspective or parallax patterns, the rigid connection between the points also appears to move in depth. A scaling mechanism governs the degree to which the objects move in depth in order to maintain the perceived rigidity. Although this framework is sufficient to explain perceptions produced by three- and four-point motion patterns in most cases, some patterns require additional configurational factors to supplement the framework. Nevertheless, perceptual qualities such as shrinking, stretching, bending, and folding emerge from the application of the same processing constraints and depth scaling factors as those that produce the perception of rigid objects moving in depth.

  10. Generating action descriptions from statistically integrated representations of human motions and sentences.

    Takano, Wataru; Kusajima, Ikuo; Nakamura, Yoshihiko


    It is desirable for robots to be able to linguistically understand human actions during human-robot interactions. Previous research has developed frameworks for encoding human full body motion into model parameters and for classifying motion into specific categories. For full understanding, the motion categories need to be connected to the natural language such that the robots can interpret human motions as linguistic expressions. This paper proposes a novel framework for integrating observation of human motion with that of natural language. This framework consists of two models; the first model statistically learns the relations between motions and their relevant words, and the second statistically learns sentence structures as word n-grams. Integration of these two models allows robots to generate sentences from human motions by searching for words relevant to the motion using the first model and then arranging these words in appropriate order using the second model. This allows making sentences that are the most likely to be generated from the motion. The proposed framework was tested on human full body motion measured by an optical motion capture system. In this, descriptive sentences were manually attached to the motions, and the validity of the system was demonstrated.

  11. The use of vestibular models for design and evaluation of flight simulator motion

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.


    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  12. Hybrid Motion Graphs for Character Animation

    Kalouache Saida


    Full Text Available Many works in the literature have improved the performance of motion graphs for synthesis the humanlike results in limited domains that necessity few constraints like dance, navigation in small game like environments or in games by the gesture of feedback on a snowboard tutorial. The humanlike cannot exist in an environment without interacting with the world surrounding them; the naturalness of the entire motion extremely depends on the animation of the walking character, the chosen path and the interaction motions. Addressing exact position of end-effectors is the main disadvantage of motion graphs which cause less importance expended to the search for motions with no collision in complex environments or manipulating motions. This fact motivates this approach which is the proposition of an hybrid motion graphs taking advantages of motion graphs to synthesis a natural locomotion and overcoming their limitations in synthesis manipulation motions by combined it with an inverse kinematic method for synthesis the upper-body motions.

  13. Types of diaphragmatic motion during hepatic angiography.

    Katsuda, T; Kuroda, C; Fujita, M


    To determine the types and causes of diaphragmatic motion during hepatic angiography, the authors used transarterial cut-film portography (TAP) to study movement of the diaphragm during breath-holding. Thirty-three TAP sequences were studied, and the patients' diaphragmatic motions were classified into four categories according to the distance their diaphragms moved. Results showed that the diaphragm was stationary in 33% of the TAP studies, while perpetual motion occurred in 15% of the studies, early-phase motion occurred in 12% and late-phase motion occurred in 40%. Ten sequences showed diaphragmatic motion of more than 10 mm, with eight sequences showing caudal motion and two showing cranial motion. This article discusses the cause of diaphragmatic motion during breath-holding for hepatic angiography and presents suggestions to reduce motion artifacts during the exam.

  14. Arm Motion Recognition and Exercise Coaching System for Remote Interaction

    Hong Zeng


    Full Text Available Arm motion recognition and its related applications have become a promising human computer interaction modal due to the rapid integration of numerical sensors in modern mobile-phones. We implement a mobile-phone-based arm motion recognition and exercise coaching system that can help people carrying mobile-phones to do body exercising anywhere at any time, especially for the persons that have very limited spare time and are constantly traveling across cities. We first design improved k-means algorithm to cluster the collecting 3-axis acceleration and gyroscope data of person actions into basic motions. A learning method based on Hidden Markov Model is then designed to classify and recognize continuous arm motions of both learners and coaches, which also measures the action similarities between the persons. We implement the system on MIUI 2S mobile-phone and evaluate the system performance and its accuracy of recognition.

  15. Quantal rotation and its coupling to intrinsic motion in nuclei

    Nakatsukasa, Takashi; Matsuzaki, Masayuki; Shimizu, Yoshifumi R


    Symmetry breaking is an importance concept in nuclear physics and other fields of physics. Self-consistent coupling between the mean-field potential and the single-particle motion is a key ingredient in the unified model of Bohr and Mottelson, which could lead to a deformed nucleus as a consequence of spontaneous breaking of the rotational symmetry. Some remarks on the finite-size quantum effects are given. In finite nuclei, the deformation inevitably introduces the rotation as a symmetry-restoring collective motion (Anderson-Nambu-Goldstone mode), and the rotation affects the intrinsic motion. In order to investigate the interplay between the rotational and intrinsic motions in a variety of collective phenomena, we use the cranking prescription together with the quasiparticle random phase approximation. At low spin, the coupling effect can be seen in the generalized intensity relation. A feasible quantization of the cranking model is presented, which provides a microscopic approach to the higher-order intens...

  16. Implied motion language can influence visual spatial memory.

    Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick


    How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.

  17. Auditorily-induced illusory self-motion: a review.

    Väljamäe, Aleksander


    The aim of this paper is to provide a first review of studies related to auditorily-induced self-motion (vection). These studies have been scarce and scattered over the years and over several research communities including clinical audiology, multisensory perception of self-motion and its neural correlates, ergonomics, and virtual reality. The reviewed studies provide evidence that auditorily-induced vection has behavioral, physiological and neural correlates. Although the sound contribution to self-motion perception appears to be weaker than the visual modality, specific acoustic cues appear to be instrumental for a number of domains including posture prosthesis, navigation in unusual gravitoinertial environments (in the air, in space, or underwater), non-visual navigation, and multisensory integration during self-motion. A number of open research questions are highlighted opening avenue for more active and systematic studies in this area.

  18. Proper Motion of Components in 4C 39.25

    Guirado, J. C.; Marcaide, J. M.; Alberdi, A.; Elosegui, P.; Ratner, M. I.; Shapiro, I. I.; Kilger, R.; Mantovani, F.; Venturi, T.; Rius, A.; hide


    From a series of simultaneous 8.4 and 2.3 GHz VLBI observations of the quasar 4C 39.25 phase referenced to the radio source 0920+390, carried out in 1990-1992, we have measured the proper motion of component b in 4C 39.25: mu(sub alpha) = 90 +/- 43 (mu)as/yr, mu(sub beta) = 7 +/- 68 (mu)as/yr, where the quoted uncertainties account for the contribution of the statistical standard deviation and the errors assumed for the parameters related to the geometry of the interferometric array, the atmosphere, and the source structure. This proper motion is consistent with earlier interpretations of VLBI hybrid mapping results, which showed an internal motion of this component with respect to other structural components. Our differential astrometry analyses show component b to be the one in motion. Our results thus further constrain models of this quasar.

  19. Engineering uses of physics-based ground motion simulations

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.


    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  20. The interaction of luminance, velocity, and shape information in the perception of motion transparency, coherence, and non-rigid motion.

    Jasinschi, R; Rosenfeld, A; Araújo, H J


    The perception of luminance transparency for superimposed patterns depends on how luminance, figural, and topological conditions are simultaneously satisfied. Motion transparency or coherence for two superimposed patterns, which correspond to the perception of both patterns moving across one another or to the perception of compound motion of the regions of pattern intersection, depends on the relation between the local velocity, luminance, and shape information. This study analyzes how luminance, shape, and local velocity interact in the perception of motion transparency and coherence. Psychophysical experiments done with sinusoidally modulated bar patterns are presented which show that the perception of motion transparency or coherence can be described as the result of the interaction of two integration modules: the velocity-luminance and the velocity-shape processes. The velocity-luminance process describes the integration of the local velocity with luminance information. When the luminance transparency rules are satisfied this process always generates the perception of motion transparency independently of the shape or contour information. On the other hand, when the luminance transparency rules are violated one can either perceive motion coherence or non-rigid motion; one perceives motion coherence when the patterns have small or zero amplitude, and non-rigid motion when the patterns have large amplitude. The velocity-shape process describes the integration of local velocity with shape information, and this depends on the relation between the error in the extraction of the local velocity and the magnitude of the contour amplitude. As a result of these experiments it is conjectured that the velocity-luminance and the velocity-shape processes do interact constructively or destructively. The constructive interaction occurs when the luminance transparency rules are satisfied. The destructive interaction occurs when the luminance transparency rules are violated, and

  1. Three-dimensional lumbar spine vertebral motion during running using indwelling bone pins.

    MacWilliams, Bruce A; Rozumalski, Adam; Swanson, Andrew N; Wervey, Roy; Dykes, Daryll C; Novacheck, Tom F; Schwartz, Michael H


    Eight healthy volunteers participated in this observational study. Quantify 3-dimensional motions of the lumbar vertebrae during running via direct in vivo measurement and compare these motions to walking data from the same technique and running data from a skin-mounted technique. Lumbar spine motions in running are only reported in 1 series of articles using a skin-mounted technique subject to overestimation and only instrumented a single vertebra. Reflective marker triads were attached to Kirschner wires inserted into the spinous processes of L1-S1. Anatomic registration between each vertebra and attached triad was achieved using spinal computed tomographic scans. Skin-mounted trunk markers were used to assess thoracic motions. Subjects ran several times in a calibrated volume at self-selected speed while 3-dimensional motion data were collected. Lumbar spine flexion and pelvic rotation patterns in running were reversed compared with walking. Increased lumbar spine motions during running occurred at the most inferior segments. Thoracic spine, lumbar spine and pelvis exhibited significantly greater range of sagittal plane motion with running. The pelvis had significantly greater range of frontal plane motion, and the thoracic spine had significantly greater range of transverse plane motion with running. Skin-mounted studies reported as much as 4 times the motion range determined by the indwelling bone pin techniques, indicating that the skin motion relative to the underlying bone during running was greater than the motion of the underlying vertebrae. The lumbar spine acts as a distinct functional segment in the spine during running, chiefly contributing lateral flexion to balance the relative motions between the trunk and pelvis. The lumbar spine is also shown to oppose thoracic spine sagittal flexion. While the lumbar spine chiefly contributes to frontal plane motion, the thoracic spine contributes the majority of the transverse plane motion. N/A.

  2. Emergence of coherent motion in aggregates of motile coupled maps

    Garcia Cantu Ros, A., E-mail: [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium); Antonopoulos, Ch.G., E-mail: [Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium); Basios, V., E-mail: [Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium)


    Highlights: > A minimal model of motile particles with adjustable intrinsic steering is presented. > Collective motion emerges due to self-adaptation of each particle's intrinsic state. > Adaptation is achieved by a map which behavior ranges from periodic to chaotic. > Higher cohesion occurs in a balanced combination of ordered and chaotic motion. > Exhibits an abrupt change in degree of coherence as a function of particle density. - Abstract: In this paper we study the emergence of coherence in collective motion described by a system of interacting motiles endowed with an inner, adaptative, steering mechanism. By means of a nonlinear parametric coupling, the system elements are able to swing along the route to chaos. Thereby, each motile can display different types of behavior, i.e. from ordered to fully erratic motion, accordingly with its surrounding conditions. The appearance of patterns of collective motion is shown to be related to the emergence of interparticle synchronization and the degree of coherence of motion is quantified by means of a graph representation. The effects related to the density of particles and to interparticle distances are explored. It is shown that the higher degrees of coherence and group cohesion are attained when the system elements display a combination of ordered and chaotic behaviors, which emerges from a collective self-organization process.

  3. Proper Motion Study of the Magellanic Clouds using SPM material

    Katherine, Vieira; William, van Altena; Norbert, Zacharias; Dana, Casetti-Dinescu; Vladimir, Korchagin; Imants, Platais; David, Monet; Carlos, Lopez


    Absolute proper motions are determined for stars and galaxies to V=17.5 over a 450 square-degree area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span over a baseline of 40 years. Multiple, local relative proper motion measures are combined in an overlap solution using photometrically selected Galactic Disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud and the Small Magellanic Cloud; $(\\mu_\\alpha\\cos\\delta,\\mu_\\delta)_{LMC}=(1.89,+0.39)\\pm (0.27,0.27)\\;\\;\\{mas yr}^{-1}$ and $(\\mu_\\alpha\\cos\\delta,\\mu_\\delta)_{SMC}=(0.98,-1.01)\\pm (0.30,0.29)\\;\\;\\{mas yr}^{-1}$. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0....

  4. Theoretical motions of hydrofoil systems

    Imlay, Frederick H


    Results are presented of an investigation that has been undertaken to develop theoretical methods of treating the motions of hydrofoil systems and to determine some of the important parameters. Variations of parameters include three distributions of area between the hydrofoils, two rates of change of downwash angle with angle of attack, three depths of immersion, two dihedral angles, two rates of change of lift with immersion, three longitudinal hydrofoil spacings, two radii of gyration in pitching, and various horizontal and vertical locations of the center of gravity. Graphs are presented to show locations of the center of gravity for stable motion, values of the stability roots, and motions following the sudden application of a vertical force or a pitching moment to the hydrofoil system for numerous sets of values of the parameters.

  5. Robot Motion and Control 2011


    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  6. Piezoelectric step-motion actuator

    Mentesana; Charles P.


    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  7. Motion sensor technologies in education

    T. Bratitsis


    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  8. Quantitative assessment of human motion using video motion analysis

    Probe, John D.


    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.

  9. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Suzuki, Masahiro


    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  10. Biological Motion Perception in Autism

    J Cusack


    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  11. Wave motion in elastic solids

    Graff, Karl F


    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter


    Satrya Mahardhika


    screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.

  13. Variational approach to anharmonic collective motion

    Bertsch, George F


    We derive large-amplitude collective equations of motion from the variational principle for the time-dependent Schroedinger equation. These equations reduce to the well-known diabatic formulas for vibrational frequencies in the small amplitude limit. The finite amplitude expression allows departures from harmonic behavior of giant resonances to be simply estimated. The relative shift of the second phonon falls with nuclear mass A as A^(-4/3) in the three modes we consider: monopole, dipole, and quadrupole. Numerically the effect is very small in heavy nuclei, as was found with other approaches.

  14. Hydrogen motion in ZnO

    Lavrov, E.V. [Technische Universitaet Dresden, 01062 Dresden (Germany)], E-mail:; Boerrnert, F.; Weber, J. [Technische Universitaet Dresden, 01062 Dresden (Germany)


    The motion of hydrogen in a variety of complexes in ZnO is studied by stress-induced dichroism. The defects investigated are Cu-H and Cu-H{sub 2}, the Zn vacancy passivated by two hydrogen atoms, and a complex resulting in an IR absorption line at 3326cm{sup -1}. The hydrogen movement in these complexes is related to the hydrogen diffusion in ZnO. In addition a new microscopic model for the 3326 cm{sup -1}line is proposed.

  15. Ground motion improvements in SPEAR3

    Safranek, James A.; Yan, Yiton T.; Dell’Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita


    SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion.

  16. Line geometry and electromagnetism II: wave motion

    Delphenich, D H


    The fundamental role of line geometry in the study of wave motion is first introduced in the general context by way of the tangent planes to the instantaneous wave surfaces, in which it is first observed that the possible frequency-wave number 1-forms are typically constrained by a dispersion law that is derived from a constitutive law by way of the field equations. After a general review of the basic concepts that relate to quadratic line complexes, these geometric notions are applied to the study of electromagnetic waves, in particular.

  17. Frictional coupling between sliding and spinning motion

    Farkas, Z; Unger, T; Wolf, D E; Farkas, Zeno; Bartels, Guido; Unger, Tamas; Wolf, Dietrich E.


    We show that the friction force and torque, acting at a dry contact of two objects moving and rotating relative to each other, are inherently coupled. As a simple test system, a sliding and spinning disk on a horizontal flat surface is considered. We calculate, and also measure, how the disk is slowing down, and find that it always stops its sliding and spinning motion at the same moment. We discuss the impact of this coupling between friction force and torque on the physics of granular materials.

  18. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.


    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  19. Subject–Motion Correction in HARDI Acquisitions: Choices and Consequences

    Elhabian, Shireen; Gur, Yaniv; Vachet, Clement; Piven, Joseph; Styner, Martin; Leppert, Ilana R.; Pike, G. Bruce; Gerig, Guido


    Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion originating from subject movement, cardiac pulsation, and breathing, but also to mechanical issues such as table vibrations. Given the necessity for rigorous quality control and motion correction, users are often left to use simple heuristics to select correction schemes, which involves simple qualitative viewing of the set of DWI data, or the selection of transformation parameter thresholds for detection of motion outliers. The scientific community offers strong theoretical and experimental work on noise reduction and orientation distribution function (ODF) reconstruction techniques for HARDI data, where post-acquisition motion correction is widely performed, e.g., using the open-source DTIprep software (1), FSL (the FMRIB Software Library) (2), or TORTOISE (3). Nonetheless, effects and consequences of the selection of motion correction schemes on the final analysis, and the eventual risk of introducing confounding factors when comparing populations, are much less known and far beyond simple intuitive guessing. Hence, standard users lack clear guidelines and recommendations in practical settings. This paper reports a comprehensive evaluation framework to systematically assess the outcome of different motion correction choices commonly used by the scientific community on different DWI-derived measures. We make use of human brain HARDI data from a well-controlled motion experiment to simulate various degrees of motion corruption and noise contamination. Choices for correction include exclusion/scrubbing or registration of motion corrupted directions with different choices of interpolation, as well as the option of interpolation of all directions. The comparative evaluation is based on a study of the impact of motion correction using four metrics that quantify (1) similarity of fiber orientation distribution functions (fODFs), (2) deviation of local fiber orientations, (3) global

  20. Project CARDS technical information record: parametric and sensitivity analysis and determination of response spectra for horizontal, vertical and rotational motion of a radioactive material shipping package relative to the motion of its support (railcar). Part 2. Continuation of CARDS-TIR-80-3 (Preliminary)

    Fields, S.R.


    The generation of the response spectra was coupled to a parametric and sensitivity analysis. Support accelerations and tiedown forces are presented as functions of time. The parametric analysis found that the horizontal acceleration of the support and the MAR (max absolute relative) horizontal acceleration are relatively insensitive, while the corresponding vertical accelerations are highly sensitive to changes in 4 of the 13 parameters, and the corresponding rotational accelerations are highly sensitive to changes in 8 of the 13 parameters. The tiedown forces are moderately sensitive to changes in 3 of the parameters. (DLC)