WorldWideScience

Sample records for relative equilibrium air-water

  1. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    International Nuclear Information System (INIS)

    Martinez, J.E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-01-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m 3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values. - Highlights: • High levels of Radon in a workplace can increase health risks in the employees. • Using the typical equilibrium factor 0.4 could lead to an error in the estimation of radon doses. • We present a method for radon equilibrium determination. • Equilibrium factor is calculated by gamma spectrometry measuring of radon progeny concentrations in the air.

  2. Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water

    International Nuclear Information System (INIS)

    Yasuda, Keita; Oto, Yuya; Shen, Renkai; Uchida, Tsutomu; Ohmura, Ryo

    2013-01-01

    Highlights: • Phase equilibrium conditions in the nitrogen and modelled air hydrate forming systems are measured. • Measurements are conducted at temperatures below the freezing point of water. • Results have relevance to the air hydrate formation in the ice sheets. • Measured data are quantitatively compared with the previously reported values. • Range of the equilibrium measurements was from (242 to 268) K. -- Abstract: Contained in this paper are the three phase equilibrium conditions of the (ice + clathrate hydrate + guest-rich) vapour in the (nitrogen + water) and the modelled (air + water) systems at temperatures below the freezing point of water. The precise determination of the equilibrium conditions in those systems are of importance for the analysis of the past climate change using the cored samples from the ice sheets at Antarctica and Greenland because the air hydrates keep the ancient climate signals. The mole ratio of the modelled air composed of nitrogen and oxygen is 0.790:0.210. The equilibrium conditions were measured by the batch, isochoric procedure. The temperature range of the measurements in the nitrogen hydrate forming system is (244.05 < T < 266.55) K and the corresponding equilibrium pressure range is (7.151 < p < 12.613) MPa. The temperature range of the measurements in the modelled air hydrate forming system is (242.55 < T < 267.85) K, and the corresponding equilibrium pressure range is (6.294 < p < 12.144) MPa. The data obtained quantitatively compared with the previously reported data

  3. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    Science.gov (United States)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  4. An experimental chamber simulating the equilibrium between radon and its daughters in mine air

    International Nuclear Information System (INIS)

    Domanski, T.; Chruscielewski, W.; Orzechowski, W.

    1981-01-01

    An experimental chamber simulating the equilibrium between radon and its daughters in uranium mine air is described. The apparatus is useful for testing track detectors, air samplers, masks and filters and for determining occupational exposures. Increasing the humidity of the chamber air and increasing the amounts of aerosol injected both increase the values of the equilibrium factor, F. The equilibrium in the chamber air decreases after the aerosol injection but by using controlled pulse injections it was shown that the stability of F could be maintained inside the chamber for 4 hours. Results are also given for the structure of the equilibrium between radon and its daughters Qsub(i)/Q 0 in the chamber air as a function of the chamber air factor F and also for the potential α-energy of unattached products in relation to the total α-potential energy of radon daughter products in the chamber air as a function of factor F. (U.K.)

  5. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  6. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    Science.gov (United States)

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  7. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  8. Thermal equilibrium of goats.

    Science.gov (United States)

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Air-water screen

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Kutepov, A.I.

    1980-12-08

    The air-water screen based on inventor's certificate No. 577364 contains horizontal water and air lines with water and air nozzles. The air line is situated inside the water line eccentrically and contracts it in the area of the nozzle, whose orifices are situated along the line of contact, while the orifices of the water nozzle are situated symmetrically relative to the air orifices and are located at an acute angle to them. To raise the protective properties, on the end of the water line is a lateral nozzle water distributor is an additional nozzle, connected to this container.

  10. Flooding and non-equilibrium in counter-current flows with reference to pressurised water reactors

    International Nuclear Information System (INIS)

    Megahed, M.M.M.

    1981-12-01

    During the refill stage of a Loss of Coolant Accident (LOCA) in a Pressurised Water Reactor (PWR) the effectiveness with which the emergency coolant penetrates to the lower plenum, and hence to the core, is of paramount importance. Results of experimental and theoretical work carried out at the University of Strathclyde on two 1/10 scale planar test sections of a PWR downcomer annulus are presented. The experiments involved the countercurrent flows of air and water and the data were compared with existing flooding correlations for tubes. It was found experimentally that, as the inlet air flowed upwards against two opposing waterfalls, an increase in air flowrate caused the waterfalls to mover closer together until a critical air flowrate was reached where the waterfalls collapsed. A theoretical model defined this collapse condition. It was shown to be analogous to the choked flow of air through a nozzle whose cross sectional area varied with pressure. Previous experimental results for steam-water mixtures on similar test sections and the present air-water data were used to study condensation effects. Non-equilibrium effects were isolated and correlated against the dependent parameters of inlet water flowrate, inlet subcooling and downcomer wall temperature. A theoretical model giving good qualitative and quantitative agreement with experiment was developed. (author)

  11. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.

  12. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air......Silicon dioxides-water systems are abundant in nature and play fundamental roles in a diversity of novel science and engineering applications. Although extensive research has been devoted to study the nature of the interaction between silica and water a complete understanding of the system has...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  13. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    Science.gov (United States)

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  15. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  16. Simulation and experimental investigation of mechanical and thermal non-equilibrium effect on choking flow at low pressure

    International Nuclear Information System (INIS)

    Yoon, H.J.; Ishii, M.; Revankar, S.T.

    2004-01-01

    The prediction of two-phase choking flow at low pressure (<1MPa) is much more difficult than at relatively higher pressure due to the large density ratio and relatively large thermal and mechanical non-equilibrium between the phases. At low pressure currently available choking flow models are not reliable and satisfactory. In view of this, separate effect tests were conducted to systematically investigate the effects of mechanical and thermal non-equilibrium on the two-phase choking flow in a pipe. The systematic studies is not available in literature, therefore no clear understanding of these effects has been attained until now. A scaled integral facility called PUMA was used for these tests with specific boundary condition with several unique in-;line instruments. The mechanical non-equilibrium effect was studied with air-water choking flow. Subcooled water two-phase choking flow was studied to identify the effects of mechanical and thermal non-equilibrium. A typical nozzle and orifice were used as the choking flow section to evaluate the degree of non-equilibrium due to geometry. The slip ratio, which is a key parameter to express the mechanical non-equilibrium, is obtained upstream of the choking section in the air-water test. The measured choking mass flux for the nozzle was higher than the orifice at low flow quality (<0.05) for the same upstream flow quality indicating that there is a strong mechanical non-equilibrium at the choking plane. The thermal non-equilibrium effect was very strong at low pressure, however, no major influence of the geometry on this effect was observed. Experimental data were compared with RELAP5/MOD3.2.1.2, MOD3.3 beta and TRAC-M code predictions. The code predictions in general were not in agreement with the air-water choking flow test data. This indicated that the mechanical non-equilibrium effects were not properly modeled in the codes. The test data for subcooled water showed moderate decrease of choking mass flux with decrease

  17. Phosphatidylcholine-fatty Alcohols Equilibria in Monolayers at the Air/Water Interface.

    Science.gov (United States)

    Serafin, Agnieszka; Figaszewski, Zbigniew Artur; Petelska, Aneta Dorota

    2015-08-01

    Monolayers of phosphatidylcholine (PC), tetradecanol (TD), hexadecanol (HD), octadecanol (OD) and eicosanol (E) and their binary mixtures were investigated at the air/water interface. The surface tension values of pure and mixed monolayers were used to calculate π-A isotherms. The surface tension measurements were carried out at 22 °C using a Teflon trough and a Nima 9000 tensiometer. The interactions between phosphatidylcholine and fatty alcohols (tetradecanol, hexadecanol, octadecanol, eicosanol) result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants, Gibbs free energy values and areas occupied by one molecules of PC-TD, PC-HD, PC-OD and PC-E complexes. We considered the equilibrium between the individual components and the complex and established that phosphatidylcholine and fatty alcohols formed highly stable 1:1 complexes.

  18. Basic researches on thermo-hydraulic non-equilibrium phenomena related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Sakurai, Akira; Kataoka, Isao; Aritomi, Masanori.

    1989-01-01

    A review was made of recent developments of fundamental researches on thermo-hydraulic non-equilibrium phenomena related to light water reactor safety, in relation to problems to be solved for the improvement of safety analysis codes. As for the problems related to flow con ditions, fundamental researches on basic conservation equations and constitutive equations for transient two-phase flow were reviewed. Regarding to the problems related to thermal non-equilibrium phenomena, fundamental researches on film boiling in pool and forced convection, transient boiling heat transfer and flow behavior caused by pressure transients were reviewed. (author)

  19. Numerical analysis of the air chemical non-equilibrium effect in combustion for a semi-sphere with opposing jet

    Science.gov (United States)

    Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei

    2018-05-01

    The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.

  20. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  1. Thermodynamic equilibrium-air correlations for flowfield applications

    Science.gov (United States)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  2. Equilibrium composition for the reaction of plutonium hydride with air

    International Nuclear Information System (INIS)

    Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Rong; Luo Deli

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH 2.7 (s), PuN(s), Pu 2 O 3 (s), N 2 , O 2 and H 2 , therefore, the system described involves of 2 independent reactions, both ΔG 0 <<0. The calculated equilibrium compositions are in agreement with those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The author has briefly discussed the simultaneous reactions and its thermodynamic coupling effect

  3. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    Science.gov (United States)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  4. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    Science.gov (United States)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  5. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  6. Simple tecniques of radiation protection for radon monitoring in air and water

    International Nuclear Information System (INIS)

    Napolitano, C.M.; Oliveira Sampa, M.H. de; Palacios, E.

    1978-01-01

    Simple techniques for 'in situ' radon concentration measurements in air and water using a scintillation chamber are discussed. The chamber was constructed with a comercial 'Pyrex' erlenmeyer flask by uniformely coating with powdered ZnS:Ag all the flask's internal surface, except its base. For air monitoring, the sample is introduced into the scintillation chamber and when the radioactive equilibrium between radon and its daughters of short half life is reached, the chamber is placed into a light-tight box that has a photomultiplier connected to a counting system. For water monitoring, the sample is placed in a plastic bottle and the bottle connected with a scintillation chamber for 5 hours. Afterwards, the gas of the chamber is counted and radon concentration in water is determined through the counting rate observed in the gaseous phase. The detection limits of these techniques in air and water monitoring were 7pCi/l and 1,5pCi/l [pt

  7. Anisotropic diffusion of volatile pollutants at air-water interface

    Directory of Open Access Journals (Sweden)

    Li-ping Chen

    2013-04-01

    Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  8. Chromatographic determination of the rate and extent of absorption of air pollutants by sea water

    International Nuclear Information System (INIS)

    Nikolakaki, S.; Vassilakos, C.; Katsanos, N.A.

    1994-01-01

    A simple chromatographic method is developed to determine the rate constant for expulsion of an air pollutant from water or its diffusion parameter in the liquid, the rate constant for chemical reaction of the pollutant with water, its mass transfer coefficient in the liquid, and the partition coefficient between liquid water and air. From these physicochemical parameters, the absorption rate by sea water and, therefore, the depletion rate of a polluting substance from the air can be calculated, together with the equilibrium state of this absorption. The method has been applied to nitrogen dioxide being absorbed by triple-distilled water and by sea water, at various temperatures. From the temperature variation of the reaction rate constant and of the partition coefficient, the activation energy for the reaction and the differential heat of solution were determined. (orig.)

  9. Water gun vs air gun: A comparison

    Science.gov (United States)

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  10. Determination of the air/water partition coefficient of groundwater radon using liquid scintillation counter

    International Nuclear Information System (INIS)

    Lee, K.Y.; Yoon, Y.Y.; Ko, K.S.

    2010-01-01

    A method was studied for measuring air/water partition coefficient (K air/water ) of groundwater radon by a simple procedure using liquid scintillation counter (LSC). In contrast conventional techniques such as equilibrium partitioning in a closed system or air striping methods, the described method allow for a simple and uncomplicated determination of the coefficient. The (K air/water ) of radon in pure water has been well known quantitatively over a wide range of temperatures. In this work, groundwater samples having high radon concentration instead of distilled water have been used to determine the (K air/water ) of radon in the temperature range of 0-25. Aqueous phase in a closed system was used in this study instead of gaseous phase in conventional methods. Three kinds of groundwater taken from different geologic environments were used to investigate the effect of groundwater properties. With the aim to evaluate the reproducibility of the data an appropriate number of laboratory experiments have been carried out. The results show that tie (K air/water ) of radon in the groundwater is smaller than that in the pure water. However, the temperature effect on the coefficient is similar in the groundwater and the pure water. The method using aqueous phase in a closed system by LSC can be used to determine the (K air/water ) of radon in various groundwaters with a simple procedure. The results will be presented at the NAC-IV conference

  11. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  12. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  13. The air-sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica.

    Science.gov (United States)

    Lakaschus, Sonke; Weber, Kurt; Wania, Frank; Bruhn, Regina; Schrems, Otto

    2002-01-15

    Hexachlorocyclohexanes (HCHs) were determined simultaneously in air and seawater during two cruises across the Atlantic Ocean between the Arctic Ocean (Ny-Alesund/ Svalbard, 79 degrees N; 12 degrees E) and the Antarctic Continent (Neumayer Station/ Ekstroem Ice Shelf, 70 degrees S; 8.2 degrees W) in 1999/ 2000. The concentrations of alpha-HCH and gamma-HCH in air and surface waters of the Arctic exceeded those in Antarctica by 1-2 orders of magnitude. The gaseous concentrations of gamma-HCH were highest above the North Sea and between 20 degrees N and 30 degrees S. Fugacity fractions were used to estimate the direction of the air-sea gas exchange. These showed for alpha-HCH thatthe measured concentrations in both phases were close to equilibrium in the North Atlantic (78 degrees N-40 degrees N), slightly undersaturated between 30 degrees N and 10 degrees S and again close to equilibrium between 20 degrees S and 50 degrees S. Y-HCH has reached phase equilibrium in the North Atlantic as alpha-HCH, but the surface waters of the tropical and southern Atlantic were strongly undersaturated with y-HCH, especially between 30 degrees N and 20 degrees S. These findings are significantly different from two earlier estimates around 1990 as a result of global emission changes within the past decade. Therefore, we investigated the time trend of the HCHs in the surface waters of the Atlantic between 50 degrees N and 60 degrees S on the basis of archived samples taken in 1987-1997 and those from 1999. A decrease of alpha-HCH by a factor of approximately 4 is observed at all sampling locations. No decrease of gamma-HCH occurred between 30 degrees N and 30 degrees S, but there was a decrease in the North Atlantic, North Sea, and in the South Atlantic south of 40 degrees S. The constant level of gamma-HCH in the tropical Atlantic confirms the conclusion that the tropical Atlantic acts as a sink for y-HCH at present time. The measured alpha-HCH seawater concentrations were compared

  14. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    percent of the total ground-water flow in the study area. Ground waters in the vicinity of Wright-Patterson Air Force Base can be classified into two compositional groups on the basis of their chemical composition: calcium magnesium bicarbonate-type and sodium chloride-type waters. Calcium magnesium bicarbonate-type waters are found in the glacial deposits and the Brassfield Limestone, whereas the sodium chloride waters are exclusively associated with the shales. Equilibrium speciation calculations indicate that ground water of the glacial drift aquifer is in equilibrium with calcite, dolomite, and chalcedony, but is undersaturated with respect to gypsum and fluorite. Waters from the shales are slightly supersaturated with respect to calcite, dolomite, and siderite but are undersaturated with respect to chalcedony. Simple-mass balance calculations treating boron as a conservative species indicate that little (origin for all ground water beneath Wright-Patterson Air Force Base, but the data were inconclusive with respect to identification of distinct isotopic differences between water collected from the glacial drift and bedrock aquifers. Tritium concentrations used to distinguish waters having a pre-and post-1953 recharge component indicate that most water entered the glacial drift aquifer after 1953. This finding indicates that recharge from shallow to deep parts (greater than 150 feet) of the aquifer takes place over time intervals of a few years or decades. However, the fact that some deep parts of the glacial aquifer did not contain measurable tritium indicates that ground-water flow from recharge zones to these parts of the aquifer takes decades or longer.

  15. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  16. Thermophysical properties of biodiesel and related systems. Part I. Vapour–liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl

    International Nuclear Information System (INIS)

    Veneral, Josamaique G.; Benazzi, Tassio; Mazutti, Marcio A.; Voll, Fernando A.P.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Guirardello, Reginaldo; Vladimir Oliveira, J.

    2013-01-01

    Highlights: ► Experimental vapour–liquid equilibrium data of multicomponent mixtures of biodiesel-related systems. ► Othmer-type ebulliometer in the pressure range of 6.7 to 66.7 kPa. ► Experimental data satisfactorily represented by the UNIQUAC model. -- Abstract: Experimental vapour–liquid equilibrium data of several binary mixtures (methanol + glycerol), (ethanol + glycerol) and (glycerol + water) and ternary (methanol + glycerol + water), (ethanol + glycerol + water) and (water + glycerol + NaCl) were obtained over the pressure range of 6.7 kPa to 66.7 kPa through an Othmer-type ebulliometer, allowing the construction of temperature – mass fraction and pressure – temperature diagrams. It is shown that the systems without NaCl were satisfactorily represented by the UNIQUAC model with good agreement between theory and experimental results. It was observed that alcohol concentrations lower than 10 wt% increase the phase transition temperature. The systems investigated show positive deviations in relation to Raoult’s law. Results presented in this work may be relevant in process design towards efficient recovering of components in the biodiesel down-stream processes

  17. Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    Science.gov (United States)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1991-01-01

    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260.

  18. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  19. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    International Nuclear Information System (INIS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-01-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the

  20. Draining Water from Aircraft Fuel Using Nitrogen Enriched Air

    Directory of Open Access Journals (Sweden)

    Michael Frank

    2018-04-01

    Full Text Available This paper concerns a computational study of the process of removing water from an aircraft’s fuel tank by pumping nitrogen enriched air (NEA from the bottom of the tank. This is an important procedure for the smooth, efficient, and safe operation of the aircraft’s engine. Due to the low partial pressure of water in the pumped NEA, it absorbs water from the fuel. The water-laden bubbles enter the ullage, the empty space above the fuel, and escape into the environment. The effects of the number of NEA inlets and the NEA mass flow rate on the timescale of the NEA pumping were investigated using Computational Fluid Dynamics. The results reveal that the absorption of water by the NEA bubbles is low and is not affected by the number of the inlets used. Yet, the water content in the fuel decreases fast during the procedure, which is the desired outcome. We show that this is due to the relatively dry NEA entering the ullage and displacing the moist air, thus reducing the partial pressure of water at the fuel/ullage interface. This shift from equilibrium conditions forces water to evaporate from the fuel’s entire surface. Furthermore, the amount of water migrating from the fuel directly into the ullage is significantly greater than that absorbed by the rising bubbles. In turn, the rate of decrease of the water content in the ullage is determined by the total NEA mass flow rate and this is the dominant contributor to the draining time, with the number of NEA nozzles playing a minor role. We confirmed this by pumping NEA directly into the ullage, where we observe a significant decrease of water even when the NEA is not pumped through the fuel. We also show that doubling the mass flow rate halves the draining time. When considering the capability of most modern aircraft to pump NEA through the fuel as part of their inerting system, the proposed method for removing water is particularly attractive, requiring very little (if at all design modification.

  1. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Science.gov (United States)

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  2. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  3. Thermochemical equilibrium modelling of a gasifying process

    International Nuclear Information System (INIS)

    Melgar, Andres; Perez, Juan F.; Laget, Hannes; Horillo, Alfonso

    2007-01-01

    This article discusses a mathematical model for the thermochemical processes in a downdraft biomass gasifier. The model combines the chemical equilibrium and the thermodynamic equilibrium of the global reaction, predicting the final composition of the producer gas as well as its reaction temperature. Once the composition of the producer gas is obtained, a range of parameters can be derived, such as the cold gas efficiency of the gasifier, the amount of dissociated water in the process and the heating value and engine fuel quality of the gas. The model has been validated experimentally. This work includes a parametric study of the influence of the gasifying relative fuel/air ratio and the moisture content of the biomass on the characteristics of the process and the producer gas composition. The model helps to predict the behaviour of different biomass types and is a useful tool for optimizing the design and operation of downdraft biomass gasifiers

  4. Statistics of surface divergence and their relation to air-water gas transfer velocity

    Science.gov (United States)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  5. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  6. Calculation of thermodynamic equilibrium for reactions of plutonium with air

    International Nuclear Information System (INIS)

    Zou Lexi; Sun Ying; Luo Deli; Xue Weidong; Zhu Zhenghe; Wang Rong

    2000-01-01

    There are six independent component with 4 chemical elements, i.e. PuH 2.7 (s), PuN(s), Pu 2 O 3 (s), N 2 (g) and H 2 (g), therefore, the system described involves of 2 independent reactions, both ΔG degree << O. The mass balances calculated for gas and solid phases are in good agreement with those of experimental, indicating the chemical equilibrium is nearly approached. So, it is believed that the reaction ratio of plutonium hydride with air is extremely rapid. The results are meaningful to the storage of plutonium

  7. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    Science.gov (United States)

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  8. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  9. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparison of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  10. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparisons of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  11. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    Science.gov (United States)

    Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. © 2015 SETAC.

  12. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  13. Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol

    Science.gov (United States)

    Axson, Jessica L.; Takahashi, Kaito; De Haan, David O.; Vaida, Veronica

    2010-01-01

    In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, KP, for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, ΔG°, obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry. PMID:20142510

  14. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  15. Equilibrium moisture content of OSB panels made from Eucalyptus urophylla clones

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2014-12-01

    Full Text Available This work aimed to verify the efficiency of Nelson's equation to estimate equilibrium moisture content of this material and provide a model for determination of moisture content of panels based on air relative moisture content, as well as to evaluate the effect of some processing variables on the equilibrium moisture content of OSB (Oriented Strand Board panels. The 25 x 25 mm samples were put in an acclimation room where they were kept at 30ºC and had their mass determined after stabilization at the relative air moisture contents of 40, 50, 60, 70, 80 and 90%. By the results obtained it was possible to conclude that: Nelson's equation tended to underestimate moisture values of the panel; the polynomial model adjusted based on the relative moisture of the air presented great potential to be used; although different behavior may be observed for the isotherms of treatments, there was no significant effect of the variables panel density, wood basic density, mat type and pressure temperature on mean equilibrium moisture content in desorption 1, adsorption and desorption 2.

  16. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae trees

    Directory of Open Access Journals (Sweden)

    G. P. Тikhova

    2017-02-01

    Full Text Available Linear multiple models were developed to describe diurnal and seasonal dynamics of water potential (Ψ of the foliated shoots in the plants of Betula genus related to air temperature and relative humidity in the middle taiga (southern Karelia. The results of the study revealed unidirectional changes, but different effect strength of air temperature and relative humidity on Ψ of the foliated shoots of common silver birch (Betula pendula Roth and curly (Karelian birch (Betula pendula Roth var. carelica. It was shown that increasing air temperature 1°С results in similar decreasing of Ψ value equal to 0.037–0.038 MPa in both of the birches (p > 0.05. Since the diurnal air temperature range achieves 10–15 °С, the contribution of this factor may be up to 0.57 MPa. On the contrary, the contribution of relative air humidity to Ψ value differs significantly in distinct birch forms (p < 0.05. In this case the change range of Ψ value in silver birch and curly birch may be up to 0.46 (0.015 MPa/1 % RH and 0.52 МПа (0.017 MPa/1 % RH, respectively. The results indicate that curly birch responds to the increase of relative air humidity with higher magnification of Ψ in comparison with common silver birch.

  17. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    International Nuclear Information System (INIS)

    Pequenin, Ana; Asensi, Juan Carlos; Gomis, Vicente

    2011-01-01

    Highlights: → Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. → Isobaric experimental data were determined at 101.3 kPa. → A dynamic recirculating still with an ultrasonic homogenizer was used. → The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  18. Numerical simulation of air hypersonic flows with equilibrium chemical reactions

    Science.gov (United States)

    Emelyanov, Vladislav; Karpenko, Anton; Volkov, Konstantin

    2018-05-01

    The finite volume method is applied to solve unsteady three-dimensional compressible Navier-Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicles are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some test cases on GPUs are reported, and a comparison between computational results of equilibrium chemically reacting and perfect air flowfields is performed. Speedup of solution on GPUs with respect to the solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for practical applications.

  19. Tripartite equilibrium strategy for a carbon tax setting problem in air passenger transport.

    Science.gov (United States)

    Xu, Jiuping; Qiu, Rui; Tao, Zhimiao; Xie, Heping

    2018-03-01

    Carbon emissions in air passenger transport have become increasing serious with the rapidly development of aviation industry. Combined with a tripartite equilibrium strategy, this paper proposes a multi-level multi-objective model for an air passenger transport carbon tax setting problem (CTSP) among an international organization, an airline and passengers with the fuzzy uncertainty. The proposed model is simplified to an equivalent crisp model by a weighted sum procedure and a Karush-Kuhn-Tucker (KKT) transformation method. To solve the equivalent crisp model, a fuzzy logic controlled genetic algorithm with entropy-Bolitzmann selection (FLC-GA with EBS) is designed as an integrated solution method. Then, a numerical example is provided to demonstrate the practicality and efficiency of the optimization method. Results show that the cap tax mechanism is an important part of air passenger trans'port carbon emission mitigation and thus, it should be effectively applied to air passenger transport. These results also indicate that the proposed method can provide efficient ways of mitigating carbon emissions for air passenger transport, and therefore assist decision makers in formulating relevant strategies under multiple scenarios.

  20. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  1. Air and water trade winds, hurricanes, gulf stream, tsunamis and other striking phenomena

    CERN Document Server

    Moreau, René

    2017-01-01

    Air and water are so familiar that we all think we know them. Yet how difficult it remains to predict their behavior, with so many questions butting against the limits of our knowledge. How are cyclones, tornadoes, thunderstorms, tsunamis or floods generated — sometimes causing devastation and death? What will the weather be tomorrow, next week, next summer? This book brings some answers to these questions with a strategy of describing before explaining. Starting by considering air and water in equilibrium (i.e., at rest), it progresses to discuss dynamic phenomena first focusing on large scale structures, such as El Niño or trade winds, then on ever smaller structures, such as low-pressure zones in the atmosphere, clouds, rain, as well as tides and waves. It finishes by describing man-mad e constructions (dams, ports, power plants, etc.) that serve to domesticate our water resources and put them to work for us.  Including over one hundred illustrations and very few equations, most of the�...

  2. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Science.gov (United States)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  3. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  4. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  5. Reducing loss in lateral charged-particle equilibrium due to air cavities present in x-ray irradiated media by using longitudinal magnetic fields

    International Nuclear Information System (INIS)

    Naqvi, Shahid A.; Li, X. Allen; Ramahi, Shada W.; Chu, James C.; Ye, Sung-Joon

    2001-01-01

    The underdosing of lesions distal to air cavities, such as those found in upper respiratory passages, occurs due to the loss in lateral charged-particle equilibrium (CPE). The degree of underdosing worsens for smaller field sizes, resulting in more frequent recurrence of the cancer treated. Higher photon energies further aggravate the outcome by producing longer second build-up regions beyond the cavity. Besides underdosing, the larger lateral spread of secondary electron fluence in the air cavity produces diffuse dose distributions at the tissue-air interface for shaped or intensity modulated fields. These disequilibrium effects create undesirable deviations from the intended treatment. The clinical concern is further intensified by the failure of traditional treatment planning systems to even account for such defects. In this work, the use of longitudinal magnetic fields on the order of 0.5 T is proposed for alleviating lateral electronic disequilibrium due to the presence of air cavities in the irradiated volume. The magnetic field enforces lateral CPE by restricting the lateral range of electrons in the air cavity. The problem is studied in a simple water-air-water slab geometry using EGS4 Monte Carlo simulations for 6 MV photons. Electronic disequilibrium is evaluated for beams of various sizes, shapes and intensity distributions constructed by linear superposition of the dose distributions for 0.5x0.5 cm 2 beamlets. Comparison is also made with 60 Co irradiation. The results indicate that the lateral confinement of secondary electrons in the air cavity by sub-MRI strength longitudinal fields is effective in reducing deterioration of dose distributions near tissue-air interfaces. This can potentially reduce recurrence rates of cancers such as the larynx carcinoma

  6. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    Science.gov (United States)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  7. A method for high accuracy determination of equilibrium relative humidity

    DEFF Research Database (Denmark)

    Jensen, O.M.

    2012-01-01

    This paper treats a new method for measuring equilibrium relative humidity and equilibrium dew-point temperature of a material sample. The developed measuring device is described – a Dew-point Meter – which by means of so-called Dynamic Dew-point Analysis permits quick and very accurate...

  8. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  9. Radiological characterisation and radon equilibrium factor in the outdoor air of a post-industrial urban area

    International Nuclear Information System (INIS)

    Rozas, S.; Idoeta, R.; Alegría, N.; Herranz, M.

    2016-01-01

    The radiological characterisation of outdoor air is always a complicated task due to the several radioactive emissions coming from the different radionuclides and also because of the very short half-lives of radionuclides in the natural radioactive series. In some places, this characterisation could result in unusual values because the natural presence of radionuclides with terrestrial origin can be modified by manmade activities. Nonetheless, this characterisation is useful not only for air quality control purposes but also because radon and its progeny in the outdoor air are the main contributors to human exposure from natural sources. In this study, we have carried out air particle sampling, followed by gamma-ray spectrometry, alpha spectrometry and beta counting determinations for this purpose. Subsequently, the outdoor air has been radiologically characterised through the obtained data and using a pre-existing analytical method to take into account the radioactive decays of short half-life radionuclides during sampling, sample preparation and measuring times. Bilbao was chosen to carry out this work. It is a medium-sized town located in northern Spain, close to the Atlantic Ocean and at sea level. This city has a recent industrial past as there were numerous steel mills and other heavy industries, including some quarries, and some open pit mines close to it, which concluded in a remediation program. So, it is a place where the air is potentially modified by manmade activities. The obtained results show that activity concentration values for long-lived radionuclides that precede radon and thoron are in the order of 10 −6  Bq m −3 and long-lived ones after radon are around 10 −4  Bq m −3 . Thoron progeny are around 2 × 10 −2  Bq m −3 and radon progeny are around 1.8 Bq m −3 . The mean radon equilibrium factor was 0.18. All of these values are close to the minimum UNSCEAR values, but show some variability, which highlights the importance

  10. Effect of air and water pollutants on human health

    Energy Technology Data Exchange (ETDEWEB)

    Rhondia, D

    1973-01-01

    The two basic approaches in the study of the influence of air and water pollutants on human health are reviewed. The first one is an experimental or toxicological approach, concerned with biochemical, physiological, and clinical lesions, with the mechanism of the genesis of such lesions, and with the possible relations between the toxic dose and the extent or degree of the lesions. Thus, considerable changes in the electrolyte and trace element concentrations in the organism were observed following short-term exposure to such air pollutants as ozone and nitrogen dioxide which cause emphysema in a short time. Rather stable equilibrium between the uptake and excretion of lead was established. The increase in the blood lead level is accompanied by a decrease in the aminolevulinic acid dehydratase activity, a change believed to have no functional consequence. The other, epidemiological, approach is based on the study of human populations actually exposed to pollutants in daily life. Such epidemiological studies are complicated by the large number of extraneous variables playing a significant role in such discrete effects. Epidemiological studies are concerned with the establishment of relationships between specific or nonspecific mortality and morbidity associated with the actual pollution level as compared with control areas and control populations. A qualitative relationship between the increasing pollution level and advanced date of death was determinef for populations with respiratory and cardiovascular diseases. A relationship was found between the high pollution level and the number of patients hospitalized during high-pollution in Los Angeles.

  11. Discharge Fee Policy Analysis: A Computable General Equilibrium (CGE) Model of Water Resources and Water Environments

    OpenAIRE

    Guohua Fang; Ting Wang; Xinyi Si; Xin Wen; Yu Liu

    2016-01-01

    To alleviate increasingly serious water pollution and shortages in developing countries, various kinds of policies have been implemented by local governments. It is vital to quantify and evaluate the performance and potential economic impacts of these policies. This study develops a Computable General Equilibrium (CGE) model to simulate the regional economic and environmental effects of discharge fees. Firstly, water resources and water environment factors are separated from the input and out...

  12. The Equilibrium Spreading Tension of Pulmonary Surfactant

    OpenAIRE

    Dagan, Maayan P.; Hall, Stephen B.

    2015-01-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γe) with the bulk phase from which they form. For individual phospholipids, γe is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γe therefo...

  13. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  14. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    Science.gov (United States)

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-04

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  15. Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Min [GyeongBuk Technopark, Gyeongsan (Korea, Republic of); Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2016-12-15

    In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same α, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in Φ{sub 0}. For the same M{sub ∞}, Φ{sub 0}, and T{sub 0}, the length of the non-equilibrium condensation zone Δ{sub z} decreases with increasing Φ{sub 0}. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient C{sub D} decreases with an increase in Φ{sub 0} for the same M{sub ∞} and α. For the same α, M{sub D} increases with increasing Φ{sub 0}, while M{sub D} decreases with an increase in α.

  16. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  17. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  18. The entrainment of air by water jet impinging on a free surface

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee King [University of Wollongong, School of Mechanical, Materials and Mechatronics Engineering, Northfields Ave, NSW (Australia); Khoo, Boo Cheong [National University of Singapore, Department of Mechanical and Production Engineering, 10 Kent Ridge Crescent (Singapore); Yuen, W.Y. Daniel [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-09-01

    High-speed cine and video photographs were used to capture the flow patterns of a column of water jet impinging into a pool of water. The impact results in air entrainment into water in the form of a void with no mixing between the water in the jet and the surrounding water. Conservation of fluid momentum shows that the rate of increase of the height of the air void depends on the drag coefficient of the jet front. By neglecting the frictional losses, the application of energy conservation yields an expression that relates the maximum height of the air void with the properties of the water jet. (orig.)

  19. Air-sea exchange of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, D C.E.; De Baar, H J.W.; De Jong, E; Koning, F A [Netherlands Institute for Sea Research NIOZ, Den Burg Texel (Netherlands)

    1996-12-31

    The greenhouse gas carbon dioxide is emitted by anthropogenic activities. The oceans presumably serve as a net sink for 17 to 39% of these emissions. The objective of this project is to quantify more accurately the locality, seasonality and magnitude of the net air-sea flux of CO2 with emphasis on the South Atlantic Ocean. In situ measurements of the fugacity of CO2 in surface water and marine air, of total dissolved inorganic carbon, alkalinity and of air-sea exchange of CO2 have been made at four Atlantic crossings, in the Southern Ocean, in a Norwegian fjord and in the Dutch coastal zone. Skin temperature was detected during several of the cruises. The data collected in the course of the project support and refine previous findings. Variability of dissolved CO2 in surface water is related in a complex way to biological and physical factors. The carbonate equilibria cause dissolved gaseous CO2 to react in an intricate manner to disturbances. Dissolved gaseous CO2 hardly ever attains equilibrium with the atmospheric CO2 content by means of air-sea exchange, before a new disturbance occurs. Surface water fCO2 changes could be separated in those caused by seasonal warming and those by biological uptake in a Southern Ocean spring. Incorporation of a thermal skin effect and a change of the wind speed interval strongly increased the small net oceanic uptake for the area. The Atlantic crossings point to a relationship between water mass history and surface water CO2 characteristics. In particular, current flow and related heat fluxes leave their imprint on the concentration dissolved gaseous CO2 and on air-sea exchange. In the Dutch coastal zone hydrography and inorganic carbon characteristics of the water were heterogeneous, which yielded variable air-sea exchange of CO2. figs., tabs., refs.

  20. Neutronic investigations of an equilibrium core for a tight-lattice light water reactor

    International Nuclear Information System (INIS)

    Broeders, C.H.M.

    1992-01-01

    Calculation procedures and first results concerning the neutronic design of an equilibrium core of an advanced pressurized water reactor (APWR) with mixed oxide fuel in a compact light water moderated triangular lattice are presented. Principle and qualification of the cell burnup calculations with the KARBUS program are briefly discussed. The fuel assembly design with single control rod positions filled with control rod material or coolant water requires special transport theory calculations, which are performed with a one-dimensional supercell model. The macroscopic fuel assembly cross section data is collected in a special library to be used in a new calculational procedure, ARCOSI, for multi-cycle reactor core simulations. Its first application for a reference design resulted in an equilibrium configuration with moderator density reactivity coefficients which are satisfactory as regards safety. (orig.) [de

  1. Fluctuation relations for equilibrium states with broken discrete or continuous symmetries

    International Nuclear Information System (INIS)

    Lacoste, D; Gaspard, P

    2015-01-01

    Isometric fluctuation relations are deduced for the fluctuations of the order parameter in equilibrium systems of condensed-matter physics with broken discrete or continuous symmetries. These relations are similar to their analogues obtained for non-equilibrium systems where the broken symmetry is time reversal. At equilibrium, these relations show that the ratio of the probabilities of opposite fluctuations goes exponentially with the symmetry-breaking external field and the magnitude of the fluctuations. These relations are applied to the Curie–Weiss, Heisenberg, and XY models of magnetism where the continuous rotational symmetry is broken, as well as to the q-state Potts model and the p-state clock model where discrete symmetries are broken. Broken symmetries are also considered in the anisotropic Curie–Weiss model. For infinite systems, the results are calculated using large-deviation theory. The relations are also applied to mean-field models of nematic liquid crystals where the order parameter is tensorial. Moreover, their extension to quantum systems is also deduced. (paper)

  2. Equilibrium moisture content of OSB panels produced with veneer inclusion and different types of adhesive

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2014-03-01

    Full Text Available The aim of this study was to evaluate different statistical models to estimate the equilibrium moisture content of OSB panels exposed to different conditions of air temperature and relative humidity, And also to evaluate the influence of the adhesive and veneer inclusion in the equilibrium moisture content. The panels were produced with three different adhesive types (phenol-formaldehyde - FF, melamine-urea-formaldehyde - MUF, and phenol-melamine-urea-formaldehyde - PMUF and with and without veneer inclusion. The evaluation of the equilibrium moisture content of the panels was carried out at temperatures of 30, 40 and 50°C and relative humidity of 40, 50, 60, 70, 80 and 90%. The modeling of equilibrium moisture content was performed using the statistical non-linear and polynomial models. In general, the polynomial models are most indicated for determining the equilibrium moisture content of OSB. The models adjusted only with air relative humidity presented the best precision measurements. The type of adhesive affected the equilibrium moisture content of the panels, being observed for adhesives PMUF and FF the same trend of variation, and the highest values obtained for the panels produced with adhesive MUF. The veneer inclusion decreased the equilibrium moisture content only in the panels with MUF adhesive.

  3. The use of air flow through water for water evaporation

    International Nuclear Information System (INIS)

    Lashin, A.A.

    1996-01-01

    In water desalination system the productivity rate is improved by increasing the rate of eater evaporation either by heating the water or by forcing air to carry more vapor before condensation. This paper describe an experimental investigation into the effect of forcing the air to flow through a hot water contained in a closed tank through a perforated end of inlet tube. When the air bubbles pass through the water, it increases the rate of vaporization. The effect of some operating parameters are investigated and the results are presented and discussed. 6 figs

  4. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  5. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    Science.gov (United States)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  6. 14 CFR 1260.34 - Clean air and water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  7. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    Science.gov (United States)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  8. Transfer of tritium into laying hen's meat and eggs at prolonged intake with atmospheric air, water and grass meal.

    Science.gov (United States)

    Baigazinov, Zh А; Lukashenko, S N; Karatayev, S S; Panitski, А V; Mamyrbayeva, А S; Baigazy, S А; Kozhakhanov, T Ye; Subbotina, L F

    2017-11-01

    Following a continuous intake of tritium (T) by laying hens' over a 55 day period, an increase of НТО concentration both in eggs and meat was observed over the first 2 weeks for intakes via inhalation and ingestion of water and grass meal. After this time, equilibrium of the T in these products occurred. It was found that when the intake of HTO is from water, air and grass meal, the ratio of its activity concentration in muscular tissue to that in eggs does not exceed 1, 4, and 6 respectively. The ratio of ОBТ concentration to that of НТО in the meat of hens (ОBТ/HTO) when intakes were from water, air and grass meal were 0.08, 0.09 and 0.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-06-01

    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  10. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    Science.gov (United States)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  11. Isobaric vapor–liquid–liquid–solid equilibrium of the water + NaCl + 1-butanol system at 101.3 kPa

    International Nuclear Information System (INIS)

    Garcia-Cano, Jorge; Gomis, Vicente; Asensi, Juan Carlos; Saquete, Maria Dolores; Font, Alicia

    2016-01-01

    Highlights: • Vapor–liquid–liquid and vapor–liquid equilibrium data are determined. • Vapor–liquid–solid and vapor–liquid–liquid–solid equilibrium data are determined. • Results are compared with literature data. • The influence of salt on water + 1-butanol equilibria is studied. • The influence of temperature is also studied. - Abstract: A mixture of water + NaCl + 1-butanol at 101.3 kPa is studied in order to determine the influence of salt on its experimental vapor–liquid–liquid–solid equilibrium. A detailed analysis of the evolution with temperature of the different equilibrium regions is carried out. The study is conducted at a constant pressure of 101.3 kPa in a recirculating still that has been modified by our research group. The changes in the 1-butanol/water composition ratio in the vapor phase that are provoked by the salt are studied as a function of equilibrium region. In addition, the mutual solubility of 1-butanol and water is assessed in the liquid–liquid and solid–liquid regions.

  12. Chemical oceanography of the Arabian Sea: Part II - Equilibrium of inorganic nitrogen system

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; SenGupta, R.

    observed are found to be close to the equilibrium values calculated from theoretical relations and are nearer to the more recent concept of the normal value for sea water.It is inferred that the system approaches equilibrium conditions in the deeper waters...

  13. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  14. Influence of water air content on cavitation erosion in distilled water

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available The influence of increased air content of the cavitating liquid (distilled water) was studied in a rotating disk test rig. A rise in the total air content including dissolved and entrained air of the water in the under saturated range resulted...

  15. Equilibrium and non-equilibrium phenomena in arcs and torches

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.

    2000-01-01

    A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.

  16. Methane flux across the air-water interface - Air velocity effects

    Science.gov (United States)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  17. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2018-04-01

    The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.

  19. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  20. Excess air in groundwater as a potential indicator of past environmental changes

    International Nuclear Information System (INIS)

    Aeschenbach-Hertig, W.; Beyerle, U.; Holocher, J.; Peeters, F.; Kipfer, R.

    2002-01-01

    Dissolved noble gases in groundwater are used to reconstruct paleotemperature, but also yield information about 'excess air', a component of dissolved gases in excess of solubility equilibrium, derived from dissolution of trapped air in the ground. A good characterization of the excess air component is necessary not only to obtain reliable noble gas temperatures, but also to investigate the potential of excess air as a proxy for past environmental conditions. Two excess air related quantities can be derived from groundwater noble gas data sets: The initial air/water ratio and the pressure exerted on the entrapped air. Under recharge conditions typical for many aquifers, the excess of dissolved gases, expressed by the relative Ne excess ΔNe, is mainly determined by the hydrostatic pressure on the entrapped air. Thus, we suggest that ΔNe is essentially a measure of the amplitude of water table fluctuations in the recharge area. Comparing data sets from three aquifers in temperate, humid latitudes and three aquifers in tropical, semi-arid regions, we find that ΔNe is generally higher in the tropical aquifers, possibly related to larger water table fluctuations in these aquifers characterized by deep unsaturated zones. Whereas ΔNe shows little temporal variation in the mid-latitude aquifers, there is a strong signal of higher ΔNe in the paleowaters of the tropical aquifers as compared to water recharged under modern climate conditions. This finding may indicate a higher variability of recharge in the past at the studied tropical sites. (author)

  1. Equilibrium fluctuation relations for voltage coupling in membrane proteins.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2015-11-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free

  2. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    Science.gov (United States)

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  3. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  4. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  5. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  6. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  7. Making water out of thin air

    International Nuclear Information System (INIS)

    Wallace, Paula

    2013-01-01

    Full text: According to Bob Sharon, proponent of quad-generation and CEO of Green Global Consulting, history is about to be made. With one installation in the process of being commissioned, an Australian innovation is about to change the distributed energy scene. “This quadgeneration system adds a new dimension by taking in water vapour from the atmosphere to produce water,” Sharon told WME. And it doesn't only present a viable investment at large scale, with micro turbine systems available from 30kW, 65kW to 200kW, right up to turbines that can generate megawatts. The MultiGen technology, developed by World Environmental Solutions (WES), comprises a single unit that operates on natural gas and combines the patented water from air technology with the traditional trigeneration trio of electricity generation and heating and cooling technologies. Other models utilise absorption chillers powered by the waste exhaust heat from the micro turbine. These systems generate water from the air, cooling, heating and electricity from a single fuel source, offering environmental and economic savings for businesses. Sharon said there were obvious advantages of the MultiGen system in humid climates such as in Sydney and Brisbane. However, in a city like Melbourne that uses about 30 megalitres of water per day to cool air conditioning systems in large buildings, MultiGen's air water technology could “conserve water by capturing a portion of the evaporating water and returning it to the cooling tower for reuse.” When compared to both traditional and renewable energy sources, the MultiGen system is favourable on a number of counts. Most obviously the 'plug and play' nature of the technology means it can be integrated into various configurations with the ability to provide heating, cooling, electricity and water. MultiGen fuel can be natural gas, biogas, propane, avgas or diesel. However, reticulated natural gas, in most cases, is the least expensive fuel. For example, where

  8. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  9. Probing bias reduction to improve comparability of lint cotton water and moisture contents at moisture equilibrium

    Science.gov (United States)

    The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...

  10. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    Science.gov (United States)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  11. Food-Growing, Air- And Water-Cleaning Module

    Science.gov (United States)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  12. Extraction behavior and phase equilibrium in 2-propanol-1,2-dichloroethane-water

    Energy Technology Data Exchange (ETDEWEB)

    Ziak, J.; Kubis, L.

    1980-01-01

    For the purpose of studying extraction characteristics the liquid-liquid equilibrium in the system 2-propanol-1,2-dichloroethane-water was studied at temperatures of 20/sup 0/, 30/sup 0/, and 40/sup 0/. The obtained data are presented in tabular and graphical forms.

  13. Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    2017-12-01

    Full Text Available Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

  14. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

    Science.gov (United States)

    McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J

    2017-12-19

    The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

  15. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-01-01

    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... interfacial area-expansion method", we have measured and evaluated both equilibrium and dynamic adsorption of a well-known anionic surfactant, sodium dodecyl sulphate (SDS), in the absence or presence of 100mM NaCl. Our focus was to determine if and to what extent the inclusion of a new correction parameter...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  16. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  17. Equilibrium relations and bipolar cognitive mapping for online analytical processing with applications in international relations and strategic decision support.

    Science.gov (United States)

    Zhang, Wen-Ran

    2003-01-01

    Bipolar logic, bipolar sets, and equilibrium relations are proposed for bipolar cognitive mapping and visualization in online analytical processing (OLAP) and online analytical mining (OLAM). As cognitive models, cognitive maps (CMs) hold great potential for clustering and visualization. Due to the lack of a formal mathematical basis, however, CM-based OLAP and OLAM have not gained popularity. Compared with existing approaches, bipolar cognitive mapping has a number of advantages. First, bipolar CMs are formal logical models as well as cognitive models. Second, equilibrium relations (with polarized reflexivity, symmetry, and transitivity), as bipolar generalizations and fusions of equivalence relations, provide a theoretical basis for bipolar visualization and coordination. Third, an equilibrium relation or CM induces bipolar partitions that distinguish disjoint coalition subsets not involved in any conflict, disjoint coalition subsets involved in a conflict, disjoint conflict subsets, and disjoint harmony subsets. Finally, equilibrium energy analysis leads to harmony and stability measures for strategic decision and multiagent coordination. Thus, this work bridges a gap for CM-based clustering and visualization in OLAP and OLAM. Basic ideas are illustrated with example CMs in international relations.

  18. Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air-Water Exchange.

    Science.gov (United States)

    Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer

    2016-05-17

    Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations.

  19. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for castor oil biodiesel

    International Nuclear Information System (INIS)

    Mazutti, Marcio A.; Voll, Fernando A.P.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Lanza, Marcelo; Priamo, Wagner L.; Oliveira, J. Vladimir

    2013-01-01

    Highlights: ► (Liquid + liquid) equilibrium data for multicomponent castor oil FAME and FAEE castor oil. ► Tie-lines and solubility curves (binodal) by cloud-point method for FAME and FAEE systems. ► Experimental data correlated using the UNIQUAC model. -- Abstract: This work reports new liquid–liquid solubility values (binodal curves) as well as (liquid + liquid) equilibrium data for, ternary and quaternary systems containing fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from castor oil, water, glycerol, methanol and anhydrous ethanol at T = (303.15, 318.15, and 333.15) K. Solubility curves (binodal) were also obtained by the cloud-point method for binary systems containing FAME, FAEE, water, or glycerol. All results obtained can be considered of good quality. The experimental values were correlated using the UNIQUAC model, whose results presented good performance and satisfactory fitting of equilibrium values

  20. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  1. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    Science.gov (United States)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  2. Using Performance Reference Compounds (PRCs) to measure dissolved water concentrations (Cfree) in the water column: Assessing equilibrium models

    Science.gov (United States)

    Equilibrium-based passive sampling methods are often used in aquatic environmental monitoring to measure hydrophobic organic contaminants (HOCs) and in the subsequent evaluation of their effects on ecological and human health. HOCs freely dissolved in water (Cfree) will partition...

  3. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    MacCraith, B.D.

    1991-01-01

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  4. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling

    DEFF Research Database (Denmark)

    Greisen, Per Junior; Lum, Kevin; Ashrafuzzaman, Md

    2011-01-01

    Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relatio...

  5. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  6. HUBBLE-BUBBLE 1. A computer program for the analysis of non-equilibrium flows of water

    International Nuclear Information System (INIS)

    Mather, D.J.

    1978-02-01

    A description is given of the computer program HUBBLE-BUBBLE I which simulates the non-equilibrium flow of water and steam in a pipe. The code is designed to examine the transient flow developing in a pipe containing hot compressed water following the rupture of a retaining diaphragm. Allowance is made for an area change in the pipe. Particular attention is paid to the non-equilibrium development of vapour bubbles and to the transition from a bubble-liquid regime to a droplet-vapour regime. The mathematical and computational model is described together with a summary of the FORTRAN subroutines and listing of data input. (UK)

  7. Safety-related control air systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This Standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this Standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  8. Characterization of non equilibrium effects on high quality critical flows

    International Nuclear Information System (INIS)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-01-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness

  9. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  10. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  11. Dose estimation by simultaneous measurement of the radon/thoron concentration and the equilibrium factors in air using a passive dosemeter

    International Nuclear Information System (INIS)

    Urban, M.

    1984-03-01

    Responsible for an increased radiation exposure is the inhalation of radon and its short lived daughters. A time integrating passive dosemeter was developed to determine the concentrations of the radon isotopes as well as their equilibrium factors. The α energy spectrum inside a dosemeter is measured by means of a nuclear track detector. The concentrations in air and the equilibrium factors are calculated by using a new mathematical dosemeter model. A small pilot study in houses was done to test the dosemeter. (orig.) [de

  12. Statistical equilibrium and symplectic geometry in general relativity

    International Nuclear Information System (INIS)

    Iglesias, P.

    1981-09-01

    A geometrical construction is given of the statistical equilibrium states of a system of particles in the gravitational field in general relativity. By a method of localization variables, the expression of thermodynamic values is given and the compatibility of this description is shown with a macroscopic model of a relativistic continuous medium for a given value of the free-energy function [fr

  13. Equilibrium water vapor pressures over polyvanadates M2V12O30.7·nH2O

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.; Ivakin, A.A.

    1986-01-01

    Equilibrium pressures of water vapors over polyvanadates M 2 V 12 O 30.7 xnH 2 O where M=Li, Na, K are determined in the 293-343 K temperature range. Changes in Gibbs free energy and enthalpy of compound dehydration depending on water content in the final product are calculated on the basis of these data. Molar enthalpy of water is shown to reduce from lithium to potassium, while equilibrium pressure of water vapors over the compounds grows from lithium to potassium. Good correlation of thermodynamic properties of crystallization water of polyvanadates with energy characteristics of hydrated M + ions of the solutions confirms the conclusion that they cannot be attributed to ordinary crystallohydrates

  14. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    Science.gov (United States)

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  15. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  16. Recurrence Relations for the Equilibrium Means of Distributions Arising in Chemical Reactions

    Directory of Open Access Journals (Sweden)

    E.K. Elsheikh

    1997-12-01

    Full Text Available In this paper we derive recurrence relations that describe how the equilibrium mean of the number molecules of a reactant varies with each of the parameters defining the initial state for four basic reversible chemical reactions. In essence, the relations provide a rationale for updating the equilibrium mean following the addition (or removal of a molecule of one of the types involved in the reaction, there being a relation for each type. With a new parameterization introduced for each reaction, the relations provide a convenient means of evaluating the means, variances and other important moments without any need to work out the underlying distributions. As an application, the relations are used to numerically assess-approximate expressions for the means and variances.

  17. Low-head air stripper treats oil tanker ballast water

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions

  18. Exciton correlations and input–output relations in non-equilibrium exciton superfluids

    International Nuclear Information System (INIS)

    Ye, Jinwu; Sun, Fadi; Yu, Yi-Xiang; Liu, Wuming

    2013-01-01

    The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron–hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg–Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input–output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton–polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron–electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor ν T =1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: ► Establish the relations between photoluminescence and transport measurements. ► Stress the

  19. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  20. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    Science.gov (United States)

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  1. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  2. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    Science.gov (United States)

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  4. Experimental measurement and prediction of (liquid + liquid + liquid) equilibrium for the system (n-hexadecane + water + triacetin)

    International Nuclear Information System (INIS)

    Revellame, Emmanuel D.; Holmes, William E.; Hernandez, Rafael; French, W. Todd; Forks, Allison; Ashe, Taylor; Estévez, L. Antonio

    2016-01-01

    Highlights: • Phase diagram for the system n-hexadecane + water + triacetin was established at T = 296.15 K and atmospheric pressure (0.1 MPa). • Both NRTL and UNIQUAC activity coefficient model adequately predicts the LLLE of the ternary system. • The phase equilibrium of the system is predominantly dictated by enthalpic contributions to the activity coefficient. - Abstract: The phase diagram for the ternary system containing (n-hexadecane + water + triacetin) was obtained experimentally at T = 296.15 K and ambient pressure. Results show that this system is of Type 3 according to the Treybal classification of ternary system. NRTL and UNIQUAC interaction parameters were calculated from binary phase equilibrium values and were used to predict the (liquid + liquid + liquid) equilibrium (LLLE) region. Results indicated that both NRTL and UNIQUAC could predict the LLLE region of the system with similar precision as indicated by the comparable standard deviations. This indicates that the enthalpic contribution to the activity coefficient is predominant and entropic contributions can be neglected.

  5. A moist air condensing device for sustainable energy production and water generation

    International Nuclear Information System (INIS)

    Ming, Tingzhen; Gong, Tingrui; Richter, Renaud K. de; Wu, Yongjia; Liu, Wei

    2017-01-01

    Highlights: • A novel device based upon a SCPP system is proposed for electricity production and water generation. • The collector is replaced by black tubes around the chimney. • The overall performance of SCPP for energy production and water generation was analyzed. • The system total energy efficiency of a SCPP with a height of 3000 m can be nearly 7%. - Abstract: A solar chimney power plant (SCPP) is not only a solar thermal application system to achieve output power, but also a device extracting freshwater from the humid air. In this article, we proposed a SCPP with collector being replaced by black tubes around the chimney to warm water and air. The overall performance of SCPP was analyzed by using a one-dimensional compressible fluid transfer model to calculate the system characteristic parameters, such as chimney inlet air velocity, the condensation level, amount of condensed water, output power, and efficiency. It was found that increasing the chimney inlet air temperature is an efficient way to increase chimney inlet air velocity and wind turbine output power. The operating conditions, such as air temperature and air relative humidity, have significant influence on the condensation level. For water generation, chimney height is the most decisive factor, the mass flow rate of condensed water decreases with increasing wind turbine pressure drop. To achieve the optimum peak output power by wind turbine, we should set the pressure drop factor as about 0.7. In addition, increasing chimney height is also an efficient way to improve the SCPP efficiency. Under ideal conditions, the system total efficiency of a SCPP with a height of 3000 m can be up to nearly 7%.

  6. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  7. Thermal equilibrium and statistical thermometers in special relativity.

    Science.gov (United States)

    Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-10-26

    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.

  8. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  9. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    and molecular fractionations, and this fractionation by molecular sieves can be corrected by the amount of molecular sieve used in the experiment. The reproducibility of the method was tested by the measurement of the oxygen isotope ratios of dissolved oxygen at equilibrium with atmospheric air. We confirmed that the choice of methods for making air-equilibrated water was not related to the magnitude of isotope fractionation, whereas there was a difference between seawater and deionized water. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    in the temperature range of 303-323 K at atmospheric pressure. In the second part of this work, the CPA EoS has been used for modeling hydrocarbon systemcontaining polar chemicals, such as water and gas hydrate inhibitor MEG or methanol. All the experimental data measured in this work have been investigated using...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  11. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water.

    Science.gov (United States)

    Fahlman, A; Schmidt, A; Handrich, Y; Woakes, A J; Butler, P J

    2005-09-01

    We measured oxygen consumption rate (Vo(2)) and body temperatures in 10 king penguins in air and water. Vo(2) was measured during rest and at submaximal and maximal exercise before (fed) and after (fasted) an average fasting duration of 14.4 +/- 2.3 days (mean +/- 1 SD, range 10-19 days) in air and water. Concurrently, we measured subcutaneous temperature and temperature of the upper (heart and liver), middle (stomach) and lower (intestine) abdomen. The mean body mass (M(b)) was 13.8 +/- 1.2 kg in fed and 11.0 +/- 0.6 kg in fasted birds. After fasting, resting Vo(2) was 93% higher in water than in air (air: 86.9 +/- 8.8 ml/min; water: 167.3 +/- 36.7 ml/min, P water in fed animals (air: 117.1 +/- 20.0 ml O(2)/min; water: 114.8 +/- 32.7 ml O(2)/min, P > 0.6). In air, Vo(2) decreased with M(b), while it increased with M(b) in water. Body temperature did not change with fasting in air, whereas in water, there were complex changes in the peripheral body temperatures. These latter changes may, therefore, be indicative of a loss in body insulation and of variations in peripheral perfusion. Four animals were given a single meal after fasting and the temperature changes were partly reversed 24 h after refeeding in all body regions except the subcutaneous, indicating a rapid reversal to a prefasting state where body heat loss is minimal. The data emphasize the importance in considering nutritional status when studying king penguins and that the fasting-related physiological changes diverge in air and water.

  12. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: Combining equilibrium passive sampling of sediment and water with total concentration measurements of biota

    DEFF Research Database (Denmark)

    Mäenpää, Kimmo; Leppänen, Matti T.; Figueiredo, Kaisa

    2015-01-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations...... of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota....... The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities...

  13. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    James, S.J.; Kasperski, P.W.; Renz, D.P.; Wetzel, J.R.

    1993-01-01

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  14. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    Science.gov (United States)

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  15. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  16. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  17. Numerical study of optimal equilibrium cycles for pressurized water reactors

    International Nuclear Information System (INIS)

    Mahlers, Y.P.

    2003-01-01

    An algorithm based on simulated annealing and successive linear programming is applied to solve equilibrium cycle optimization problems for pressurized water reactors. In these problems, the core reload scheme is represented by discrete variables, while the cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are treated as continuous variables. The enrichments are considered to be distinct in all feed fuel assemblies. The number of batches and their sizes are not fixed and also determined by the algorithm. An important feature of the algorithm is that all the parameters are determined by the solution of one optimization problem including both discrete and continuous variables. To search for the best reload scheme, simulated annealing is used. The optimum cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are determined for each reload pattern examined using successive linear programming. Numerical results of equilibrium cycle optimization for various values of the effective price of electricity and fuel reprocessing cost are studied

  18. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  19. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  20. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  1. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  2. MANAGING MANURE TO IMPROVE AIR AND WATER QUALITY

    OpenAIRE

    Aillery, Marcel P.; Gollehon, Noel R.; Johansson, Robert C.; Kaplan, Jonathan D.; Key, Nigel D.; Ribaudo, Marc

    2005-01-01

    Animal waste from confined animal feeding operations is a potential source of air and water quality degradation from evaporation of gases, runoff to surface water, and leaching to ground water. This report assesses the potential economic and environmental tradeoffs between water quality policies and air quality policies that require the animal agriculture sector to take potentially costly measures to abate pollution. A farm-level analysis of hog farms estimates the economic and environmental ...

  3. Protein adsorption at air-water interfaces: A combination of details

    NARCIS (Netherlands)

    Jongh, de H.H.J.; Kosters, H.A.; Kudryashova, E.; Meinders, M.B.J.; Trofimova, D.; Wierenga, P.A.

    2004-01-01

    Using a variety of spectroscopic techniques, a number of molecular functionalities have been studied in relation to the adsorption process of proteins to air-water interfaces. While ellipsometry and drop tensiometry are used to derive information on adsorbed amount and exerted surface pressure,

  4. Protein Adsorption at Air-Water Interfaces: A Combination of Details

    NARCIS (Netherlands)

    Jongh, H.H.J.de; Kosters, H.A.; Kudryashova, E.; Meinders, M.B.J.; Trofimova, D.; Wierenga, P.A.

    2004-01-01

    Using a variety of spectroscopic techniques, a number of molecular functionalities have been studied in relation to the adsorption process of proteins to air-water interfaces. While ellipsometry and drop tensiometry are used to derive information on adsorbed amount and exerted surface pressure,

  5. [Virus adsorption from batch experiments as influenced by air-water interface].

    Science.gov (United States)

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  6. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  7. Dependence of alpha radionuclide diffusion and deposition on relative air humidity

    International Nuclear Information System (INIS)

    Danis, A.; Ciubotariu, M.; Oncescu, M.; Mocsy, I.; Tomulescu, V.

    2000-01-01

    The diffusion and deposition of the gaseous and solid alpha radionuclides/aerosols depend strongly on the relative air humidity. This dependence gets a great significance in the case of radon and their genetically related alpha radionuclides monitoring in the dwelling and working places for radioprotection purposes, particularly in establishing the equilibrium factor. For the gaseous and solid alpha radionuclides genetically related, Rn-222 and its solid alpha descendants including their aerosols obtained by radionuclide attachments to different particles present in air, the vertical gradient of volume concentrations was experimentally determined. The experiments were performed in: an airtight tubular laboratory chamber, a house cellar (Cluj-Napoca) and the entrance gallery of an abandoned mine (Avram Iancu, Bihor), in which the relative humidity was ranging from 65% up to 96%. For the laboratory chamber, these radionuclides were generated by a calibrated Ra-226 source, prepared at the Radionuclide Production Centre, IPNE-HH, Bucharest. The source was included into an air tight device with a well known volume and it was used only after 40 days, when the Ra-226 and its alpha descendants were under radioactive equilibrium. For the diffusion/deposition studies, this source was coupled with the airtight laboratory chamber. In the mine gallery and house cellar, the radon and its descendants were naturally and continuously generated by radium sources in soil and building materials. The alpha volume concentration determinations required the use of a very accurate and sensitive alpha measurement method. These requirements were met by the alpha track method. This method was used by us in the following conditions: the CR-39 plastic track detector (Page, England) for the detection of the alpha particles and the optical microscopy for the study of alpha tracks (Wild stereomicroscope M7S and a Karl Zeiss Jena binocular microscope). The volume concentrations of radon and the

  8. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  9. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  10. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  11. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.

    Science.gov (United States)

    Netz, Roland R

    2018-05-14

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium

  12. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium

    Science.gov (United States)

    Netz, Roland R.

    2018-05-01

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium

  13. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  14. (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures

    International Nuclear Information System (INIS)

    Arce, Alberto; Rodriguez, Hector; Rodriguez, Oscar; Soto, Ana

    2005-01-01

    (Liquid + liquid) equilibrium data for the ternary system (dibutyl ether + methanol + water) were experimentally determined at T = (298.15, 308.15, and 318.15) K. The experimental results were correlated by means of the NRTL and UNIQUAC equations, the best results being achieved with the UNIQUAC equation, both for the individual correlations at each temperature and for the overall correlation considering all the three experimental data sets. The experimental tie-lines were also compared to the values predicted by the UNIFAC method

  15. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    Science.gov (United States)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  16. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  17. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Science.gov (United States)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  18. Study of atmospheric tritium transfers in lettuce: kinetic study, equilibrium and organic incorporation during a continuous atmospheric exposure

    International Nuclear Information System (INIS)

    Boyer, C.

    2009-01-01

    This thesis has explored the mechanisms of tritium 'absorption and incorporation in a human-consumed plant, lettuce (Lactuca sativa L.), due to atmospheric exposure. Foliar uptake appears to play a key role in absorption of tritium as tissue free water tritium. Whatever the development stage and the light conditions, the specific activity in tissue free water reaches that of water vapour in air in several hours. The specific activity ratio is then about 0, 4. The time to reach equilibrium in soil is over 24 hours in most cases: the specific activity ratio ranges then 0, 01 to 0, 26. Incorporation rate of tissue free water tritium as organically-bound tritium has been estimated to 0, 13 to 0, 16 % h-l in average over the growing period of the plant, but marked variations are observed during growth. In particular, a significant increase appeared at the exponential growth stage. Deposition and diffusion of tritium in soil lead to significant OBT activities in soil. Results globally indicate equilibrium between the different environmental compartments (air, soil, plant). However, some experiments have revealed high OBT concentrations regarding atmospheric level exposure and ask for a possible phenomenon of local tritium accumulation in OBT for particular conditions of exposure. (author) [fr

  19. Mercury Exchange at the Air-Water-Soil Interface: An Overview of Methods

    Directory of Open Access Journals (Sweden)

    Fengman Fang

    2002-01-01

    Full Text Available An attempt is made to assess the present knowledge about the methods of determining mercury (Hg exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  20. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan

    2018-04-02

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl2), copper sulfate (CuSO4) and magnesium sulfate (MgSO4) distinguish themselves and are further made into bi-layer water collection devices, with the top layer being photothermal layer while the bottom layer being salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15 %) and releasing water under regular and even weakened sunlight (i.e. 0.7 kW/m2). The work shines light on the potential use of anhydrous salt towards producing drinking water in water scarce regions.

  1. Possibilities of the observation of the discrete spectrum of the water dimer at equilibrium in millimeter-wave band

    International Nuclear Information System (INIS)

    Krupnov, A.F.; Tretyakov, M.Yu.; Leforestier, C.

    2009-01-01

    Attempts of experimental observations of the water dimer spectrum at equilibrium conditions have lasted for more than 40 years since the dimeric hypothesis for extra absorption, but have not yielded any positive confirmed result. In the present paper a new approach is considered: using a high-resolution millimeter-wave spectrum of the water dimer at equilibrium, calculated by a rigorous fully quantum method, we show the potential existence of discernible spectral series of discrete features of the water dimer, which correspond to J+1 1 symmetry, already observed in cold molecular beam experiments and having, therefore, well-defined positions. The intensity of spectral series and contrast to the remaining continuum-like spectrum of the dimer are calculated and compared with the monomer absorption. The suitability of two types of microwave spectrometers for observing these series is considered. The collisional line-width of millimeter lines of the dimer at equilibrium is estimated and the width of IR dimer bands is discussed. It is pointed out that the large width of IR dimer bands may pose difficulties for their reliable observation and conclusive separation from the rest of absorption in water vapor. This situation contrasts with the suggested approach of dimer detection in millimeter-waves.

  2. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  3. Continuous measurement of air-water gas exchange by underwater eddy covariance

    Science.gov (United States)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air-water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air-water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.

  4. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    Science.gov (United States)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  5. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  6. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  7. Modeling of phase equilibrium of North Sea oils with water and MEG

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Kontogeorgis, Georgios; von Solms, Nicolas

    2016-01-01

    The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become very important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...... for critical temperature, pressure and acentric factor.In this work, we evaluate CPA using recently developed correlations for predicting the binary interaction parameters between MEG/hydrocarbons and water/hydrocarbons, for a wide range of systems containing reservoir fluids and production chemicals...

  8. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  9. The radiolytic formation of nitric acid in argon/air/water systems

    International Nuclear Information System (INIS)

    May, R.; Stinchcombe, D.; White, H.P.

    1992-01-01

    The extent of nitric acid formation in the γ-radiolysis of argon/air/water mixtures has been assessed. The yields of nitric acid are found to increase as water vapour pressure is increased but are lower in the presence of a discrete water phase. G values for the formation of nitric acid from argon/air mixtures based on energy absorbed in the air are increased in the presence of argon but the yields in an atmosphere of argon containing small amounts of moist air are smaller than from an atmosphere of moist air alone. The G value for nitric acid formation from pure air in the presence of a distinct water phase is 2, based on energy absorbed in the air. (author)

  10. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for soybean biodiesel

    International Nuclear Information System (INIS)

    Mazutti, Marcio A.; Voll, Fernando A.P.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Lanza, Marcelo; Priamo, Wagner L.; Oliveira, J. Vladimir

    2013-01-01

    Highlights: ► (Liquid + liquid) equilibrium data for the systems of biodiesel production. ► LLE data for multicomponent FAME and FAEE from (303.15 to 333.15) K. ► Experimental data correlated using the UNIQUAC model. -- Abstract: This work reports (liquid + liquid) equilibrium (LLE) data for the systems of interest in soybean biodiesel production. Numerical data for LLE were obtained for binary, ternary and quaternary systems comprising fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from soybean oil, water, glycerol, methanol, and ethanol at temperatures of (303.15, 318.15, and 333.15) K. Quantification of compounds in equilibrium in both phases was determined by analytical methods whereas solubility curves (binodal) were obtained by the cloud-point method. For all systems investigated, good alignments were obtained between phase compositions and the initial as well as overall compositions hence indicating low deviations from the mass balance. Experimental results were correlated using the UNIQUAC model with satisfactory agreement between experiment and theory

  11. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    Science.gov (United States)

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. 15 CFR 923.45 - Air and water pollution control requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  13. Prospective randomized trial compares suction versus water seal for air leaks.

    Science.gov (United States)

    Cerfolio, R J; Bass, C; Katholi, C R

    2001-05-01

    Surgeons treat air leaks differently. Our goal was to evaluate whether it is better to place chest tubes on suction or water seal for stopping air leaks after pulmonary surgery. A second goal was to evaluate a new classification system for air leaks that we developed. Patients were prospectively randomized before surgery to receive suction or water seal to their chest tubes on postoperative day (POD) #2. Air leaks were described and quantified daily by a classification system and a leak meter. The air-leak meter scored leaks from 1 (least) to 7 (greatest). The group randomized to water seal stayed on water seal unless a pneumothorax developed. On POD #2, 33 of 140 patients had an air leak. Eighteen patients had been preoperatively randomized to water seal and 15 to suction. Air leaks resolved in 12 (67%) of the water seal patients by the morning of POD #3. All 6 patients whose air leak did not stop had a leak that was 4/7 or greater (p leak meter. Of the 15 patients randomized to suction, only 1 patient's air leak (7%) resolved by the morning of POD #3. The randomization aspect of the trial was ended and statistical analysis showed water seal was superior (p = 0.001). The remaining 14 patients were then placed to water seal and by the morning of POD #4, 13 patients' leaks had stopped. Of the 32 total patients placed to seal, 7 (22%) developed a pneumothorax and 6 of these 7 patients had leaks that were 4/7 or greater (p = 0.001). Placing chest tubes on water seal seems superior to wall suction for stopping air leaks after pulmonary resection. However, water seal does not stop expiratory leaks that are 4/7 or greater. Pneumothorax may occur when chest tubes are placed on seal with leaks this large.

  14. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    Directory of Open Access Journals (Sweden)

    Kosuke Ebina

    Full Text Available Nanobubbles (<200 nm in diameter have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan. Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks and rainbow trout (for 6 weeks were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05, length of leaves (24.4 vs. 22.4 cm; P<0.01, and aerial fresh weight (27.3 vs. 20.3 g; P<0.01 of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01 and the length (17.0 vs. 16.1 cm; P<0.001 of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.

  15. Sensitivity evaluation in air and water caloric stimulation of the vestibular organs using videonystagmography.

    Science.gov (United States)

    Jałocha-Kaczka, Anna; Pietkiewicz, Piotr; Zielińska-Bliźniewska, Hanna; Miłoński, Jarosław; Olszewski, Jurek

    2014-01-01

    The aim of the study was to compare air and water caloric stimulation of the vestibular organs using videonystagmography (VNG). The study covered 18 women aged 21-63 and 11 men aged 21-74 years hospitalized at the ENT, without complaints for vertigo and/or balance disorders. The alternate binaural bithermal caloric test with cool 30°C and warm 44°C air or water irrigations (after 2h interval for the recordings) with the use of VNG was done. All parameters of air and water vestibular caloric stimulations, assessed in the VNG, differed significantly but were within the normal range. The research showed a statistically significant difference between canal paresis but only for the left ear at 30°C and 44°C. Absolute directional preponderance, relative directional preponderance, vestibular excitability, slow component velocity, frequency were different statistically for both ears at both temperatures. Our study showed that both air and water caloric stimulations were able to distinguish physiological and impaired vestibular function. The obtained results showed statistically higher response for water than air stimulation. Copyright © 2014 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  16. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    Science.gov (United States)

    Chaubal, Alisha; Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-04-01

    This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Patients with body mass index (BMI) less than 18 kg/m 2 or more than 30 kg/m 2 , or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation ( P carbon dioxide, and water insufflation ( P carbon dioxide for pain tolerance. This was seen in the subgroups with BMI 30 kg/m 2 .

  17. A comparison study of exploding a Cu wire in air, water, and solid powders

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  18. Atomic Energy of Canada Limited monitoring tritiated water in air and water effluents

    International Nuclear Information System (INIS)

    Osborne, R.V.; Tepley, N.W

    1978-01-01

    Current on-line methods of monitoring effluents for tritium (as tritiated water, HTO) measure concentrations in air above 250 nCi/m 3 (approx. 10 kBq/m 3 ) and in water above 1 uCi/kg (approx. 40 kBq/kg). Some of the problems encountered in such monitoring are the presence of fission and activation products in the effluents and, particularly in water monitoring, the often dirty quality of the sample. In a new design of monitor, HTO is collected directly from air by a flow of liquid scintillator (LS). For water monitoring a flow of air continuously samples the water and transports HTO to the LS. The key features of the new design are that the high detection efficiency of LS is realizable, that the rate of use of LS is only approx. 2 mm 3 /s, that the controlled evaporation and metering of air provides the low flow of HTO needed for mixing with LS, and that accurate metering of a dirty effluent is not needed. The sensitivities for detecing tritium on-line are improved by at least an order of magnitude

  19. Impact of different moderator ratios with light and heavy water cooled reactors in equilibrium states

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2006-01-01

    As an issue of sustainable development in the world, energy sustainability using nuclear energy may be possible using several different ways such as increasing breeding capability of the reactors and optimizing the fuel utilization using spent fuel after reprocessing as well as exploring additional nuclear resources from sea water. In this present study the characteristics of light and heavy water cooled reactors for different moderator ratios in equilibrium states have been investigated. The moderator to fuel ratio (MFR) is varied from 0.1 to 4.0. Four fuel cycle schemes are evaluated in order to investigate the effect of heavy metal (HM) recycling. A calculation method for determining the required uranium enrichment for criticality of the systems has been developed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of SRAC 2000 code using nuclear data library from the JENDL 3.2. The results show a thermal spectrum peak appears for light water coolant and no thermal peak for heavy water coolant along the MFR (0.1 ≤ MFR ≤ 4.0). The plutonium quality can be reduced effectively by increasing the MFR and number of recycled HM. Considering the effect of increasing number of recycled HM; it is also effective to reduce the uranium utilization and to increase the conversion ratio. trans-Plutonium production such as americium (Am) and curium (Cm) productions are smaller for heavy water coolant than light water coolant. The light water coolant shows the feasibility of breeding when HM is recycled with reducing the MFR. Wider feasible area of breeding has been obtained when light water coolant is replaced by heavy water coolant

  20. Minimizing the water and air impacts of unconventional energy extraction

    Science.gov (United States)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  1. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    Science.gov (United States)

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas

  2. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  3. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2014-02-01

    Full Text Available Soil-water characteristics of Gaomiaozi (GMZ Ca-bentonite at high suctions (3–287 MPa are measured by vapour equilibrium technique. The soil-water retention curve (SWRC of samples with the same initial compaction states is obtained in drying and wetting process. At high suctions, the hysteresis behaviour is not obvious in relationship between water content and suction, while the opposite holds between degree of saturation and suction. The suction variation can change its water retention behaviour and void ratio. Moreover, changes of void ratio can bring about changes in degree of saturation. Therefore, the total change in degree of saturation includes changes caused by suction and that by void ratio. In the space of degree of saturation and suction, the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio. However, the relationship between water content and suction is less affected by changes of void ratio. The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction. Moreover, the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale. From this linear relationship, the variation of degree of saturation caused by the change in void ratio can be obtained. Correspondingly, SWRC at a constant void ratio can be determined from SWRC at different void ratios.

  4. Assessing the economic impact of North China’s water scarcity mitigation strategy : a multi - region, water - extended computable general equilibrium analysis

    NARCIS (Netherlands)

    Qin, Changbo; Qin, C.; Su, Zhongbo; Bressers, Johannes T.A.; Jia, Y.; Wang, H.

    2013-01-01

    This paper describes a multi-region computable general equilibrium model for analyzing the effectiveness of measures and policies for mitigating North China’s water scarcity with respect to three different groups of scenarios. The findings suggest that a reduction in groundwater use would negatively

  5. Isotope exchange between alkaline earth metal hydroxide and HTO water in the equilibrium state

    International Nuclear Information System (INIS)

    Imaizumi, H.; Gounome, J.; Kano, N.

    1997-01-01

    In order reveal to what extent tritium ( 3 H or T) can be incorporated into hydroxides, the isotope exchange reaction (OT-for-OH exchange reaction) between each alkaline earth metal hydroxide (M(OH) 2 ), where M means alkaline earth metal (M=Ca, Sr or Ba) and HTO water was observed homogeneously at 30 deg C under equilibrium after mixing. Consequently, the followings were obtained: a quantitative relation between the electronegativity of each M ion and the ability (of the M ion) incorporating OT - into the M hydroxide can be found and the ability is small when the temperature is high, the exchange rate for the OT-for-OH exchange reaction is small when the electronegativity of the M ion in the M hydroxide is great, as for the dissociation of HTO water, it seems that formula (HTO ↔ T + + OH - ) is more predominant than the formula (HTO ↔H + + OT - ) when the temperature is high and the method used in this work is useful to estimate the reactivity of a certain alkaline material. (author)

  6. The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil or sediment

    NARCIS (Netherlands)

    Beelen P van; Verbruggen EMJ; Peijnenburg WJGM; ECO

    2002-01-01

    The equilibrium partitioning method (EqP-method) can be used to derive environmental quality standards (like the Maximum Permissible Concentration or the intervention value) for soil or sediment, from aquatic toxicity data and a soil/water or sediment/water partitioning coefficient. The validity of

  7. Induced radioactivity in air and water at medical accelerators

    International Nuclear Information System (INIS)

    Masumoto, K.; Takahashi, K.; Nakamura, H.; Toyoda, A.; Iijima, K.; Kosako, K.; Oishi, K.; Nobuhara, F.

    2013-01-01

    Activation of air and water has been evaluated at the 10 and 15 MeV linear electron accelerator facilities. At 15 MeV irradiation, the activity of 10-min-half-life 13 N was observed in the case of the air in the glove box. Air and water samples were also bombarded by 250 MeV protons and 400 MeV/u carbon, and the irradiation dose was 10 Gy at the isocenter. Upon the ion-chamber monitoring of the air sampled from the glove box, 15 O, 13 N, and 11 C activities were mainly observed. At the end of proton and carbon irradiation, the activity of the water was found to be about 10 kBq·cm -3 and several kBq·cm -3 , respectively. From the decay analysis of the induced activity in water, 15 O, 13 N, and 11 C were detected. (author)

  8. Dispersion of radioactive materials in air and water

    International Nuclear Information System (INIS)

    Tolksdorf, P.; Meurin, G.

    1976-01-01

    A review of current analytical methods for treating the dispersion of radioactive material in air and water is given. It is shown that suitable calculational models, based on experiments, exist for the dispersion in air. By contrast, the analysis of the dispersion of radioactive material in water still depends on the evaluation of experiments with site-specific models. (orig.) [de

  9. Safety-related control air systems - approved 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  10. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  11. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  12. Water dimers in the atmosphere III: equilibrium constant from a flexible potential.

    Science.gov (United States)

    Scribano, Yohann; Goldman, Nir; Saykally, R J; Leforestier, Claude

    2006-04-27

    We present new results for the water dimer equilibrium constant K(p)(T) in the range 190-390 K, using a flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to explicit consideration of the monomer vibrations is handled via an adiabatic (6 + 6)d decoupling between intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured by computing all energy levels up to dissociation for total angular momentum values J = 0-5 and using an extrapolation scheme to higher values. The newly calculated values for K(p)(T) are in very good agreement with available experimental data at room temperature. At higher temperatures, an analysis of the convergence of the partition function reveals that quasi-bound states are likely to contribute to the equilibrium constant. Additional thermodynamical quantities (deltaG, deltaH, deltaS, and C(p)) have also been determined and fit to quadratic expressions a + bT + cT2.

  13. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  14. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  15. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  16. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  17. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.; Jongh, H.H.J.de

    2005-01-01

    In this study a set of chemically engineered variants of ovalbumin was produced to study the effects of electrostatic charge on the adsorption kinetics and resulting surface pressure at the air-water interface. The modification itself was based on the coupling of succinic anhydride to lysine

  18. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  19. On isochronous Shabat-Yamilov-Toda lattices: Equilibrium configurations, behavior in their neighborhood, diophantine relations and conjectures

    Energy Technology Data Exchange (ETDEWEB)

    Calogero, F. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , 00185 Rome (Italy) and Istituto Nazionale di Fisica Nucleare, Sezione di Rome (Italy)]. E-mail: francesco.calogero@roma1.infn.it; Di Cerbo, L. [Dipartimento di Matematica, Universita di Roma ' La Sapienza' (Italy)]. E-mail: luca_dicerbo@yahoo.it; Droghei, R. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , 00185 Rome (Italy)]. E-mail: riccardo_droghei@yahoo.it

    2006-07-10

    Isochronous variants are introduced of two integrable lattices introduced by A.B. Shabat and R.I. Yamilov, their equilibrium configurations are found (in the cases when they exist), and by investigating the motions of these systems near equilibrium some diophantine relations are discovered.

  20. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  1. Vapor-Liquid Equilibrium Measurements and Modeling of the Propyl Mercaptan plus Methane plus Water System

    DEFF Research Database (Denmark)

    Awan, Javeed; Thomsen, Kaj; Coquelet, Christophe

    2010-01-01

    In this work, vapor−liquid equilibrium (VLE) measurements of propyl mercaptan (PM) in pure water were performed at three different temperatures, (303, 323, and 365) K, with a pressure variation from (1 to 8) MPa. The total system pressure was maintained by CH4. The inlet mole fraction of propyl...

  2. Effects of air vessel on water hammer in high-head pumping station

    International Nuclear Information System (INIS)

    Wang, L; Wang, F J; Zou, Z C; Li, X N; Zhang, J C

    2013-01-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled

  3. Effects of air vessel on water hammer in high-head pumping station

    Science.gov (United States)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  4. (Liquid + liquid) equilibrium of {water + phenol + (1-butanol, or 2-butanol, or tert-butanol)} systems

    International Nuclear Information System (INIS)

    Hadlich de Oliveira, Leonardo; Aznar, Martin

    2010-01-01

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  5. Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water

    DEFF Research Database (Denmark)

    Eller, Franziska; Alnoee, Anette B.; Boderskov, Teis

    2015-01-01

    1. The future increase in the atmospheric CO2 concentration is likely to affect the growth and performance of submerged freshwater macrophytes because of higher concentrations of free CO2 in the water at air equilibrium. We measured the plastic responses to free CO2 and light for several traits...... in all four species. 4. As the growth and photosynthesis of the four invasive bicarbonate users were only slightly affected by the CO2 availability in air-equilibrated water, the future rise in atmospheric CO2 is unlikely to exacerbate their invasive behaviour and may even reduce their competitiveness...... compensation point, and with higher concentrations of photosynthetic pigments and quantum yield. The bicarbonate uptake capacity was generally highest at the high light intensity and high concentrations of free CO2. Plasticity indices for light intensity were consistently higher than for CO2 availability...

  6. Air pollution-induced health impacts on the national economy of China: demonstration of a computable general equilibrium approach.

    Science.gov (United States)

    Wan, Yue; Yang, Hongwei; Masui, Toshihiko

    2005-01-01

    At the present time, ambient air pollution is a serious public health problem in China. Based on the concentration-response relationship provided by international and domestic epidemiologic studies, the authors estimated the mortality and morbidity induced by the ambient air pollution of 2000. To address the mechanism of the health impact on the national economy, the authors applied a computable general equilibrium (CGE) model, named AIM/Material China, containing 39 production sectors and 32 commodities. AIM/Material analyzes changes of the gross domestic product (GDP), final demand, and production activity originating from health damages. If ambient air quality met Grade II of China's air quality standard in 2000, then the avoidable GDP loss would be 0.38%o of the national total, of which 95% was led by labor loss. Comparatively, medical expenditure had less impact on national economy, which is explained from the aspect of the final demand by commodities and the production activities by sectors. The authors conclude that the CGE model is a suitable tool for assessing health impacts from a point of view of national economy through the discussion about its applicability.

  7. The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate

    Science.gov (United States)

    Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.

    1994-01-01

    A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated

  8. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: A non-equilibrium thermodynamics point of view

    International Nuclear Information System (INIS)

    Alvarez-Romero, J. T.

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms ΣQ and Q that appear in the definitions of energy imparted ε and energy deposit ε i , respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted ε-bar, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the ε-bar employed to get D cannot be performed with an equilibrium statistical operator ρ(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator (r, t) therefore, D is a time-dependent function D(r, t). (authors)

  9. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  10. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    Science.gov (United States)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  11. Chemical denaturation of globular proteins at the air/water interface: an x-ray and neutron reflectometry study

    International Nuclear Information System (INIS)

    Perriman, A.W.; Henderson, M.J.; White, J.W.

    2003-01-01

    Full text: X-ray and neutron reflectometry has been used to probe the equilibrium surface structure of hen egg white lysozyme (lysozyme) and bovine β -lactoglobulin (β -lactoglobulin) under denaturing conditions at the air-water interface. This was achieved by performing experiments on 10 mg mL -1 protein solutions containing increasing concentrations of the chemical denaturant guanidinium hydrochloride (G.HCl). For solutions containing no G.HCl, the surface structure of the proteins was represented by a two-layer model with total thicknesses of 48 Angstroms and 38 Angstroms for lysozyme and β -lactoglobulin, respectively. The total volume of a single protein molecule and the associated water molecules was evaluated to be approximately 45 (0.3) nm 3 for lysozyme, and 60 (0.3) nm 3 for β-lactoglobulin. The thickness dimensions and the total volumes compared favourably with the crystal dimensions of 45 x 30 x 30 Angstroms (40.5 nm 3 ),1 and 36 x 36 x 36 Angstroms (47 nm 3 ) 2 for lysozyme and β -lactoglobulin, respectively. This comparison suggests that when no denaturant was present, the structures of lysozyme and β -lactoglobulin were near to their native conformations at the air-water interface. The response to the presence of the chemical denaturant was different for each protein. The surface layer of β-lactoglobulin expanded at very low concentrations (0.2 mol dm -3 ) of G.HCl. In contrast, the lysozyme layer contracted. At higher concentrations, unfolding of both the proteins led to the formation of a third diffuse layer. In general, lysozyme appeared to be less responsive to the chemical denaturant, which is most likely a result of the higher disulfide content of lysozyme. A protocol allowing quantitative thermodynamic analysis of the contribution from the air-water interface to the chemical denaturation of a protein was developed

  12. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    Science.gov (United States)

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  13. Equilibrium Relationship between SVOCs in PVC Products and the Air in Contact with the Product.

    Science.gov (United States)

    Eichler, Clara M A; Wu, Yaoxing; Cao, Jianping; Shi, Shanshan; Little, John C

    2018-03-06

    Phthalates and phthalate alternatives are semivolatile organic compounds (SVOCs) present in many PVC products as plasticizers to enhance product performance. Knowledge of the mass-transfer parameters, including the equilibrium concentration in the air in contact with the product surface ( y 0 ), will greatly improve the ability to estimate the emission rate of SVOCs from these products and to assess human exposure. The objective of this study was to measure y 0 for different PVC products and to evaluate its relationship with the material-phase concentrations ( C 0 ). Also, C 0 and y 0 data from other sources were included, resulting in a substantially larger data set ( N total = 34, T = 25 °C) than found in previous studies. The results show that the material/gas equilibrium relationship does not follow Raoult's law and that therefore the assumption of an ideal solution is invalid. Instead, Henry's law applies, and the Henry's law constant for all target SVOCs consists of the respective pure liquid vapor pressure and an activity coefficient γ, which accounts for the nonideal nature of the solution. For individual SVOCs, a simple partitioning relationship exists, but Henry's law is more generally applicable and will be of greater value in rapid exposure assessment procedures.

  14. Non-equilibrium versus equilibrium emission of complex fragments from hot nuclei

    International Nuclear Information System (INIS)

    Viola, V.E.; Kwiatkowski, K.; Yennello, S.; Fields, D.E.

    1989-01-01

    The relative contributions of equilibrium and non-equilibrium mechanisms for intermediate-mass fragment emission have been deduced for Z=3-14 fragments formed in 3 He- and 14 N-induced reactions on Ag and Au targets. Complete inclusive excitation function measurements have been performed for 3 He projectiles from E/A=67 to 1,200 MeV and for 14 N from E/A=20 to 50 MeV. The data are consistent with a picture in which equilibrated emission is important at the lowest energies, but with increasing bombarding energy the cross sections are increasingly dominated by non-equilibrium processes. Non-equilibrium emission is also shown to be favored for light fragments relative to heavy fragments. These results are supported by coincidence studies of intermediate-mass fragments tagged by linear momentum transfer measurements

  15. Entrainment and deposition studies in two-phase cross flow: comparison between air-water and steam-water in a square horizontal duct. Technical report (final)

    International Nuclear Information System (INIS)

    Berryman, R.J.; Ralph, J.C.; Wade, C.D.

    1981-03-01

    Air-water simulation studies of two phase steam water flow relevant to the upper plenum of a PWR during reflood situations have recently been undertaken at Harwell for the US Nuclear Regulatory Commission. In order to give confidence that the simulation fluids were capable of modelling the important features of the actual system, a relatively basic comparison experiment has been carried out. Water entrainment and deposition tests have been carried out on a pair of 2.5 cm diameter vertical rods mounted in a cross flow of steam or air in a 10.2 cm x 10.2 cm tunnel. The air and steam systems exhibited similar characteristics to one another. A 'critical' film flowrate was identified for the rods which, once reached, either by injection through the sinters or by entrainment from the main two phase stream, was not exceeded with further water addition. The 'critical' film flowrate decreased with increase of cross flow velocity and was lower for air than steam at the same velocity. The results from the air and steam tests were found to be reasonably well correlated on the basis of the cross flow momentum flux of the air or steam

  16. Applied research on air pollution using nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    1994-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which will run from 1992-1996, and will build upon the experience gained by the Agency from the laboratory support that it has been providing for several years to BAPMoN - the Background Air Pollution Monitoring Network programme organized under the auspices of the World Meterological Organization. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XFR, and PIXE for the analysis of toxic and other trace elements in suspended particulate matter (including air filter samples), rainwater and fog-water samples, and in biological indicators of air pollution (e.g. lichens and mosses). The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for practically-oriented research and monitoring studies on air pollution ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural areas). This document reports the discussions held during the first Research Co-ordination Meeting (RCM) for the CRP which took place at the IAEA Headquarters in Vienna. Refs, figs and tabs

  17. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  18. The study of water + HCl + ethanol vapor-liquid equilibrium at 78 kPa

    International Nuclear Information System (INIS)

    Ojeda Toro, Juan Carlos; Dobrosz-Gómez, Izabela; Gómez García, Miguel Ángel

    2017-01-01

    Graphical abstract: Comparison between experimental and calculated saturation temperature of water + HCl + ethanol system using two rigorous electrolyte models. - Highlights: • Data for the water + HCl + ethanol VLE is reported at 78 kPa. • The VLE for the system water + HCl + ethanol was determined. • A new set of parameters for extended UNIQUAC model were correlated. • A new set of parameters for LIQUAC model were correlated. - Abstract: In this work, the isobaric vapor-liquid equilibrium (VLE) data obtained for the ternary system water + HCl + ethanol at 78 kPa, using an Ellis still, were studied. Two rigorous electrolyte models (extended UNIQUAC and LIQUAC) were fitted to the experimental data. Ethanol-H + , water-H + , ethanol-Cl − , water-Cl − , and Cl − -H + interaction parameters were determined. Likewise, Henry’s law constants for the volatile electrolyte were defined. A high goodness of fit was obtained for both electrolyte models; however, the extended UNIQUAC one showed better performance (AAD = 0.1326%). Two azeotropes observed in the system were accurately predicted (ethanol + water: x EtOH = 0.86 at 344.6 K; and HCl + water: x HCl = 0.11 at 375.5 K).

  19. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies.

    Science.gov (United States)

    Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2018-05-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.

  20. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a low...

  1. Water Collection from Air Humidity in Bahrain

    Directory of Open Access Journals (Sweden)

    Dahman. Nidal A.

    2017-01-01

    Full Text Available The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  2. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    Science.gov (United States)

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  3. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  4. Subterranean termite open-air foraging and tolerance to desiccation: Comparative water relation of two sympatric Macrotermes spp. (Blattodea: Termitidae).

    Science.gov (United States)

    Hu, Jian; Neoh, Kok-Boon; Appel, Arthur G; Lee, Chow-Yang

    2012-02-01

    The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  6. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    Science.gov (United States)

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  7. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    Science.gov (United States)

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  8. Air-water mixing experiments for direct vessel injection of KNGR

    International Nuclear Information System (INIS)

    Hwang, Do Hyun

    2000-02-01

    Two air-water mixing experiments are conducted to understand the flow behavior in the downcomer for Direct Vessel Injection (DVI) of Korean Next Generation Reactor (KNGR). In the first experiment which is an air-water experiment in the rectangular channel with the gap size of 1cm, the width of water film is proportional to the water and air velocities and the inclined angle is proportional to the water velocity only, regardless of the water velocity injected in the rectangular channel. It is observed that the amount of entrained water is negligible. In the second experiment which is a full-scaled water jetting experiment without air flow, the width of water film is proportional to the flow rate injected from the pipe exit and the film thickness of water varies from 1.0mm to 5.0mm, and the maximum thickness does not exceed 5.0mm. The amount of water separated from the liquid film after striking of water jetting on the wall is measured. The amount of separation water is proportional to the flow rate, but the separation ratio in the full-scaled water jetting is not over 15%. A simplified physical model, which is designed to predict the trajectories of the width of water film, is validated through the comparison with experiment results. The 13 .deg. upward water droplet of the water injected from the pipe constitutes the outermost boundary at 1.7m below from pipe level, after the water impinges against the wall. In the model, the parameter, η which represents the relationship between the jetting velocity and the initial spreading velocity, is inversely proportional to the water velocity when it impinges against the wall. The error of the predictions by the model is decreased within 14% to the experimental data through use of exponential fitting of η for the jetting water velocity

  9. Water sorption in wood and modified wood at high values of relative humidity

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Thygesen, Lisbeth Garbrecht; Hoffmeyer, Preben

    2010-01-01

    A theoretical study of the amount of moisture held in wood as capillary condensed water in the relative humidity (RH) range of 90–99.9% is carried out. The study is based on idealized geometries of the softwood structure related to micrographs. It is confined to structural elements such as bordered......, and different degrees of pit aspiration are assigned to earlywood and latewood. We suggest based on the results that capillary condensation makes only a very small contribution to the equilibrium moisture content. At 99.9% RH the contribution amounts to less than 0.0035 kg water per kg dry wood. This is in line...

  10. Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    Chul-Hee Lim

    2018-01-01

    Full Text Available In agriculture, balancing water use and retention is an issue dealt with in most regions and for many crops. In this study, we suggest agricultural water equilibrium (AWE as a new concept that can facilitate a spatially explicit management of agricultural water. This concept is based on the principle of supply and demand of agricultural water, where the virtual water content of crops (VWC can be defined as the demand, and cropland water budget (CWB as the supply. For assessing the AWE of the Korean Peninsula, we quantified the CWB based on the hydrological cycle and the VWC of rice, a key crop in the Peninsula. Five factors, namely crop yield, growing season evapotranspiration, annual evapotranspiration, runoff, and annual precipitation, were used to assess the AWE, of which the first four were estimated using the spatially explicit large-scale crop model, Geographical Information System (GIS-based Environmental Policy Integrated Climate (GEPIC. The CWB and VWC were calculated for a period of three decades, and the AWE was computed by deducting the VWC from the CWB. Our results show a latitudinal difference across the Korean Peninsula. On analyzing the AWE of the major river basins, we found most basins in North Korea showed very low values inferring unsustainable overconsumption of water. The latitudinal difference in AWE is a reflectance of the latitudinal changes in the VWC and CWB. This can be explained by decoupling the demand and supply of agricultural water. Although the AWE values presented in this study were not absolute, the values were sufficient to explain the latitudinal change, and the demand and supply of agricultural water, and establish the usefulness of the indicator.

  11. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  12. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  13. Air-water tests in support of LLTR series II Test A-4

    International Nuclear Information System (INIS)

    Chen, K.

    1980-07-01

    A series of tests injecting air into a tank of stagnant water was conducted in June 1980 utilizing the GE Plenum Mixing Test Facility in San Jose, California. The test was concerned with investigating the behavior of air jets at a submerged orifice in water over a wide range of flow rates. The main objective was to improve the basic understanding of gas-liquid phenomena (e.g., leak dynamics, gas bubble agglomeration, etc.) in a simulated tube bundle through visualization. The experimental results from these air-water tests will be used as a guide to help select the leak size for LLTR Series II Test A-4 because air-water system is a good simulation of water-sodium mixture

  14. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  15. A study on the air pollution related human diseases in Thiruvananthapuram City, Kerala

    Energy Technology Data Exchange (ETDEWEB)

    Bency, K.T.; Jansy, J.; Thakappan, B.; Kumar, B.; Sreelekha, T.T.; Hareendran, N.K.; Nair, P.K.K.; Krishnan Nair, M. [National Inst. of Environmental Health, Thiruvananthapuram, Kerala (India). Regional Cancer Centre

    2005-07-01

    This paper contains the results of a study that examined the impacts of air pollution on human health in Thiruvananthapuram City, India. The study compared health impacts arising from air pollution in three different zones including residential, commercial, and industrial. The paper presents the findings from the study according to each of these zones and presents conclusions.The study found that each zone had its individual environmental problems which were characterized by specific diseases. In the residential zone, there was a prevalence of diseases such as breast cancer and cardiac-related problems as well as dietary problems linked to obesity. In the industrial zone, respiratory illnesses related to air pollution were prevalent. Cardiac and vector-borne diseases, related to environmental hazards like waste water stagnation, dust and solid waste problem, were high in the commercial zone. 14 refs., 3 figs.

  16. Student Misconceptions in Chemical Equilibrium as Related to Cognitive Level and Achievement.

    Science.gov (United States)

    Wheeler, Alan E.; Kass, Heidi

    Reported is an investigation to determine the nature and extent of student misconceptions in chemical equilibrium and to ascertain the degree to which certain misconceptions are related to chemistry achievement and to performance on specific tasks involving cognitive transformations characteristic of the concrete and formal operational stages of…

  17. Infrared Signature Masking by Air Plasma Radiation

    Science.gov (United States)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  18. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  19. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  20. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  1. Discharge Fee Policy Analysis: A Computable General Equilibrium (CGE Model of Water Resources and Water Environments

    Directory of Open Access Journals (Sweden)

    Guohua Fang

    2016-09-01

    Full Text Available To alleviate increasingly serious water pollution and shortages in developing countries, various kinds of policies have been implemented by local governments. It is vital to quantify and evaluate the performance and potential economic impacts of these policies. This study develops a Computable General Equilibrium (CGE model to simulate the regional economic and environmental effects of discharge fees. Firstly, water resources and water environment factors are separated from the input and output sources of the National Economic Production Department. Secondly, an extended Social Accounting Matrix (SAM of Jiangsu province is developed to simulate various scenarios. By changing values of the discharge fees (increased by 50%, 100% and 150%, three scenarios are simulated to examine their influence on the overall economy and each industry. The simulation results show that an increased fee will have a negative impact on Gross Domestic Product (GDP. However, waste water may be effectively controlled. Also, this study demonstrates that along with the economic costs, the increase of the discharge fee will lead to the upgrading of industrial structures from a situation of heavy pollution to one of light pollution which is beneficial to the sustainable development of the economy and the protection of the environment.

  2. Uranium mineral - groundwater equilibrium at the Palmottu natural analogue study site, Finland

    International Nuclear Information System (INIS)

    Ahonen, L.; Ruskeeniemi, T.; Blomqvist, R.; Ervanne, H.; Jaakkola, T.

    1993-01-01

    The redox-potential, pH, chemical composition of fracture waters, and uraninite alteration associated with the Palmottu uranium mineralization (a natural analogue study site for radioactive waste disposal in southwestern Finland), have been studied. The data have been interpreted by means of thermodynamic calculations. The results indicate equilibrium between uraninite, ferric hydroxide and groundwater in the bedrock of the study site. Partially oxidized uraninite (UO 2 .33) and ferric hydroxide are in equilibrium with fresh, slightly acidic and oxidized water type, while primary uraninite is stable with deeper waters that have a higher pH and lower Eh. Measured Eh-pH values of groundwater cluster within a relatively narrow range indicating buffering by heterogenous redox-processes. A good consistency between measured Eh and analyzed uranium oxidation states was observed

  3. Calibration coefficient of the SSNTD and equilibrium factor for radon

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.

    1993-01-01

    Disintegration, ventilation and deposition were considered as removal processes of the radon and its short-lived daughters in air and respective concentration equations were applied. Calibration coefficient (K F ) of the solid state nuclear track detector (SSNTD) LR-115 for radon and the equilibrium factor (F) were related to track densities of the bare detector (D) and the filtered one (D o ). A useful relationship between K F , F and detector sensitivity coefficient (k) was derived. Using the calibrated value k=3.29 * 10 -3 m, the exposed detectors gave the average values of the equilibrium factor, calibration coefficient and indoor radon concentration of a single house living room in Osijek 0.46, 142.3 m -1 and 37.8 Bq m -3 , respectively. (author) 4 refs.; 1 fig

  4. 21 CFR 874.1800 - Air or water caloric stimulator.

    Science.gov (United States)

    2010-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...

  5. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  6. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  7. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface

    Science.gov (United States)

    Coons, Marc P.; Herbert, John M.

    2018-06-01

    Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, ɛ. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, ɛ(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F-(aq), Cl-(aq), neat liquid water, and the hydrated electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water.

  8. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  9. Proton Transfers at the Air-Water Interface

    Science.gov (United States)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (applied quantum mechanics and molecular dynamics to simulate our experiments toward gaining insight at the

  10. Interactive Effect of Air-Water Ratio and Temperature on the Air ...

    African Journals Online (AJOL)

    Windows User

    KEYWORDS: Interactive effect, air-water ratio, temperature, volatile organic compounds, removal efficiency. [Received ... The rate of mass transfer of a VOC from wastewater to the ... where ΔHo is heat of evaporation of 1 mole of component.

  11. HUBUNGAN PENGATURAN WAKTU PENAMPUNGAN AIR HUJAN DENGAN PENURUNAN KERACUNAN Pb PADA MASYARAKAT DI KOTA PONTIANAK (Relation Between The Time Control of Rain Water Collection with The Decrease of Pb Intoxication for Community at Pontianak, Kalimantan

    Directory of Open Access Journals (Sweden)

    Khayan Khayan

    2003-03-01

    Full Text Available ABSTRAK  Penelitian ini bertujuan (1 mencermati hubungan antara pengaturan waktu penampungan air hujan dengan penurunan keracunan Pb, (2 menemukan perbedaan keracunan Pb antara masyarakat yang meminum air hujan dari air yang ditampung melalui atap seng dan bukan atap seng, (3 memahami korelasi antara pekerjaan perilaku merokok, jenis sumber air minum dan tempat pengumpulannya, dan jarak antara rumah dengan derajad keracunan Pb, dau (4 menemukan hubungan antara keracunan Pb dan gejala subyektif antara lain sakit kepala, kelelahan, nyeri perut diare, muntah-muntah dan gangguan tidur. Studi in menggunakan pendekatan quasi experiment. Subyek penelitian ini adalah masyarakat yang menggunakan air hujan sebagai air minum. Sampling dilaksanakan menggunakan cluster random sampling. Pengumpulan data dilakukan menggunakan teknik wawancara dan quesioner, pencermatan konsentrasi Pb digunakan metode AAS di laboratorium. Analisis dilakukan secara deskriptif dan analitis menggunakan uji korelasi dan t-test. Hasil penelitian menunjukkan bahwa (1 pengaturan waktu penampungan sekitar 20 menit dapat menurunkan tingkat keracunan Pb, (2 tidak ditemukan perbedaan antara tingkat keracunan Pb bagi mereka yang meminum air dari air yang ditampung melalui atap seng dan bukan seng, (3 tidak ditemukan hubungan antar factor pekerjaan, perilaku merokok, jenis sumber air dan tempat penampungan dan jarak rumah terhadap tingkat keracunan Pb, dan (4 tidak ditemukan hubungan antara tingkat keracunan Pb dengan gejala subyektif masyarakat antara lain sakit kepala, kelelahan, nyeri perut diare, muntah-muntah dan gangguan tidur.   ABSTRACT Concentration of Pb in rain water, although its very low but it is dangerous and able to damage public health. In the body, Pb exposure will be absorpted and distributed by blood and a part of Pb content will be accumulated in the tissue. To decrease the Pb concentration of rain water, one of its to control time of rain water collection, that used

  12. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    Science.gov (United States)

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  13. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  14. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  15. IR absorption spectrum (4200-3100 cm-1) of H2O and (H2O)2 in CCl4. Estimates of the equilibrium constant and evidence that the atmospheric water absorption continuum is due to the water dimer

    International Nuclear Information System (INIS)

    Nicolaisen, Flemming M.

    2009-01-01

    IR absorption spectra, 4200-3100 cm -1 , of water in CCl 4 solutions are presented. It is shown that for saturated solutions significant amounts of water are present as dimer (ca. 2%). The IR spectra of the monomer and dimer are retrieved. The integrated absorption coefficients of the monomer absorption are significantly enhanced relative to the gas phase values. The dimer spectrum consists of 5 bands, of which 4 were expected from data from cold beams and cold matrices. The origin of the 'extra' band is discussed. In addition it is argued that the dimer absorption bands intensities must be enhanced relative to the gas phase values. Based on recent calculations of band strengths, and observed frequency shifts relative to the gas phase, the intensity enhancement factors are estimated as well as the monomer/dimer equilibrium constant in CCl 4 solution at T=296 K (K c =1.29 mol -1 L). It is noted that the observed dimer spectrum has a striking resemblance with the water vapour continuum determined by Burch in 1985 which was recently remeasured by Paynter et al. and it is concluded that the atmospheric water absorption continuum in the investigated spectral region must be due to water dimer. Based on the newly published spectral data a revised value of the gas phase equilibrium constant is suggested (K p =0.035 atm -1 at T=296 K) as well as a value for the standard enthalpy of formation, ΔH 0 =15.4 kJ mol -1 .

  16. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    Science.gov (United States)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  17. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for Jatropha curcas biodiesel

    International Nuclear Information System (INIS)

    Silva, Juliana R.F.; Mazutti, Marcio A.; Voll, Fernando A.P.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Lanza, Marcelo; Priamo, Wagner L.; Vladimir Oliveira, J.

    2013-01-01

    Highlights: ► (Liquid + liquid) equilibrium data for multicomponent Jatropha curcas FAME and FAEE. ► Tie-lines, solubility curves (binodal curves) with low deviations from mass balance. ► Experimental data correlated with the UNIQUAC model. -- Abstract: Reported in this study are (liquid + liquid) equilibrium data for binary, ternary, and quaternary systems formed by fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) of Jatropha curcas oil, water, glycerol, methanol, and ethanol at temperatures of (303.15, 318.15, and 333.15) K. In general, all the systems investigated resulted in good agreement between phase compositions of crunodes of tie-lines, solubility curves (binodal curves) and overall compositions, hence indicating low deviations from mass balance. Experimental results were correlated with the UNIQUAC model, showing low deviations among experimental and calculated values

  18. Cadmium accumulation in soils caused by contaminated irrigation water in relation to safety level of enviromental water

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H; Iimura, K

    1974-01-01

    Adsorption of cadmium on the soil from irrigation water contaminated by human production activites were investigated. Both in the equilibrium and column experiments, the soils adsorbed more than 90 per cent of cadmium from the water containing 0.01 ppm cadmium and 18 or 300 ppm calcium. The amounts of cadmium adsorbed by the soils in the equilibrium experiments increased with the increasing concentrations (0.001-10 ppm) in accordance with the Freundlich's adsorption formula, the indices of which were near unity. In column experiments, the proportions of cadmium adsorbed by the soils from the water containing 0.01 ppm cadmium and 18 ppm calcium were equal to or more than those of calcium. It was estimated that if the water containing 0.01 ppm cadmium, that is the safety level of environmental water for human health by WHO and adopted as the permissible concentration by the Japanese Government, were irrigated in paddy fields, cadmium contents of the soils would exceed 1 ppm within a few years. Furthermore, on some of those contaminated soils, brown rice containing more than 1 ppm cadmium, that is the permissible concentration in brown rice authorised by the Japanese Government, will be produced. From the viewpoint of soil conservation from contamination, it is suggested that the permissible concentration of cadmium in the environment water should be lowered to at least one tenth of the present level. The exchange equilibriums in the soils between Cd and Ca and Cd and Na were discussed.

  19. JASA: A prototype water-Cerenkov air-shower detector

    International Nuclear Information System (INIS)

    Berley, D.; Dion, C.; Goodman, J.A.; Haines, T.J.; Kwok, P.W.; Stark, M.J.; Svoboda, R.C.; Ferguson, H.; Hoffman, C.M.; Horch, E.; Ellsworth, R.W.; Delay, R.S.; Lu, X.; Yodh, G.B.

    1991-01-01

    A small pilot experiment to examine the use of the water-Cerenkov technique for air shower detection was installed near the center of the CYGNUS air shower array. Preliminary results showing general agreement with simulations are presented. Thus, the technique promises to offer significant advances for VHE-UHE γ-ray astronomy

  20. Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials

    Science.gov (United States)

    Shevchenko, M.; Jak, E.

    2017-12-01

    The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.

  1. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  2. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    Science.gov (United States)

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The

  3. Removal of emulsified oil in residual waters by means of dissolved air flotation

    International Nuclear Information System (INIS)

    Echeverri Londono, Carlos Alberto

    1996-01-01

    In this article is consigned a theoretical and experimental study on the treatment of industrial residual waters with emulsified oil, through the flotation process for dissolved air (FAD), changing some operation parameters and some importance topics, related with the process. The experimental results and the theoretical pattern, show that the removal of oil depends fundamentally on the chemical pretreatment. Efficiencies of removal of oil up of 99% they were obtained, using the dissolved air flotation with the help of coagulants

  4. Turnover of body water in relation to the hydric diet studied with tritiated water in Locusta migratoria migratorioides

    International Nuclear Information System (INIS)

    Buscarlet, L.A.; Proux, Jacques

    1975-01-01

    The elimination of triated water injected in a locust Locusta migratoria migratorioides is described by an exponential function of the cumulative water diet and fits a one-compartment model. This result shows that body water occupies a single pool the mass of which is kept constant by an equilibrium between the water diet and the water elimination rate [fr

  5. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  6. Plutonium and minor actinides recycle in equilibrium fuel cycles of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Waris, A.; Sekimoto, H. [Research Lab. for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2001-07-01

    A study on plutonium and minor actinides (MA) recycle in equilibrium fuel cycles of pressurized water reactors (PWR) has been performed. The calculation results showed that the enrichment and the required amount of natural uranium decrease significantly with increasing number of confined plutonium and MA when uranium is discharged from the reactor. However, when uranium is totally confined, the enrichment becomes extremely high. The recycle of plutonium and MA together with discharging uranium can reduce the radio-toxicity of discharged heavy metal (HM) waste to become less than that of loaded uranium. (author)

  7. Effect of Initial Moisture on the Adsorption and Desorption Equilibrium Moisture Contents of Polished Rice

    OpenAIRE

    Murata, Satoshi; Amaratunga, K.S.P.; Tanaka, Fumihiko; Hori, Yoshiaki; 村田, 敏; 田中, 史彦; 堀, 善昭

    1993-01-01

    The moisture adsorption and desorption properties for polished rice have been measured using a dynamic ventilatory method. Air temperatures of 10,20,30 and 40℃, relative humidities of 50,60,70,80 and 90%, and five levels of initial moisture contents ranging approximately from 8% to 19% d.b. were used to obtain moisture content data. The value of equilibrium moisture content for each initial moisture content at the range of air condition was determined by a method of nonlinear least squares. R...

  8. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model.

    Science.gov (United States)

    Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki

    2013-09-15

    To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy. Copyright © 2013. Published by Elsevier Ltd.

  9. Numerical study on the characteristics of air bubble oscillation in water

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Bae, Yoon Yeong

    2003-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor under construction in Korea named APR1400, when a pressure relieving system is in operation, water, air and steam discharge successively into a sub-cooled water pool through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds with a low-frequency and high-amplitude oscillation may result in significant damage to the submerged structures if the resonance between the bubble clouds and structures occur. The phenomena involved are so complicated that most predictions of frequency and pressure loads have resorted to experimental work and computational approach has been precluded. This study deals with a numerical prediction of the pressure field generated by the oscillation of air bubble. The analysis was performed by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. The multiphase flows of water, air and steam were simulated by the VOF (Volume Of Fluid) model contained in the code. Unlike the author's previous study, the LRR (Load Reduction Ring) of the sparger is artificially blocked for the investigation of LRR effects on the pressure field. It also includes the effect of air mass and inlet pressure in the piping on the pressure field. (author)

  10. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  11. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    Science.gov (United States)

    Minick, D James; Anderson, Kim A

    2017-09-01

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.

  12. PENGELOLAAN MATA AIR UNTUK PENYEDIAAN AIR RUMAHTANGGA BERKELANJUTAN DI LERENG SELATAN GUNUNGAPI MERAPI (Springs Management for Sustainability Domestic Water Supply in the South West of Merapi Volcano Slope

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-02-01

    Full Text Available ABSTRAK Mata air merupakan pemunculan air tanah ke permukaan tanah. Pemanfaatan mata air sangat beragam, antara lain penggunaan untuk keperluan air minum, irigasi, perikanan, untuk obyek wisata. Mata air mempunyai debit terbatas, namun kualitasnya baik, penggunaannya beragam, hal tersebut sering terjadi konflik pemanfaatan. Di saat musim kemarau, beberapa mata air merupakan sumber air satu-satunya di suatu tempat, sehingga pengelolaannya harus dilakukan secara baik. Penelitian ini bertujuan untuk mempelajari pengelolaan mata air berbasis teknologi tepat guna dalam penyediaan air rumahtangga di lereng selatan Gunungapi Merapi. Penelitian dilakukan dengan survei dan observasi di lapangan terhadap mata air yang digunakan untuk penyediaan air rumahtangga. Sejumlah responden pengguna mata air dan tokoh masyarakat setempat diwawancarai secara bebas dan terstruktur untuk memperoleh data pengelolaan mata air. Hasil penelitian menunjukkan bahwa kondisi lingkungan dan karakteristik mata air, pengetahuan masyarakat dan budaya lokal yang beragam akan berpengaruh terhadap pengelolaanmata air. Perkembangan teknologi tidak dapat diabaikan dalam pengelolaan sumberdaya air. Hal ini dapat dipadukan dengan budaya masyarakat setempat dalam pengelolaan mata air, sehingga dapat diperoleh manfaat yang optimal dan kesinambungan fungsi dan manfaat mata air tersebut.   ABSTRACT Spring is the groundwater which comes out on ground surface. The use of water from springs is very diverse, varying from water for drinking, irrigation, fisheries, even for tourism. The springs usually have a limited discharge but the water quality from springs is good, therefore they are often facing some conflicts in utilization. In the dry season, in fact the springs are the only source of water supply; therefore the management of the spring should be done properly. This research aims to study the spring management based on appropriate technology in relation to household water supply in the

  13. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  14. Spreading of oil from protein stabilised emulsions at air/water interfaces

    NARCIS (Netherlands)

    Schokker, E.P.; Bos, M.A.; Kuijpers, A.J.; Wijnen, M.E.; Walstra, P.

    2002-01-01

    Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to

  15. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  16. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V., E-mail: bulgakov@itp.nsc.ru

    2017-02-28

    Highlights: • Laser damage thresholds of Ag, Au and Ag-Au alloys in air and water are measured. • Alloy thresholds are lower than those of Ag and Au due to low thermal conductivity. • Laser damage thresholds in water are ∼1.5 times higher than those in air. • Light scattering mechanisms responsible for high thresholds in water are suggested. • Light scattering mechanisms are supported by optical reflectance measurements. - Abstract: The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  17. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  18. Destratification efficiency by hypolimnitic water lifter with air bullets. Kihodan wo mochiita shinsosui yosui shisetsu ni yoru mitsudo seiso no kongo koritsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, H; Suga, K [Utsunomiya University, Tochigi (Japan). Faculty of Engineering; Asaeda, T [Saitama University, Saitama (Japan). Faculty of Engineering

    1994-02-21

    The intermittent aeration and circulation method is used frequently to destruct temperature stratification in a reservoir to prevent it from eutrophication. This method uses a cylinder erected in water, into which air bullets are shot out intermittently to circulate and mix heavier water mass upward. The present study has performed numerical analysis on the process to mix density stratifications by operating an intermittent water lifter cylinder for an extended period of time, and discussed responses of each factor to variation. The numerical computation has been carried out according to the equation of motion for water and air in the water lifter cylinder, and the numerical model that hypothesizes the double plume after air bubbles have departed from the water lifter cylinder. The result indicated that the amount of hypolimnitic water lifted against the amount of air injected can be expressed by an empirical formula that uses only the relative air bullet volumes. An evaluation formula for the water lifting efficiency has also been derived. It has been found for the stratification mixing that trends in the mixing efficiency can be identified by two parameters of dimensionless air bubble amount and stratification strength. 17 refs., 11 figs., 4 tabs.

  19. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  20. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  1. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    Science.gov (United States)

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  2. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water

    Science.gov (United States)

    Wu, Xiongwu; Brooks, Bernard R.

    2015-01-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245

  3. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    Directory of Open Access Journals (Sweden)

    Xiongwu Wu

    2015-10-01

    Full Text Available Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  4. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    Science.gov (United States)

    Wu, Xiongwu; Brooks, Bernard R

    2015-10-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  5. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  6. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  7. Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication.

    Science.gov (United States)

    Wang, Changhui; Wu, Yu; Wang, Youquan; Bai, Leilei; Jiang, Helong; Yu, Juhua

    2018-06-15

    This study presents an approach for developing inactivating materials to achieve an initial rapid and a long-term equilibrium P immobilization to control eutrophication based on drinking water treatment residue (DWTR), which is a byproduct of potable water production. By taking advantage of the long-term equilibrium P adsorption by DWTR, the La chemical properties, and the previous success of using La-modified bentonite clay (Phoslock ® ), we used DWTR as a La carrier with different ratios to develop the specific materials. The La loading mechanisms, the potentially toxic effect of La-modified DWTR on snail Bellamya aeruginosa (within 120 d), and the short- and long-term (within 80 d) P immobilization characteristics of the modified DWTR were investigated to understand the performance of the developed materials. The results showed that La loading into DWTR was based on ligand exchanges and the formation of new particles; DWTR loaded with <5% La had no toxicity against the snail. Most importantly, the loading of 5% La to DWTR substantially enhanced the rapid immobilization capacity of DWTR, achieving an initial rapid and a long-term equilibrium P adsorption in aqueous solutions. This study promotes the beneficial recycling of DWTR and results in a win-win situation for lake restoration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Protein adsorption at the electrified air-water interface: implications on foam stability.

    Science.gov (United States)

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  9. Isothermal Vapor-Liquid Equilibrium in the Quaternary Water + 2-Propanol + Acetic Acid + Isopropyl Acetate System with Chemical Reaction

    Czech Academy of Sciences Publication Activity Database

    Teodorescu, M.; Aim, Karel; Wichterle, Ivan

    2001-01-01

    Roč. 46, č. 2 (2001), s. 261-266 ISSN 0021-9568 R&D Projects: GA ČR GA203/98/1446 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapor-liquid equilibrium * quaternary water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.960, year: 2001

  10. Relations between dissipated work in non-equilibrium process and the family of Rényi divergences

    International Nuclear Information System (INIS)

    Wei, Bo-Bo; Plenio, M B

    2017-01-01

    In this paper, we establish a general relation which directly links the dissipated work done on a system driven arbitrarily far from equilibrium, a fundamental quantity in thermodynamics, and the family of Rényi divergences between two states along the forward and reversed dynamics, a fundamental concept in information theory. Specifically, we find that the generating function of the dissipated work under an arbitrary time-dependent driving is related to the family of Rényi divergences between a non-equilibrium state along the forward process and a non-equilibrium state along its time-reversed process. This relation is a consequence of the principle of conservation of information and time reversal symmetry and is universally applicable to both finite classical system and finite quantum system under arbitrary driving process. The significance of the relation between the generating function of dissipated work and the family of Rényi divergences are two fold. On the one hand, the relation establishes that the macroscopic entropy production and its fluctuations are determined by the family of Rényi divergences, a measure of distinguishability of two states, between a microscopic process and its time reversal. On the other hand, this relation tells us that we can extract the family of Renyi divergences from the work measurement in a microscopic process. For classical systems the work measurement is straightforward, from which the family of Rényi divergences can be obtained; for quantum systems under time-dependent driving the characteristic function of work distributions can be measured from Ramsey interferences of a single spin, then we can extract the family of Renyi divergences from Ramsey interferences of a single spin. (paper)

  11. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  12. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  13. Effect of air on water capillary flow in silica nanochannels

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2013-01-01

    , with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water...... in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show...... that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads...

  14. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  15. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  16. Theoretical Studies of Aqueous Systems above 25 deg C. 1. Fundamental Concepts for Equilibrium Diagrams and some General Features of the Water System

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1971-09-15

    The illustration of thermodynamic data on aqueous systems is discussed and diagrams are described that are useful for bringing together the large numbers of data that are relevant to technological problems such as corrosion, mass-transport and deposition. Two kinds of logarithmic equilibrium diagram are particularly useful, namely, diagrams depicting the variation with pH or pe of the concentrations of ionic species relative to that of a chosen reference ion and diagrams depicting the fields of conditions of pH and pe in which the various species in any given system predominate or are stable. Such diagrams clearly and concisely illustrate the data and greatly simplify the comparison of the states of a system at different temperatures. Estimates of the equilibrium constants for the redox and the acid-base dissociation of water up to 375 C are reported and some general features of aqueous systems at elevated temperatures are discussed

  17. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  18. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    Science.gov (United States)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  19. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  20. Optimizing the air flotation water treatment process. Final report, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  1. Neurotoxicity of traffic-related air pollution.

    Science.gov (United States)

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method

    International Nuclear Information System (INIS)

    Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.

    2012-01-01

    Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.

  3. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  4. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay

    International Nuclear Information System (INIS)

    Prince, J.R.

    1979-01-01

    Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium

  5. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    Science.gov (United States)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  6. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    Science.gov (United States)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  7. Sampling problems and the determination of mercury in surface water, seawater, and air

    International Nuclear Information System (INIS)

    Das, H.A.; van der Sloot, H.A.

    1976-01-01

    Analysis of surface water for mercury comprises the determination of both ionic and organically bound mercury in solution and that of the total mercury content of the suspended matter. Eventually, metallic mercury has to be determined too. Requirements for the sampling procedure are given. A method for the routine determination of mercury in surface water and seawater was developed and applied to Dutch surface waters. The total sample volume is 2500 ml. About 500 ml is used for the determination of the content of suspended matter and the total amount of mercury in the water. The sample is filtered through a bed of previously purified active charcoal at a low flow-rate. The main portion ca. 2000 ml) passes a flow-through centrifuge to separate the solid fraction. One liter is used to separate ''inorganic'' mercury by reduction, volatilization in an airstream and adsorption on active charcoal. The other liter is led through a column of active charcoal to collect all mercury. The procedures were checked with 197 Hg radiotracer both as an ion and incorporated in organic compounds. The mercury is determined by thermal neutron activation, followed by volatilization in a tube furnace and adsorption on a fresh carbon bed. The limit of determination is approximately equal to 1 ng 1 -1 . The rate of desorption from and adsorption on suspended material has been measured as a function of a pH of the solution for Hg +2 and various other ions. It can be concluded that only the procedure mentioned above does not disturb the equilibrium. The separation of mercury from air is obtained by suction of 1 m 3 through a 0.22 μm filter and a charcoal bed. The determination is then performed as in the case of the water samples

  8. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Science.gov (United States)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  9. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The water-filled versus air-filled status of vessels cut open in air: the 'Scholander assumption' revisited

    Science.gov (United States)

    M.T. Tyree; H. Cochard; P. Cruziat

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by continued transpiration, The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut...

  11. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  12. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  13. Emission to air, water and ground: legislation in Norway

    International Nuclear Information System (INIS)

    Hansen, Dag Horsberg

    2001-01-01

    The article discusses Norwegian legislation on emission to air, water and ground. Pollution in the sense of the law is defined as ''the addition of solid matter, gas or liquid to air, water or ground''. The concept of pollution is, however, more far-reaching as even noise, light and radiation may be regarded as pollution although these are not discussed. Any pollution is prohibited. But there are two exceptions: commonly accepted pollutions such as arising from wood burning and agriculture, and emissions allowed by special permission from the National State Pollution Control Authority. The article also discusses liability issues

  14. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  15. Fluctuation relations in non-equilibrium stationary states of Ising models

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy); Pelizzola, A [Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, and CNISM, Politecnico di Torino, c. Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-01-15

    Fluctuation relations for the entropy production in non-equilibrium stationary states of Ising models are investigated by means of Monte Carlo simulations. Systems in contact with heat baths at two different temperatures or subject to external driving will be studied. In the first case, considering different kinetic rules and couplings with the baths, the behaviors of the probability distributions of the heat exchanged in time {tau} with the thermostats, both in the disordered phase and in the low temperature phase, are discussed. The fluctuation relation is always followed in the large {tau} limit and deviations from linear response theory are observed. Finite {tau} corrections are shown to obey a scaling behavior. In the other case the system is in contact with a single heat bath, but work is done by shearing it. Also for this system, using the statistics collected for the mechanical work we show the validity of the fluctuation relation and the preasymptotic corrections behave analogously to those for the case with two baths.

  16. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  17. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  18. General Mechanism of Morphology Transition and Spreading Area-dependent Phase Diagram of Block Copolymer Self-assembly at the Air/Water Interface

    Science.gov (United States)

    Kim, Dong Hyup; Kim, So Youn

    Block copolymers (BCPs) can be self-assembled forming periodic nanostructures, which have been employed in many applications. While general agreements exist for the phase diagrams of BCP self-assembly in bulk or thin films, a fundamental understanding of BCP structures at the air/water interface still remain elusive. The current study explains morphology transition of BCPs with relative fraction of each block at the air/water interface: block fraction is the only parameter to control the morphology. In this study, we show morphology transitions from spherical to cylindrical and planar structures with neat polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) via reducing the spreading area of BCP solution at the air/water interface. For example, PS-b-P2VP in a fixed block fraction known to form only spheres can experience sphere to cylinder or lamellar transitions depending on the spreading area at the air/water interface. Suggesting a new parameter to control the interfacial assembly of BCPs, a complete phase diagram is drawn with two paramters: relative block fraction and spreading area. We also explain the morphology transition with the combinational description of dewetting mechanism and spring effect of hydrophilic block.

  19. Effect of Water-Air Clearing on Thermal Mixing in IRWST Using Three-Dimensional CFD Analysis

    International Nuclear Information System (INIS)

    Ha, Jeong Hee; Lee, Doo Yong; Hong, Soon Joon; Jeong, Jae Sik; Park, Man Heung; Moon, Young Tae

    2013-01-01

    In this paper, the water-air clearing effects on thermal mixing in the IRWST were investigated with the CFD simulation. The boundary conditions for each discharge phase were obtained from the RELAP5 simulation. The flow distribution in the IRWST for the water clearing phase was reflected as the initial condition for the air clearing simulation. The flow distribution for the air clearing phase was applied as the initial condition for the steam condensation phase. The result of the steam condensation phase with the SCRM showed that the thermal mixing in the IRWST might be enhanced by the mixing effects of the water-air clearing before the steam discharge. IRWST (in-containment refueling water storage tank) is one of the advanced design features of APR1400 (Advanced Power Reactor . 1400). Connected to the Safety Depressurization and Vent System (SDVS), IRWST is designed to absorb the high energy flow from Pilot Operated Safety and Relief Valves (POSRVs) to protect the over-pressurization of the Reactor Coolant System. Due to thermal hydraulic loads induced by discharged fluids, it is crucial to understand the phenomena occur in the IRWST and thermal mixing is one of them. It has been known that the unstable steam condensation which results in oscillations and acts as the loads on the IRWST wall and structures can occur if there is a large local temperature difference. Thus, there is a regulation related to IRWST temperature distribution (difference) to be satisfied. To understand the phenomena and design the IRWST with sufficient safety margin, many experimental and numerical researches have been performed. The results of these researches showed that the CFD analysis predicts well the temperature distribution in the pool globally and can be a proper evaluation methodology to analyze the complex thermal mixing phenomena in the IRWST with a sufficiently fine mesh distribution and proper numerical models. But the previous studies have tended to focus the phenomenological

  20. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford's underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford's organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes' future storage. This work focused on the equilibrium water content and did not investigate the various factors such as at sign ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures

  1. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  2. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    Science.gov (United States)

    Wang, Binbin

    . Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly.

  3. DESIGN OF WATER-COOLED PACKAGED AIR-CONDITIONING SYSTEMS BASED ON RELIABILITY ASSESSMENT

    OpenAIRE

    関口, 圭輔; 中尾, 正喜; 藁谷, 至誠; 植草, 常雄; 羽山, 広文

    2007-01-01

    Water-cooled packaged air-conditioning systems are reevaluated in terms of alleviating the heat island phenomenon in cities and effectively utilizing building rooftops. Up to now, such reliability assessment has been insufficient, and this has limited the use of this kind of air-conditioning system in the information and communications sectors that demand a high reliability. This work has led to the development of a model for evaluating the reliability of water-cooled package air-conditioning...

  4. Self Assembly of Ionic Liquids at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Minofar, Babak

    2015-01-01

    Roč. 3, aug (2015), s. 27-40 ISSN 2245-4551 Institutional support: RVO:67179843 Keywords : Ionic liquids * air/water interface * self assembly * ion-water interaction * ion-ion interaction Subject RIV: CE - Biochemistry

  5. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  6. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  7. A review of research progress in air-to-water sound transmission

    International Nuclear Information System (INIS)

    Peng Zhao-Hui; Zhang Ling-Shan

    2016-01-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. (special topic)

  8. Equilibrium leach testing of Magnox swarf and sludge

    International Nuclear Information System (INIS)

    Amin, A.; Angus, M.J.; Kirkham, I.A.; Tyson, A.

    1988-10-01

    A static equilibrium leach test has been developed to simulate repository conditions after ground water has penetrated the near field barrier. The repository components - waste, matrix and backfill - have been equilibrated with water for up to one year. Leachates were analysed for U, Pu, Np 237 , Am 241 , Cs 137 , Sr 90 , Tc 99 , I 129 and C 14 . Results are presented for leaching from Magnox fuel cladding wastes using a combination of matrices, backfills and atmospheric conditions. The equilibrium concentrations were generally very low and have been compared with the concentration of each isotope in drinking water that would give an adult an annual effective dose equivalent of 0.1mSv. (author)

  9. Equilibrium leach testing of Magnox swarf and sludge

    International Nuclear Information System (INIS)

    Amin, A.; Angus, M.J.; Kirkham, I.A.; Tyson, A.

    1987-10-01

    A static equilibrium leach test has been developed to simulate repository conditions after ground water has penetrated the near field barrier. The repository components - waste, matrix and backfill - have been equilibrated with water for up to one year. Leachates were analysed for U, Pu, Np 237 , Am 241 , Cs 137 , Sr 90 , Tc 99 , I 129 and C 14 . Results are presented for leaching from Magnox fuel cladding wastes using a combination of matrices, backfills and atmospheric conditions. The equilibrium concentrations were generally very low and have been compared with the concentration of each isotope in drinking water that would give an adult an annual effective dose equivalent of 0.1mSv. (author)

  10. Comparison of dose measurements in water versus in air for therapy

    International Nuclear Information System (INIS)

    Nasukha

    1987-01-01

    Comparison of dose measurements in water versus in air for therapy. Dose measurements in water and in the air had been done by teletherapy unit Co-60 Picker Model V 4m/60 with Farmer dosimeter. The result of inverse square law, TAR, PDD, and PSF compared to BJR No. 17 produced a difference of more than 4,65% with SSD 80 cm. Doses in water calculated from the result of dose measurement in air using BJR tables given, was compared with direct dose measurement in water. Values of 0,9850 to 1,0302 were obtained if using inverse square law, PDD and PSF formula. Using inverse square law and TAR, values of 0,9474 to 1,0197 were obtained for 4 depths and 5 field sizes. Measurements done in 5 cm depth and 10 cm x 10 cm field size using both methods, were still good. (author). 7 figs, 8 refs

  11. Evaluation of a Design Concept for the Combined Air-water Passive Cooling PAFS+

    International Nuclear Information System (INIS)

    Bae, Sung Won; Kwon, Taesoon

    2014-01-01

    The APR+ system provides the Passive Auxiliary Feed-water System (PAFS) for the passive cooling capability. However, the current design requirement for working time for the PAFS is about 8 hours only. Thus, current working time of PAFS can not meet the required 72 hours cooling capability for the long term SBO situation. To meet the 72 hours cooling, the pool capacity should be almost 3∼4 times larger than that of current water cooling tank. In order to continue the PAFS operation for 72 hours, a new passive air-water combined cooling system is proposed. This paper provides the feasibility study on the combined passive air-water cooling system. Figure 1 and 2 show the conceptual difference of the PAFS and combined passive air-water cooling system, respectively. Simple performance evaluation of the passive air cooling heat exchanger has been conducted by the MARS calculation. For the postulated FLB scenario, 4800 heat exchanger tubes and 5 m/s air velocity are not sufficient to sustain the PCCT pool level for 72 hour cooling. Further works on the system design and performance enhancing plan are required to fulfill the 72 hours long term passive cooling

  12. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  13. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Science.gov (United States)

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  14. System analysis of membrane facilitated water generation from air humidity

    NARCIS (Netherlands)

    Bergmair, D.; Metz, S.J.; Lange, de H.C.; Steenhoven, van A.A.

    2014-01-01

    The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be

  15. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  16. Fisk-based criteria to support validation of detection methods for drinking water and air.

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    considerable across the full set of threat contaminants, so preliminary indicators were developed from other well-documented benchmarks to serve as a starting point for validation efforts. By this approach, at least preliminary context is available for water or air, and sometimes both, for all chemicals on the NHSRC list that was provided for this evaluation. This means that a number of concentrations presented in this report represent indirect measures derived from related benchmarks or surrogate chemicals, as described within the many results tables provided in this report.

  17. Equilibrium models and variational inequalities

    CERN Document Server

    Konnov, Igor

    2007-01-01

    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  18. Enhancing Water Evaporation with Floating Synthetic Leaves

    Science.gov (United States)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  19. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    Science.gov (United States)

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  20. Experimental investigation and modeling of adsorption of water and ethanol on cornmeal in an ethanol-water binary vapor system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.; Yuan, X.G.; Tian, H.; Zeng, A.W. [State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-04-15

    The adsorption capacity of water and ethanol on cornmeal in an ethanol-water binary vapor system was investigated in a fixed-bed apparatus for ethanol dehydration. Experiments were performed at temperatures of 82-100 C for different relative humidities of ethanol-water vapor. Adsorption equilibrium models, including those based on the adsorption potential theory of Polanyi and Sircar's model, have been used to fit the experimental data for water adsorption on cornmeal, and all gave good fits. For ethanol adsorption, pseudo-equilibrium was defined as the mass adsorbed on the cornmeal within the time needed for the equilibrium for water on the same adsorbent. Based on this limiting condition, adsorption behaviors and mechanisms were analyzed. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  2. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  3. How changes in top water bother big turning packs of up-going wet air

    Science.gov (United States)

    Wood, K.

    2017-12-01

    Big turning packs of up-going wet air form near areas of warm water at the top of big bodies of water. After these turning packs form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning packs usually get less strong. Other things can change how strong a turning pack gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning packs hit land, their rain and winds can hurt people and the stuff they own, especially if the turning pack is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning pack of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning pack myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning packs that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small area bothers a turning pack of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning pack will do before it gets close to land.

  4. Respiratory symptoms among industrial workers exposed to water aerosol. A pilot study of process water and air microbial quality

    Directory of Open Access Journals (Sweden)

    Bożena Krogulska

    2013-02-01

    Full Text Available Background: The frequency of respiratory symptoms in workers exposed to water aerosol was evaluated along with the preliminary assessment of microbiological contamination of air and water used in glass processing plants. Material and Methods: A questionnaire survey was conducted in 131 workers from 9 glass processing plants. Questions focused on working conditions, respiratory symptoms and smoking habits. A pilot study of air and water microbiological contamination in one glass processing plant was performed. Water samples were tested for Legionella in accordance with EN ISO 11731-2:2008 and for total colony count according to PN-EN ISO 6222:2004. Air samples were tested for total numbers of molds and mildews. Results: During the year preceding the survey acute respiratory symptoms occurred in 28.2% of participants, while chronic symptoms were reported by 29% of respondents. Increased risks of cough and acute symptoms suggestive of pneumonia were found among the respondents working at a distance up to 20 m from the source of water aerosol compared to other workers (OR = 2.7, with no difference in the frequency of other symptoms. A microbiological analysis of water samples from selected glass plant revealed the presence of L. pneumophila, exceeding 1000 cfu/100 ml. The number of bacteria and fungi detected in air samples (above 1000 cfu/m3 suggested that water aerosol at workplaces can be one of the sources of the air microbial contamination. Conclusions: The questionnaire survey revealed an increased risk of cough and acute symptoms suggestive of pneumonia in the group working at a shortest distance form the source of water aerosol. Med Pr 2013;64(1:47–55

  5. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  6. Modeling of a split type air conditioner with integrated water heater

    International Nuclear Information System (INIS)

    Techarungpaisan, P.; Theerakulpisut, S.; Priprem, S.

    2007-01-01

    This paper presents a steady state simulation model to predict the performance of a small split type air conditioner with integrated water heater. The mathematical model consists of submodels of system components such as evaporator, condenser, compressor, capillary tube, receiver and water heater. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model was coded into a simulation program and used to predict system parameters of interest such as hot water temperature, condenser exit air temperature, evaporator exit air temperature, mass flow rate of refrigerant, heat rejection in the condenser and cooling capacity of the system. The simulation results were compared with experimental data obtained from an experimental rig built for validating the mathematical model. It was found that the experimental and simulation results are in good agreement

  7. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    Science.gov (United States)

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  8. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    Reismann, J.; John, H.; Seeger, W.

    1981-11-01

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.) [de

  9. KOEFISIEN TANAMAN PADI SAWAH PADA SISTEM IRIGASI HEMAT AIR Crop Coefficient for Paddy Rice Field under Water Saving Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Joko Sujono

    2012-05-01

    Full Text Available Traditional irrigation for paddy rice is the leading of consumer of water, about 80 % of the water resource availabilityused for irrigation purpose. This phenomenon is related to the way how to estimate the crop water requirement where crop coefficient for paddy rice (k (Prosida is always greater than one starting from planting up to nearly harvesting. In this research, a number of water saving irrigations (WSI systems for paddy rice cultivation using pots such asalternate wetting and drying (AWD, shallow water depth with wetting and drying (SWD, semi-dry cultivation (SDC, system of rice intensification (SRI, and  AWD with mulch (AWD-Mul were applied. The amount of irrigated water and when it should be irrigated depend on evapotranspiration rate, soil moisture condition and the WSI system used. For this purpose, daily measurement of the pot weight was carried out. Crop coefficient (k  is then caluculated as a cratio between crop and reference evapotranspiration computed using Penman-Montheit  method. Results show that up to 45 days after transplanting, the k of WSI treatments were around half of the k (Prosida values currently used for computing the water requirement, whereas at the productive stage the k of WSI systems were relatively equal (AWD, SDC to or greater (SRI, SWD than the k (Prosida. Based on the the k values, the AWD and the SDC systems could save much water compared to the SRI or the SWD. Water saving could be increased by applying the AWD with mulch. ABSTRAK Irigasi padi sawah dengan sistem tradisional merupakan sistem irigasi  yang boros air, hampir 80 % sumber air yang ada untuk irigasi. Hal ini tidak terlepas dari perhitungan kebutuhan air tanaman dengan nilai koefisien tanaman (k menurut Standar Perencanaan Irigasi (Prosida selalu lebih besar dari satu mulai dari tanam hingga menjelang panen.Dalam penelitian ini beberapa metoda budidaya padi hemat air seperti alternate wetting and drying (AWD, shallow water depth

  10. Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics

    Science.gov (United States)

    Sousa, Tânia; Domingos, Tiago

    2006-11-01

    We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.

  11. An isochronous variant of the Ruijsenaars-Toda model: equilibrium configurations, behavior in their neighborhood, Diophantine relations

    International Nuclear Information System (INIS)

    Droghei, R; Ragnisco, O; Calogero, F

    2009-01-01

    An isochronous variant of the Ruijsenaars-Toda integrable many-body problem is introduced, an equilibrium configuration of this dynamical system is identified and by investigating the motions in its neighborhood Diophantine relations are obtained.

  12. An isochronous variant of the Ruijsenaars-Toda model: equilibrium configurations, behavior in their neighborhood, Diophantine relations

    Energy Technology Data Exchange (ETDEWEB)

    Droghei, R; Ragnisco, O [Dipartimento di Fisica, Universita Roma Tre, Via Vasca Navale 84, I-00146 Roma (Italy); Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A.Moro 2, I-00185 Roma (Italy)], E-mail: droghei@fis.uniroma3.it, E-mail: francesco.calogero@roma1.infn.it, E-mail: ragnisco@fis.uniroma3.it

    2009-11-06

    An isochronous variant of the Ruijsenaars-Toda integrable many-body problem is introduced, an equilibrium configuration of this dynamical system is identified and by investigating the motions in its neighborhood Diophantine relations are obtained.

  13. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    Science.gov (United States)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  14. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted pressure

    NARCIS (Netherlands)

    Kudryashova, E.V.; Visser, A.J.W.G.; Jongh, de H.H.J.

    2005-01-01

    In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native

  15. Implicit analysis of the transient water flow with dissolved air

    Directory of Open Access Journals (Sweden)

    J. Twyman

    2018-01-01

    Full Text Available The implicit finite-difference method (IFDM for solving a system that transports water with dissolved air using a fixed (or variable rectangular space-time mesh defined by the specified time step method is applied. The air content in the fluid modifies both the wave speed and the Courant number, which makes it inconvenient to apply the traditional Method of Characteristics (MOC and other explicit schemes due to their impossibility to simulate the changes in magnitude, shape and frequency of the pressures train. The conclusion is that the IFDM delivers an accurate and stable solution, with a good adjustment level with respect to a classical case reported in the literature, being a valid alternative for the transient solution in systems that transport water with dissolved air.

  16. Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure

    NARCIS (Netherlands)

    van Duijn, C. J.; Mitra, K.; Pop, I. S.

    2018-01-01

    The Richards equation is a mathematical model for unsaturated flow through porous media. This paper considers an extension of the Richards equation, where non-equilibrium effects like hysteresis and dynamic capillarity are incorporated in the relationship that relates the water pressure and the

  17. Carbon dioxide degassing in fresh and saline water. II: Degassing performance of an air-lift

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...

  18. DIAGNOSIS OF FINANCIAL EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    SUCIU GHEORGHE

    2013-04-01

    Full Text Available The analysis based on the balance sheet tries to identify the state of equilibrium (disequilibrium that exists in a company. The easiest way to determine the state of equilibrium is by looking at the balance sheet and at the information it offers. Because in the balance sheet there are elements that do not reflect their real value, the one established on the market, they must be readjusted, and those elements which are not related to the ordinary operating activities must be eliminated. The diagnosis of financial equilibrium takes into account 2 components: financing sources (ownership equity, loaned, temporarily attracted. An efficient financial equilibrium must respect 2 fundamental requirements: permanent sources represented by ownership equity and loans for more than 1 year should finance permanent needs, and temporary resources should finance the operating cycle.

  19. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    . Measurements are performed during the depressurization transient state. Experimental results show vessel depressurization combined with steam concentration decrease and gas temperature decrease induced by spray injection. Detailed measurements are performed inside and outside water spray region in order to characterize droplets interaction with air/steam mixture. First, we perform a temporal analysis far away from the nozzle and we show that steam condensation on water droplets occurs very quickly at the beginning of spray injection that corresponds to a strong vessel depressurization. Secondly, we study the spatial evolution of droplets temperature when vessel pressure tends toward equilibrium. Droplet temperatures are measured at different distances from the nozzle and we identify, using Spalding parameter, the spray regions where occur steam condensation and droplet vaporization. The full paper will present extended local results performed on two different spray test conditions and interpretation on heat and mass transfers between a water spray and the surrounding air/steam atmosphere. (authors)

  20. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  1. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    Science.gov (United States)

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  2. A study on the equilibrium relationships in the system Ni-U-O in air and in oxygen

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Younis, S.S.

    1996-01-01

    The phase relationships for the ternary system Ni-U-O were established in air and in oxygen. Mixtures of Ni O and U 3 O 8 were found to oxidize to Ni U O 4 that was identical to that previously published for Ni U 3 O 1 0. The nickel uranate dissociates to Ni O, U 3 O 8 and oxygen at a temperature higher than that of the oxidation. The dissociation products go back to the uranate when they are cooled because of the difficulty of oxygen diffusion and uranate nucleation. Accordingly dissociation temperature. 966 degree C was taken to represent equilibrium and was used to calculate roughly H and S for the dissociation reaction. In presence of Ni O, U 3 O 8 melts partially at 1470 degree C and does not dissociate to the lower oxide. 4 figs

  3. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  4. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    Science.gov (United States)

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  5. Investigating air quality and air-related complaints in the City of Tshwane, South Africa

    CSIR Research Space (South Africa)

    Wright, C

    2011-12-01

    Full Text Available To determine the impact of implemented air quality interventions beyond ambient air pollution reductions, indicators need to be identified and appropriate health data need to be routinely collected to track air-related health. Presently, the only...

  6. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  7. Airflow measurements at a wavy air-water interface using PIV and LIF

    Science.gov (United States)

    Buckley, Marc P.; Veron, Fabrice

    2017-11-01

    Physical phenomena at an air-water interface are of interest in a variety of flows with both industrial and natural/environmental applications. In this paper, we present novel experimental techniques incorporating a multi-camera multi-laser instrumentation in a combined particle image velocimetry and laser-induced fluorescence system. The system yields accurate surface detection thus enabling velocity measurements to be performed very close to the interface. In the application presented here, we show results from a laboratory study of the turbulent airflow over wind driven surface waves. Accurate detection of the wavy air-water interface further yields a curvilinear coordinate system that grants practical and easy implementation of ensemble and phase averaging routines. In turn, these averaging techniques allow for the separation of mean, surface wave coherent, and turbulent velocity fields. In this paper, we describe the instrumentation and techniques and show several data products obtained on the air-side of a wavy air-water interface.

  8. EWAM: a model for predicting food and water ingestion, and inhalation rates of man

    International Nuclear Information System (INIS)

    Zach, Reto; Barnard, John W.

    1985-09-01

    A computer model, EWAM (Energy, Water and Air Model), has been designed and implemented for predicting food and water ingestion, and inhalation rates of man for use in environmental assessment models. EWAM uses physiological, energetic, nutritional and physical relationships in combination with activity time budgets, and mass and energy balances. The calculated ingestion and inhalation rates are closely related. Various age and sex classes of man are taken into account. EWAM is best described as a deterministic equilibrium or steady-state model, operating on a daily time-scale, with both detailed research and more general assessment model features. The parameters of EWAM are reviewed and suitable values recommended to allow biologically meaningful predictions

  9. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  10. Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen.

    NARCIS (Netherlands)

    Motta, A C; Marliere, M; Peltre, G; Sterenberg, P A; Lacroix, G

    2006-01-01

    BACKGROUND/AIM: Pollen cytoplasmic granules (PCG) are loaded with allergens. They are released from grass pollen grains following contact with water and can form a respirable allergenic aerosol. On the other hand, the traffic-related air pollutants NO2 and O3 are known to be involved in the current

  11. Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen

    NARCIS (Netherlands)

    Motta, AC; Marliere, M; Peltre, G; Sterenberg, PA; Lacroix, G

    2006-01-01

    Background/Aim: Pollen cytoplasmic granules (PCG) are loaded with allergens. They are released from grass pollen grains following contact with water and can form a respirable allergenic aerosol. On the other hand, the traffic-related air pollutants NO2 and O-3 are known to be involved in the current

  12. Association equilibrium constants and populations of clusters (H2O)n(g) and (D2O)n(g): differences between isotopomers and a possible relation to isotope enrichment

    International Nuclear Information System (INIS)

    Slanina, Z.

    1986-01-01

    Equilibrium constants of H 2 O(g) and D 2 O(g) associations to clusters (H 2 O) n (g) and (D 2 O) n (g) were calculated on the basis of the ab initio SCF CI MCY-B water-water pair potential. Populations of the components of equilibrium cluster mixtures were evaluated at various temperatures and pressures for both isotopomeric series. Differences between the H and D steam are pointed out and possible consequences are discussed. (author)

  13. Molecular adsorption steers bacterial swimming at the air/water interface.

    Science.gov (United States)

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. The standard genetic code and its relation to mutational pressure: robustness and equilibrium criteria

    International Nuclear Information System (INIS)

    Hernandez Caceres, Jose Luis; Hong, Rolando; Martinez Ortiz, Carlos; Sautie Castellanos, Miguel; Valdes, Kiria; Guevara Erra, Ramon

    2004-10-01

    Under the assumption of even point mutation pressure on the DNA strand, rates for transitions from one amino acid into another were assessed. Nearly 25% of all mutations were silent. About 48% of the mutations from a given amino acid stream either into the same amino acid or into an amino acid of the same class. These results suggest a great stability of the Standard Genetic Code respect to mutation load. Concepts from chemical equilibrium theory are applicable into this case provided that mutation rate constants are given. It was obtained that unequal synonymic codon usage may lead to changes in the equilibrium concentrations. Data from real biological species showed that several amino acids are close to the respective equilibrium concentration. However in all the cases the concentration of leucine nearly doubled its equilibrium concentration, whereas for the stop command (Term) it was about 10 times lower. The overall distance from equilibrium for a set of species suggests that eukaryotes are closer to equilibrium than prokaryotes, and the HIV virus was closest to equilibrium among 15 species. We obtained that contemporary species are closer to the equilibrium than the Last Universal Common Ancestor (LUCA) was. Similarly, nonpreserved regions in proteins are closer to equilibrium than the preserved ones. We suggest that this approach can be useful for exploring some aspects of biological evolution in the framework of Standard Genetic Code properties. (author)

  15. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  16. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    Science.gov (United States)

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  17. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  18. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  19. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    Science.gov (United States)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  20. Simulation study of air and water cooled photovoltaic panel using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  1. First measurement of radon transfer. Water - skin - blood - air

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Grunewald, W.A.

    2000-01-01

    While radon is disliked in uranium mines and homes, it is used medically in radon spas for the treatment of several ailments. The transfer of radon gas from water, through skin into blood and into expiratory air was studied completely for the first time for a person resting 20-30 min in radon water. For waterborne radon concentrations of 1500±100 Bq/L, 4±1 Bq/L were measured in the blood and 2.4±0.5 kBq/m 3 (Bq/L) in the expiratory air. The results can be understood according to the principles of physiology. The nature of the experiments excluded persons other than the authors. Hence the study has been radiometric (physical), not clinical (medical). (orig.)

  2. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels

    International Nuclear Information System (INIS)

    Biagini, Enrico

    2016-01-01

    Highlights: • Equilibrium model validated for coals, torrefied/green biomasses, in different gasifiers. • Maps of syngas composition, LHV and CGE for ER = 0–0.6, T = 500–2000 K, EBP = 0.004–0.158. • Effect of unconverted carbon, fuel moisture and overoxidation quantified. • Parameters for the maximum efficiency determined as functions of EBP. • EBP proven to be a good parameter for the quantitative comparison of different fuels. - Abstract: A non-stoichiometric equilibrium model based on the minimization of the Gibbs free energy was used to study the isothermal and adiabatic air-blown gasification of solid fuels on a carbonization curve from fossil (hard/brown coals, peat) to renewable (green biomasses and cellulose) fuels, including torrefied biofuels. The maps of syngas composition, heating value and process efficiency were provided as functions of equivalent ratio (oxygen-to-fuel ratio) in the range 0–0.6, temperature in 500–2000 K, and a fuel parameter, which allowed different cases to be quantitatively compared. The effect of fuel moisture, unconverted carbon and conditions to limit the tar formation was also studied. Cold gas efficiency >0.75 can be achieved for coals at high temperature, using entrained beds (which give low unconverted carbon), and improved by moisture/added steam. The bigger efficiency of green biomasses is only potential, as the practical limits (high temperature required to limit tar formation, moisture content and unconverted carbon in small gasifiers) strongly reduce the gasification performance. Torrefied biomasses (and plastics having an intermediate fuel parameter between coals and green biomasses) can attain high efficiency also in real conditions. The results shown in this work can be useful to evaluate the most promising feedstock (depending on its composition and possible pre-treatment/upgrading), define the operating conditions for maximizing the syngas heating value or the global efficiency, assess the

  3. Energy efficiency method of purification of water and air from bacteria

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Khaydarov, R.R.

    2005-01-01

    Full text: Creation of harmless and cheap water disinfection methods is one of important tasks today. Besides most of building ventilation systems and air conditioners using in many countries have inside some capacity of water as the component allowing to cooling air. There is a chance that if anthrax or legionella or several other dangerous bacteria will be entered in this water then such conditioners will become the source of infection, and it can lead to catastrophic consequences. To prevent this possibility we offer to set in each source of drinking water or air conditioner (especially those in public places) mini-size cheap energy-effective device developed using our new technology. This me of water disinfection is based on using of electrochemical processes treatment by electrostatic field. Experimental results from tests conducted in Uzbekistan, the United States, Russia, etc. concerning the destruction of vegetative forms of bacteria follow: Energy consumption of the unit with a production capacity of 5 cubic meters of water per hour did not exceed 50 watts. This is significantly less than conventional methods. The destruction time for bacteria did not exceed 60 minutes at a bacterial concentration 1000 CFU/L. Spores are more resistant to destruction than vegetative cells (orders of magnitude more difficult). Preliminary test results for destroying the spore form of bacteria follow: Bacteria destruction time was 2 hours at an initial concentration of 1000 CFU/L. Energy consumption of the unit with a production capacity of 5 cubic meters of water per hour did not exceed 50 watts The purpose of this work is further elaboration of this technology, and its accommodation to conditions of different countries. Test models will be made and tested in laboratories of interested countries. Research would be conducted with acceptable bacteria and analog spores. As the result, new cheap and energy-effective devices for disinfection of drinking water and defense of

  4. Evaluation and comparison of quantitative and qualitative effects of scattering in air and water media in planar and SPECT imaging

    International Nuclear Information System (INIS)

    Saeed Sarkar; Akram Abehesht

    2004-01-01

    In this research the scatter fraction (%SF) in air and water media in both planar and tomographic imaging was evaluated in order to find the differences and assist the nuclear medicine specialists in interpreting the images.Two small Perspex cylinders of equal dimensions, diameter = 5 cm and height = 5 cm, with an angle of 1200 relative to each other was fixed at the bottom of a 22 cm diameter and 26 cm height Perspex cylinder to make a scattering phantom. One of the cylinders was filled with water representing soft tissue while the other one was left empty (air). The big cylinder was filled with water up to the upper level of small cylinders. 2.5 mCi of 99m Tc was mixed uniformly with the water in the big cylinder. Both planar and tomographic images of the phantom were obtained by a single head SPECT system with %20 energy windows. %SF is defined as %SF = (cold/hot) where, cold and hot are the number of counts in ROIs of each small cold cylinder and big hot cylinder respectively. ROIs selected around the image of each cylinder were equal to the exact size of the objects. In planar image the %SF was found to be %3.24±0.03 and % 3.23±0.03 in air and water respectively. On the other hand the %SF in SPECT images were %6.12±0.05 and %4.47±0.04 in air and water respectively. In planar image no difference is seen in %SF between small cylinders containing air and water whereas in SPECT image the %SF in air cylinder is %27 more than the water cylinder. This has caused more blurred edges for the image of air cylinder. Lower %SF in the small water cylinder may be caused by absorption of scattered events in the water medium. The %SF in SPECT is almost twice the planar imaging for water medium, whereas on the average the %SF in planar imaging is almost %60 of the SPECT. These differences account for better contrast and sharper edges of small cold cylinders in planar imaging. (authors)

  5. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  6. Do intertidal flats ever reach equilibrium?

    NARCIS (Netherlands)

    Maan, D.C.; van Prooijen, B.C.; Wang, Z.B.; de Vriend, H.J.

    2015-01-01

    Various studies have identified a strong relation between the hydrodynamic forces and the equilibrium profile for intertidal flats. A thorough understanding of the interplay between the hydrodynamic forces and the morphology, however, concerns more than the equilibrium state alone. We study the

  7. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure

    NARCIS (Netherlands)

    Kudryashova, E.V.; Visser, A.J.W.G.; Jongh, H.H.J.de

    2005-01-01

    In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native

  8. Influential third party on water right conflict: A Game Theory approach to achieve the desired equilibrium (case study: Ilam dam, Iran).

    Science.gov (United States)

    Zanjanian, Hossein; Abdolabadi, Hamid; Niksokhan, Mohammad Hossein; Sarang, Amin

    2018-05-15

    Allocating water to organizational stakeholders poses a vital challenge to water managers. Organizations which benefit from water as the primary factor input attempt to achieve their objectives using cost-effective and quick-return strategies, such as increasing the water rights. In such circumstances, lack of water probably results in the conflict. Recognizing the management approaches, organizational priorities, and the stakeholders' influence power can play a dominant role in analyzing the future of such conflicts. In this paper, we analyzed the conflict of water allocation in Ilam dam among organizational stakeholders. We defined the strategies based on the background of the game and organizational objectives. The influence power of stakeholders and the numerical weights of strategies were quantified based on the expert judgment method. The relative priorities of strategies were then calculated for each state of the conflict. We used the GMCR + model to study the actions of stakeholders. Results suggest that the Jihad Agriculture Organization and the Water and Wastewater Company withdraw more water; hence, there exists no water to meet the environmental water right. In this case, the participation of the third party, such as the Governorship and the Justice can change the future of the conflict, and result in moving to the optimal state. However, results from Inverse GMCR analysis demonstrate that Justice is the most influential third party that can move the conflict towards a desired equilibrium (optimal case). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Experimental study of flow monitoring instruments in air-water, two-phase downflow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Hayes, P.H.; Wynn, M.C.

    1976-01-01

    The performance of a turbine meter, target flow meter (drag disk), and a gamma densitometer was studied in air-water, two-phase vertical downflow. Air and water were metered into an 0.0889-m-ID (3.5-in.) piping system; air flows ranged from 0.007 to 0.3 m 3 /sec (16 to 500 scfm) and water flows ranged from 0.0006 to 0.03 m 3 /sec (10 to 500 gpm). The study included effects of flow rate, quality, flow regime, and flow dispersion on the mean and fluctuating components of the instrument signals. Wire screen flow dispersers located at the inlet to the test section had a significant effect on the readings of the drag disk and gamma densitometer, but had little effect on the turbine. Further, when flow dispersers were used, mass flow rates determined from the three instrument readings and a two-velocity, slip flow model showed good agreement with actual mass flow rate over a three-fold range in quality; mass flows determined with the drag disk and densitometer readings assuming homogeneous flow were nearly as accurate. However, when mass flows were calculated using the turbine and densitometer or turbine and drag disk readings assuming homogeneous flow, results were scattered and relatively inaccurate compared to the actual mass flows. Turbine meter data were used with a two-velocity turbine model and continuity relationships for each phase to determine the void fraction and mean phase velocities in the test section. The void fraction was compared with single beam gamma densitometer results and fluid momentum calculated from a two-velocity model was compared with drag disk readings

  10. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  11. Vapor-liquid equilibrium ratio of trace furfural in water+1-butanol system; Mizu+1-butanorukei ni okeru biryo no furufuraru no kieki heikohi

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, A.; Hatate, Y.; Aikou, R. [Kagoshima Univ. (Japan). Faculty of Engineering

    1997-11-01

    Vapor-liquid equilibria of a water + 1-butanol system containing a trace amount of furfural were measured at atmospheric pressure by use of a Iino-type still for systems of limited miscibility. Vapor-liquid compositions for the major components (water and 1-butanol) are shown to be nearly coincident with those of the binary system. In the partially miscible region, the vapor-liquid equilibrium ratios of the trace component (furfural) at bubble point were found to be 2.5 and 0.46. Consequently, the partition coefficient of the trace component between the two liquid phases is 5.4. The equilibrium ratio curve of the trace component is presented, in which the calculated curve within the partially miscible region is shown to be coincident with the experimental data. 5 refs., 3 figs., 1 tab.

  12. Organic tank safety project: Equilibrium moisture determination task. FY 1998 annual progress report

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1998-08-01

    During fiscal year 1998, PNNL investigated the effect of P H 2 O at or near maximum tank waste surface temperatures on the equilibrium water content of selected Hanford waste samples. These studies were performed to determine how dry organic-bearing wastes will become if exposed to environmental Hanford water partial pressures. The samples tested were obtained from Organic Watch List Tanks. At 26 C, the lowest temperature used, the water partial pressures ranged from 2 to 22 torr. At 41 C, the highest temperature used, the water partial pressures ranged from 3.5 to 48 torr. When the aliquots exposed to the lowest and highest water partial pressures reached their equilibrium or near-equilibrium water contents, they were exchanged to determine if hysteresis occurred. In some experiments, once equilibrated, aliquots not used in the hysteresis experiments were allowed to equilibrate at room temperature (23 C) until the hysteresis experiments ended; this provides a measure of the effect of temperature

  13. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  14. Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure.

    Science.gov (United States)

    Li, Li Jun; Hong, Peng; Jiang, Ze Dong; Yang, Yuan Fan; Du, Xi Ping; Sun, Hao; Wu, Li Ming; Ni, Hui; Chen, Feng

    2018-01-15

    d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diurnal Variations of Equilibrium Factor and Unattached fraction of Radon Progeny in Some Houses and Laboratories

    International Nuclear Information System (INIS)

    Lee, Seung Chan; Kang, Hee Dong; Kim, Chang Kyu; Lee, Dong Myung

    2001-01-01

    The variation characteristics of radon concentration, equilibrium equivalent concentration and equilibrium factor in some house and laboratory buildings have been studied. The variation of equilibrium factor and the unattached fraction of radon progeny with ventilation condition have been also estimated. The averages of radon concentration, equilibrium equivalent concentration and equilibrium factor were 30 Bq m -3 , 19.6 Bq m -3 and 0.65 in seven houses, while 55.0 Bq m -3 , 31.9 Bq m -3 and 0.58 in three laboratory buildings, respectively. The diurnal variation of radon concentration, equilibrium equivalent concentration and equilibrium factor in indoor showed a typical pattern that the radon concentration, equilibrium equivalent concentration and equilibrium factor increased at dawn and morning, while decreased at midday and evening. While the equilibrium factor rate deceased in the indoor environment which was well ventilated, the unattached fraction of radon progeny increased. The equilibrium factor was in proportion to air pressure and humidity of indoor, whereas in inverse proportion to temperature

  16. Earth, Air, Fire, & Water: Resource Guide 6. The Arts and Learning, Interdisciplinary Resources for Education.

    Science.gov (United States)

    Lee, Ronald T., Ed.

    This resource guide is intended to aid practitioners in the design of new curriculum units or the enrichment of existing units by suggesting activities and resources in the topic areas of earth, air, fire, and water. Special projects and trips relating to these topic areas are proposed. A sample arts networking system used to integrate various…

  17. Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization

    Directory of Open Access Journals (Sweden)

    Zhisong Chen

    2018-04-01

    Full Text Available The inter-basin water transfer (IBWT projects have quasi-public-welfare characteristics, whose operations should take into account the water green level (WGL and social welfare maximization (SWM. This paper explores the interactions between multiple stakeholders of an IBWT green supply chain through the game-theoretic and coordination research approaches considering the government’s subsidy to the WGL improvement under the SWM. The study and its findings complement the IBWT literature in the area of the green supply chain and social welfare maximization modeling. The analytical modeling results with and without considering the SWM are compared. A numerical analysis for a hypothetical IBWT green supply chain is conducted to draw strategic insights from this study. The research results indicate that (1 If the SWM is not considered, coordination strategy could effectively improve the operations performances of the IBWT supply chain and its members, the consumers’ surplus, and the social welfare when compared with the equilibrium strategy; (2 If the SWM is considered, the IBWT green supply chain and its members have a strong intention to adopt the equilibrium strategy to gain more profits, while the government has a strong intention to encourage the IBWT green supply chain and its members to adopt the coordination strategy to maximize social welfare with a smaller public subsidy; (3 The government’s subsidy policy should be designed and provided to encourage the IBWT green supply chain and its members to improve WGL and pursue the SWM, and a subsidy threshold policy can be designed to maximize social welfare with a lower subsidy budget: only when the IBWT green supply chain and its members adopt the coordination strategy can they get a subsidy from the government.

  18. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    Science.gov (United States)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime

  19. Air/water exchange of mercury in the Everglades I: the behavior of dissolved gaseous mercury in the Everglades Nutrient Removal Project

    Science.gov (United States)

    Zhang; Lindberg

    2000-10-02

    From 1996 to 1998 we determined dissolved gaseous mercury (DGM) in waters of the Everglades Nutrient Removal Project (ENR), a constructed wetlands. The concentrations of DGM measured in these waters (mean 7.3 +/- 9.5 pg l(-1)) are among the lowest reported in the literature, and suggest a system often near or slightly above equilibrium with Hg in ambient air. DGM exhibited both seasonal and diel trends, peaking at midday and during the summer. A simple box budget model of DGM in waters of the Everglades was developed using an interactive spreadsheet based on a mass balance among light-induced reduction of HgII (production of DGM), Hg0 oxidation (removal), and Hg0 evasion in a box (water column) consisting of a surface region with sunlight available and a lower dark region. The modeling results suggest high sensitivity of hourly DGM concentrations to DGM production rates and initial DGM levels. The sensitivity to Hg oxidation is lower than the sensitivity to DGM production. The model performance demonstrates successful simulations of a variety of DGM trends in the Everglades. In particular, it clearly demonstrates how it is possible to measure comparable rates of evasion over several Everglades sites with different DGM concentrations.

  20. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2010-07-01

    Full Text Available The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS–10 was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air library and the GSW (Gibbs SeaWater library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org. This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i almost unlimited extension with respect to additional properties or relations, (ii an extraction of self-contained sub-libraries, (iii separate updating of the empirical thermodynamic potentials, and (iv code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site.

    1

  1. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  2. Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events

    Directory of Open Access Journals (Sweden)

    Mohsen Besharat

    2017-01-01

    Full Text Available An experimental assessment of an air pocket (AP, confined in a compressed air vessel (CAV, has been investigated under several different water hammer (WH events to better define the use of protection devices or compressed air energy storage (CAES systems. This research focuses on the size of an AP within an air vessel and tries to describe how it affects important parameters of the system, i.e., the pressure in the pipe, stored pressure, flow velocity, displaced volume of water and water level in the CAV. Results present a specific range of air pockets based on a dimensionless parameter extractable for other real systems.

  3. Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of the Methanethiol + Methane + Water Ternary System at 304, 334, and 364 K

    DEFF Research Database (Denmark)

    Awan, Javeed; Tsivintzelis, Ioannis; Valtz, Alain

    2012-01-01

    New vapor–liquid–liquid equilibrium (VLLE) data for methanethiol (CH3SH) + methane (CH4) + water (H2O) have been obtained at three temperatures (304, 334, and 364 K) and pressures up to 9 MPa. A “static-analytical” method was used to perform all of the measurements. The objective was to provide...

  4. Motor vehicle-related air toxics study. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    Section 202 (1)(1) of the Clean Air Act (CAA), as amended (Section 206 of the Clean Air Act Amendments) (CAAA) of 1990 added paragraph (1) to Section 202 of the (CAA), directs the Environmental Protection Agency (EPA) to complete a study by May 15, 1992 of the need for, and feasibility of, controlling emissions of toxic air pollutants which are unregulated under the Act and associated with motor vehicles and motor vehicle fuels. The report has been prepared in response to Section 202 (1)(1). Specific pollutants or pollutant categories which are discussed in the report include benezene, formaldehyde, 1,3-butadiene, acetaldehyde, diesel particulate matter, gasoline particulate matter, and gasoline vapors as well as certain of the metals and motor vehicle-related pollutants identified in Section 112 of the Clean Air Act. The focus of the report is on carcinogenic risk. The study attempts to summarize what is known about motor vehicle-related air toxics and to present all significant scientific opinion on each issue

  5. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  6. Dead fuel moisture estimation with MSG-SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Sandholt, Inge; Aguado, Inmaculada

    2010-01-01

    In this study we propose to use remote sensing data to estimate hourly meteorological data and then assess the moisture content of dead fuels. Three different models to estimate the equilibrium moisture content (EMC) were applied together with remotely sensed retrieved air temperature and relative...... humidity. The input data were acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, on board the Meteosat Second Generation (MSG) satellite, from which air temperature and relative humidity were estimated every 15 min. Air temperature estimations are based on the Temperature-Vegetation...... Index (TVX) algorithm. This algorithm exploits the inverse linear relationship between the land surface temperature and the vegetation fractional cover. This relationship was evaluated in a spatial window where the meteorological forcing is assumed to be constant. To estimate the vapour pressure...

  7. The uptake of uranium and radium from food and water in relation to calcium

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1988-01-01

    Observed ratios for dietary radium and calcium suggest that at least a 20 to 70 fold discrimination exists against radium uptake in the skeleton relative to calcium. It has been widely shown in many countries around the world that the relative radium to calcium ratio in the human skeleton varies from country to country, but within geographic areas, it appears to be relatively invariant with age. The ratio of radium-226 to calcium in intake, relative to the radium-226 to calcium value in the skeleton, is called the observed ratio, and varies over the world from a value of 0.013 to 0.039, with a mean of 0.024. In 1975, I inferred a mean observed ratio for uranium of 0.057 for the US. These findings suggest that man is in equilibrium with radium-226 with respect to the calcium in food and water. Most of the calcium would be ingested in diet, as would a significant amount, but not necessarily all, of the radium. The role of calcium for intake in water has not been examined

  8. PROCEDURES FOR THE DERIVATION OF EQUILIBRIUM ...

    Science.gov (United States)

    This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations for 32 nonionic organic chemicals in sediment which are protective of the presence of freshwater and marine benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it accounts for the varying biological availability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms. EqP can be used to calculate ESBs for any toxicity endpoint for which there are water-only toxicity data; it is not limited to any single effect endpoint. For the purposes of this document, ESBs for 32 nonionic organic chemicals, including several low molecular weight aliphatic and aromatic compounds, pesticides, and phthalates, were derived using Final Chronic Values (FCV) from Water Quality Criteria (WQC) or Secondary Chronic Values (SCV) derived from existing toxicological data using the Great Lakes Water Quality Initiative (GLI) or narcosis theory approaches. These values are intended to be the concentration of each chemical in water that is protective of the presence of aquatic life. For nonionic organic chemicals demonstrating a narcotic mode of action, ESBs derived using the GLI approach specifically for fres

  9. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  10. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  11. (Vapor + liquid) equilibrium for the binary systems {l_brace}water + glycerol{r_brace} and {l_brace}ethanol + glycerol, ethyl stearate, and ethyl palmitate{r_brace} at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Renata; Santos, Priscilla G. dos; Mafra, Marcos R. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Cardozo-Filho, Lucio [Department of Chemical Engineering, Maringa State University (UEM), Av. Colombo 5790, 87020-900 Maringa, PR (Brazil); Corazza, Marcos L., E-mail: corazza@ufpr.br [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil)

    2011-12-15

    Highlights: > We measured VLE for the binary system {l_brace}ethyl stearate and palmitate + ethanol{r_brace}. > The boiling temperatures were obtained using Othmer-type ebuliometer. > The experimental data were modeled using NRTL, UNIQUAC, and UNIFAC models. - Abstract: This work reports the experimental measurements {l_brace}(vapor + liquid) equilibrium{r_brace} for the systems {l_brace}water(1) + glycerol(2){r_brace}, {l_brace}ethanol(1) + glycerol(2){r_brace}, {l_brace}ethanol(1) + ethyl stearate(2){r_brace}, and {l_brace}ethanol(1) + ethyl palmitate(2){r_brace}. Boiling temperatures were measured using an Othmer-type ebulliometer over a pressure range of 14 kPa to 96 kPa. The experimental data were well correlated using the NRTL and UNIQUAC models. The performance of the UNIFAC-Dortmund model in relation to predicting the phase equilibrium of the systems was also studied.

  12. Ammonia as a respiratory gas in water and air-breathing fishes.

    Science.gov (United States)

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  13. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  14. Aspects of water and air ingress accidents in HTRs

    International Nuclear Information System (INIS)

    Wolters, J.

    1981-01-01

    The work has contributed towards improving the understanding of the processes taking place during water and air ingress accidents. The favourable design features of the THTR limit the pressure build-up in the primary circuit to values below critical values in water ingress accidents even when the source of water is not identified and shut-off. A pressure reduction by safety valves is in this case not necessary so that the accident consequences remain confined in the primary circuit. The expected air ingress rates following a depressurization accident through an opening in the top head of the PCRV are extremely small in the case of complete integration of the primary circuit in the PCRV. The chemical processes in the primary circuit remain so limited that no danger for the fuel elements and the containment exists. The often feared ''graphite fire'' can be excluded even in the case when the circulators of the after-heat removal systems take in a high percentage of containment atmosphere. The core is cooled down safely

  15. Anxiety and health problems related to air travel.

    Science.gov (United States)

    McIntosh, I B; Swanson, V; Power, K G; Raeside, F; Dempster, C

    1998-12-01

    A significant proportion of air travelers experience situational anxiety and physical health problems. Take-off and landing are assumed to be stressful, but anxiety related to other aspects of the air travel process, anxiety coping strategies, and in-flight health problems have not previously been investigated. We aimed to investigate frequency of perceived anxiety at procedural stages of air travel, individual strategies used to reduce such anxiety, and frequency of health problems on short-haul and long-haul flights. A questionnaire measuring the occurrence and frequency of the above was administered to two samples of intending travelers during a 3 month period to: (a) 138 travel agency clients, and (b) 100 individuals attending a hospital travel clinic. Of the 238 respondents, two thirds were women. Take-off and landing were a perceived source of anxiety for about 40% of respondents, flight delays for over 50%, and customs and baggage reclaim for a third of individuals. Most frequent anxiety-reduction methods included alcohol and cigarette use, and distraction or relaxation techniques. Physical health problems related to air travel were common, and there was a strong relationship between such problems and frequency of anxiety. Travel agency clients reported more anxiety but not more physical health symptoms overall than travel clinic clients. Women reported greater air-travel anxiety, and more somatic symptoms than men. Significant numbers of air travelers report perceived anxiety related to aspects of travel, and this is associated with health problems during flights. Airlines and travel companies could institute specific measures, including improved information and communication, to reassure clients and thereby diminish anxiety during stages of air-travel. Medical practitioners and travel agencies should also be aware of the potential stresses of air travel and the need for additional information and advice.

  16. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  17. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  18. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  19. Numerical simulation of the impact of water-air fronts on radionuclides plumes in heterogeneous media

    International Nuclear Information System (INIS)

    Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.

    2004-01-01

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  20. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  1. A hetero retro Diels-Alder reaction in aqueous solution : A dramatic water-induced increase of the equilibrium constant and inhibition of cycloreversion

    NARCIS (Netherlands)

    Wijnen, J.W; Engberts, J.B.F.N.

    The adduct of the Diels-Alder reaction of nitrosobenzene with cyclopentadiene is not stable in solution. The equilibrium constant for the reaction depends strongly on the medium and water induces a spectacular shift to the adduct. Comparison with the bimolecular addition of nitrosobenzene to

  2. Treatability test of a stacked-tray air stripper for VOC in water

    Energy Technology Data Exchange (ETDEWEB)

    Pico, T., LLNL

    1998-04-01

    A common strategy for hydraulic containment and mass removal at VOC contaminated sites is `pump and treat (P&T)`. In P&T operations, contaminated ground water is pumped from wells, treated above ground, and discharged. Many P&T remediation systems at VOC sites rely on air stripping technology because VOCs are easily transferred to the vapor phase. In stacked-tray air strippers, contaminated water is aerated while it flows down through a series of trays. System operations at LLNL are strictly regulated by the California and federal Environmental Protection Agencies (Cal/EPA and EPA), the Bay Area Air Quality Management District (BAAQMD), the California Regional Water Quality Control Board (RWQCB) and the Department of Toxic Substances Control (DTSC). These agencies set discharge limits, require performance monitoring, and assess penalties for non-compliance. National laboratories are also subject to scrutiny by the public and other government agencies. This extensive oversight makes it necessary to accurately predict field treatment performance at new extraction locations to ensure compliance with all requirements prior to facility activation. This paper presents treatability test results for a stacked- tray air stripper conducted at LLNL and compares them to the vendor`s modeling software results.

  3. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  4. Air Emissions Damages from Municipal Drinking Water Treatment Under Current and Proposed Regulatory Standards.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2017-09-19

    Water treatment processes present intersectoral and cross-media risk trade-offs that are not presently considered in Safe Drinking Water Act regulatory analyses. This paper develops a method for assessing the air emission implications of common municipal water treatment processes used to comply with recently promulgated and proposed regulatory standards, including concentration limits for, lead and copper, disinfection byproducts, chromium(VI), strontium, and PFOA/PFOS. Life-cycle models of electricity and chemical consumption for individual drinking water unit processes are used to estimate embedded NO x , SO 2 , PM 2.5 , and CO 2 emissions on a cubic meter basis. We estimate air emission damages from currently installed treatment processes at U.S. drinking water facilities to be on the order of $500 million USD annually. Fully complying with six promulgated and proposed rules would increase baseline air emission damages by approximately 50%, with three-quarters of these damages originating from chemical manufacturing. Despite the magnitude of these air emission damages, the net benefit of currently implemented rules remains positive. For some proposed rules, however, the promise of net benefits remains contingent on technology choice.

  5. Adsorption Equilibrium and Kinetics at Goethite-Water and Related Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Lynn Ellen [Univ. of Texas, Austin, TX (United States)

    2017-04-15

    This research study is an important component of a broader comprehensive project, “Geochemistry of Interfaces: From Surfaces to Interlayers to Clusters,” which sought to identify and evaluate the critical molecular phenomena at metal-oxide interfaces that control many geochemical and environmental processes. The primary goal of this research study was to better understand and predict adsorption of metal ions at mineral/water surfaces. Macroscopic data in traditional batch experiments was used to develop predictive models that characterize sorption in complex systems containing a wide range of background solution compositions. Our studies focused on systems involving alkaline earth metal (Mg2+, Ca2+, Sr2+, Ba2+) and heavy metal (Hg2+, Co2+, Cd2+, Cu2+, Zn2+, Pb2+) cations. The anions we selected for study included Cl-, NO3-, ClO4-, SO42-, CO32- and SeO32- and the background electrolyte cations we examined included (Na+, K+, Rb+ and Cs+) because these represent a range of ion sizes and have varying potentials for forming ion-pairs or ternary complexes with the metal ions studied. The research led to the development of a modified titration congruency approach for estimating site densities for mineral oxides such as goethite. The CD-MUSIC version of the surface complexation modeling approach was applied to potentiometric titration data and macroscopic adsorption data for single-solute heavy metals, oxyanions, alkaline earth metals and background electrolytes over a range of pH and ionic strength. The model was capable of predicting sorption in bi-solute systems containing multiple cations, cations and oxyanions, and transition metal cations and alkaline earth metal ions. Incorporation of ternary

  6. Departure from Local Thermodynamic Equilibrium in argon plasmas sustained in a Torche à Injection Axiale sur Guide d'Ondes

    International Nuclear Information System (INIS)

    Rincón, R.; Muñoz, J.; Calzada, M.D.

    2015-01-01

    Plasma torches are suitable plasma sources for a wide range of applications. The capability of these discharges to produce processes like sample excitation or decomposition of molecules inside them depends on the density of the plasma species and their energies (temperatures). The relation between these parameters determines the specific state of thermodynamic equilibrium in the discharge. Thus, the understanding of plasma possibilities for application purposes is related to the knowledge of the plasma thermodynamic equilibrium degree. In this paper a discussion about the equilibrium state for Ar plasmas generated by using a Torche à Injection Axiale sur Guide d'Ondes, TIAGO device, is presented. Emission spectroscopy techniques were used to measure gas temperature and electron density at the exit of the nozzle torch and along the dart. Boltzmann-plots as well as b p parameters were calculated to characterize the type and degree of departure from partial Local Saha Equilibrium (pLSE). This study indicates that the closer situation to Local Thermodynamic Equilibrium (LTE) of the plasma corresponds to larger Ar flows which highlights the importance of the nitrogen (atmosphere surrounding the plasma) in the kinetics of Ar-TIAGO discharges. - Highlights: • Discharges sustained in Ar using a TIAGO Torch show a significant departure from Local Thermodynamic Equilibrium. • Nitrogen entrance from surrounding air highly influences Thermodynamic Equilibrium. • Departure from LTE has been studied by means of Boltzmann plots and b p parameters. • The discharge is ionizing at the nozzle exit plasma, while along the dart it becomes recombining

  7. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules

    NARCIS (Netherlands)

    Martin, A.H.; Cohen Stuart, M.A.; Bos, M.A.; Vliet, T. van

    2005-01-01

    The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, σf,

  8. Local Nash equilibrium in social networks.

    Science.gov (United States)

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  9. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  10. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    Science.gov (United States)

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.

  11. Cascade air stripping: Techno-economic evaluation of a new ground water treatment process

    International Nuclear Information System (INIS)

    Nirmalakhandan, N.; Peace, G.L.; Shanbhag, A.R.; Speece, R.E.

    1992-01-01

    A simple modification of the conventional air-stripping process introduced as cascade air stripping is proposed for efficient and economical removal of semivolatile and low volatility contaminants from ground water. The technical feasibility and economic viability of this process are evaluated using field test results and cost model simulations. The field tests enabled the process model to be verified at various water flow rates ranging from 150 gpm to 400 gpm. The field study also demonstrated the feasibility of the proposed system at a near full-scale level. Cost models were used to compare the proposed process to conventional air stripping and granular-activated carbon adsorption in removing a range of contaminants. This analysis showed that the treatment cost (cents/1,000 gal) of cascade air stripping is about 15% lower than conventional air stripping and about 40% lower than granular-activated carbon adsorption

  12. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-01-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bq kg -1 for 238 U, 0.48-93.9 Bq kg -1 for 234 U and 0.02-12.2 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, 236 U was detectable in some of the samples. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 μBq m -3 for 238 U, 0.96-38.0 μBq m -3 for 234 U, and 0.05-1.83 μBq m -3 for 235 U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBq l -1 for 238 U, 0.27-28.1 mBq l -1 for 234 U, and 0.01-0.88 mBq l -1 for 235 U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of

  13. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    Science.gov (United States)

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  14. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  15. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  16. Sampling tritiated water vapor from the atmosphere by an active system using silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Alegria, N., E-mail: natalia.alegria@ehu.es [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Idoeta, R.; Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain)

    2011-11-15

    Among the different methods used to collect the tritiated water vapor (HTO) contained in the atmosphere, one of the most worldwide used is its collection using an air pump, which forces the air to pass through a dry silica gel trap. The silica gel is then distilled to remove the water collected, which is measured in a liquid scintillation counting system. In this paper, an analysis of the water collection efficiency of the silica gel has been done as a function of the temperatures involved, the dimensions of the pipe driving the air into the silica gel traps, the air volume passing through the trap and the flow rates used. Among the obtained conclusions, it can be pointed out that placing the traps inside a cooled container, the amount of silica gel needed to collect all the water contained in the air passing through these traps can be estimated using a weather forecast and a psychometric chart. To do this, and as thermal equilibrium between incoming and open air should be established, a suitable design of the sampling system is proposed. - Highlights: > To recollect the atmosphere air tritiated water vapor, an active system was used. > The system is an air pump and three traps with silica gel connected by a rubber pipe. > The silica gel retention depends on the meteorological conditions and the flow rate. > The amount of water collected and the mass of silica gel need were calculated, F.

  17. Equilibrium chemical transformations in NaPO3 + NaCl melts

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Rodionov, Yu.I.

    1988-01-01

    Because of the problems of the burial of solidified radioactive wastes into different geological rock formations, in particular into massives of rock-salt, the state of molten polyphosphate-chloride mixtures (taking into account the chemical character of the interaction of their components) for a prolonged period of time. The equilibrium products of the reaction in the NaPO 3 -NaCl system were studied in melts in air in the composition range of 30-70 mole % NaCl. It was shown that with increase in the NaCl content in the mixtures, the polyphosphate gradually depolymerizes to sodium tri-, di-, and monophosphates, and the composition of the equilibrium melts is dependent only on the ratio between the components in the initial molten mixtures. The time until the equilibrium is attained is shorter, the higher is the experimental temperature

  18. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    Science.gov (United States)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  19. Research Article Special Issue

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... relative humidity [15]. Relative humidity is the ratio of the vapour pressure of air to its saturation vapour pressure [16]. Water activity and relative humidity are interrelated when vapour and temperature equilibrium are obtained around the sample. Honey stored at higher humidity causes the water vapour ...

  20. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  1. Choking flow modeling with mechanical and thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, H.J.; Ishii, M.; Revankar, S.T. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2006-01-15

    The mechanistic model, which considers the mechanical and thermal non-equilibrium, is described for two-phase choking flow. The choking mass flux is obtained from the momentum equation with the definition of choking. The key parameter for the mechanical non-equilibrium is a slip ratio. The dependent parameters for the slip ratio are identified. In this research, the slip ratio which is defined in the drift flux model is used to identify the impact parameters on the slip ratio. Because the slip ratio in the drift flux model is related to the distribution parameter and drift velocity, the adequate correlations depending on the flow regime are introduced in this study. For the thermal non-equilibrium, the model is developed with bubble conduction time and Bernoulli choking model. In case of highly subcooled water compared to the inlet pressure, the Bernoulli choking model using the pressure undershoot is used because there is no bubble generation in the test section. When the phase change happens inside the test section, two-phase choking model with relaxation time calculates the choking mass flux. According to the comparison of model prediction with experimental data shows good agreement. The developed model shows good prediction in both low and high pressure ranges. (author)

  2. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  3. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Lladosa, Estela; Monton, Juan B.; Burguet, MaCruz; Torre, Javier de la

    2008-01-01

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  4. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    International Nuclear Information System (INIS)

    Li, D D; Jiang, J; Zhao, Z; Yi, W S; Lan, G

    2013-01-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system

  5. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    Science.gov (United States)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  6. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  7. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water

    Science.gov (United States)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  8. Vibration tests on single heat exchanger tubes in air and static water

    International Nuclear Information System (INIS)

    Collinson, A.E.; Warneford, I.P.

    1978-07-01

    The vibrational characteristics of a 7 span straight tube and a 26 span U-tube have been investigated for the effects of fluid medium (air/water), tube-grid clearance, tube-grid contact force, vibration transmission and scale. Measured frequency response and mode shapes compared favourably with theoretical values, vibration with pin-pin tube support being most readily excited. The frequency reduction on immersion in water corresponded to an added mass equivalent to the liquid displaced mass. Dynamic magnifiers varied in the range 12 to 135 with mean values of 30 to 40 in water and 45 to 60 in air. Principal vibration modes and damping values were reproducible in a half-scale model of a U-tube. (author)

  9. Pre-service primary school teachers’ abilities in explaining water and air pollution scientifically

    Science.gov (United States)

    Lukmannudin; Sopandi, W.; Sujana, A.; Sukardi, R.

    2018-05-01

    The purpose of this study is to determine the ability of pre-service primary school teachers (PSPST) in explaining the phenomenon of water and air pollution scientifically. The research method used descriptive method of analysis with qualitative approach. The respondents were PSPTP at 4th semester. This study used a four-tier instrument diagnostic test. The number of subjects was 84 PSPTP at Universitas Pendidikan Indonesia, Kampus Daerah Sumedang. The results demonstrate the ability of PSPST in explaining water and air pollution scientifically. The results show that only 6% of PSPST who are able to explain the phenomenon of water pollution and only 4% of PSPST who are able to explain the phenomenon of air pollution. The fact should be attention for PSPST because these understanding are crucial in the process of learning activities in the classroom.

  10. Water Services in the Buenos Aires Metropolitan Area: How Does State Regulation Work?

    Directory of Open Access Journals (Sweden)

    Mariela Verónica Rocca

    2014-08-01

    Full Text Available This article deals with the State regulation of drinking water and sanitation services in the Metropolitan Area of Buenos Aires. Its main objective is to identify the continuities and ruptures in State regulation during the transition from private management (1993-2006 to renationalisation and State management (2006 onwards. The concept of “State capacities” (both administrative and relational is used to assess regulatory performance. For the administrative capacities, the correspondence between the design and resources of the agencies, as well as the differences between their formal functions and actual practices, is examined. For the relational capacities, the policies of the National Government and its interaction with both the water and sanitation companies and the regulatory and control agencies are considered. The analysis is based on official documents, legislation and statistics, company balance sheets and reports, newspaper articles and semi-structured interviews.

  11. Comparison of the dilational behaviour of adsorbed milk proteins at the air-water and oil-water interfaces.

    NARCIS (Netherlands)

    Williams, A.; Prins, A.

    1996-01-01

    The interfacial dilational properties of two milk proteins, β-casein and β-lactoglobulin, have been compared at the air-water and paraffin oil-water interfaces. The measurements were performed as a function of bulk protein concentration using a modified Langmuir trough technique at a frequency of

  12. Gibbs equilibrium averages and Bogolyubov measure

    International Nuclear Information System (INIS)

    Sankovich, D.P.

    2011-01-01

    Application of the functional integration methods in equilibrium statistical mechanics of quantum Bose-systems is considered. We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. We consider some problems related to integration with respect to this measure

  13. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  14. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    Science.gov (United States)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  15. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes

    DEFF Research Database (Denmark)

    Ellehøj, Mads Dam; Steen-Larsen, Hans Christian; Johnsen, Sigfus Johann

    2013-01-01

    RATIONALE: The equilibrium fractionation factors govern the relative change in the isotopic composition during phase transitions of water. The commonly used results, which were published more than 40 years ago, are limited to a minimum temperature of -33 degrees C. This limits the reliability...... values, with a temperature dependency in accordance with theory for equilibrium fractionation. We obtain the following expressions for the temperature dependency of the fractionation coefficients: ln(alpha(delta 2H)) = 0.2133 - 203.10/T + 48888/T-2 ln(alpha(delta 18O)) = 0.0831 - 49.192/T + 8312.5/T2...... Compared with previous experimental work, a significantly larger for H-2 is obtained while, for O-18, is larger for temperatures below -20 degrees C and slightly lower for temperatures above this. CONCLUSIONS: Using the new values for alpha, a Rayleigh distillation model shows significant changes in both...

  16. Earth, Air, Fire and Water in Our Elements

    Science.gov (United States)

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  17. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    Science.gov (United States)

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented. Copyright © 2016 Elsevier Inc. All rights

  18. Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves

    Directory of Open Access Journals (Sweden)

    Oscar E. Coronado-Hernández

    2017-02-01

    Full Text Available The emptying procedure is a common operation that engineers have to face in pipelines. This generates subatmospheric pressure caused by the expansion of air pockets, which can produce the collapse of the system depending on the conditions of the installation. To avoid this problem, engineers have to install air valves in pipelines. However, if air valves are not adequately designed, then the risk in pipelines continues. In this research, a mathematical model is developed to simulate an emptying process in pipelines that can be used for planning this type of operation. The one-dimensional proposed model analyzes the water phase propagation by a new rigid model and the air pockets effect using thermodynamic formulations. The proposed model is validated through measurements of the air pocket absolute pressure, the water velocity and the length of the emptying columns in an experimental facility. Results show that the proposed model can accurately predict the hydraulic characteristic variables.

  19. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Yan Shu; Rodenburg, Lisa A.; Dachs, Jordi; Eisenreich, Steven J.

    2008-01-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase ΣPCB concentrations averaged 1100 pg/m 3 and varied with temperature. Dissolved-phase ΣPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of ΣPCBs ranged from +0.2 to +630 ng m -2 d -1 . Annual fluxes of ΣPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 μg m -2 yr -1 , corresponding to an annual loss of +28 kg/yr of ΣPCBs from the Hudson River Estuary for the year of 2000. - Investigation of the air-water exchange of PCBs in the Hudson River Estuary suggests that PCBs with 5 or fewer chlorines undergo net volatilization

  20. A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Outrata, Jiří; Henrion, R.; Surowiec, T.

    2010-01-01

    Roč. 46, č. 3 (2010), s. 423-434 ISSN 0023-5954 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical programs with equilibrium constraints * S-stationary points * M-stationary points * Frechet normal cone * limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-a note on the relation between strong and m-stationarity for a class of mathematical programs with equilibrium constraints.pdf

  1. Tracking air-related health should be an integrated part of air quality management in South Africa

    CSIR Research Space (South Africa)

    Wright, CY

    2010-09-01

    Full Text Available that the largest burden of air pollution related diseases is on developing countries where air pollution levels are also among the highest in the world. Air pollution may cause symptoms ranging from eyes, nose and throat irritation, exacerbation of asthma...

  2. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  3. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism.

    Science.gov (United States)

    Costa, Lucio G; Chang, Yu-Chi; Cole, Toby B

    2017-06-01

    Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.

  4. Performance of a hydraulic air compressor for use in compressed air energy storage power systems

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. A.; Ahrens, F. W.

    1978-01-01

    A fluid mechanical analysis of a hydraulic air compression system for Compressed Air Energy Storage (CAES) application is presented. With this compression concept, air is charged into an underground reservoir, for later use in power generation, by entraining bubbles into a downward flow of water from a surface reservoir. Upon releasing the air in the underground reservoir, the water is pumped back to the surface. The analytical model delineated is used to predict the hydraulic compressor performance characteristics (pumping power, pump head, compression efficiency) as a function of water flow rate and system geometrical parameters. The results indicate that, although large water pumps are needed, efficiencies as high as 90% (relative to ideal isothermal compression) can be expected. This should result in lower compression power than for conventional compressor systems, while eliminating the need for the usual intercoolers and aftercooler.

  5. Information-theoretic equilibrium and observable thermalization

    Science.gov (United States)

    Anzà, F.; Vedral, V.

    2017-03-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  6. Review of CGE models of water issues

    NARCIS (Netherlands)

    Calzadilla, Alvaro; Rehdanz, Katrin; Roson, Roberto; Sartori, Martina; Tol, Richard S.J.

    2016-01-01

    Computable general equilibrium (CGE) models offer a method of studying the role of water resources and water scarcity in the context of international trade. This chapter reviews the literature on water-related CGE modeling by providing a survey that focuses on the implications of different modeling

  7. Chaboche-based cyclic material hardening models for 316 SS–316 SS weld under in-air and pressurized water reactor water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-08-15

    Highlights: • 316 SS–316 SS weld cyclically harden/soften while undergoing fatigue loading. • Cyclic hardening/softening creates cycle dependent stress-strain curves. • This necessitate to estimate the cycle dependence of material properties. • Cyclic evolution of Chaboche parameters are estimated under different conditions. - Abstract: This paper discusses a material hardening models for welds made from 316 stainless steel (SS) to 316 SS. The model parameters were estimated from the strain-versus-stress curves obtained from tensile and fatigue tests conducted under different conditions (air at room temperature, air at 300 °C, and primary loop water conditions for a pressurized water reactor). These data were used to check the fatigue cycle dependency of the material hardening parameters (yield stress, parameters related to Chaboche-based linear and nonlinear kinematic hardening models, etc.). The details of the experimental results, material hardening models, and associated calculated results are published in an Argonne report (ANL/LWRS-15/2). This paper summarizes the reported material parameters for 316 SS–316 SS welds and their dependency on fatigue cycles and other test conditions.

  8. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    KAUST Repository

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pö rtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  9. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    KAUST Repository

    Fusi, Marco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism\\'s thermal niche are equivalent to the upper limits of the organism\\'s functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab\\'s aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  10. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    Science.gov (United States)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  11. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    Science.gov (United States)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  12. External exposure to radionuclides in air, water, and soil

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Ryman, J.C.

    1996-01-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body

  13. Positive equilibrium in USA - China relations: durable or not?

    Directory of Open Access Journals (Sweden)

    Robert Sutter

    2011-01-01

    Full Text Available Repeated episodes of Chinese public pressure against the United States during 2009 and 2010 on a wide range of issues involving seas near China, Taiwan, Tibet, and economic disputes are subject to different interpretations but on balance they do not seem to seriously upset the prevailing positive equilibrium between the US and Chinese governments.

  14. On factors influencing air-water gas exchange in emergent wetlands

    Science.gov (United States)

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  15. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  16. Assessment of air, water and land-based sources of pollution in the ...

    African Journals Online (AJOL)

    A quantitative assessment of air, water and land-based sources of pollution to the coastal zone of the Accra-Tema Metropolitan Area of Ghana was conducted by making an emission inventory from information on industrial, commercial and domestic activities. Three sources of air pollution were analysed, viz, emission from ...

  17. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  18. Radioactivity of water and air in Misasa Spa, Japan

    International Nuclear Information System (INIS)

    Morinaga, H.; Mifune, M.; Furuno, K.

    1984-01-01

    Misasa Spa is one of the most highly radioactive hot springs in Japan, the waters of which contain mainly 222 Rn (437 +- 132 Bq.litre -1 ). Radon contents of indoor air of private houses and health resort hotels (built of wood) at Misasa Spa range from 18.5 to 55.5 mBq.litre -1 and 22.2 to 129.5 mBq.litre -1 , respectively. Radon contents in the air of facilities using spring waters at Misasa Branch Hospital of Okayama University were measured to be: bathroom 807 +- 78 mBq.1 -1 , Hubbard-tank bathroom, 5306 +- 2568 mBq.litre -1 ; the drinking hall, 1491 +- 178 mBq.litre -1 . The environmental and dose rate inside private houses has been measured to be 14.0 +- 1.8 μR.h -1 . Chromosome abberations (dicentrics) in the peripheral blood lymphocytes of residents of Misasa Spa were investigated in 14 persons; the mean value of aberration frequencies were 0.21%. (author)

  19. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  20. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-04-01

    ... Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT...) implementing requirements with respect to the Clean Air Act and the Federal Water Pollution Control Act are... Contracts (Appalachian Contracts) § 633.211 Implementation of the Clean Air Act and the Federal Water...