Sample records for relative equilibrium air-water

  1. Estimating pH at the Air/Water Interface with a Confocal Fluorescence Microscope.

    Yang, Haiya; Imanishi, Yasushi; Harata, Akira


    One way to determine the pH at the air/water interface with a confocal fluorescence microscope has been proposed. The relation between the pH at the air/water interface and that in a bulk solution has been formulated in connection with the adsorption equilibrium and the dissociation equilibrium of the dye adsorbed. Rhodamine B (RhB) is used as a surface-active fluorescent pH probe. The corrected fluorescence spectrum of RhB molecules at the air/water interface with the surface density of 1.0 nmol m(-2) level shows pH-dependent shifts representing an acid-base equilibrium. Two ways to determine the unknown acid-base equilibrium constant of RhB molecules at the air/water interface have been discussed. With surface-tension measurements, the adsorption properties, maximum surface density, and adsorption equilibrium constants were estimated for both cationic and zwitterionic forms of RhB molecules at the air/water interface.

  2. The angular momentum of a relative equilibrium

    Chenciner, Alain


    There are two main reasons why relative equilibria of N point masses under the influence of Newton attraction are mathematically more interesting to study when space dimension is at least 4: On the one hand, in a higher dimensional space, a relative equilibrium is determined not only by the initial configuration but also by the choice of a complex structure on the space where the motion takes place; in particular, its angular momentum depends on this choice; On the other hand, relative equilibria are not necessarily periodic: if the configuration is "balanced" but not central, the motion is in general quasi-periodic. In this exploratory paper we address the following question, which touches both aspects: what are the possible frequencies of the angular momentum of a given central (or balanced) configuration and at what values of these frequencies bifurcations from periodic to quasi-periodic relative equilibria do occur ? We give a full answer for relative equilibrium motions in dimension 4 and conjecture that...

  3. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina


    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions.

  4. Air/Water Purification


    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  5. Non-equilibrium fluctuation-dissipation relation from holography

    Mukhopadhyay, Ayan


    We derive non-equilibrium fluctuation-dissipation relation for bosonic correlation functions from holography in the classical gravity approximation. We also show this holds universally in any classical gravity theory which has a stable thermal background as a solution. Therefore, this can provide a strong experimental test for the applicability of the holographic framework. The fluctuation-dissipation relation gives a proportionality factor between the expectation value of the commutator i.e. the spectral function, and the expectation value of the anti-commutator, i.e. the Keldysh propagator, in an arbitrary non-equilibrium state. We show that, in the limit in which the external sources vanish and within the range of validity of perturbative hydrodynamic (derivative) and non-hydrodynamic (amplitude) expansions, the holographic non-equilibrium fluctuation-dissipation relation is fixed completely by the temperature of the final equilibrium. We argue this is consistent with locality and causality of the dual fie...

  6. Complementary relations in non-equilibrium stochastic processes

    Kim, Eun-jin, E-mail:; Nicholson, S.B.


    Highlights: • Novel complementary relations in non-equilibrium stochastic processes. • Dependence of statistical measures (entropy, information, and work) on variables, reference frames, and time. • Equilibrium maximises simultaneous information while minimising simultaneous disorder/uncertainty. • Difference between Eulerian and Lagrangian entropy and its related concepts. • Hamilton–Jacobi relation for forced-dissipative system. - Abstract: We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by utilising path integral formulation, we derive statistical measures (entropy, information, and work) and investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that the equilibrium state maximises the simultaneous information quantified by the product of the Fisher information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v. We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to Hamilton–Jacobi relation for forced-dissipative systems.

  7. Thermal equilibrium and statistical thermometers in special relativity.

    Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter


    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.

  8. Pressure Relations and Vertical Equilibrium in the Turbulent, Multiphase ISM

    Koyama, H


    We use numerical simulations of turbulent, multiphase, self-gravitating gas orbiting in model disk galaxies to study the relationships among pressure, the vertical gas distribution, and the ratio of dense to diffuse gas. We show that the disk height and mean midplane pressure are consistent with effective hydrostatic equilibrium, provided that the turbulent vertical velocity dispersion and gas self-gravity are included. Mass-weighted pressures are an order of magnitude higher than the midplane pressure because self-gravity concentrates gas and increases the pressure in clouds. We also investigate the ratio Rmol=M(H2)/M(HI) for our simulations. Blitz and Rosolowsky (2006) showed that Rmol is proportional to the estimated midplane pressure. For model series in which the epicyclic frequency, kappa, and gas surface density, Sigma, are proportional, we recover the empirical relation. For other model series in which kappa and Sigma are independent, the midplane pressure and Rmol are not well correlated. We conclude...

  9. Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations

    Lucarini, Valerio


    We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external

  10. Generalized Equilibrium Problems Related to Ky Fan Inequalities

    Ionel Rovenţa


    Full Text Available We study a generalized equilibrium problem by using a nonsymmetric extension of Ky Fan’s inequality. As an application, we present a fixed point type algorithm inspired by a model from Tada and Takahashi (2007.

  11. Anisotropic diffusion of volatile pollutants at air-water interface

    Li-ping CHEN; Jing-tao CHENG; Guang-fa DENG


    The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  12. Anisotropic diffusion of volatile pollutants at air-water interface

    Li-ping CHEN


    Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  13. Positive equilibrium in USA - China relations: durable or not?

    Robert Sutter


    Full Text Available Repeated episodes of Chinese public pressure against the United States during 2009 and 2010 on a wide range of issues involving seas near China, Taiwan, Tibet, and economic disputes are subject to different interpretations but on balance they do not seem to seriously upset the prevailing positive equilibrium between the US and Chinese governments.

  14. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables


    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  15. [Equilibrium troubles with cervical syndrome and their relation with otorhinolaryngology (author's transl)].

    Gerencsér, F; Gyeney, L


    The equilibrium troubles occuring in connection with cervical locomotoric diseases and their otorhino-laryngologic relations have been studied in the ORL Department of National Institute of Rheumatism and Medical Hydrology. It has been found that: a) there is no connection between the seriousness of roentgenologic deformations and equilibrium troubles; b) the damage of the periphery is not characteristic; c) the complaints and symptoms are explained by the hypoxia of vestibular kern-areas as well as by damages of receptors in cervical muscles, bands and joints; d) hypotension and other central vascular damages form an important factor in the development of equilibrium troubles.

  16. Equilibrium properties of blackbody radiation in Doubly Special Relativity

    Chandra, Nitin; Vaibhav, Vinay


    Doubly Special Relativity (DSR) is an attempt to incorporate an observer independent energy/length scale in the relativistic theory. We study various thermodynamic properties of blackbody radiation in DSR. We find that the energy density, specific heat etc. follows usual acoustic phonon dynamics as has been well studied by Debye. Other thermodynamic quantities like pressure, entropy etc. has also been calculated. The usual Stefan-Boltzmann law gets modified. The phase-space measure is also expected to get modified for an exotic spacetime, which in turn leads to the modification of Planck energy density distribution and the Wien's displacement law.

  17. Generalized fluctuation-dissipation relation and effective temperature in off-equilibrium colloids

    Maggi, Claudio; di Leonardo, Roberto; Dyre, Jeppe C.; Ruocco, Giancarlo


    The fluctuation-dissipation theorem (FDT), a fundamental result of equilibrium statistical physics, can be violated when a system is taken out of equilibrium. A generalization of FDT has been theoretically proposed for out-of-equilibrium systems; the kinetic temperature entering the fluctuation-dissipation relation (FDR) is substituted by a time-scale-dependent effective temperature. We combine the measurements of the correlation function of the rotational dynamics of colloidal particles obtained via dynamic light scattering with those of the birefringence response to study the generalized FDR in an off-equilibrium Laponite suspension undergoing aging. (i) We find that the FDT is strongly violated in the early stage of the aging process and is gradually recovered as the aging time increases and (ii) we determine the aging-time evolution of the effective temperature, comparing our results with those of previous experiments.

  18. Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium

    Evans, Denis J.; Searles, Debra J.; Rondoni, Lamberto


    The fluctuation relation of the Gallavotti-Cohen fluctuation theorem (GCFT) concerns fluctuations in the phase-space compression rate of dissipative, reversible dynamical systems. It has been proven for Anosov systems, but it is expected to apply more generally. This raises the question of which non-Anosov systems satisfy the fluctuation relation. We analyze time-dependent fluctuations in the phase space compression rate of a class of N -particle systems that are at equilibrium or in near equilibrium steady states. This class does not include Anosov systems or isoenergetic systems; however, it includes most steady-state systems considered in molecular-dynamics simulations of realistic systems. We argue that the fluctuations of the phase-space compression rate of these systems at or near equilibrium do not satisfy the fluctuation relation of the GCFT, although the discrepancies become somewhat smaller as the systems move further from equilibrium. In contrast, similar fluctuation relations for an appropriately defined dissipation function appear to hold both near and far from equilibrium.

  19. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling

    Greisen, Per Junior; Lum, Kevin; Ashrafuzzaman, Md;


    and its position on a spatial coordinate. It turns out that the linear RE relation for the gramicidin monomer-dimer reaction can be understood, and the quantitative relation between changes in activation energy and equilibrium energy can be interpreted, by considering the effects of amphiphiles...

  20. Langmuir films of petroleum at the air-water interface.

    Vieira, Vinícius C C; Severino, Divinomar; Oliveira, Osvaldo N; Pavinatto, Felippe J; Zaniquelli, Maria E D; Ramos, Ana Paula; Baptista, Maurício S


    Understanding the behavior of petroleum films at the air/water interface is crucial for dealing with oil slicks and reducing the damages to the environment, which has normally been attempted with studies of Langmuir films made of fractions of petroleum. However, the properties of films from whole petroleum samples may differ considerably from those of individual fractions. Using surface pressure and surface potential measurements and Brewster angle and fluorescence microscopy, we show that petroleum forms a nonhomogeneous Langmuir film at the air-water interface. The surface pressure isotherms for petroleum Langmuir films exhibit gas (G), liquid-expanded (LE), and liquid-condensed phases, with almost no hysteresis in the compression-decompression cycles. Domains formed upon compression from the G to the LE phase were accompanied by an increase in fluorescence intensity with excitation at 400-440 nm owing to an increase in the surface density of the chromophores in the petroleum film. The surface pressure and the fluorescence microscopy data pointed to self-assembling domains into a pseudophase in thermodynamic equilibrium with other less emitting petroleum components. This hypothesis was supported by Brewster angle microscopy images, whereby the appearance of water domains even at high surface pressures confirms the tendency of petroleum to stabilize emulsion systems. The results presented here suggest that, for understanding the interaction with water, it may be more appropriate to use the whole petroleum samples rather than its fractions.

  1. Equilibrium relations and bipolar cognitive mapping for online analytical processing with applications in international relations and strategic decision support.

    Zhang, Wen-Ran


    Bipolar logic, bipolar sets, and equilibrium relations are proposed for bipolar cognitive mapping and visualization in online analytical processing (OLAP) and online analytical mining (OLAM). As cognitive models, cognitive maps (CMs) hold great potential for clustering and visualization. Due to the lack of a formal mathematical basis, however, CM-based OLAP and OLAM have not gained popularity. Compared with existing approaches, bipolar cognitive mapping has a number of advantages. First, bipolar CMs are formal logical models as well as cognitive models. Second, equilibrium relations (with polarized reflexivity, symmetry, and transitivity), as bipolar generalizations and fusions of equivalence relations, provide a theoretical basis for bipolar visualization and coordination. Third, an equilibrium relation or CM induces bipolar partitions that distinguish disjoint coalition subsets not involved in any conflict, disjoint coalition subsets involved in a conflict, disjoint conflict subsets, and disjoint harmony subsets. Finally, equilibrium energy analysis leads to harmony and stability measures for strategic decision and multiagent coordination. Thus, this work bridges a gap for CM-based clustering and visualization in OLAP and OLAM. Basic ideas are illustrated with example CMs in international relations.

  2. The dynamic control ratio at the equilibrium point (DCRe): introducing relative and absolute reliability scores.

    Alt, Tobias; Knicker, Axel J; Strüder, Heiko K


    Analytical methods to assess thigh muscle balance need to provide reliable data to allow meaningful interpretation. However, reproducibility of the dynamic control ratio at the equilibrium point has not been evaluated yet. Therefore, the aim of this study was to compare relative and absolute reliability indices of its angle and moment values with conventional and functional hamstring-quadriceps ratios. Furthermore, effects of familiarisation and angular velocity on reproducibility were analysed. A number of 33 male volunteers participated in 3 identical test sessions. Peak moments (PMs) were determined unilaterally during maximum concentric and eccentric knee flexion (prone) and extension (supine position) at 0.53, 1.57 and 2.62 rad · s(-1). A repeated measure, ANOVA, confirmed systematic bias. Intra-class correlation coefficients and standard errors of measurement indicated relative and absolute reliability. Correlation coefficients were averaged over respective factors and tested for significant differences. All balance scores showed comparable low-to-moderate relative (Relative reproducibility of dynamic control equilibrium parameters augmented with increasing angular velocity, but not with familiarisation. At 2.62 rad · s(-1), high (moment: 0.906) to moderate (angle: 0.833) relative reliability scores with accordingly high absolute indices (4.9% and 6.4%) became apparent. Thus, the dynamic control equilibrium is an equivalent method for the reliable assessment of thigh muscle balance.

  3. Convergence Theorems for Maximal Monotone Operators, Weak Relatively Nonexpansive Mappings and Equilibrium Problems

    Kamonrat Nammanee


    Full Text Available We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems.

  4. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments

    Bowler, Michael G; Bowler, Matthew W


    The equilibrium relative humidity values for a number of the most commonly used precipitants in biological macromolecule crystallisation have been measured using a new humidity control device. A simple argument in statistical mechanics demonstrates that the saturated vapour pressure of a solvent is proportional to its mole fraction in an ideal solution (Raoult's Law). The same argument can be extended to the case where solvent and solute molecules are of different size.

  5. A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring.

    Jeffrey M Dick

    Full Text Available Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as "Bison Pool" in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that

  6. Renormalized dispersion relations of β-Fermi-Pasta-Ulam chains in equilibrium and nonequilibrium states

    Jiang, Shi-xiao W.; Lu, Hai-hao; Zhou, Douglas; Cai, David


    We study the nonlinear dispersive characteristics in β-Fermi-Pasta-Ulam (FPU) chains in both thermal equilibrium and nonequilibrium steady state. By applying a multiple scale analysis to the FPU chain, we analyze the contribution of the trivial and nontrivial resonance to the renormalization of the dispersion relation. Our results show that the contribution of the nontrivial resonance remains significant to the renormalization, in particular, in strongly nonlinear regimes. We contrast our results with the dispersion relations obtained from the Zwanzig-Mori formalism and random phase approximation to further illustrate the role of resonances. Surprisingly, these theoretical dispersion relations can be generalized to describe dispersive characteristics well at the nonequilibrium steady state of the FPU chain with driving-damping in real space. Through numerical simulation, we confirm that the theoretical renormalized dispersion relations are valid for a wide range of nonlinearities in thermal equilibrium as well as in nonequilibrium steady state. We further show that the dispersive characteristics persist in nonequilibrium steady state driven-damped in Fourier space.

  7. Renormalized dispersion relations of β-Fermi-Pasta-Ulam chains in equilibrium and nonequilibrium states.

    Jiang, Shi-xiao W; Lu, Hai-hao; Zhou, Douglas; Cai, David


    We study the nonlinear dispersive characteristics in β-Fermi-Pasta-Ulam (FPU) chains in both thermal equilibrium and nonequilibrium steady state. By applying a multiple scale analysis to the FPU chain, we analyze the contribution of the trivial and nontrivial resonance to the renormalization of the dispersion relation. Our results show that the contribution of the nontrivial resonance remains significant to the renormalization, in particular, in strongly nonlinear regimes. We contrast our results with the dispersion relations obtained from the Zwanzig-Mori formalism and random phase approximation to further illustrate the role of resonances. Surprisingly, these theoretical dispersion relations can be generalized to describe dispersive characteristics well at the nonequilibrium steady state of the FPU chain with driving-damping in real space. Through numerical simulation, we confirm that the theoretical renormalized dispersion relations are valid for a wide range of nonlinearities in thermal equilibrium as well as in nonequilibrium steady state. We further show that the dispersive characteristics persist in nonequilibrium steady state driven-damped in Fourier space.

  8. Quasi-equilibrium sequences of binary strange quark stars in general relativity

    Limousin, Francois; Gondek-Rosińska, Dorota; Gourgoulhon, Eric


    Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational. In each of those cases, we show the differences in the gravitational waves signal from neutron stars described by polytropic equation of state.

  9. Exciton correlations and input-output relations in non-equilibrium exciton superfluids

    Ye, Jinwu, E-mail: [Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, MS 39762 (United States); Sun, Fadi; Yu, Yi-Xiang [Department of Physics and Astronomy, Mississippi State University, MS 39762 (United States); Institute of Physics, Chinese Academy of Sciences, Beijing, 100080 (China); Liu, Wuming [Institute of Physics, Chinese Academy of Sciences, Beijing, 100080 (China)


    The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron-hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg-Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input-output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton-polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron-electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor {nu}{sub T}=1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: Black-Right-Pointing-Pointer Establish the relations between photoluminescence and transport

  10. Air-water flow in subsurface systems

    Hansen, A.; Mishra, P.


    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  11. Numerical study of the steady state fluctuation relations far from equilibrium

    Williams, Stephen R.; Searles, Debra J.; Evans, Denis J.


    A thermostatted dynamical model with five degrees of freedom is used to test the fluctuation relation of Evans and Searles (Ω-FR) and that of Gallavotti and Cohen (Λ-FR). In the absence of an external driving field, the model generates a time-independent ergodic equilibrium state with two conjugate pairs of Lyapunov exponents. Each conjugate pair sums to zero. The fluctuation relations are tested numerically both near and far from equilibrium. As expected from previous work, near equilibrium the Ω-FR is verified by the simulation data while the Λ-FR is not confirmed by the data. Far from equilibrium where a positive exponent in one of these conjugate pairs becomes negative, we test a conjecture regarding the Λ-FR [Bonetto et al., Physica D 105, 226 (1997); Giuliani et al., J. Stat. Phys. 119, 909 (2005)]. It was conjectured that when the number of nontrivial Lyapunov exponents that are positive becomes less than the number of such negative exponents, then the form of the Λ-FR needs to be corrected. We show that there is no evidence for this conjecture in the empirical data. In fact, when the correction factor differs from unity, the corrected form of Λ-FR is less accurate than the uncorrected Λ-FR. Also as the field increases the uncorrected Λ-FR appears to be satisfied with increasing accuracy. The reason for this observation is likely to be that as the field increases, the argument of the Λ-FR more and more accurately approximates the argument of the Ω-FR. Since the Ω-FR works for arbitrary field strengths, the uncorrected Λ-FR appears to become ever more accurate as the field increases. The final piece of evidence against the conjecture is that when the smallest positive exponent changes sign, the conjecture predicts a discontinuous change in the "correction factor" for Λ-FR. We see no evidence for a discontinuity at this field strength.

  12. Convergence Theorems for a Common Point of Solutions of Equilibrium and Fixed Point of Relatively Nonexpansive Multivalued Mapping Problems

    H. Zegeye


    Full Text Available We introduce an iterative process which converges strongly to a common point of set of solutions of equilibrium problem and set of fixed points of finite family of relatively nonexpansive multi-valued mappings in Banach spaces.

  13. Numerical Analysis of Relative Equilibrium States and Its Stability of a String System with a Rigid Body

    JianhuaCHENG; JunfengLI; 等


    In this paper a mnechanical system is studied in which a rotor rotates around a fixed axis with a string suspended symmetric rigid body.All relative equilibrium strates and their stability are discussed.Considering the spinning angular velocity ω around the fixed vertical axis as a parameter,algebraic equations with this parameter are obtained,Every solution of the equations is relevant to a relative equilibrium state of the system.The existence of two important relative equilibrium states is discussed by numerical method developed in bifurcation theory in this paper,In addition,The lagrange's Theorem is used to determine the stability of the relative equilibrium state relevant to the solution of the algebraic equations.

  14. A Theoretical Study on the Equilibrium Structures and Relative Stabilities of H2SO

    陈文凯; 杨迎春; 李俊汉; 叶芝祥; 杨怀金


    MP2 and DFT/B3LYP calculations with Aug-cc-pvTz and Aug-cc-pvQz basis set levels are used to investigate the equilibrium structures and isomerization of H2SO isomers. All of the transition states have been calculated and confirmed by the intrinsic reaction coordinate (IRC). The calculated results show that H2SO isomers have three equilibrium structures and the linear structure is the most stable while the branched H2OS is the most unstable (the relative energies are 0.0, 82.1 and 155.3 kJ/mol for HSOH, H2SO and H2OS, respectively with the zero point vibrational energy correction at B3LYP/Aug-cc-pvQz level). It is difficult for the linear HSOH to convert to the branched H2SO and H2OS isomers due to the high activation energies (higher than ca. 200 and 160 kJ/mol, respectively). The predicted thermodynamic results also suggest that the linear structure is the most stable and may be the only species that can be found experimentally. The kinetic results demonstrate that the isomerization is a unimolecular one, and the reaction rate is slow.

  15. Methylglyoxal at the Air-Water Interface

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.


    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  16. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng


    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.


    Guangya CHEN


    In this paper we define a concept of weak equilibrium for vector network equilibrium problems.We obtain sufficient conditions of weak equilibrium points and establish relation with vector network equilibrium problems and vector variational inequalities.

  18. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN


    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  19. The Effect of Rain on Air-Water Gas Exchange

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter


    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  20. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.

    Svitova, T F; Wetherbee, M J; Radke, C J


    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  1. Thermodynamic equilibrium in relativity: four-temperature, Killing vectors and Lie derivatives

    Becattini, F


    The main concepts of general relativistic thermodynamics and general relativistic statistical mechanics are reviewed. The main building block of the proper relativistic extension of the classical thermodynamics laws is the four-temperature vector \\beta, which plays a major role in the quantum framework and defines a very convenient hydrodynamic frame. The general relativistic thermodynamic equilibrium condition demands \\beta to be a Killing vector field. We show that a remarkable consequence is that all Lie derivatives of all physical observables along the four-temperature flow must then vanish.

  2. Propagation of density disturbances in air-water flow

    Nassos, G. P.


    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  3. Liquid–Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass

    Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; Paulechka, Eugene; Chirico, Robert D.; Kroenlein, Kenneth; Iisa, Kristiina; Dutta, Abhijit


    We report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement is seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.

  4. Impact of haze-fog days to radon progeny equilibrium factor and discussion of related factors.

    Hou, Changsong; Shang, Bing; Zhang, Qingzhao; Cui, Hongxing; Wu, Yunyun; Deng, Jun


    The equilibrium factor F between radon and its short-lived progenies is an important parameter to estimate radon exposure of humans. Therefore, indoor and outdoor concentrations of radon and its short-lived radon progeny were measured in Beijing area using a continuously measuring device, in an effort to obtain information on the F value. The results showed that the mean values of F were 0.58 ± 0.13 (0.25-0.95, n = 305) and 0.52 ± 0.12 (0.31-0.91, n = 64) for indoor and outdoor, respectively. The indoor F value during haze-fog days was higher than the typical value of 0.4 recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation, and it was also higher than the values of 0.47 and 0.49 reported in the literature. A positive correlation was observed between indoor F values and PM2.5 concentrations (R (2) = 0.71). Since 2013, owing to frequent heavy haze-fog events in Beijing and surrounding areas, the number of the days with severe pollution remains at a high level. Future studies on the impact of the ambient fine particulate matter on indoor radon progeny equilibrium factor F could be important.

  5. Interfacial air/water proton conduction from long distances by sulfolobus solfataricus archaeal bolaform lipids.

    Vilalta, I; Gliozzi, A; Prats, M


    The stability, structural organization, and the ability to transfer protons long distances have been investigated in monolayers formed from archael bolaform lipids at the air/water interface. The lipids employed were the fractions GroR2Gro (R represents an acyl group with variable chain length typically consisting of 0-4 cyclopentane rings and 40 isoprenoid residues) and GroR2GroNon-Ol (Non-ol represents nonitol) extracted from Sulfolobus solfataricus by hydrolysis of the cytoplasmic membrane. GroR2-GroNon-ol films exhibit a very peculiar behaviour: the monolayer surface pressure increases with time, regardless of its low or high initial value. This finding is related to the possibility of GroR2GroNon-ol molecules to assume an upright (a metastable) or a U-shaped (stable) configuration. In the gaseous state and in the collapsed state of the film, no lateral proton conduction was observed. However, in the pressure range 0 < pi < 25 mN/m for GroR2Gro and 0 < pi < 30 mN/m for GroR2GroNon-ol monolayers, a lateral proton conduction at the air/water interface was observed. The structural organization of these bipolar lipids at the air/water interface can be related to the lateral proton conduction; it is possible to conclude that whatever configuration these lipids may adopt, they are able to structure the air/water interface in a hydrogen bond network that supports lateral proton conduction. This process may be ascribed to a percolation phenomenon occurring when the polar lipid head groups form a structured lattice of hydrogen bonds.

  6. Relations between dissipated work in non-equilibrium process and the family of Rényi divergences

    Wei, Bo-Bo; Plenio, M. B.


    In this paper, we establish a general relation which directly links the dissipated work done on a system driven arbitrarily far from equilibrium, a fundamental quantity in thermodynamics, and the family of Rényi divergences between two states along the forward and reversed dynamics, a fundamental concept in information theory. Specifically, we find that the generating function of the dissipated work under an arbitrary time-dependent driving is related to the family of Rényi divergences between a non-equilibrium state along the forward process and a non-equilibrium state along its time-reversed process. This relation is a consequence of the principle of conservation of information and time reversal symmetry and is universally applicable to both finite classical system and finite quantum system under arbitrary driving process. The significance of the relation between the generating function of dissipated work and the family of Rényi divergences are two fold. On the one hand, the relation establishes that the macroscopic entropy production and its fluctuations are determined by the family of Rényi divergences, a measure of distinguishability of two states, between a microscopic process and its time reversal. On the other hand, this relation tells us that we can extract the family of Renyi divergences from the work measurement in a microscopic process. For classical systems the work measurement is straightforward, from which the family of Rényi divergences can be obtained; for quantum systems under time-dependent driving the characteristic function of work distributions can be measured from Ramsey interferences of a single spin, then we can extract the family of Renyi divergences from Ramsey interferences of a single spin.

  7. Langmuir and Gibbs magnetite NP layers at the air/water interface.

    Stefaniu, Cristina; Chanana, Munish; Wang, Dayang; Novikov, Dmitri V; Brezesinski, Gerald; Möhwald, Helmuth


    The interfacial properties of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs, recently developed and described as promising nanotools for biomedical applications, have been investigated at the air/water interface. These Fe(3)O(4) NPs, capped with catechol-terminated random copolymer brushes of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA) and oligo(ethylene glycol) methacrylate (OEGMA), with molar fractions of 90% and 10%, respectively, proved to be surface active. Surface tension measurements of aqueous dispersions of the NPs showed that the adsorption of the NPs at the air/water interface is time- and concentration-dependent. These NPs do not behave as classical amphiphiles. Once adsorbed at the air/water interface, they do not exchange with NPs in bulk, but they are trapped at the interface. This means that all NPs from the bulk adsorb to the interface until reaching maximum coverage of the interface, which corresponds to values between 6 × 10(-4) and 8 × 10(-4) mg/cm(2) and a critical equilibrium surface tension of ∼47 mN/m. Moreover, Langmuir layers of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs have been investigated by measuring surface pressure-area compression-expansion isotherms and in situ X-ray fluorescence spectra. The compression-expansion isotherms showed a plateau region above a critical surface pressure of ∼25 mN/m and a pronounced hysteresis. By using a special one-barrier Langmuir trough equipped with two surface pressure microbalances, we have shown that the NPs are squeezed out from the interface into the aqueous subphase, and they readsorb on the other side of the barrier. The results have been supported by TEM as well as AFM experiments of transferred Langmuir-Schaefer films on solid supports. This study shows the ability of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs to transfer from hydrophilic media (an aqueous solution) to the hydrophobic/hydrophilic interface (air/water interface) and back to the hydrophilic media. This behavior is very

  8. Proton Transfers at the Air-Water Interface

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (quantum mechanics and molecular dynamics to simulate our experiments toward gaining insight at the

  9. Air-water transfer of hydrogen sulfide

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.


    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  10. Air-water transfer of hydrogen sulfide

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.


    experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...... differences in KLaH2S at pH values between 4.5 and 8.0 became larger as the turbulence level increased, whereas those at pH between 4.5 and 7.0 did not statistically show any change. At constant pH, KLaH2S/KLaO2 was observed not to be dependent on the turbulence range studied. KLaH2S/KLaO2 ratio was 0...

  11. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong


    The equilibrium dissociation constant (KD) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the KD value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative KD values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The KD values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the KD values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Relative binding affinities of integrin antagonists by equilibrium dialysis and liquid chromatography-mass spectrometry.

    Tipping, William J; Tshuma, Nkazimulo; Adams, James; Haywood, Harvey T; Rowedder, James E; Fray, M Jonathan; McInally, Thomas; Macdonald, Simon J F; Oldham, Neil J


    The integrin αvβ6 is a potential target for treatment of idiopathic pulmonary fibrosis (IPF). Equilibrium dialysis (ED) was investigated for its ability to report ligand binding in an αvβ6 inhibitor screening assay. As a preliminary experiment, an established peptidomimetic inhibitor of the integrin was dialyzed against αvβ6, and the fraction bound (f b) and percentage saturation determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Quantitation of the inhibitor in the two chambers of the ED cartridge revealed an uneven distribution in the presence of αvβ6, corresponding to near saturation binding to the protein (93 ± 3%), while the control (without integrin) showed an equal partitioning of the inhibitor on either side of the dialysis membrane. A competitive ED assay with a 12 component mixture of antagonists was conducted, and the results compared with an established cell adhesion assay for quantifying αvβ6 inhibition of individual antagonists. Compounds clustered into three groupings: those with pIC 50 values between ca. 5.0 and 5.5, which possessed ED f b values indistinguishable from the controls, those with pIC 50s of 6.5 ± 0.2, which exhibited detectable integrin binding (f b 13-25%) in the ED assay, and a single compound of pIC 50 7.2 possessing an f b value of 38%. A good correlation between ED-derived f b and pIC 50 was observed despite the two assays utilizing quite different outputs. These results demonstrate that ED with LC-MS detection shows promise as a rapid αvβ6 integrin antagonist screening assay for mixtures of putative ligands.


    Monique Florenzano


    Full Text Available General equilibrium is a central concept of economic theory. Unlike partial equilibrium analysis which study the equilibrium of a particular market under the clause “ceteris paribus” that revenues and prices on the other markets stay approximately unaffected, the ambition of a general equilibrium model is to analyze the simultaneous equilibrium in all markets of a competitive economy. Definition of the abstract model, some of its basic results and insights are presented. The important issues of uniqueness and local uniqueness of equilibrium are sketched; they are the condition for a predictive power of the theory and its ability to allow for statics comparisons. Finally, we review the main extensions of the general equilibrium model. Besides the natural extensions to infinitely many commodities and to a continuum of agents, some examples show how economic theory can accommodate the main ideas in order to study some contexts which were not thought of by the initial model

  14. Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface

    Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.


    The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.

  15. Generalized thermodynamic relations for a system experiencing heat and mass diffusion in the far-from-equilibrium realm based on steepest entropy ascent.

    Li, Guanchen; von Spakovsky, Michael R


    This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated system in nonequilibrium using the principle of steepest entropy ascent (SEA), which can be expressed as a variational principle in thermodynamic state space. The model is able to arrive at the Onsager relations for such a system. Since no assumption of local equilibrium is made, the conjugate fluxes and forces are intrinsic to the subspaces of the system's state space and are defined using the concepts of hypoequilibrium state and nonequilibrium intensive properties, which describe the nonmutual equilibrium status between subspaces of the thermodynamic state space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system independent of the specific details of the micromechanical dynamics. Two kinds of relaxation processes are studied with different constraints (i.e., conservation laws) corresponding to heat and mass diffusion. Linear behavior in the near-equilibrium region as well as nonlinear behavior in the far-from-equilibrium region are discussed. Thermodynamic relations in the equilibrium and near-equilibrium realm, including the Gibbs relation, the Clausius inequality, and the Onsager relations, are generalized to the far-from-equilibrium realm. The variational principle in the space spanned by the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation potential. As an application, the model is applied to the heat and mass diffusion of a system represented by a single-particle ensemble, which can also be applied to a simple system of many particles. Phenomenological transport coefficients are also derived in the near-equilibrium realm.

  16. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    Kinoshita, Koji; Parra, Elisa; Needham, David


    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... interfacial area-expansion method", we have measured and evaluated both equilibrium and dynamic adsorption of a well-known anionic surfactant, sodium dodecyl sulphate (SDS), in the absence or presence of 100mM NaCl. Our focus was to determine if and to what extent the inclusion of a new correction parameter...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  17. Desorption of phosphate from iron oxides in relation to equilibrium pH and porosity

    Cabrera, F.; de Arambarri, P.; Madrid, L.; Toca, C.G. (Centro de Edafologia y Biologia Aplicada del Cuarto, Sevilla (Spain))


    Reactions of phosphated lepidocrocites and goethites with 0.1 M NaCl, 0.1 M NaOH and 0.5 M NH/sub 4/F solutions have been studied. Solutions of indifferent electrolyte (0.1 M NaCl) at the same pH as used during adsorption of P were used to desorb P so that new apparent equilibria were reached, but a slow readsorption was also observed. Strongly alkaline solutions seemed to cause some breakdown of the solid surface and part of the adsorbed P became occluded. Desorption and isotopic exchange data have been related to porosity of the two oxides, and presence of a component of the exchangeable P released very slowly, has been attributed to P adsorbed on surfaces of micropores.

  18. Polydopamine Films from the Forgotten Air/Water Interface.

    Ponzio, Florian; Payamyar, Payam; Schneider, Anne; Winterhalter, Mathias; Bour, Jérôme; Addiego, Frédéric; Krafft, Marie-Pierre; Hemmerle, Joseph; Ball, Vincent


    The formation of polydopamine under mild oxidation conditions from dopamine solutions with mechanical agitation leads to the formation of films that can functionalize all kinds of materials. In the absence of stirring of the solution, we report the formation of polydopamine films at the air/water interface (PDA A/W) and suggest that it arises from an homogeneous nucleation process. These films grow two times faster than in solution and can be deposited on hydrophilic or hydrophobic substrates by the Langmuir-Schaeffer technique. Thanks to this new method, porous and hydrophobic materials like polytetrafluoroethylene (PTFE) membranes can be completely covered with a 35 nm thick PDA A/W film after only 3h of reaction. Finally the oxidation of a monomer followed by a polymerization in water is not exclusive to polydopamine since we also transferred polyaniline functional films from the air/water interface to solid substrates. These findings suggest that self-assembly from a solution containing hydrophilic monomers undergoing a chemical transformation (here oxidation and oligomerization) could be a general method to produce films at the liquid/air interface.

  19. Air/water oxydesulfurization of coal: laboratory investigation

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.


    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  20. Characterization of non equilibrium effects on high quality critical flows

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others


    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  1. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.


    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  2. Nonlinear relative-proportion-based route adjustment process for day-to-day traffic dynamics: modeling, equilibrium and stability analysis

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang; Li, Geng


    Travelers' route adjustment behaviors in a congested road traffic network are acknowledged as a dynamic game process between them. Existing Proportional-Switch Adjustment Process (PSAP) models have been extensively investigated to characterize travelers' route choice behaviors; PSAP has concise structure and intuitive behavior rule. Unfortunately most of which have some limitations, i.e., the flow over adjustment problem for the discrete PSAP model, the absolute cost differences route adjustment problem, etc. This paper proposes a relative-Proportion-based Route Adjustment Process (rePRAP) maintains the advantages of PSAP and overcomes these limitations. The rePRAP describes the situation that travelers on higher cost route switch to those with lower cost at the rate that is unilaterally depended on the relative cost differences between higher cost route and its alternatives. It is verified to be consistent with the principle of the rational behavior adjustment process. The equivalence among user equilibrium, stationary path flow pattern and stationary link flow pattern is established, which can be applied to judge whether a given network traffic flow has reached UE or not by detecting the stationary or non-stationary state of link flow pattern. The stability theorem is proved by the Lyapunov function approach. A simple example is tested to demonstrate the effectiveness of the rePRAP model.

  3. Two-phase air-water flows:Scale effects in physical modeling

    PFISTER Michael; CHANSON Hubert


    Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical models operating under a Froude similitude systematically underestimate the air entrainment rate and air-water interfacial properties. To limit scale effects, minimal values of Reynolds or Weber number have to be respected. The present article summarizes the physical background of such limitations and their combination in terms of the Morton number. Based upon a literature review, the existing limits are presented and discussed, resulting in a series of more conservative recommendations in terms of air concentration scaling. For other air-water flow parameters, the selection of the criteria to assess scale effects is critical because some parameters (e.g., bubble sizes, turbulent scales) can be affected by scale effects, even in relatively large laboratory models.

  4. Interfacial structure in an air-water planar bubble jet

    Sun, X.; Vasavada, S.; Choi, S. W.; Kim, S.; Ishii, M.; Beus, S. G.


    The objective of the current study is to better understand the interfacial structure and its development in an air-water planar bubble jet, as well as to provide a unique benchmark data set for a 3D thermal-hydraulic analysis code. Both flow visualization and local measurements were performed in three characteristic flow conditions at four elevations along a test section with a cross section of 200 mm in width and 10 mm in gap. A high-speed digital video camera was applied in the flow visualization study to capture the flow structures and bubble interaction phenomena, while a miniaturized four-sensor conductivity probe was used to acquire the time-averaged local void fraction, interfacial velocity, and bubble number frequency. Also, the interfacial area concentration and the averaged bubble Sauter mean diameter were obtained from the local measurements. The lateral bubble transport and bubble interaction mechanisms were clearly demonstrated in the acquired data.

  5. Reacting chemistry at the air-water interface

    Murakami, Tomoyuki; Morgan, Thomas; Huwel, Lutz; Graham, William


    Plasma interaction with gas-liquid interfaces is becoming increasingly important in biological applications, chemical analysis and medicine. It introduces electrons, new ionic species and reactive species and contributes to chemical and electrical self-organization at the interface. To provide insight into the associated physics and chemistry at work in the evolution of the plasma in the air-water interface (AWI), a time-dependent one-dimensional modelling has been developed. The numerical simulation is used to solve the kinetic equations and help identify the important reaction mechanisms and describe the phenomena associated with hundreds of reacting pathways in gas-phase and liquid-phase AWI chemistry. This work was partly supported by JSPS KAKENHI Grant Number 16K04998.

  6. Powder wettability at a static air-water interface.

    Dupas, Julien; Forny, Laurent; Ramaioli, Marco


    The reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application. We highlight theoretically the determinant role of the contact angle and of the particle size distribution. We validate experimentally the model for single spheres and use it to predict the wettability performance of commercial food powders for different contact angles and particles sizes. A good agreement is obtained when comparing the predictions and the wettability of the tested powders.

  7. Reflective equilibrium

    van der Burg, W.; van Willigenburg, T.


    The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste

  8. Reflective equilibrium

    van der Burg, W.; van Willigenburg, T.


    The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste

  9. Spreading of oil from protein stabilised emulsions at air/water interfaces

    Schokker, E.P.; Bos, M.A.; Kuijpers, A.J.; Wijnen, M.E.; Walstra, P.


    Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to

  10. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface

    Kudryashova, E.V.; Meinders, M.B.J.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de


    The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/ water interface adopts a characteristic partially unf

  11. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.


    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  12. Nonlinear Acoustics at the Air-Water Free Surface

    Pree, Seth; Naranjo, Brian; Putterman, Seth


    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  13. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A


    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface.

  14. Anomalous spreading behaviour of polyethyleneglycoldistearate monolayers at air/water interface

    S John Collins; Aruna Dhathathreyan; T Ramasami


    Spreading behaviour of the dimeric surfactant polyethyleneglycoldistearate (PEGDS) monolayer at air/water interface has been studied using surface pressure-area ( -) isotherms as a function of temperature. The isotherms show a plateau suggesting a transition between a liquid expanded (LE) and a condensed state. The condensed state possibly arises due to nucleation and growth of multilayers from the monolayer. Isobaric measurements of both - and - at constant area show transitions at = 295 K. These plots suggest a melting followed by formation of condensed microcrystallites. Structure optimization carried out using various angles of orientation of the alkyl tails with respect to the backbone in PEGDS reveals tilt transitions of the tails in different states which can be related to the packing behaviour seen in the isotherms. Optical microscopy has been used to confirm the structures in these states.

  15. Partitioning of semi-volatile organic compounds to the air/water interface

    Pankow, James F.

    Partition coefficients ( Kia, m 3m -2) for sorption of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes at the air/water interface were estimated by extrapolating quartz/gas sorption data to relative humidity (RH) values of 100%. For each compound class, the log Kia values were found to be well correlated with log pLo where pLo (Torr) is the vapor pressure of the pure subcooled liquid. For the PAHs, correlation equation is log Kia = -1.20 log pLo - 5.82 ( R2 = 0.98). For the n-alkanes, the correlation equation is log Kia = -0.93 log pLo - 4.42 ( R2 = 0.95).

  16. Slow dynamics of phospholipid monolayers at the air/water interface

    Choi, Siyoung Q


    Phospholipid monolayers at the air-water interface serve as model systems for various biological interfaces, e.g. lung surfactant layers and outer leaflets of cell membranes. Although the dynamical (viscoelastic) properties of these interfaces may play a key role in stability, dynamics and function, the relatively weak rheological properties of most such monolayers have rendered their study difficult or impossible. A novel technique to measure the dynamical properties of fluid-fluid interfaces have developed accordingly. We microfabricate micron-scale ferromagnetic disks, place them on fluid-fluid interfaces, and use external electromagnets to exert torques upon them. By measuring the rotation that results from a known external torque, we compute the rotational drag, from which we deduce the rheological properties of the interface. Notably, our apparatus enable direct interfacial visualization while the probes are torqued. In this fluid dynamics video, we directly visualize dipalmitoylphosphatidylcholine(DPPC...

  17. Mercury Exchange at the Air-Water-Soil Interface: An Overview of Methods

    Fengman Fang


    Full Text Available An attempt is made to assess the present knowledge about the methods of determining mercury (Hg exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  18. Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface

    Shinoda Satoshi


    Full Text Available Abstract Molecular machines embedded in a Langmuir monolayer at the air-water interface can be operated by application of lateral pressure. As part of the challenge associated with versatile sensing of biologically important substances, we here demonstrate discrimination of nucleotides by applying a cholesterol-armed-triazacyclononane host molecule. This molecular machine can discriminate ribonucleotides based on a twofold to tenfold difference in binding constants under optimized conditions including accompanying ions in the subphase and lateral surface pressures of its Langmuir monolayer. The concept of mechanical tuning of the host structure for optimization of molecular recognition should become a novel methodology in bio-related nanotechnology as an alternative to traditional strategies based on increasingly complex and inconvenient molecular design strategies.

  19. Sweatshop Equilibrium

    Chau, Nancy H.


    This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...

  20. Air-water oxygen exchange in a large whitewater river

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.


    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  1. Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air-water interface studied by tensiometry, ellipsometry, and surface dilational rheology.

    Alahverdjieva, V S; Grigoriev, D O; Fainerman, V B; Aksenenko, E V; Miller, R; Möhwald, H


    The competitive adsorption at the air-water interface from mixed adsorption layers of hen egg-white lysozyme with a non-ionic surfactant (C10DMPO) was studied and compared to the mixture with an ionic surfactant (SDS) using bubble and drop shape analysis tensiometry, ellipsometry, and surface dilational rheology. The set of equilibrium and kinetic data of the mixed solutions is described by a thermodynamic model developed recently. The theoretical description of the mixed system is based on the model parameters for the individual components.

  2. Detachment of deposited colloids by advancing and receding air-water interfaces.

    Aramrak, Surachet; Flury, Markus; Harsh, James B


    Moving air-water interfaces can detach colloidal particles from stationary surfaces. The objective of this study was to quantify the effects of advancing and receding air-water interfaces on colloid detachment as a function of interface velocity. We deposited fluorescent, negatively charged, carboxylate-modified polystyrene colloids (diameter of 1 μm) into a cylindrical glass channel. The colloids were hydrophilic with an advancing air-water contact angle of 60° and a receding contact angle of 40°. After colloid deposition, two air bubbles were sequentially introduced into the glass channel and passed through the channel at different velocities (0.5, 7.7, 72, 982, and 10,800 cm/h). The passage of the bubbles represented a sequence of receding and advancing air-water interfaces. Colloids remaining in the glass channel after each interface passage were visualized with confocal microscopy and quantified by image analysis. The advancing air-water interface was significantly more effective in detaching colloids from the glass surface than the receding interface. Most of the colloids were detached during the first passage of the advancing air-water interface, while the subsequent interface passages did not remove significant amounts of colloids. Forces acting on the colloids calculated from theory corroborate our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface movement were stronger than during the receding movement. Theory indicates that, for hydrophilic colloids, the advancing interface movement generally exerts a stronger detachment force than the receding, except when the hysteresis of the colloid-air-water contact angle is small and that of the channel-air-water contact angle is large.

  3. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F


    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  4. Equilibrium thermodynamics

    de Oliveira, Mário J


    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  5. Equilibrium thermodynamics

    Oliveira, Mário J


    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions.  These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This textbo...

  6. On the opportunity of spectroscopic determination of absolute atomic densities in non-equilibrium plasmas from measured relative intensities within resonance multiplets distorted by self-absorption

    Lavrov, B P


    The opportunities of the application of the recently proposed approach in optical emission spectroscopy of non-equilibrium plasmas have been studied. The approach consists of several methods of the determination of {\\em absolute} particle densities of atoms from measured {\\em relative} intensities within resonance multiplets distorted by self-absorption. All available spectroscopic data concerning resonance spectral lines of atoms having multiplet ground states from boron up to gallium were analyzed. It is found that in the case of C, O, F, S and Cl atoms an application of the methods needs VUV technique, while densities of B, Al, Si, Sc, Ti, V, Co, Ni, Ga atoms may be obtained by means of the intensity measurements in UV and visible parts of emission spectra suitable for ordinary spectrometers used for optical diagnostics and monitoring of non-equilibrium plasmas including industrial plasma technologies.

  7. Monolayers at air-water interfaces: from origins-of-life to nanotechnology.

    Ariga, Katsuhiko; Hill, Jonathan P


    The air-water interface presents several interesting features, namely a) a molecularly flat environment, b) a boundary region between two phases with different dielectric constants, c) permits or promotes dynamic interactions within the interface region, and d) a point of interaction between hydrophobic compounds and aqueous molecules. Accordingly, Langmuir monolayers at the air-water interface have several unique characteristics and properties, which require investigation. In this review-type personal account, typical examples of molecular recognition and molecular patterning at air-water interfaces are first introduced, followed by descriptions of specific and unusual properties of monolayers on water. In addition, two examples of our own results concerning Langmuir monolayers are explained. We have selected examples from two apparently unrelated research areas, these being the origin of life and future nanotechnology, in order to emphasize the diverse scientific contribution of research on monolayers at the air-water interface. Copyright © 2011 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  8. Interactive Effect of Air-Water Ratio and Temperature on the Air ...

    Windows User

    KEYWORDS: Interactive effect, air-water ratio, temperature, volatile organic ... VOCs removal from wastewater by increasing the surface ... surface area (m2). ... where α and n are constants, DL is liquid diffusion coefficient .... Packing volume.

  9. Equilibrium Points and Related Periodic Motions in the Restricted Three-Body Problem with Angular Velocity and Radiation Effects

    E. A. Perdios


    Full Text Available The paper deals with a modification of the restricted three-body problem in which the angular velocity variation is considered in the case where the primaries are sources of radiation. In particular, the existence and stability of its equilibrium points in the plane of motion of the primaries are studied. We find that this problem admits the well-known five planar equilibria of the classical problem with the difference that the corresponding collinear points may be stable depending on the parameters of the problem. For all planar equilibria, sufficient parametric conditions for their stability have been established which are used for the numerical determination of the stability regions in various parametric planes. Also, for certain values of the parameters of the problem for which the equilibrium points are stable, the short and long period families have been computed. To do so, semianalytical expressions have been found for the determination of appropriate initial conditions. Special attention has been given to the continuation of the long period family, in the case of the classical restricted three-body problem, where we show numerically that periodic orbits of the short period family, which are bifurcation points with the long period family, are connected through the characteristic curve of the long period family.

  10. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    Burns, Douglas A.


    In the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3- at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. -from Author

  11. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  12. Equilibrium models and variational inequalities

    Konnov, Igor


    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  13. In situ air-water and particle-water partitioning of perfluorocarboxylic acids, perfluorosulfonic acids and perfluorooctyl sulfonamide at a wastewater treatment plant.

    Vierke, Lena; Ahrens, Lutz; Shoeib, Mahiba; Palm, Wolf-Ulrich; Webster, Eva M; Ellis, David A; Ebinghaus, Ralf; Harner, Tom


    In situ measurements of air and water phases at a wastewater treatment plant (WWTP) were used to investigate the partitioning behavior of perfluorocarboxylic acids (PFCAs), perfluorosulfonic acids (PFSAs) and perfluorooctyl sulfonamide (HFOSA) and their conjugate bases (PFC(-)s, PFS(-)s, and FOSA(-), respectively). Particle-dissolved (Rd) and air-water (QAW) concentration ratios were determined at different tanks of a WWTP. Sum of concentrations of C4-12,14 PFC(A)s, C4,6,8,10 PFS(A)s and (H)FOSA were as high as 50 pg m(-3) (atmospheric gas phase), 2300 ng L(-1) (aqueous dissolved phase) and 2500 ng L(-1) (aqueous particle phase). Particle-dissolved concentration ratios of total species, log Rd, ranged from -2.9 to 1.3 for PFS(A)s, from -1.9 to 1.1 for PFC(A)s and was 0.71 for (H)FOSA. These field-based values agree well with equilibrium partitioning data reported in the literature, suggesting that any in situ generation from precursors, if they are present in this system, occurs at a slower rate than the rate of approach to equilibrium. Acid QAW were also estimated. Good agreement between the QAW and the air-water equilibrium partition coefficient for C8PFCA suggests that the air above the WWTP tanks is at or near equilibrium with the water. Uncertainties in these QAW values are attributed mainly to variability in pKa values reported in the literature. The WWTP provides a unique environment for investigating environmental fate processes of the PFCAs and PFSAs under 'real' conditions in order to better understand and predict their fate in the environment.

  14. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    F. Terzuoli


    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  15. Field observations of turbulent dissipation rate profiles immediately below the air-water interface

    Wang, Binbin; Liao, Qian


    Near surface profiles of turbulence immediately below the air-water interface were measured with a free-floating Particle Image Velocimetry (PIV) system on Lake Michigan. The surface-following configuration allowed the system to measure the statistics of the aqueous-side turbulence in the topmost layer immediately below the water surface (z≈0˜15 cm, z points downward with 0 at the interface). Profiles of turbulent dissipation rate (ɛ) were investigated under a variety of wind and wave conditions. Various methods were applied to estimate the dissipation rate. Results suggest that these methods yield consistent dissipation rate profiles with reasonable scattering. In general, the dissipation rate decreases from the water surface following a power law relation in the top layer, ɛ˜z-0.7, i.e., the slope of the decrease was lower than that predicted by the wall turbulence theory, and the dissipation was considerably higher in the top layer for cases with higher wave ages. The measured dissipation rate profiles collapse when they were normalized with the wave speed, wave height, water-side friction velocity, and the wave age. This scaling suggests that the enhanced turbulence may be attributed to the additional source of turbulent kinetic energy (TKE) at the "skin layer" (likely due to micro-breaking), and its downward transport in the water column.

  16. Polystyrene-Polylactide Bottlebrush Block Copolymer at the Air/Water Interface

    Zhao, Lei; Byun, Myunghwan; Rzayev, Javid; Lin, Zhiqun


    Hydrophobic ultrahigh molecular weight bottlebrush block copolymer and linear block copolymer of polystyrene-polylactide (PS-PLA) were shown to be capable of forming Langmuir monolayers and exhibiting unique assembly behaviors at the air/water interface, which cannot be addressed by the classic theory of Langmuir monolayer of amphiphilic copolymers. New models were proposed to illustrate these intriguing surface behaviors. The self-assembled structure of Langmuir monolayer of bottlebrush block copolymer was determined by a combination of AFM measurement, thermal annealing, and enzymatic degradation experiment. To the best of our knowledge, this is among few studies on hydrophobic block copolymers at the air/water interface. As such, it not only complements the well-known models of self-assembly of amphiphilic block copolymers at the air/water interface but also expands the use of Langmuir-Blodgett (LB) technique to hydrophobic block copolymers.

  17. Structure of Polystyrenesulfonate/Surfactant Mixtures at Air-Water Interfaces and Their Role as Building Blocks for Macroscopic Foam.

    Schulze-Zachau, Felix; Braunschweig, Björn


    Air/water interfaces were modified by oppositely charged poly(sodium 4-styrenesulfonate) (NaPSS) and hexadecyltrimethylammonium bromide (CTAB) polyelectrolyte/surfactant mixtures and were studied on a molecular level with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry. In order to deduce structure property relations, our results on the interfacial molecular structure and lateral interactions of PSS(-)/CTA(+) complexes were compared to the stability and structure of macroscopic foam as well as to bulk properties. For that, the CTAB concentration was fixed to 0.1 mM, while the NaPSS concentration was varied. At NaPSS monomer concentrations 0.1 mM result in a significant decrease in surface pressure and a complete loss in foamability. However, SFG and surface dilatational rheology provide strong evidence for the existence of PSS(-)/CTA(+) complexes at the interface. At polyelectrolyte concentrations >10 mM, air-water interfaces are dominated by an excess of free PSS(-) polyelectrolytes and small amounts of PSS(-)/CTA(+) complexes which, however, provide higher foam stabilities compared to CTAB free foams. The foam structure undergoes a transition from wet to polyhedral foams during the collapse.

  18. Volatility in Equilibrium

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....

  19. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.

    Ngo, Son Tung; Hung, Huynh Minh; Nguyen, Minh Tho


    The fast pulling ligand (FPL) out of binding cavity using non-equilibrium molecular dynamics (MD) simulations was demonstrated to be a rapid, accurate and low CPU demand method for the determination of the relative binding affinities of a large number of HIV-1 protease (PR) inhibitors. In this approach, the ligand is pulled out of the binding cavity of the protein using external harmonic forces, and the work of pulling force corresponds to the relative binding affinity of HIV-1 PR inhibitor. The correlation coefficient between the pulling work and the experimental binding free energy of R=-0.95 shows that FPL results are in good agreement with experiment. It is thus easier to rank the binding affinities of HIV-1 PR inhibitors, that have similar binding affinities because the mean error bar of pulling work amounts to δW=7%. The nature of binding is discovered using the FPL approach. © 2016 Wiley Periodicals, Inc.

  20. Equilibrium and Orientation in Cephalopods.

    Budelmann, Bernd-Ulrich


    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  1. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan


    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  2. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    Sanjou, M.; Nezu, I.; Okamoto, T.


    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  3. Structure and orientation changes of omega- and gamma-gliadins at the air-water interface: a PM-IRRAS spectroscopy and Brewster angle microscopy study.

    Banc, Amélie; Desbat, Bernard; Renard, Denis; Popineau, Yves; Mangavel, Cécile; Navailles, Laurence


    Microscopic and molecular structures of omega- and gamma-gliadin monolayers at the air-water interface were studied under compression by three complementary techniques: compression isotherms, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). For high molecular areas, gliadin films are homogeneous, and a flat orientation of secondary structures relative to the interface is observed. With increasing compression, the nature and orientation of secondary structures changed to minimize the interfacial area. The gamma-gliadin film is the most stable at the air-water interface; its interfacial volume is constant with increasing compression, contrary to omega-gliadin films whose molecules are forced out of the interface. gamma-Gliadin stability at a high level of compression is interpreted by a stacking model.

  4. Estimating risks and relative risks in case-base studies under the assumptions of gene-environment independence and Hardy-Weinberg equilibrium.

    Chui, Tina Tsz-Ting; Lee, Wen-Chung


    Many diseases result from the interactions between genes and the environment. An efficient method has been proposed for a case-control study to estimate the genetic and environmental main effects and their interactions, which exploits the assumptions of gene-environment independence and Hardy-Weinberg equilibrium. To estimate the absolute and relative risks, one needs to resort to an alternative design: the case-base study. In this paper, the authors show how to analyze a case-base study under the above dual assumptions. This approach is based on a conditional logistic regression of case-counterfactual controls matched data. It can be easily fitted with readily available statistical packages. When the dual assumptions are met, the method is approximately unbiased and has adequate coverage probabilities for confidence intervals. It also results in smaller variances and shorter confidence intervals as compared with a previous method for a case-base study which imposes neither assumption.

  5. Spreading of partially crystallized oil droplets on an air/water interface

    Hotrum, N.E.; Cohen Stuart, M.A.; Vliet, van T.; Aken, van G.A.


    The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for ß-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and

  6. Emulsion droplet spreading at air/water interfaces: mechanisms and relevance to the whipping of cream

    Hotrum, N.E.


    Keywords:emulsion, spreading coefficient, surface tension, emulsifier, whipped cream, dairy foam, partial coalescence In this thesis, the interaction between emulsion droplets and expanding air/water interfaces was investigated. The

  7. Molecular details of ovalbumin-pectin complexes at the air/water interface: A spectroscopic study

    Kudryashova, E.V.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de


    To stabilize air-water interfaces, as in foams, the adsorption of surface-active components is a prerequisite. An approach to controlling the surface activity of proteins is noncovalent complex formation with a polyelectrolyte in the bulk phase. The molecular properties of egg white ovalbumin in a

  8. Molecular details of ovalbumin-pectin complexes at the air/water interface: a spectroscopic study.

    Kudryashova, E.V.; Visser, A.J.W.G.; Hoek, van A.; Jongh, de H.H.J.


    To stabilize air-water interfaces, as in foams, the adsorption of surface-active components is a prerequisite. An approach to controlling the surface activity of proteins is noncovalent complex formation with a polyelectrolyte in the bulk phase. The molecular properties of egg white ovalbumin in a

  9. Numerical Investigation of Transmission of Low Frequency Sound Through a Smooth Air-water Interface

    Parviz Ghadimi; Alireza Bolghasi; Mohammad A Feizi Chekab; Rahim Zamanian


    It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.

  10. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping


    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  11. Use of polysaccharides to control protein adsorption to the air-water interface

    Ganzevles, R.A.; Cohen Stuart, M.A.; Vliet, T.v.; Jongh,


    In order to understand foaming behaviour of mixed protein/anionic polysaccharide solutions, we investigated the effect of β-lactoglobulin/pectin interaction in the bulk on β-lactoglobulin adsorption to the air-water interface. Adsorption kinetics were evaluated by following surface pressure

  12. Nanowire and Mesh Conformations of Diblock Copolymer Blends at the Air/Water Interface

    Seo, Young-Soo; Kim, K.S.; Galambos, Arielle; Lammertink, R.G.H.; Vancso, G.J.; Sokolov, J.; Rafailovich, M.


    We investigated the structures formed when blends of poly(styrene-b-ferrocenyl silane) (PS-b-FS) and poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) were spread at the air/water interface. The results demonstrated that new structures were formed which were distinct from those formed when either of the

  13. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh


    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  14. Spreading of partially crystallized oil droplets on an air/water interface

    Hotrum, N.E.; Cohen Stuart, M.A.; Vliet, van T.; Aken, van G.A.


    The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for ß-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflow

  15. Molecular details of ovalbumin-pectin complexes at the air/water interface: A spectroscopic study

    Kudryashova, E.V.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de


    To stabilize air-water interfaces, as in foams, the adsorption of surface-active components is a prerequisite. An approach to controlling the surface activity of proteins is noncovalent complex formation with a polyelectrolyte in the bulk phase. The molecular properties of egg white ovalbumin in a c

  16. Nanowire and Mesh Conformations of Diblock Copolymer Blends at the Air/Water Interface

    Seo, Young-Soo; Kim, K.S.; Galambos, Arielle; Lammertink, Rob G.H.; Vancso, Gyula J.; Sokolov, J.; Rafailovich, M.


    We investigated the structures formed when blends of poly(styrene-b-ferrocenyl silane) (PS-b-FS) and poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) were spread at the air/water interface. The results demonstrated that new structures were formed which were distinct from those formed when either of the

  17. Salt effect on the (polyethylene glycol 8000 + sodium sulfate) aqueous two-phase system: Relative hydrophobicity of the equilibrium phases

    Ferreira, Luisa A., E-mail: [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Teixeira, Jose A. [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)


    Highlights: > Gibbs free energy of transfer of a methylene group on PEG 8000 - Na{sub 2}SO{sub 4} ATPS. > Influence of salt additive on the hydrophobic character of the coexisting phases. > Partitioning behavior of a series of five sodium salts of DNP-amino acids. > A relationship between {Delta}G(CH{sub 2}), TLL and I of the salt additive was established. - Abstract: The relative hydrophobicity of the phases of several {l_brace}polyethylene glycol (PEG) 8000 + sodium sulfate (Na{sub 2}SO{sub 4}){r_brace} aqueous two-phase systems (ATPSs), all containing 0.01 mol . L{sup -1} sodium phosphate buffer (NaPB, pH 7.4) and increasing concentration of a salt additive, NaCl or KCl, up to 1.0 mol . L{sup -1}, was measured by the free energy of transfer of a methylene group between the phases, {Delta}G(CH{sub 2}). The {Delta}G(CH{sub 2}) of the systems was determined by partitioning of a homologous series of five sodium salts of dinitrophenylated (DNP) - amino acids with aliphatic side chains in three different tie-lines of each biphasic system. The relative hydrophobicity of the phases ranged from -0.125 to -0.183 kcal . mol{sup -1}, being the NaCl salt the one to provide the more effective changes. The results show that, within each system, there is a linear relationship between the {Delta}G(CH{sub 2}) and the tie-line length (TLL), and biphasic systems with high salt additive concentration present the most negative {Delta}G(CH{sub 2}) values. Therefore, the feasibility of establishing a relationship between the relative hydrophobicity of the phases in a given TLL and the ionic strength of the salt additive was investigated and a satisfactory correlation was found for each salt.

  18. Equilibrium relationships for non-equilibrium chemical dependencies

    Yablonsky, Gregory S.; Constales, Denis; Marin, Guy B.


    In contrast to common opinion, it is shown that equilibrium constants determine the time-dependent behavior of particular ratios of concentrations for any system of reversible first-order reactions. Indeed, some special ratios actually coincide with the equilibrium constant at any moment in time. This is established for batch reactors, and similar relations hold for steady-state plug-flow reactors, replacing astronomic time by residence time. Such relationships can be termed time invariants o...

  19. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro


    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities.

  20. Volume term of work of critical nucleus formation in terms of chemical potential difference relative to equilibrium one

    Mori, Atsushi


    The work of formation of a critical nucleus is sometimes written as W=n{\\Delta}{\\mu}+{\\gamma}A. The first term W_{vol}=n{\\Delta}{\\mu} is called the volume term and the second term {\\gamma}A the surface term with {\\gamma} being the interfacial tension and A the area of the nucleus. Nishioka and Kusaka [J. Chem. Phys. 96 (1992) 5370] derived W_{vol}=n{\\Delta}{\\mu} with n=V_{\\beta}/v_{\\beta} and {\\Delta}{\\mu}={\\mu}_{\\beta}(T,p_{\\alpha})-{\\mu}_{\\alpha}(T,p_{\\alpha}) by rewriting W_{vol}=-(p_{\\beta}-p_{\\alpha})V_{\\beta} by integrating the isothermal Gibbs-Duhem relation for an incompressible {\\beta} phase, where {\\alpha} and {\\beta} represent the parent and nucleating phases, V_{\\beta} is the volume of the nucleus, v_{\\beta}, which is constant, the molecular volume of the {\\beta} phase, {\\mu}, T, and p denote the chemical potential, the temperature, and the pressure, respectively. We note here that {\\Delta}{\\mu}={\\mu}_{\\beta}(T,p_{\\alpha})-{\\mu}_{\\alpha}(T,p_{\\alpha}) is, in general, not a directly measurable quan...

  1. Charge transport across insulating self-assembled monolayers: non-equilibrium approaches and modeling to relate current and molecular structure.

    Mirjani, Fatemeh; Thijssen, Joseph M; Whitesides, George M; Ratner, Mark A


    This paper examines charge transport by tunneling across a series of electrically insulating molecules with the structure HS(CH2)4CONH(CH2)2R) in the form of self-assembled monolayers (SAMs), supported on silver. The molecules examined were studied experimentally by Yoon et al. (Angew. Chem. Int. Ed. 2012, 51, 4658-4661), using junctions of the structure AgS(CH2)4CONH(CH2)2R//Ga2O3/EGaIn. The tail group R had approximately the same length for all molecules, but a range of different structures. Changing the R entity over the range of different structures (aliphatic to aromatic) does not influence the conductance significantly. To rationalize this surprising result, we investigate transport through these SAMs theoretically, using both full quantum methods and a generic, independent-electron tight-binding toy model. We find that the highest occupied molecular orbital, which is largely responsible for the transport in these molecules, is always strongly localized on the thiol group. The relative insensitivity of the current density to the structure of the R group is due to a combination of the couplings between the carbon chains and the transmission inside the tail. Changing from saturated to conjugated tail groups increases the latter but decreases the former. This work indicates that significant control over SAMs largely composed of nominally insulating groups may be possible when tail groups are used that are significantly larger than those used in the experiments of Yoon et al.1.

  2. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.


    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  3. Equilibrium Electro-osmotic Instability

    Rubinstein, Isaak


    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  4. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M


    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  5. Aggregation of Heteropolyanions Implicates the Presence of Zunel Ions Near Air-Water Interfaces

    Bera, Mrinal K.; Antonio, Mark R.


    Protons play crucial roles in the interactions between hetero-polyanions (HPAs) in aqueous solutions and solid acid salts. We report the aggregation behaviours of Keggin HPAs near the surfaces of heteropolyacid solutions. The structure of the aggregated HPA layer near the solution-vapour phase boundary closely resembles the solid-state crystal structure of the hetero-polyacids in which the HPAs are connected by Zundel ions. The resemblance not only implicates the presence of protons in the form of planar Zundel ions near the air-water interface but, also, suggests that these align parallel to the interface. This study demonstrates an indirect means of assessing the impact of protons on HPA interactions near air-water interfaces and, in general, provides new insights about interfacial proton chemistry of heteropolyacids.

  6. Patterns of a slow air-water flow in a semispherical container

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.


    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  7. Numerical simulation of air-water two-phase flow over stepped spillways

    CHENG; Xiangju; CHEN; Yongcan


    Stepped spillways for significant energy dissipation along the chute have gained interest and popularity among researchers and dam engineers. Due to the complexity of air-water two-phase flow over stepped spillways, the finite volume computational fluid dynamics module of the FLUENT software was used to simulate the main characteristics of the flow. Adopting the RNG k-ε turbulence model, the mixture flow model for air-water two-phase flow was used to simulate the flow field over stepped spillway with the PISO arithmetic technique. The numerical result successfully reproduced the complex flow over a stepped spillway of an experiment case, including the interaction between entrained air bubbles and cavity recirculation in the skimming flow regime, velocity distribution and the pressure profiles on the step surface as well. The result is helpful for understanding the detailed information about energy dissipation over stepped spillways.

  8. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Gasser, L.; Wellig, B.; Hilfiker, K.


    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  9. Thermal equilibrium of goats.

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G


    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation.

  10. Ion exchange equilibrium constants

    Marcus, Y


    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  11. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.


    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in Lakes Erie and Ontario were influenced by loadings from areas of concern and the water circulation patterns. Air-water exchange calculations indicated that the majority of OCPs were volatilizing from the water; therefore the lower Great Lakes were acting as a secondary source to

  12. Liquid mean velocity and turbulence in a horizontal air-water bubbly flow


    The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.

  13. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    Zehnder, Michele; Favrat, Daniel


    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  14. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei


    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  15. Interactive Effect of Air-Water Ratio and Temperature on the Air Stripping of Benzene

    M. E. Abdullahi


    Full Text Available High cost of pilot scale studies has led engineers to use simulation to study the factors that affect process performance. This study focuses on the interactive effect of air water ratio and temperature on the removal of volatile organic compounds from polluted water using packed column air stripper taking benzene as a case study. The process governing equations developed based on two-film model of mass transfer were solved using MATLAB and a surface response plot was done. The mass transfer coefficient increased from 0.1237x10-5 to 0.1932x10-5 s-1 as the temperature was raised from 293 to 323 K. Also, the Henry’s constant increased from 228.59 to 883.36 K as the temperature was raised from 293 to 323 K. Benzene removal efficiencies of over 99% were obtained for all combinations of temperature and air-water ratio. The result also indicated that air stripping of benzene from wastewater is most dependent on temperature and moderately on air-water ratio.

  16. Hydrodynamics of a fixed camphor boat at the air-water interface

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh


    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  17. Physical modelling and scale effects of air-water flows on stepped spillways

    CHANSON Hubert; GONZALEZ Carlos A.


    During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete),strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbulence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to prototypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels although little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.

  18. Computing Equilibrium Free Energies Using Non-Equilibrium Molecular Dynamics

    Christoph Dellago


    Full Text Available As shown by Jarzynski, free energy differences between equilibrium states can be expressed in terms of the statistics of work carried out on a system during non-equilibrium transformations. This exact result, as well as the related Crooks fluctuation theorem, provide the basis for the computation of free energy differences from fast switching molecular dynamics simulations, in which an external parameter is changed at a finite rate, driving the system away from equilibrium. In this article, we first briefly review the Jarzynski identity and the Crooks fluctuation theorem and then survey various algorithms building on these relations. We pay particular attention to the statistical efficiency of these methods and discuss practical issues arising in their implementation and the analysis of the results.

  19. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  20. Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers

    Kalenik Marek


    Full Text Available Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift pump. Using the obtained results, the efficiency of the three types of air-water mixers applied in this air lift pump was determined. The analysis was carried out and there was checked whether the improved analytical Stenning-Martin model can be used to design air lift pumps with the air-water mixers of these types. The highest capacity in the water transport was reached by the air lift pump with the 1st type air-water mixer, the lowest one – with the 3rd type air-water mixer. The water flow in the air lift pump increases along with the rise in the air flow. The lower are the hydraulic losses generated during flow of the air flux by the air-water mixer, the higher is the air lift pump capacity. Along with the rise in the water delivery head, the capacity of the air lift pump decreases. The highest efficiency is reached by the air lift pump with the 1st type air-water mixer, the lowest – with the 3st type air-water mixer. The efficiency of the air lift pump for the three investigated types of air-water mixers decreases along with the rise in air flow rate and water delivery head. The values of submergence ratio (h/L of the delivery pipe, calculated with the use of the improved analytical Stenning-Martin model, coincide quite well with the values of h/L determined from the measurements.

  1. Breaking the double-edged sword of effort/trying hard: Developmental equilibrium and longitudinal relations among effort, achievement, and academic self-concept.

    Marsh, Herbert W; Pekrun, Reinhard; Lichtenfeld, Stephanie; Guo, Jiesi; Arens, A Katrin; Murayama, Kou


    Ever since the classic research of Nicholls (1976) and others, effort has been recognized as a double-edged sword: while it might enhance achievement, it undermines academic self-concept (ASC). However, there has not been a thorough evaluation of the longitudinal reciprocal effects of effort, ASC, and achievement, in the context of modern self-concept theory and statistical methodology. Nor have there been developmental equilibrium tests of whether these effects are consistent across the potentially volatile early-to-middle adolescence. Hence, focusing on mathematics, we evaluate reciprocal effects models (REMs) over the first 4 years of secondary school (grades 5-8), relating effort, achievement (test scores and school grades), ASC, and ASC × Effort interactions for a representative sample of 3,144 German students (Mage = 11.75 years at Wave 1). ASC, effort, and achievement were positively correlated at each wave, and there was a clear pattern of positive reciprocal positive effects among ASC, test scores, and school grades-each contributing to the other, after controlling for the prior effects of all others. There was an asymmetrical pattern of effects for effort that is consistent with the double-edged sword premise: prior school grades had positive effects on subsequent effort, but prior effort had nonsignificant or negative effects on subsequent grades and ASC. However, on the basis of a synergistic application of new theory and methodology, we predicted and found a significant ASC × Effort interaction, such that prior effort had more positive effects on subsequent ASC and school grades when prior ASC was high-thus providing a key to breaking the double-edged sword. (PsycINFO Database Record

  2. Phase equilibrium engineering

    Brignole, Esteban Alberto


    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  3. Physicochemical Perturbations of Phase Equilibriums

    Dobruskin, Vladimir Kh


    The alternative approach to the displacement of gas/liquid equilibrium is developed on the basis of the Clapeyron equation. The phase transition in the system with well-established properties is taken as a reference process to search for the parameters of phase transition in the perturbed equilibrium system. The main equation, derived in the framework of both classical thermodynamics and statistical mechanics, establishes a correlation between variations of enthalpies of evaporation, \\Delta (\\Delta H), which is induced by perturbations, and the equilibrium vapor pressures. The dissolution of a solute, changing the surface shape, and the effect of the external field of adsorbents are considered as the perturbing actions on the liquid phase. The model provides the unified method for studying (1) solutions, (2) membrane separations (3) surface phenomena, and (4) effect of the adsorption field; it leads to the useful relations between \\Delta (\\Delta H), on the one hand, and the osmotic pressures, the Donnan poten...

  4. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface.

    Maloney, K M; Grainger, D W


    A series of ternary mixed monolayers containing varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and equimolar additions of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LYSO-PC) and palmitic acid (PA) were studied at the air-water interface. These mixed monolayers were used to model phospholipid biomembrane interfaces resulting from phospholipase A2 (PLA2) hydrolysis. Recent work [D.W. Grainger A. Reichert, H. Ringsdorf and C. Salesse (1989) Biochim. Biophys. Acta. 1023, 365-379] has shown that PLA2 hydrolysis of pure phospholipid monolayers results in formation of large PLA2 domains at the air-water interface. These domains are proposed to result from PLA2 adsorption to phase separated regions in the hydrolyzed monolayer. To elucidate the phase behaviour in these monolayer systems, surface pressure-area isotherms were measured for the ternary mixtures on pure water and buffered subphases. Fluorescence microscopy at the air-water interface was used to image fluorescent probe-doped monolayer mixtures during isothermal compressions. A water-soluble cationic carbocyanine dye was used to probe the interfacial properties of the mixed monolayers. Isotherm data do not provide unambiguous evidence for either phase separation or ideal mixing of monolayer components. Fluorescence microscopy is more revealing, showing that lateral phase separation of microstructures containing palmitic acid occurred only when monolayer subphases contained Ca2+ ions at alkaline pH. At either low pH or on Ca(2+)-free subphases, phase separation was not observed.

  5. Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface.

    Abraham, Thomas; Schooling, Sarah R; Beveridge, Terry J; Katsaras, John


    Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.

  6. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.


    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water

  7. Sensitivity study of poisson corruption in tomographic measurements for air-water flows

    Munshi, P. (Fraunhofer Institute for Nondestructive Testing, Saarbrucken (Germany)); Vaidya, M.S. (Indian Institute of Technology, Kanpur (India))


    An application of computerized tomography (CT) for measuring void fraction profiles in two-phase air-water flows was reported earlier. Those attempts involved some special radial methods for tomographic reconstruction and the popular convolution backprojection (CBP) method. The CBP method is capable of reconstructing void profiles for nonsymmetric flows also. In this paper, we investigate the effect of corrupted CT data for gamma-ray sources and aCBP algorithm. The corruption in such a case is due to the statistical (Poisson) nature of the source.

  8. Ligand interaction with the purified serotonin transporter in solution and at the air/water interface

    Faivre, V.; Manivet, P.; Callaway, J.C.; Morimoto, H.; Airaksinen, M.M.; Baszkin, A.; Launay, J.M.; Rosilio, V.


    The purified serotonin transporter (SERT) was spread at the air/water interface and the effects both of its surface density and of the temperature on its interfacial behavior were studied. The recorded isotherms evidenced the existence of a stable monolayer undergoing a lengthy rearrangement. SERT/ligand interactions appeared to be dependent on the nature of the studied molecules. Whereas an unrelated drug (chlorcyclizine) did not bind to the spread SERT, it interacted with its specific ligands. Compared to heterocyclic drugs, for which binding appeared to be concentration-dependent, a 'two-site' mechanism was evidenced for pinoline and imipramine.

  9. Formation of H-type liquid crystal dimer at air-water interface

    Karthik, C., E-mail:; Gupta, Adbhut, E-mail:; Joshi, Aditya, E-mail:; Manjuladevi, V., E-mail:; Gupta, Raj Kumar, E-mail: [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan -333031 (India); Varia, Mahesh C.; Kumar, Sandeep [Raman Research Institute, Sadashivanagar, Bangalore - 560080 (India)


    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  10. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)


    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  11. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    Olerni, Claudio; Jia, Jiabin; Wang, Mi


    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  12. Effect of hydroperiod on CO2 fluxes at the air-water interface in the Mediterranean coastal wetlands of Doñana

    Huertas, I. Emma; Flecha, Susana; Figuerola, Jordi; Costas, Eduardo; Morris, Edward P.


    Wetlands are productive ecosystems that play an important role in the Earth's carbon cycle and thus global carbon budgets. Climate variability affects amount of material entering and the metabolic balance of wetlands, thereby modifying carbon dynamics. This study presents spatiotemporal changes in air-water CO2 exchange in the vast wetlands of Doñana (Spain) in relation to different hydrological cycles. Water sources feeding Doñana, including groundwater and streams, ultimately depend on the fluctuating balance between annual precipitation and evapotranspiration. Hence, in order to examine the contribution of the rainfall pattern to the emission/capture of CO2 by a range of aquatic habitats in Doñana, we took monthly measurements during severely wet, dry, and normal hydrological years (2010-2013). During wet hydrological cycles, CO2 outgassing from flooded marshes markedly decreased in comparison to that observed during subsequent dry-normal cycles, with mean values of 25.84 ± 19 and 5.2 ± 8 mmol m-2 d-1, respectively. Under drier meteorological conditions, air-water CO2 fluxes also diminished in permanent floodplains and ponds, which even behaved as mild sinks for atmospheric CO2 during certain periods. Increased inputs of dissolved CO2 from the underground aquifer and the stream following periods of high rainfall are believed to be behind this pattern. Large lagoons with a managed water supply from an adjacent estuary took up atmospheric CO2 nearly permanently. Regional air-water carbon transport was 15.2 GgC yr-1 under wet and 1.24 GgC yr-1 under dry meteorological conditions, well below the estimated net primary production for Doñana wetlands, indicating that the ecosystem acts as a large CO2 sink.

  13. Research on measurement-device-independent quantum key distribution based on an air-water channel

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang


    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  14. Carbon-foam finned tubes in air-water heat exchangers

    Yu Qijun [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B8 (Canada)]. E-mail:; Straatman, Anthony G. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B8 (Canada)]. E-mail:; Thompson, Brian E. [Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)]. E-mail:


    An engineering model is formulated to account for the effects of porosity and pore diameter on the hydrodynamic and thermal performance of a carbon-foam finned tube heat exchanger. The hydrodynamic and thermal resistances are obtained from well-established correlations that are extended herein to account for the influence of the porous carbon foam. The influence of the foam is characterized on the basis of a unit-cube geometric model that describes the internal structure, the exposed surface, the permeability and the effective conductivity as a function of porosity and pore diameter. The engineering model is validated by comparison with experiments that characterize heat transfer in an air-water radiator made from porous carbon foam. The model is also used in to conduct a parametric study to show the influence of the porosity and pore diameter of the foam. The parametric study suggests that in comparison to conventional aluminum finned-tube radiators, improvements of approximately 15% in thermal performance are possible without changing the frontal area, or the air flow rate and pressure drop. The engineering model developed herein can be used by engineers to assess quantitatively the suitability of porous carbon foam as a fin material in the design of air-water heat exchangers.

  15. Carbon-foam finned tubes in air-water heat exchangers

    Yu, Qijun; Straatman, Anthony G. [Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON (Canada); Thompson, Brian E. [Department of Mechanical Engineering, The University of Ottawa, Ottawa, ON (Canada)


    An engineering model is formulated to account for the effects of porosity and pore diameter on the hydrodynamic and thermal performance of a carbon-foam finned tube heat exchanger. The hydrodynamic and thermal resistances are obtained from well-established correlations that are extended herein to account for the influence of the porous carbon foam. The influence of the foam is characterized on the basis of a unit-cube geometric model that describes the internal structure, the exposed surface, the permeability and the effective conductivity as a function of porosity and pore diameter. The engineering model is validated by comparison with experiments that characterize heat transfer in an air-water radiator made from porous carbon foam. The model is also used in to conduct a parametric study to show the influence of the porosity and pore diameter of the foam. The parametric study suggests that in comparison to conventional aluminum finned-tube radiators, improvements of approximately 15% in thermal performance are possible without changing the frontal area, or the air flow rate and pressure drop. The engineering model developed herein can be used by engineers to assess quantitatively the suitability of porous carbon foam as a fin material in the design of air-water heat exchangers. (author)

  16. Shear turbulence, Langmuir circulation and scalar transfer at an air-water interface

    Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice


    DNS of an initially quiescent coupled air-water interface driven by an air-flow with free stream speed of 5 m/s generates gravity-capillary waves and small-scale (centimeter-scale) Langmuir circulation (LC) beneath the interface. In addition to LC, the waterside turbulence is characterized by shear turbulence with structures similar to classical "wall streaks" in wall-bounded flow. These streaks, denoted here as "shear streaks", consist of downwind-elongated vortices alternating in sign in the crosswind direction. The presence of interfacial waves causes interaction between these vortices giving rise to bigger vortices, namely LC. LES with momentum equation augmented with the Craik-Leibovich (C-L) vortex force is used to understand the roles of the shear streaks (i.e. the shear turbulence) and the LC in determining scalar flux from the airside to the waterside and vertical scalar transport beneath. The C-L force consists of the cross product between the Stokes drift velocity (induced by the interface waves) and the flow vorticity. It is observed that Stokes drift shear intensifies the shear streaks (with respect to flow without wave effects) leading to enhanced scalar flux at the air-water interface. LC leads to increased vertical scalar transport at depths below the interface.

  17. An investigation of channel flow with a smooth air-water interface

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan


    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  18. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N


    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  19. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.


    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  20. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna


    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (Cs(-1)), excess Gibbs free energy (ΔGexc), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules.

  1. Dipole Moment of a Charged Particle Trapped at the Air-Water Interface.

    Bossa, Guilherme Volpe; Bohinc, Klemen; Brown, Matthew A; May, Sylvio


    The interaction between two charged particles (such as nanoparticles or colloids) trapped at the air-water interface becomes dipolar at large separations. The corresponding dipole moment can be modeled by considering a single point charge located exactly at the interface, but this model fails to correctly predict the dipole moment's dependence on the salt concentration in the aqueous medium. We extend the single point charge model to two point charges that are separated by a fixed distance and are located at the air-water interface, with one charge being immersed in air and the other in the solvent. The two point charges represent the surface charges at the air-exposed and water-exposed regions of an interface-trapped particle. The two point charges also account for the spatial extension of the particle. On the basis of the Debye-Hückel model, we derive mathematical expressions for the interaction between two pairs of charges and discuss the salt concentration dependence of the dipolar moment at large separations. Our results reveal a residual dipole moment in the limit of large salt content that originates from the charge attached to the air-exposed region of the particle. We discuss nonlinear screening effects and compare the predicted dipolar moments with recent experimental results.

  2. Evaporative assembly of MEH-PPV rings using mixed solvents at the air/water interface.

    Chao, Kung-Po; Biswal, Sibani L


    Controlling the morphology of conjugated polymers has recently attracted considerable attention because of their applications in photovoltaic (PV) devices and organic light-emitting diodes (OLEDs). Here, we describe the self-assembly of a common conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), into ringlike structures via solvent evaporation on an air/water interface. The films are monitored using Brewster angle microscopy (BAM) and transferred onto a solid substrate by either the Langmuir-Blodgett (LB) or the Langmuir-Schaefer (LS) method and further characterized by atomic force microscopy (AFM). The morphology of the MEH-PPV thin film at the air/water interface can be controlled by the spreading solvent. By mixing solvents of varying spreading coefficients and evaporation rates, such as chloroform and chlorobenzene, MEH-PPV can be assembled into micrometer-sized ring structures. The optical properties of these MEH-PPV ring structures are also characterized. Lastly, MEH-PPV can be used as a soft template to organize microscale structures of nanoparticles.

  3. The excess proton at the air-water interface: The role of instantaneous liquid interfaces

    Giberti, Federico; Hassanali, Ali A.


    The magnitude of the pH of the surface of water continues to be a contentious topic in the physical chemistry of aqueous interfaces. Recent theoretical studies have shown little or no preference for the proton to be at the surface compared to the bulk. Using ab initio molecular dynamics simulations, we revisit the propensity of the excess proton for the air-water interface with a particular focus on the role of instantaneous liquid interfaces. We find a more pronounced presence for the proton to be at the air-water interface. The enhanced water structuring around the proton results in the presence of proton wires that run parallel to the surface as well as a hydrophobic environment made up of under-coordinated topological defect water molecules, both of which create favorable conditions for proton confinement at the surface. The Grotthuss mechanism within the structured water layer involves a mixture of both concerted and closely spaced stepwise proton hops. The proton makes excursions within the first solvation layer either in proximity to or along the instantaneous interface.

  4. Predicting Air-Water Geysers and Their Implications on Reducing Combined Sewer Overflows

    Choi, Y.; Leon, A.; Apte, S.


    An air-water geyser in a closed conduit system is characterized by an explosive jetting of a mixture of air and water through drop-shafts. In this study, three scenarios of geysers are numerically simulated using a 3D computational fluid dynamics (CFD) model. The three tested scenarios are comprised of a drop shaft that is closed at its bottom and partially or fully open at the top. Initially, the lower section of the drop shaft is filled with pressurized air, the middle section with stagnant water and the upper section with air at atmospheric pressure. The pressure and volume of the pressurized air, and hence the stored energy, is different for all three test cases. The volume of the stagnant water and the air at atmospheric pressure are kept constant in the tests. The numerical simulations aim to identify the correlation between dimensionless energy stored in the pressurized air pocket and dimensionless maximum pressure reached at the outlet. This dimensionless correlation could be used to determine the energy threshold that does not produce air-water geyser, which in turn could be used in the design of combined sewer systems for minimizing geysers.

  5. Biogenic amine – surfactant interactions at the air-water interface.

    Penfold, J; Thomas, R K; Li, P X


    The strong interaction between polyamines and anionic surfactants results in pronounced adsorption at the air-water interface and can lead to the formation of layered surface structures. The transition from monolayer adsorption to more complex surface structures depends upon solution pH, and the structure and molecular weight of the polyamine. The effects of manipulating the polyamine molecular weight and structure on the adsorption of the anionic surfactant sodium dodecyl sulphate at the air-water interface are investigated using neutron reflectivity and surface tension, for the biogenic amines putrescine, spermidine and spermine. The results show how changing the number of amine groups and the spacing between the amine groups impacts upon the surface adsorption. At lower pH, 3-7, and for the higher molecular weight polyamines, spermidine and spermine, ordered multilayer structures are observed. For putrescine at all pH and for spermidine and spermine at high pH, monolayer adsorption with enhanced surfactant adsorption compared to the pure surfactant is observed. The data for the biogenic amines, when compared with similar data for the polyamines ethylenediamine, diethylenetriamine and triethylenetetramine, indicate that the spacing between amines groups is more optimal for the formation of ordered surface multilayer structures.

  6. Zeroth Law, Entropy, Equilibrium, and All That

    Canagaratna, Sebastian G.


    The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the…

  7. Zeroth Law, Entropy, Equilibrium, and All That

    Canagaratna, Sebastian G.


    The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the…

  8. Correlation of Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Tensions

    Grate, Jay W.; Dehoff, Karl J.; Warner, Marvin G.; Pittman, Jonathan W.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus


    The use of air-water, {Theta}{sub wa}, or air-liquid contact angles is customary in surface science, while oil-water contact angles {Theta}{sub ow}, are of paramount importance in subsurface multiphase flow phenomena including petroleum reocovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water-wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain a linear relationship in excellent agreement with the theoretical treatment; the data fit cos {Theta}{sub ow} = 0.667 cos {Theta}{sub ow} + 0.384 (R = 0.981, n = 13), intercepting cos {Theta}{sub ow} = -1 at -0.284. The theoretical slope, based on the fluid interfacial tensions {Theta}{sub wa}, {Theta}{sub ow}, and {Theta}{sub oa}, is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement

  9. LP Well-Posedness for Bilevel Vector Equilibrium and Optimization Problems with Equilibrium Constraints

    Phan Quoc Khanh


    Full Text Available The purpose of this paper is introduce several types of Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Base on criterion and characterizations for these types of Levitin-Polyak well-posedness we argue on diameters and Kuratowski’s, Hausdorff’s, or Istrǎtescus measures of noncompactness of approximate solution sets under suitable conditions, and we prove the Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Obtain a gap function for bilevel vector equilibrium problems with equilibrium constraints using the nonlinear scalarization function and consider relations between these types of LP well-posedness for bilevel vector optimization problems with equilibrium constraints and these types of Levitin-Polyak well-posedness for bilevel vector equilibrium problems with equilibrium constraints under suitable conditions; we prove the Levitin-Polyak well-posedness for bilevel equilibrium and optimization problems with equilibrium constraints.

  10. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface.

    Lozano, Neus; Pinazo, Aurora; Pérez, Lourdes; Pons, Ramon


    In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.

  11. Characteristics of drift-flux models for the 3' diameter vertical-upward air-water flow condition

    Nguyen, V. T.; Euh, D. J.; Song, C. H. [KAERI, Daejeon (Korea, Republic of)


    One of the more complex aspects of two-phase flow calculations is the determination of the void fraction. An accurate estimation of this parameter is important for understanding and predicting the behavior of systems during a wide variety of transient conditions. The drift-flux models are based on correlations to compute the void fraction distribution and slip in a two-phase flow needed to obtain the relative velocity between the phases. Thus, the accuracy of the correlation has a decisive role in determining the correct transport of the two-phases in the system. In this paper, the assessment of 7 correlations based on the Zuber-Findlay model has been done by using the experimental data which were performed on the 3' diameter vertical-upward air-water test facility in KAERI. The void fraction was measured by using the impedance void meter which has a good dynamic resolution to get the values directly without any further data treatment. A total of 28 flow conditions have been performed at 2 bar and 3 bar inlet pressure conditions with temperature of 30 .deg. C, superficial liquid and gas velocity range of 0.5-2.8 m/s and 0.044-1.025 m/s. Some physical phenomena relevant to inlet flow condition and pressure effect were investigated. The results of assessment show a good predictive capability of Bestion model, which is currently used in the system code CATHARE.

  12. Air-water partition coefficients for a suite of polycyclic aromatic and other C10 through C20 unsaturated hydrocarbons.

    Rayne, Sierra; Forest, Kaya


    The air-water partition coefficients (Kaw) for 86 large polycyclic aromatic hydrocarbons and their unsaturated relatives were estimated using high-level G4(MP2) gas and aqueous phase calculations with the SMD, IEFPCM-UFF, and CPCM solvation models. An extensive method validation effort was undertaken which involved confirming that, via comparisons to experimental enthalpies of formation, gas-phase energies at the G4(MP2) level for the compounds of interest were at or near thermochemical accuracy. Investigations of the three solvation models using a range of neutral and ionic compounds suggested that while no clear preferential solvation model could be chosen in advance for accurate Kaw estimates of the target compounds, the employment of increasingly higher levels of theory would result in lower Kaw errors. Subsequent calculations on the polycyclic aromatic and unsaturated hydrocarbons at the G4(MP2) level revealed excellent agreement for the IEFPCM-UFF and CPCM models against limited available experimental data. The IEFPCM-UFF-G4(MP2) and CPCM-G4(MP2) solvation energy calculation approaches are anticipated to give Kaw estimates within typical experimental ranges, each having general Kaw errors of less than 0.5 log10 units. When applied to other large organic compounds, the method should allow development of a broad and reliable Kaw database for multimedia environmental modeling efforts on various contaminants.

  13. Beat the equilibrium

    Berty, J.M.; Krishnan, C.; Elliott, J.R. Jr. (Berty Reaction Engineers, Ltd. (USA))


    Methanol is synthesised catalytically from H{sub 2}, CO and CO{sub 2}. Equilibrium considerations dictated the use of high pressures until the advent of copper-based catalysts. But equilibrium problems still exist; single pass conversions of CO and H{sub 2} are low, typically 30-40%. A solvent methanol process (SMP) is proposed to overcome existing problems. A high-boiling inert solvent is introduced with the synthesis gas. The solvent selectively absorbs CH{sub 3}OH, thus shifting the equilibrium towards the product. The strongest solvent identified and tested is tetraethyleneglycol dimethyl ether (tetraglyme). 24 refs., 4 figs., 2 tabs.

  14. Theory and Experiment on the Measurement of Kinetic Rate Constants for Surfactant Exchange at an Air/Water Interface.

    Pan; Green; Maldarelli


    The paper focuses on the measurement of the rate constants for the kinetic steps of adsorption and desorption of surfactant between an air/water surface and the aqueous bulk sublayer adjacent to the surface. Kinetic constants are determined in nonequilibrium experiments in which either a clean surface is contacted with a bulk solution and surfactant diffuses toward and adsorbs onto the interface, or the area of an established monolayer in equilibrium with an underlying solution is changed, and surfactant exchanges between the surface and bulk. The dynamic tension change due to the surfactant exchange is measured, and compared to predictions of kinetic-diffusive transport models in order to infer the kinetic coefficients as well the diffusion coefficients. Model comparisons for highly surface active surfactants have resolved only the diffusion coefficient as the transport was found to be diffusion controlled; kinetic constants have only been established for less active materials such as alcohols or bolaform surfactants. In this study, we demonstrate that kinetics can be differentiated from diffusion in clean interface adsorption and re-equilibration if high bulk concentrations of the surfactant are used, or in re-equilibration, if the surface is compressed sufficiently. We first establish theoretically that mass transfer shifts from diffusion-limited to mixed as the bulk concentration increases in clean interface adsorption, or the surface compression is increased in re-equilibration. We then experimentally verify this idea by using the polyethoxylated surfactant C12E6 (C12H25 (OCH2CH2)6-OH) and by measuring dynamic surface tensions in clean interface adsorption and re-equilibration, respectively by the shape analysis of pendant bubbles. We find values of 6 x 10(-10) m2/s for the diffusion coefficient, and 1.4 x 10(-5) m/sec and 1.4 x 10(-4) s-1 for the adsorption and desorption rate constants, respectively, in a Frumkin kinetic formulation. While the adsorption

  15. Chemical Principles Revisited: Chemical Equilibrium.

    Mickey, Charles D.


    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  16. Thermodynamics "beyond" local equilibrium

    Vilar, Jose; Rubi, Miguel


    Nonequilibrium thermodynamics has shown its applicability in a wide variety of different situations pertaining to fields such as physics, chemistry, biology, and engineering. As successful as it is, however, its current formulation considers only systems close to equilibrium, those satisfying the so-called local equilibrium hypothesis. Here we show that diffusion processes that occur far away from equilibrium can be viewed as at local equilibrium in a space that includes all the relevant variables in addition to the spatial coordinate. In this way, nonequilibrium thermodynamics can be used and the difficulties and ambiguities associated with the lack of a thermodynamic description disappear. We analyze explicitly the inertial effects in diffusion and outline how the main ideas can be applied to other situations. [J.M.G. Vilar and J.M. Rubi, Proc. Natl. Acad. Sci. USA 98, 11081-11084 (2001)].

  17. Non-equilibrium Economics

    Katalin Martinás


    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  18. Response reactions: equilibrium coupling.

    Hoffmann, Eufrozina A; Nagypal, Istvan


    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  19. Napoleon Is in Equilibrium

    Phillips, Rob


    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  20. Equilibrium statistical mechanics

    Mayer, J E


    The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t


    王双峰; 贾复


    The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization tech nique. A critical shear condition under which the streaky structure first appears was determined to be uT ≈ 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a lin ear relationship describing variation of non-dimensional spacing λ+- versus y+ was found essentially independent of shear stress on the interface. Values ofλ+, however,are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that λ+ takes rather smaller values than that in wall turbulence is briefly discussed.

  2. Atmospheric photochemistry at a fatty acid-coated air-water interface

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian


    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  3. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems

    Zappa, Christopher J.; McGillis, Wade R.; Raymond, Peter A.; Edson, James B.; Hintsa, Eric J.; Zemmelink, Hendrik J.; Dacey, John W. H.; Ho, David T.


    Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the ${^1}\\!/{_4 power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.

  4. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others


    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  5. Turbulent heat and mass transfers across a thermally stratified air-water interface

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.


    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  6. The effect of bubbles on air-water oxygen transfer in the breaker zone

    Kakuno, Shohachi; Moog, Douglas B.; Tatekawa, Tetsuya; Takemura, Kenji; Yamagishi, Tatsuya

    The effect of bubbles entrained in the breaker zone on air-water oxygen transfer is examined. First, the area of bubbles entrained by breakers generated on a sloping bottom in a wave tank is analyzed using a color image sensor which can count the pixel number of a specific color in a frame. It was found that the time-averaged pixel number over a wave period has a strong relationship to the energy dissipation rate per unit mass of the breaker. The time-averaged pixel number is then incorporated with some modification into an equation proposed by Eckenfelder for the calculation of the mass transfer coefficient from bubble surfaces in an aeration tank. The coefficient resulting from the modified equation shows a strong relationship between the mass transfer coefficient and the dissipation rate.

  7. Interfacial structures of confined air-water two-phase bubbly flow

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.


    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  8. Crystalline mono- and multilayer self-assemblies of oligothiophenes at the air-water interface

    Isz, S.; Weissbuch, I.; Kjær, K.;


    of aromatic nonamphiphilic molecules, self-aggregated at the air-water interface. As model systems we have examined the deposition of quaterthiophene (S-4), quinquethiophene (S-5). and sexithiophene (S-6) from chloroform solutions on the water surface. The structures of the films were determined by surface...... pressure-area isotherms, by scanning force microscopy (SFM) after transfer of the films onto atomically smooth mica, by cryo-transmission electron microscopy (Cryo-TEM) on vitreous ice, and by grazing incidence synchrotron X-ray diffraction (GID) directly on the water surface. S-4 forms two polymorphic...... surface. S-5 self-ageregates at the water surface to form mixtures of monolayers and bilayers of the beta polymorph; S-6 forms primarily crystalline monolayers of both alpha and beta forms. The crystalline assemblies preserve their integrity during transfer from the water surface onto solid supports...

  9. Two-dimensional Insect Flight on an Air-Water Interface is a Chaotic Oscillator

    Mukundarajan, Haripriya; Prakash, Manu


    Two-dimensional flapping wing insect flight on an air-water interface provides a successful foraging strategy to explore an ecological niche on the surface of a pond. However, the complex interplay of surface tension, aerodynamic forces, biomechanics and neural control that enables two-dimensional flight is unknown. Here we report the discovery of two-dimensional flight in the waterlily beetle Galerucella nymphaeae, which is the fastest reported propulsion mode for an insect on a fluid interface. Using kinematics derived from high-speed videography coupled with analytical models, we demonstrate that two-dimensional flight is a chaotic interfacial oscillator, thus significantly constraining the possible range of flight parameters. Discovery of this complex dynamics in two-dimensional flight on time scales similar to neural responses indicates the challenge of evolving active flight control on a fluid interface.

  10. Crystalline self-assembly into monolayers of folded oligomers at the air-water interface

    Lederer, K.; Godt, A.; Howes, P.B.;


    of the folding unit almost perpendicular to the water surface, as determined by synchrotron grazing-incidence X-ray diffraction. Three distinct molecular shapes, of the types U, inverted U, and M, were obtained in the two-dimensional crystalline state, depending upon the number of spacer units, and the number......Insertion of the 115-bis(ethynylene)benzene unit as a rigid spacer into a linear alkyl chain, thus separating the two resulting stems by 9 Angstrom, induces chain folding at the air-water interface. These folded molecules self-assemble into crystalline monolayers at this interface, with the plane...... and position of the hydrophilic groups in the molecule. The molecules form ribbons with a higher crystal coherence in the direction of stacking between the molecular ribbons, and a lower coherence along the ribbon direction. A similar molecule, but with a spacer unit that imposes a 5 Angstrom separation...

  11. Holding Costs and Equilibrium Arbitrage

    Tuckman, Bruce; Vila, Jean-Luc


    This paper constructs a dynamic model of the equilibrium determination of relative prices when arbitragers face holding costs. The major findings are that 1) models based on riskless arbitrage arguments alone may not provide usefully tight bounds on observed prices, 2) arbitragers are often most effective in eliminating the mispricings of shorter-term assets, 3) arbitrage activity increases the mean reversion of changes in the mispricing process and reduces their conditional volatility, and 4...

  12. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Mitsche, Matthew A; Wang, Libo; Small, Donald M


    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  13. Equilibrium games in networks

    Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan


    It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.

  14. Prediction of the air-water partition coefficient for perfluoro-2-methyl-3-pentanone using high-level Gaussian-4 composite theoretical methods.

    Rayne, Sierra; Forest, Kaya


    The air-water partition coefficient (Kaw) of perfluoro-2-methyl-3-pentanone (PFMP) was estimated using the G4MP2/G4 levels of theory and the SMD solvation model. A suite of 31 fluorinated compounds was employed to calibrate the theoretical method. Excellent agreement between experimental and directly calculated Kaw values was obtained for the calibration compounds. The PCM solvation model was found to yield unsatisfactory Kaw estimates for fluorinated compounds at both levels of theory. The HENRYWIN Kaw estimation program also exhibited poor Kaw prediction performance on the training set. Based on the resulting regression equation for the calibration compounds, the G4MP2-SMD method constrained the estimated Kaw of PFMP to the range 5-8 × 10(-6) M atm(-1). The magnitude of this Kaw range indicates almost all PFMP released into the atmosphere or near the land-atmosphere interface will reside in the gas phase, with only minor quantities dissolved in the aqueous phase as the parent compound and/or its hydrate/hydrate conjugate base. Following discharge into aqueous systems not at equilibrium with the atmosphere, significant quantities of PFMP will be present as the dissolved parent compound and/or its hydrate/hydrate conjugate base.

  15. Protonation Equilibrium of Linear Homopolyacids

    Požar J.


    Full Text Available The paper presents a short summary of investigations dealing with protonation equilibrium of linear homopolyacids, in particularly those of high charge density. Apart from the review of experimental results which can be found in the literature, a brief description of theoretical models used in processing the dependence of protonation constants on monomer dissociation degree and ionic strength is given (cylindrical model based on Poisson-Boltzmann equation, cylindrical Stern model, the models according to Ising, Högfeldt, Mandel and Katchalsky. The applicability of these models regarding the polyion charge density, electrolyte concentration and counterion type is discussed. The results of Monte Carlo simulations of protonation equilibrium are also briefly mentioned. In addition, frequently encountered errors connected with calibration of of glass electrode and the related unreliability of determined protonation constants are pointed out.

  16. Immunity by equilibrium.

    Eberl, Gérard


    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  17. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Pohorille, Andrew; Wilson, Michael A.


    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  18. An analysis of the concept of equilibrium in organization theory

    Gazendam, Henk W.M.; Simons, John L.


    This article analyzes how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or requisite variety. Equilibrium is related to observables dependent on the definition of organization as work

  19. Comparison of the dilational behaviour of adsorbed milk proteins at the air-water and oil-water interfaces.

    Williams, A.; Prins, A.


    The interfacial dilational properties of two milk proteins, β-casein and β-lactoglobulin, have been compared at the air-water and paraffin oil-water interfaces. The measurements were performed as a function of bulk protein concentration using a modified Langmuir trough technique at a frequency of

  20. Co-current air-water flow in downward sloping pipes: Transport of capacity reducing gas pockets in wastewater mains

    Pothof, I.W.M.


    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes an

  1. Pollution: A Selected Bibliography of U.S. Government Publications on Air, Water, and Land Pollution 1965-1970.

    Kiraldi, Louis, Comp.; Burk, Janet L., Comp.

    Materials on environmental pollution published by the various offices of the federal government are presented in this select bibliography. Limited in scope to publications on air, water, and land pollution, the document is designed to serve teachers and researchers working in the field of environmental problems who wish reference to public…

  2. Stress-strain curves of adsorbed protein layers at the air/water interface measured with surface shear rheology

    Martin, A.; Bos, M.; Stuart, M.C.; Vliet, T. van


    Interfacial shear properties of adsorbed protein layers at the air/water interface were determined using a Couette-type surface shear rheometer. Such experiments are often used to determine a steady-state ratio between stress and rate of strain, which is then denoted as "surface shear viscosity". Ho

  3. Slow Structural Rearrangement of a Side-Chain Phthalocyanine Methacrylate Polymer at the Air-Water Interface

    Nostrum, C.F. van; Nolte, R.J.M.; Devillers, M.A.C.; Oostergetel, G.T.; Teerenstra, M.N.; Schouten, A.J.


    A polymethacrylate with dodecoxy-substituted phthalocyanine units in the side chains has been used to form Langmuir-Blodgett monolayers at the air-water interface. The monolayers are highly crystalline. They expand slowly even when a constant surface pressure is applied. The structural change

  4. Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Air-Water Interface

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; Jongh, H.H.J. de


    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air - water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption k

  5. Protein exposed hydrophobicity reduces the kinetic barrier for adsoption of ovalbumin to the air-water interface.

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.


    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air-water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption kin

  6. Conformational aspects of proteins at the air/water interface studied by infrared reflection-absorption spectroscopy

    Martin, A.H.; Meinders, M.B.J.; Bos, M.A.; Cohen Stuart, M.A.; Vliet, T. van


    From absorption spectra obtained with infrared reflection - absorption spectroscopy (IRRAS), it is possible to obtain information on conformational changes at a secondary folding level of proteins adsorbed at the air/water interface. In addition, information on protein concentration at the interface

  7. Comparison of the dilational behaviour of adsorbed milk proteins at the air-water and oil-water interfaces.

    Williams, A.; Prins, A.


    The interfacial dilational properties of two milk proteins, β-casein and β-lactoglobulin, have been compared at the air-water and paraffin oil-water interfaces. The measurements were performed as a function of bulk protein concentration using a modified Langmuir trough technique at a frequency of 0.

  8. Protein exposed hydrophobicity reduces the kinetic barrier for adsoption of ovalbumin to the air-water interface.

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.


    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air-water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  9. Blood: bone equilibrium

    Neuman, M.W.


    The conundrum of blood undersaturation with respect to bone mineralization and its supersaturation with respect to bone's homeostatic function has acquired a new equation. On the supply side, Ca/sup 2 +/ is pumped in across bone cells to provide the needed Ca/sup 2 +/ x P/sub i/ for brushite precipitation. On the demand side, blood is in equilibrium with bone fluid, which is in equilibrium with a mineral more soluble than apatite. The function of potassium in this equation is yet to be found.

  10. The AirWaterGas Teacher Professional Development Program: Lessons Learned by Pairing Scientists and Teachers to Develop Curriculum on Global Climate Change and Regional Unconventional Oil and Gas Development

    Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.


    The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.

  11. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Poindexter, C.; Variano, E. A.


    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  12. Investigating effects of hypertonic saline solutions on lipid monolayers at the air-water interface

    Nava Ocampo, Maria F.


    More than 70,000 people worldwide suffer from cystic fibrosis, a genetic disease characterized by chronic accumulation of mucus in patients’ lungs provoking bacterial infections, and leading to respiratory failure. An employed age-old treatment to prevent the symptoms of the disease is inhalation of hypertonic saline solution, NaCl at concentrations higher than in the human body (~150 mM). This procedure clears the mucus in the lungs, bringing relief to the patient. However, the biophysical mechanisms underlying this process are not entirely clear. We undertook a new experimental approach to understand the effects of sprayed saline solutions on model lung surfactants towards understanding the mechanisms of the treatment. The surface of lungs contains mainly 1,2-Dipalmitol-sn-glycero-3-phosphocoline (DPPC). As previously assumed by others, we considered that monolayer of DPPC at the air-water interface serves as model system for the lungs surface; we employed a Langmuir-Blodgett (LB) trough and PM-IRRAS to measure surface-specific infrared spectra of the surfactant monolayers and effects on the interfacial tensions. We investigated spraying hyper-saline solutions onto surfactant monolayers at the airwater interface in two parts: (i) validation of our methodology and techniques with stearic acid and (ii) experiments with DPPC monolayers at the air-water interface. Remarkably, when micro-droplets of NaCl were sprayed to the monolayer of stearic acid, we observed enhanced organization of the surfactant, interpreted from the intensities of the CH2 peaks in the surface-specific IR spectra. However, our results with DPPC monolayers didn’t show an effect with the salt added as aerosol, possibly indicating that the experimental methodology proposed is not adequate for the phenomena studied. In parallel, we mimicked respiratory mucous by preparing salt solutions containing 1% (wt%) agar and measured effects on their viscosities. Interestingly, we found that NaCl was much

  13. Mesoscopic non-equilibrium thermodynamics

    Rubi, Jose' Miguel


    Full Text Available Basic concepts like energy, heat, and temperature have acquired a precise meaning after the development of thermodynamics. Thermodynamics provides the basis for understanding how heat and work are related and with the general rules that the macroscopic properties of systems at equilibrium follow. Outside equilibrium and away from macroscopic regimes most of those rules cannot be applied directly. In this paper we present recent developments that extend the applicability of thermodynamic concepts deep into mesoscopic and irreversible regimes. We show how the probabilistic interpretation of thermodynamics together with probability conservation laws can be used to obtain kinetic equations describing the evolution of the relevant degrees of freedom. This approach provides a systematic method to obtain the stochastic dynamics of a system directly from the knowledge of its equilibrium properties. A wide variety of situations can be studied in this way, including many that were thought to be out of reach of thermodynamic theories, such as non-linear transport in the presence of potential barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, like translocation and stretching.

  14. Local equilibrium in bird flocks

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene


    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  15. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick


    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  16. Equilibrium CO bond lengths

    Demaison, Jean; Császár, Attila G.


    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.


    Ervik, Inger Sommerfelt; Soegaard, Christian


    Conventional economic theory stipulates that output in Cournot competition is too low relative to that which is attained in perfect competition. We revisit this result in a General Cournot-competitive Equilibrium model with two industries that di er only in terms of productivity. We show that in general equilibrium, the more ecient industry produces too little and the less ecient industry produces too much compared to an optimal scenario with perfect competition.

  18. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)


    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  19. Investigation of adsorption of surfactant at the air-water interface with quantum chemistry method

    CHEN MeiLing; WANG ZhengWu; WANG HaiJun; ZHANG GeXin; TAO FuMing


    Density functional theory (DFT) of quantum chemistry was used to optimize the configuration of the anionic surfactant complexes CH3(CH2)7OSO-3(H2O)n (n=0-6) and calculate their molecular frequencies at the B3LYP/6-311+G* level. The interaction of CH3(CH2)7OSO-3 with 1 to 6 water molecules was investigated at the air-water interface with DFT. The results revealed that the hydration shell was formed in the form of H-bond between the hydrophilic group of CH3(CH2)7OSO-3 and 6 waters. The strength of H-bonds belongs to medium. Binding free energy revealed that the hydration shell was stable. The increase of the number of water molecules will cause increases of the total charge of hydrophilic group and S10-O9-C8 bond angle, but decreases of the alkyl chain length and the bond lengths of S10-O11,S10-O12 as well as S10-O13, respectively.

  20. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  1. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    de Almeida, V.F.


    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  2. Effects of thermodynamics parameters on mass transfer of volatile pollutants at air-water interface

    Li-ping Chen


    Full Text Available A transient three-dimensional coupling model based on the compressible volume of fluid (VOF method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry’s constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry’s constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry’s constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.

  3. Bifurcations of a creeping air-water flow in a conical container

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.


    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  4. Large eddy simulation and PIV experiments of air-water mixing tanks

    Zamankhan, Piroz


    The simulations and experiments of a turbulent bubbly flow are carried out in a cylindrical mixing vessel. Dynamics of the turbulent bubbly flow is visualized using a novel two-phase particle image velocimetry (PIV) with a combination of back lighting, digital masking and fluorescent tracer particles. Using an advanced technique, Mie's scattering at surfaces of bubbles is totally filtered out and, henceforth, images of tracer particles and of bubbles are obtained with high quality. In parallel to the comprehensive experimental studies, numerical results are obtained from large eddy simulations (LES) of the two-phase air-water mixer. The impeller-induced flow at the blade tip radius is modeled by using sliding mesh method. The results demonstrate the existence of large structures such as tip-vortex tips, and also some finer details. In addition, the stability of the jet is found to be connected with the fluctuations of the tip vortices whose dynamics are affected by the presence of bubbles. Numerical results are used to interpret the measurement data and to guide the refinement of consistent theoretical analyses. Such information is invaluable in the development of advanced theories capable of describing bubbly flows in the presence of complex liquid flow. This detailed information is of real significance in facilitating the design and scale-up of practical stirred tanks.

  5. Interfacial Interactions and Nanostructure Changes in DPPG/HD Monolayer at the Air/Water Interface

    Huaze Zhu


    Full Text Available Lung surfactant (LS plays a crucial role in regulating surface tension during normal respiration cycles by decreasing the work associated with lung expansion and therefore decreases the metabolic energy consumed. Monolayer surfactant films composed of a mixture of phospholipids and spreading additives are of optional utility for applications in lung surfactant-based therapies. A simple, minimal model of such a lung surfactant system, composed of 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-(1-gylcerol] (DPPG and hexadecanol (HD, was prepared, and the surface pressure-area (π-A isotherms and nanostructure characteristics of the binary mixture were investigated at the air/water interface using a combination of Langmuir-Blodgett (LB and atomic force microscopy (AFM techniques. Based on the regular solution theory, the miscibility and stability of the two components in the monolayer were analyzed in terms of compression modulus (Cs-1 , excess Gibbs free energy (ΔGexcπ , activity coefficients (γ, and interaction parameter (ξ. The results of this paper provide valuable insight into basic thermodynamics and nanostructure of mixed DPPG/HD monolayers; it is helpful to understand the thermodynamic behavior of HD as spreading additive in LS monolayer with a view toward characterizing potential improvements to LS performance brought about by addition of HD to lung phospholipids.

  6. Relativistic perfect fluids in local thermal equilibrium

    Coll, Bartolomé; Sáez, Juan Antonio


    The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...

  7. Problems in equilibrium theory

    Aliprantis, Charalambos D


    In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.

  8. Bounded Computational Capacity Equilibrium

    Hernandez, Penelope


    We study repeated games played by players with bounded computational power, where, in contrast to Abreu and Rubisntein (1988), the memory is costly. We prove a folk theorem: the limit set of equilibrium payoffs in mixed strategies, as the cost of memory goes to 0, includes the set of feasible and individually rational payoffs. This result stands in sharp contrast to Abreu and Rubisntein (1988), who proved that when memory is free, the set of equilibrium payoffs in repeated games played by players with bounded computational power is a strict subset of the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost and of mixing when players have bounded computational power.

  9. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Tomé, Tânia; de Oliveira, Mário J


    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  10. General Search Market Equilibrium

    Albrecht, James W.; Axell, Bo


    In this paper we extend models of “search market equilibrium” to incorporate general equilibrium considerations. The model we treat is one with a single product market and a single labor market. Imperfectly informed individuals follow optimal strategies in searching for a suitably low price and high wage. For any distribution of price and wage offers across firms these optimal strategies generate product demand and labor supply schedules. Firms then choose prices and wages to maximize expecte...

  11. Equilibrium statistical mechanics

    Jackson, E Atlee


    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  12. Tourism Equilibrium Price Trends

    Mohammad Mohebi


    Full Text Available Problem statement: A review of the tourism history shows that tourism as an industry was virtually unknown in Malaysia until the late 1960s. Since then, it has developed and grown into a major industry, making an important contribution to the country's economy. By allocating substantial funds to the promotion of tourism and the provision of the necessary infrastructure, the government has played an important role in the impressive progress of the Malaysian tourism industry. One of the important factors which can attract tourists to Malaysia is the tourism price. Has the price of tourism decreased? To answer this question, it is necessary to obtain the equilibrium prices as well as the yearly trend for Malaysia during the sample period as it will be useful for analysis of the infrastructure situation of the tourism industry in this country. The purpose of the study is to identify equilibrium tourism price trends in Malaysian tourism market. Approach: We use hotel room as representative of tourism market. Quarterly data from 1995-2009 are used and a dynamic model of simultaneous equation is employed. Results: Based on the result during the period of 1995 until 2000, the growth rate of the equilibrium price was greater than consumer price index and producer price index. Conclusion: In the Malaysian tourism market, new infrastructure during this period had not been developed to keep pace with tourist arrivals.

  13. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun


    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  14. Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface.

    Mori, Taizo; Sakakibara, Keita; Endo, Hiroshi; Akada, Misaho; Okamoto, Ken; Shundo, Atsuomi; Lee, Michael V; Ji, Qingmin; Fujisawa, Takuya; Oka, Kenichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko


    In this article, we propose a novel methodology for the formation of monodisperse regularly sized disks of several nanometer thickness and with diameters of less than 100 nm using Langmuir monolayers as fabrication media. An amphiphilic triimide, tri-n-dodecylmellitic triimide (1), was spread as a monolayer at the air-water interface with a water-soluble macrocyclic oligoamine, 1,4,7,10-tetraazacyclododecane (cyclen), in the subphase. The imide moieties of 1 act as hydrogen bond acceptors and can interact weakly with the secondary amine moieties of cyclen as hydrogen bond donors. The monolayer behavior of 1 was investigated through π-A isotherm measurements and Brewster angle microscopy (BAM). The presence of cyclen in the subphase significantly shifted isotherms and induced the formation of starfish-like microstructures. Transferred monolayers on solid supports were analyzed by reflection absorption FT-IR (FT-IR-RAS) spectroscopy and atomic force microscopy (AFM). The Langmuir monolayer transferred onto freshly cleaved mica by a surface touching (i.e., Langmuir-Schaefer) method contained disk-shaped objects with a defined height of ca. 3 nm and tunable diameter in the tens of nanometers range. Several structural parameters such as the disk height, molecular aggregation numbers in disk units, and 2D disk density per unit surface area are further discussed on the basis of AFM observations together with aggregate structure estimation and thermodynamic calculations. It should be emphasized that these well-defined structures are produced through simple routine procedures such as solution spreading, mechanical compression, and touching a substrate at the surface. The controlled formation of defined nanostructures through easy macroscopic processes should lead to unique approaches for economical, energy-efficient nanofabrication.

  15. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A


    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m(2))/day. The estimated one-year total flux of phenanthrene was -7.9×10(5) (ng/m(2))/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Noncompact Equilibrium Points and Applications

    Zahra Al-Rumaih


    Full Text Available We prove an equilibrium existence result for vector functions defined on noncompact domain and we give some applications in optimization and Nash equilibrium in noncooperative game.

  17. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    KOHIO Niéssan


    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  18. Extended Mixed Vector Equilibrium Problems

    Mijanur Rahaman


    Full Text Available We study extended mixed vector equilibrium problems, namely, extended weak mixed vector equilibrium problem and extended strong mixed vector equilibrium problem in Hausdorff topological vector spaces. Using generalized KKM-Fan theorem (Ben-El-Mechaiekh et al.; 2005, some existence results for both problems are proved in noncompact domain.

  19. Non-equilibrium thermodynamics

    De Groot, Sybren Ruurds


    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  20. Housing Price Fluctuations Across China: An Equilibrium Mechanism Perspective

    ZHANG Hong; WENG Shaoqun; ZHOU Xuan


    The mechanisms affecting housing prices were studied using the equilibrium housing prices based on classic supply/demand theory. The fluctuations of the actual housing prices were then analyzed relative to the equilibrium prices. The equilibrium prices for each area were calculated from economic statistics and housing prices in 35 China metropolitan areas. The fluctuations of the actual prices are then manifested as functions of the equilibrium price, the mean reversion, and the autocorrelation coefficient. The results show that the equilibrium prices are determined by the basic economic conditions in China and that the equilibrium prices greatly affect the fluctuation of the actual prices, which return to the equilibrium price through self-adjustments. The data also shows that the actual prices in China have the trend of continuing to rise in the future.

  1. The Anderson impurity model out-of-equilibrium: Assessing the accuracy of simulation techniques with an exact current-occupation relation

    Agarwalla, Bijay Kumar; Segal, Dvira


    We study the interacting, symmetrically coupled single impurity Anderson model. By employing the nonequilibrium Green's function formalism, we reach an exact relationship between the steady-state charge current flowing through the impurity (dot) and its occupation. We argue that the steady-state current-occupation relation can be used to assess the consistency of simulation techniques and identify spurious transport phenomena. We test this relation in two different model variants: First, we study the Anderson-Holstein model in the strong electron-vibration coupling limit using the polaronic quantum master equation method. We find that the current-occupation relation is violated numerically in standard calculations, with simulations bringing up incorrect transport effects. Using a numerical procedure, we resolve the problem efficiently. Second, we simulate the Anderson model with electron-electron interaction on the dot using a deterministic numerically exact time-evolution scheme. Here, we observe that the current-occupation relation is satisfied in the steady-state limit—even before results converge to the exact limit.

  2. Dispersion Relation Tool for generalized lower-hybrid mode with, density gradient, equilibrium ExB drift, collisions and finite electron Larmor radius

    Romadanov, Ivan; Frias, Winston; Chapurin, Oleksandr; Koshkarov, Oleksandr


    MATLAB solver has been developed for studies of local instabilities in partially magnetized plasmas typical for ExB discharge plasmas. Examples for the Simon-Hoh, lower-hybrid and ion-sound instabilities in Penning discharge. The detailed behavior of the local dispersion relation can be investigated, plotted and saved with this solver. It allows to include various effects, change plasma parameters and obtain eigen-frequencies as a function of the wavenumbers in x or y directions.

  3. Regret Theory and Equilibrium Asset Prices

    Jiliang Sheng


    Full Text Available Regret theory is a behavioral approach to decision making under uncertainty. In this paper we assume that there are two representative investors in a frictionless market, a representative active investor who selects his optimal portfolio based on regret theory and a representative passive investor who invests only in the benchmark portfolio. In a partial equilibrium setting, the objective of the representative active investor is modeled as minimization of the regret about final wealth relative to the benchmark portfolio. In equilibrium this optimal strategy gives rise to a behavioral asset priciting model. We show that the market beta and the benchmark beta that is related to the investor’s regret are the determinants of equilibrium asset prices. We also extend our model to a market with multibenchmark portfolios. Empirical tests using stock price data from Shanghai Stock Exchange show strong support to the asset pricing model based on regret theory.

  4. 广义均衡问题和有限个相对非扩张映射的收敛定理%Convergence theorems for generalized equilibrium problems and finited relatively nonexpansive mappings

    叶静妮; 秦秀根


    在Banach空间中研究求解广义均衡问题的解集和相对非扩张映射的不动点集的公共元的迭代算法,获得了所生成序列的强收敛和弱收敛定理,所得结果扩展了相关研究成果.%In this paper, we introduce an iterative algorithm for finding the common element of the set of solutions of a generalized equilibrium problem and the set of fixed points of relatively nonexpan-sive mappings in Banach spaces. We obtain a strong convergence theorem and a weak convergence theorem. The result presented in this paper extends the corresponding results.

  5. Statistical physics ""Beyond equilibrium

    Ecke, Robert E [Los Alamos National Laboratory


    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  6. Air/water heat pumps in older buildings. Energy conservation in a stock; Luft/Wasser-Waermepumpen im Altbau. Energiesparen im Bestand

    Bauknecht, Steffen [Mitsubishi Electric, Ratingen (Germany)


    Due to the technical development, nowadays it is possible to heat older buildings which are not insulated thermally subsequently with monovalent air/water heat pumps. For example, in Bonn-Oberkassel (Federal Republic of Germany) a nearly one hundred year old art nouveau mansion is supplied with apartment warmth and warm water by means of two air/water heat pumps. The economical heat supply as well as the small structural expenditure decided to use this technology.

  7. Ringed accretion disks: equilibrium configurations

    Pugliese, D


    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  8. General equilibrium without utility functions

    Balasko, Yves; Tvede, Mich


    How far can we go in weakening the assumptions of the general equilibrium model? Existence of equilibrium, structural stability and finiteness of equilibria of regular economies, genericity of regular economies and an index formula for the equilibria of regular economies have been known not to re......How far can we go in weakening the assumptions of the general equilibrium model? Existence of equilibrium, structural stability and finiteness of equilibria of regular economies, genericity of regular economies and an index formula for the equilibria of regular economies have been known...... and the diffeomorphism of the equilibrium manifold with a Euclidean space; (2) the diffeomorphism of the set of no-trade equilibria with a Euclidean space; (3) the openness and genericity of the set of regular equilibria as a subset of the equilibrium manifold; (4) for small trade vectors, the uniqueness, regularity...

  9. On the Local Equilibrium Principle

    Hessling, H


    A physical system should be in a local equilibrium if it cannot be distinguished from a global equilibrium by ``infinitesimally localized measurements''. This seems to be a natural characterization of local equilibrium, however the problem is to give a precise meaning to the qualitative phrase ``infinitesimally localized measurements''. A solution is suggested in form of a {\\em Local Equilibrium Condition} (LEC) which can be applied to non-interacting quanta. The Unruh temperature of massless quanta is derived by applying LEC to an arbitrary point inside the Rindler Wedge. Massless quanta outside a hot sphere are analyzed. A stationary spherically symmetric local equilibrium does only exist according to LEC if the temperature is globally constant. Using LEC a non-trivial stationary local equilibrium is found for rotating massless quanta between two concentric cylinders of different temperatures. This shows that quanta may behave like a fluid with a B\\'enard instability.

  10. Estimating Equilibrium Effects of Job Search Assistance

    Gautier, Pieter; Muller, Paul; van der Klaauw, Bas

    that the nonparticipants in the experiment regions find jobs slower after the introduction of the activation program (relative to workers in other regions). We then estimate an equilibrium search model. This model shows that a large scale role out of the activation program decreases welfare, while a standard partial...

  11. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark


    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  12. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert


    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

  13. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark


    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  14. Sticky water surfaces: Helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface

    Schach, Denise; Globisch, Christoph; Roeters, Steven J.; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K.; Backus, Ellen H. G.; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias


    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface.

  15. Non-Equilibrium Thermodynamics in Multiphase Flows

    Mauri, Roberto


    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  16. On equilibrium structures of the water molecule

    Császár, Attila G.; Czakó, Gábor; Furtenbacher, Tibor; Tennyson, Jonathan; Szalay, Viktor; Shirin, Sergei V.; Zobov, Nikolai F.; Polyansky, Oleg L.


    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [Polyansky et al.Science 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3×10-5Å and 0.02° for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is reBO=0.95782Å and θeBO=104.485°, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2O16 is read=0.95785Å and θead=104.500°, respectively, while those of D2O16 are read=0.95783Å and θead=104.490°. Pure ab initio prediction of J =1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002cm-1 for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05cm-1 (or the lower ones to better than 0.0035cm-1) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The

  17. Mesoscopic thermodynamics of stationary non-equilibrium states

    SantamarIa-Holek, I [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Circuito exterior de Ciudad Universitaria, 04510 DF (Mexico); RubI, J M [Facultad de FIsica, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona (Spain); Perez-Madrid, A [Facultad de FIsica, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona (Spain)


    Thermodynamics for systems at non-equilibrium stationary states have been formulated, based on the assumption of the existence of a local equilibrium in phase space which enables one to interpret the probability density and its conjugated non-equilibrium chemical potential as mesoscopic thermodynamic variables. The probability current is obtained from the entropy production related to the probability diffusion process and leads to the formulation of the Fokker-Planck equation. For the case of a gas of Brownian particles under steady flow in the dilute and concentrated regimes, we derive non-equilibrium equations of state.

  18. Fundamental functions in equilibrium thermodynamics

    Horst, H.J. ter


    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  19. Rapid-Equilibrium Enzyme Kinetics

    Alberty, Robert A.


    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  20. Verification and Validation of Numerical Models for Air/Water Flow on Coastal and Navigation Fluid-Structure Interaction Applications

    Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.


    Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.

  1. Collapsed bipolar glycolipids at the air/water interface: effect of the stereochemistry on the stretched/bent conformations.

    Jacquemet, Alicia; Terme, Nolwenn; Benvegnu, Thierry; Vié, Véronique; Lemiègre, Loïc


    This article describes a comparative study of several bipolar lipids derived from tetraether structures. The sole structural difference between the main two glycolipids is a unique stereochemical variation on a cyclopentyl ring placed in the middle of the lipids. We discuss the comparative results obtained at the air/water interface on the basis of tensiometry and ellipsometry. Langmuir-Blodgett depositions during lipid film compressions and decompressions were also analyzed by AFM. The lactosylated tetraether (bipolar) lipid structures involved the formation of highly stable multilayers, which are still present at 10 mN m(-1) during decompression. This study suggests also that the stereochemistry of a central cyclopentyl ring dramatically drives the conformation of the corresponding bipolar lipids. Both isomers (trans and cis) adopt a U-shaped (bent) conformation at the air/water interface but the trans cyclopentyl ring induces a much more frustration within this type of conformation. Consequently, this bipolar lipid (trans-tetraether) undergoes a flip of one polar head-group (lactosyl) leading to a stretched conformation during collapse.


    Pu-xin Zhu; Xiang-dong Luo; Rui-xia Li; Dac-heng Wu


    Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is equal to 1750. The substitution extent, defined by the number of substituting units in a chain, for the four FPVA samples was in the range of 0.5-5 perfluorooctanoyl groups per chain. The FPVA samples with the highest substitution extent still had good solubility in water. It was shown by experimental measurement at 30.0±0.1 C that the surface tension of the aqueous solution of the highest substituted FPVA decreased to 16.6 mN/m at a higher concentration, e.g. about 0.1 g/mL. Obviously,macromolecules of FPVA exhibit a very strong tendency to adsorb at the air-water interface, because the hydrophobic perfluorooctanoyl groups in FPVA have a very high surface activity as they are in small molecular fluorinated surfactants.The chain conformation of such a model polymer adsorbed on the air-water interface was also discussed.

  3. Non-equilibrium phase transitions

    Henkel, Malte; Lübeck, Sven


    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  4. A Multiperiod Equilibrium Pricing Model

    Minsuk Kwak


    Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.

  5. Equilibrium with arbitrary market structure

    Grodal, Birgit; Vind, Karl


    Fifty years ago Arrow [1] introduced contingent commodities and Debreu [4] observed that this reinterpretation of a commodity was enough to apply the existing general equilibrium theory to uncertainty and time. This interpretation of general equilibrium theory is the Arrow-Debreu model. The compl......Fifty years ago Arrow [1] introduced contingent commodities and Debreu [4] observed that this reinterpretation of a commodity was enough to apply the existing general equilibrium theory to uncertainty and time. This interpretation of general equilibrium theory is the Arrow-Debreu model....... The complete market predicted by this theory is clearly unrealistic, and Radner [10] formulated and proved existence of equilibrium in a multiperiod model with incomplete markets. In this paper the Radner result is extended. Radner assumed a specific structure of markets, independence of preferences...

  6. Equilibrium retention in the nozzle of oxygen hydrogen propulsion systems

    Ford, D. I.


    Arguments are presented for the retention of vibrational equilibrium of species in the nozzle of the Space Shuttle Main Engine which are especially applicable to water and the hydroxyl radical. It is shown that the reaction OH + HH yields HOH + H maintains equilibrium as well. This is used to relate OH to H, the temperature, and the oxidizer-to-fuel ratio.


    Pugliese, D.; Stuchlík, Z., E-mail:, E-mail: [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)


    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  8. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei


    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  9. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K


    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  10. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media.

    Costanza-Robinson, Molly S; Zheng, Zheng; Henry, Eric J; Estabrook, Benjamin D; Littlefield, Malcolm H


    Surfactant miscible-displacement experiments represent a conventional means of estimating air-water interfacial area (A(I)) in unsaturated porous media. However, changes in surface tension during the experiment can potentially induce unsaturated flow, thereby altering interfacial areas and violating several fundamental method assumptions, including that of steady-state flow. In this work, the magnitude of surfactant-induced flow was quantified by monitoring moisture content and perturbations to effluent flow rate during miscible-displacement experiments conducted using a range of surfactant concentrations. For systems initially at 83% moisture saturation (S(W)), decreases of 18-43% S(W) occurred following surfactant introduction, with the magnitude and rate of drainage inversely related to the surface tension of the surfactant solution. Drainage induced by 0.1 mM sodium dodecyl benzene sulfonate, commonly used for A(I) estimation, resulted in effluent flow rate increases of up to 27% above steady-state conditions and is estimated to more than double the interfacial area over the course of the experiment. Depending on the surfactant concentration and the moisture content used to describe the system, A(I) estimates varied more than 3-fold. The magnitude of surfactant-induced flow is considerably larger than previously recognized and casts doubt on the reliability of A(I) estimation by surfactant miscible-displacement.

  11. Numerical tools to estimate the flux of a gas across the air-water interface and assess the heterogeny of its forcing functions

    V. M. N. de C. da S. Vieira


    Full Text Available A numerical tool was developed for the estimation of gas fluxes across the air water interface. The primary objective is to use it to estimate CO2 fluxes. Nevertheless application to other gases is easily accomplished by changing the values of the parameters related to the physical properties of the gases. A user friendly software was developed allowing to build upon a standard kernel a custom made gas flux model with the preferred parametrizations. These include single or double layer models; several numerical schemes for the effects of wind in the air-side and water-side transfer velocities; the effect of turbulence from current drag with the bottom; and the effects on solubility of water temperature, salinity, air temperature and pressure. It was also developed an analysis which decomposes the difference between the fluxes in a reference situation and in alternative situations into its several forcing functions. This analysis relies on the Taylor expansion of the gas flux model, requiring the numerical estimation of partial derivatives by a multivariate version of the collocation polynomial. Both the flux model and the difference decomposition analysis were tested with data taken from surveys done in the lagoonary system of Ria Formosa, south Portugal, in which the CO2 fluxes were estimated using the IRGA and floating chamber method whereas the CO2 concentrations were estimated using the IRGA and degasification chamber. Observations and estimations show a remarkable fit.

  12. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    Grasso, E J; Oliveira, R G; Maggio, B


    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  13. On Generalized Vector Equilibrium Problems

    An-hua Wan; Jun-yi Fu; Wei-hua Mao


    A new generalized vector equilibrium problem involving set-valued mappings and the proper quasi-concavity of set-valued mappings in topological vector spaces are introduced; its existence theorems and the convexity of the solution sets are established.

  14. A Strategic-Equilibrium Based

    Gabriel J. Turbay


    Full Text Available The strategic equilibrium of an N-person cooperative game with transferable utility is a system composed of a cover collection of subsets of N and a set of extended imputations attainable through such equilibrium cover. The system describes a state of coalitional bargaining stability where every player has a bargaining alternative against any other player to support his corresponding equilibrium claim. Any coalition in the sable system may form and divide the characteristic value function of the coalition as prescribed by the equilibrium payoffs. If syndicates are allowed to form, a formed coalition may become a syndicate using the equilibrium payoffs as disagreement values in bargaining for a part of the complementary coalition incremental value to the grand coalition when formed. The emergent well known-constant sum derived game in partition function is described in terms of parameters that result from incumbent binding agreements. The strategic-equilibrium corresponding to the derived game gives an equal value claim to all players.  This surprising result is alternatively explained in terms of strategic-equilibrium based possible outcomes by a sequence of bargaining stages that when the binding agreements are in the right sequential order, von Neumann and Morgenstern (vN-M non-discriminatory solutions emerge. In these solutions a preferred branch by a sufficient number of players is identified: the weaker players syndicate against the stronger player. This condition is referred to as the stronger player paradox.  A strategic alternative available to the stronger players to overcome the anticipated not desirable results is to voluntarily lower his bargaining equilibrium claim. In doing the original strategic equilibrium is modified and vN-M discriminatory solutions may occur, but also a different stronger player may emerge that has eventually will have to lower his equilibrium claim. A sequence of such measures converges to the equal

  15. Calculation of individual isotope equilibrium constants for geochemical reactions

    Thorstenson, D.C.; Parkhurst, D.L.


    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  16. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.

    Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J


    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The

  17. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter


    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  18. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko


    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  19. Characterization of atmospheric nanosecond discharge under highly inhomogeneous and transient electric field in air/water mixture

    Ouaras, Karim; Tardiveau, Pierre; Magne, Lionel; Jeanney, Pascal; Bournonville, Blandine


    We report the studies of a centimeter range pin-to-plane nanosecond repetitively discharge (high positive voltage pulses (20 to 100 kV). In these typical conditions, plasma exhibit unusual diffuse and large structure. This kind of discharge is not well understood and in first approach, it requires (i) a description of plasma dynamic and (ii) behavior under relevant context (environmental issues ...) using pertinent gas (humid air). Thus, we will first present sub-nanosecond imaging of the discharge obtained for typical conditions of stabilized plasma. Then we will focus on determination of rotational and vibrational temperature (OES) and preliminary results concerning the production and evolution of OH radical in temporal post-discharge in air/water mixture (PLIF). Theses spectroscopic measurements are undertaken as function of most influent parameters, i . e . voltage pulses features (amplitude, rise time and length) and water concentration.

  20. Synthesis of a Two-Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface.

    Dai, Wenyang; Shao, Feng; Szczerbiński, Jacek; McCaffrey, Ryan; Zenobi, Renato; Jin, Yinghua; Schlüter, A Dieter; Zhang, Wei


    A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

  1. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per;


    The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... be factors that increased the uncertainty of the relationships. Nevertheless, the results confirmed the potential of X-ray CT visualization techniques for estimating fluxes through soil at the field scale....... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...

  2. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    Hartman, Blayne; Hammond, Douglas E.


    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  3. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.

    Martins-Costa, Marilia T C; García-Prieto, Francisco F; Ruiz-López, Manuel F


    Understanding the influence of solute-solvent interactions on chemical reactivity has been a subject of intense research in the last few decades. Theoretical studies have focused on bulk solvation phenomena and a variety of models and methods have been developed that are now widely used by both theoreticians and experimentalists. Much less attention has been paid, however, to processes that occur at liquid interfaces despite the important role such interfaces play in chemistry and biology. In this study, we have carried out sequential molecular dynamics simulations and quantum mechanical calculations to analyse the influence of the air-water interface on the reactivity of formaldehyde, acetaldehyde and benzaldehyde, three simple aldehydes of atmospheric interest. The calculated free-energy profiles exhibit a minimum at the interface, where the average reactivity indices may display large solvation effects. The study emphasizes the role of solvation dynamics, which are responsible for large fluctuations of some molecular properties. We also show that the photolysis rate constant of benzaldehyde in the range 290-308 nm increases by one order of magnitude at the surface of a water droplet, from 2.7 × 10(-5) s(-1) in the gas phase to 2.8 × 10(-4) s(-1) at the air-water interface, and we discuss the potential impact of this result on the chemistry of the troposphere. Experimental data in this domain are still scarce and computer simulations like those presented in this work may provide some insights that can be useful to design new experiments.

  4. Mixed quasi-equilibrium-like problems

    Muhammad Aslam Noor


    Full Text Available We use the auxiliary principle technique in conjunction with the Bregman function to suggest and analyze a three-step predictor-corrector method for solving mixed quasi-equilibrium-like problems. We also study the convergence criteria of this new method under some mild conditions. As special cases, we obtain various new and known methods for solving variational-like inequalities and related optimization problems.

  5. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.


    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  6. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    Hernández L.


    Full Text Available Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  7. Entropy equilibrium equation and dynamic entropy production in environment liquid


    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  8. Topologically protected modes in non-equilibrium stochastic systems

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan


    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  9. Adaptive Resolution Simulation in Equilibrium and Beyond

    Wang, Han


    In this paper, we investigate the equilibrium statistical properties of both the force and potential interpolations of adaptive resolution simulation (AdResS) under the theoretical framework of grand-canonical like AdResS (GC-AdResS). The thermodynamic relations between the higher and lower resolutions are derived by considering the absence of fundamental conservation laws in mechanics for both branches of AdResS. In order to investigate the applicability of AdResS method in studying the properties beyond the equilibrium, we demonstrate the accuracy of AdResS in computing the dynamical properties in two numerical examples: The velocity auto-correlation of pure water and the conformational relaxation of alanine dipeptide dissolved in water. Theoretical and technical open questions of the AdResS method are discussed in the end of the paper.

  10. Far-from-equilibrium measurements of thermodynamic length

    Feng, Edward H.; Crooks, Gavin E.


    Thermodynamic length is a path function that generalizes the notion of length to the surface of thermodynamic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free energy change during an external perturbation on a system. We use this result to determine equilibrium averages at intermediate points of the protocol in which the system is out-of-equilibrium. This allows us to extend Bennett's method to determine the potential of mean force, as well as the thermodynamic length, in single molecule experiments.

  11. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.

    Engelhardt, Kathrin; Lexis, Meike; Gochev, Georgi; Konnerth, Christoph; Miller, Reinhard; Willenbacher, Norbert; Peukert, Wolfgang; Braunschweig, Björn


    Macroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interactions at the air-water interface can be changed substantially with the solution pH and result in major changes in interfacial dilational and foam rheology. At a pH near the interfacial isoelectric point BLG molecules carry zero net charge and disordered multilayers with the highest interfacial dilatational elasticity are formed at the air-water interface. Increasing or decreasing the pH with respect to the isoelectric point leads to the formation of a BLG monolayer with repulsive electrostatic interactions among the adsorbed molecules which decrease the interfacial dilational elasticity. The latter molecular information does explain the behavior of BLG foams in our rheological studies, where in fact the highest apparent yield stresses and storage moduli are established with foams from electrolyte solutions with a pH close to the isoelectric point of BLG. At this pH the gas bubbles of the foam are stabilized by BLG multilayers with attractive intermolecular interactions at the ubiquitous air-water interfaces, while BLG layers with repulsive interactions decrease the apparent yield stress and storage moduli as stabilization of gas bubbles with a monolayer of BLG is less effective.

  12. Hydrophobic recovery of repeatedly plasma-treated silicone rubber .2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen

    Everaert, EP; VanderMei, HC; Busscher, HJ


    Surfaces of medical grade silicone rubber (Q7-4750, Dow Coming) were modified by repeated (six times) RF plasma treatments using various discharge gases: oxygen, argon, carbon dioxide, and ammonia. The treated samples were stored for a period of 3 months in ambient air, water, or liquid nitrogen. Su

  13. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  14. Modulation of the adsorption properties at air-water interfaces of complexes of egg white ovalbumin with pectin by the dielectric constant

    Kudryashova, E.V.; Jongh,


    The possibility of modulating the mesoscopic properties of food colloidal systems by the dielectric constant is studied by determining the impact of small amounts of ethanol (10%) on the adsorption of egg white ovalbumin onto the air-water interface in the absence and presence of pectin. The adsorpt

  15. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state

    Wierenga, P.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh,


    Unfolding of proteins has often been mentioned as an important factor during the adsorption process at air-water interfaces and in the increase of surface pressure at later stages of the adsorption process. This work focuses on the question whether the folding state of the adsorbed protein depends o

  16. A narrow amide I vibrational band observed by sum frequency generation spectroscopy reveals highly ordered structures of a biofilm protein at the air/water interface.

    Wang, Zhuguang; Morales-Acosta, M Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J; Ahn, Charles H; Leblanc, Roger M; Yan, Elsa C Y


    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I bands ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface.

  17. Initial evaluation of alternatives for development of sediment related criteria for toxic contaminants in marine water (Puget sound). Phase 1. Development of conceptual framework. Phase 2. Development and testing of the sediment-water equilibrium partitioning approach. Final report

    Pavlou, S.P.; Weston, D.P.


    The goal of the project is to evaluate selected approaches to developing sediment criteria for Puget Sound. Phase I of the project deals with the development of the conceptual framework. Phase II is an effort to develop the equilibrium partitioning approach.

  18. Kinetics of marine surfactant adsorption at an air water interface. Baltic Sea studies

    Stanis³aw J. Pogorzelski


    Full Text Available The paper contains the results of studies of natural surface film adsorption kinetics carried out in inland waters and in shallow offshore regions of the Baltic Sea during 2000-01 under calm sea conditions. The novel approach presented here for the adsorption dynamics is based on the mixed kinetic-diffusion model and analyses of the surface pressure-time plots at short (t ->0 and long( t -> ∞ adsorption time intervals. Values of the effective relative diffusion coefficient Deff / D (= 0.008-0.607 and energy barrier for adsorption Ea / RT (= 0.49-7.10 agree well with the data reported for model non-ionic surfactant solutions of pre-cmc concentrations. Wind speed is one of the factors affecting the adsorption barrier via the increased surface pressure of the natural film exposed to wind shear stress (~ U102, and enters the relation Ea / RT = 1.70 U101/3.

  19. General equilibrium of an ecosystem.

    Tschirhart, J


    Ecosystems and economies are inextricably linked: ecosystem models and economic models are not linked. Consequently, using either type of model to design policies for preserving ecosystems or improving economic performance omits important information. Improved policies would follow from a model that links the systems and accounts for the mutual feedbacks by recognizing how key ecosystem variables influence key economic variables, and vice versa. Because general equilibrium economic models already are widely used for policy making, the approach used here is to develop a general equilibrium ecosystem model which captures salient biological functions and which can be integrated with extant economic models. In the ecosystem model, each organism is assumed to be a net energy maximizer that must exert energy to capture biomass from other organisms. The exerted energies are the "prices" that are paid to biomass, and each organism takes the prices as signals over which it has no control. The maximization problem yields the organism's demand for and supply of biomass to other organisms as functions of the prices. The demands and supplies for each biomass are aggregated over all organisms in each species which establishes biomass markets wherein biomass prices are determined. A short-run equilibrium is established when all organisms are maximizing and demand equals supply in every biomass market. If a species exhibits positive (negative) net energy in equilibrium, its population increases (decreases) and a new equilibrium follows. The demand and supply forces in the biomass markets drive each species toward zero stored energy and a long-run equilibrium. Population adjustments are not based on typical Lotka-Volterra differential equations in which one entire population adjusts to another entire population thereby masking organism behavior; instead, individual organism behavior is central to population adjustments. Numerical simulations use a marine food web in Alaska to

  20. Incentives in Supply Function Equilibrium

    Vetter, Henrik


    The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...... to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming...

  1. Incentives in Supply Function Equilibrium

    Vetter, Henrik


    to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming......The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...

  2. Equilibrium in a Production Economy

    Chiarolla, Maria B., E-mail: [Universita di Roma ' La Sapienza' , Dipartimento di Metodi e Modelli per l' Economia, il Territorio e la Finanza, Facolta di Economia (Italy); Haussmann, Ulrich G., E-mail: [University of British Columbia, Department of Mathematics (Canada)


    Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.

  3. Quantifying mixing using equilibrium reactions

    Wheat, Philip M.; Posner, Jonathan D.


    A method of quantifying equilibrium reactions in a microchannel using a fluorometric reaction of Fluo-4 and Ca2+ ions is presented. Under the proper conditions, equilibrium reactions can be used to quantify fluid mixing without the challenges associated with constituent mixing measures such as limited imaging spatial resolution and viewing angle coupled with three-dimensional structure. Quantitative measurements of CaCl and calcium-indicating fluorescent dye Fluo-4 mixing are measured in Y-shaped microchannels. Reactant and product concentration distributions are modeled using Green's function solutions and a numerical solution to the advection-diffusion equation. Equilibrium reactions provide for an unambiguous, quantitative measure of mixing when the reactant concentrations are greater than 100 times their dissociation constant and the diffusivities are equal. At lower concentrations and for dissimilar diffusivities, the area averaged fluorescence signal reaches a maximum before the species have interdiffused, suggesting that reactant concentrations and diffusivities must be carefully selected to provide unambiguous, quantitative mixing measures. Fluorometric equilibrium reactions work over a wide range of pH and background concentrations such that they can be used for a wide variety of fluid mixing measures including industrial or microscale flows.

  4. Understanding Thermal Equilibrium through Activities

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra


    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  5. Financial equilibrium with career concerns

    Amil Dasgupta


    Full Text Available What are the equilibrium features of a financial market where a sizeable proportion of traders face reputational concerns? This question is central to our understanding of financial markets, which are increasingly dominated by institutional investors. We construct a model of delegated portfolio management that captures key features of the US mutual fund industry and embed it in an asset pricing framework. We thus provide a formal model of financial equilibrium with career concerned agents. Fund managers differ in their ability to understand market fundamentals, and in every period investors choose a fund. In equilibrium, the presence of career concerns induces uninformed fund managers to churn, i.e., to engage in trading even when they face a negative expected return. Churners act as noise traders and enhance the level of trading volume. The equilibrium relationship between fund return and net fund flows displays a skewed shape that is consistent with stylized facts. The robustness of our core results is probed from several angles.

  6. Equilibrium theory : A salient approach

    Schalk, S.


    Whereas the neoclassical models in General Equilibrium Theory focus on the existence of separate commodities, this thesis regards 'bundles of trade' as the unit objects of exchange. Apart from commodities and commodity bundles in the neoclassical sense, the term `bundle of trade' includes, for

  7. Symmetries in fluctuations far from equilibrium.

    Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L


    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

  8. Regional assessment of anthropogenic impacts on air, water and soil, case: Huasteca Hidalguense, Mexico; Evaluacion regional del impacto antropogenico sobre aire, agua y suelo, caso: Huasteca Hidalguense, Mexico

    Gordillo Martinez, Alberto Jose; Cabrera Cruz, Rene Bernardo Elias; Hernandez Mariano, Marisol; Galindo, Erick; Otazo, Elena; Prieto, Francisco [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Pachuca, Hidalgo (Mexico)]. E-mail:;


    The state of Hidalgo, Mexico presents an important environmental problem that manifests itself in different ways. To identify the sources, types and the magnitude of pollutants, an inventory of sources of industrial and domestic pollution for air, water and soil in ten municipalities of the Huasteca Region of the state was carried out using the technique of Rapid Assessment of Sources of Environmental Pollution and the results are reported in this paper. A total of combined pollutants emitted was 116 978.95 tons/year. Gasoline vehicles contributed 11 039 tons/year of air pollutants and diesel vehicles 1521 tons/year. For water, industrial sources contributed 22 496 tons/year and domestic effluents 15 776 tons/year. Soil pollution was a result of industrial solid waste, 4025 tons/year, and municipal solid waste, 62 121 tons/year. By municipality, Huejutla de Reyes is the most polluted in air, water and soil, with 53 % of the regional total. These results were evaluated in relation to environmental quality of each medium based on the Mexican regulations; these levels are above permissible limits for water and soil. A database with relevant information was prepared as a support for efficient management of pollutant emissions, provide base mark data for complementary studies, and to promote the future conservation of environmental quality and the biological richness of the area. [Spanish] El estado de Hidalgo, Mexico presenta una importante problematica ambiental que se manifiesta de manera heterogenea a lo largo de su territorio. Existe la necesidad de conocer las fuentes, tipos de agentes contaminantes y su magnitud. En este trabajo se realizo un inventario de la contaminacion emitida por fuentes de origen industrial y domestico en aire, agua y suelo en diez municipios de la region de la Huasteca por medio de la tecnica de Evaluacion Rapida de Fuentes de Contaminacion Ambiental (ERFCA). El total de la contaminacion emitida fue de 116 978.95 ton/ano. Las emisiones al

  9. Concurrent fractional and equilibrium crystallisation

    Sha, Lian-Kun


    This paper proposes the concept of concurrent fractional and equilibrium crystallisation (CFEC) in a multi-phase magmatic system in light of experimental results on diffusivities of elements and other species in minerals and melts. A group of equations are presented to describe how the concentrations of an element or isotope change in fractionated solid, equilibrated solid, melt, liquid, and gas phases, as well as in magma, as a function of distribution coefficients and mass fractions during the CFEC process. CFEC model is a generalised and unified formulation that is valid, not only for pure fractional crystallisation (FC) and perfect equilibrium crystallisation (EC) singly, as two of its limiting end-member cases, but also for the geologically more important process of concurrent fractional and equilibrium crystallisation. The concept that both fractional and equilibrium crystallisation can operate concurrently in a magmatic system, for a given element, among different minerals, and even within different-sized crystal grains of the very same mineral phase, is of fundamental importance in deepening our current understanding of magmatic differentiation processes. CFEC probably occurs more frequently in the natural world than either pure fractional or perfect equilibrium crystallisation alone, as a result of the interplay of varying diffusivities of elements under diverse physicochemical conditions, different residence time and growth rates of mineral phases in magmas, and varying grain sizes within each phase and among different phases. The marked systematic variations in trace element concentrations in the melts of the Bishop Tuff have long been perplexing and difficult to reconcile with existing models of differentiation. CFEC, which is able to better explain the scatter trends in a systematic way than fractional crystallisation, is considered to be the cause.

  10. Equilibrium distribution of heavy quarks in fokker-planck dynamics

    Walton; Rafelski


    We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1. We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.

  11. Optimal resource allocation in General Cournot-competitive equilibrium

    Sommerfelt Ervik, Inger; Soegaard, Christian


    Conventional economic theory stipulates that output in Cournot competition is too low relative to that which is attained in perfect competition. We revisit this result in a General Cournot-competitive Equilibrium model with two industries that differ only in terms of productivity. We show that in general equilibrium, the more efficient industry produces too little and the less efficient industry produces too much compared to an optimal scenario with perfect competition.

  12. Chemical Equilibrium as Balance of the Thermodynamic Forces

    Zilbergleyt, B.


    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  13. Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate

    Ryerson, T. B.; Aikin, K. C.; Angevine, W. M.; Atlas, E. L.; Blake, D. R.; Brock, C. A.; Fehsenfeld, F. C.; Gao, R.-S.; de Gouw, J. A.; Fahey, D. W.; Holloway, J. S.; Lack, D. A.; Lueb, R. A.; Meinardi, S.; Middlebrook, A. M.; Murphy, D. M.; Neuman, J. A.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Warneke, C.; Watts, L. A.


    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (˜258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (˜33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (˜14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills.

  14. Tuning the Structure and Rheology of Polystyrene Particles at the Air-Water Interface by Varying the pH.

    Truzzolillo, Domenico; Sharaf, Hossameldeen; Jonas, Ulrich; Loppinet, Benoit; Vlassopoulos, Dimitris


    We form films of carboxylated polystyrene particles (C-PS) at the air-water interface and investigate the effect of subphase pH on their structure and rheology by using a suite of complementary experimental techniques. Our results suggest that electrostatic interactions drive the stability and the structural order of the films. In particular, we show that by increasing the pH of the subphase from 9 up to 13, the films exhibit a gradual transition from solid to liquidlike, which is accompanied by a loss of the long-range order (that characterizes them at lower values of pH). Direct optical visualization of the layers, scanning electron microscopy, and surface pressure isotherms indicate that the particles deposited at the interface form three-dimensional structures involving clusters, with the latter being suppressed and a quasi-2D particle configuration eventually reached at the highest pH values. Evidently, the properties of colloidal films can be tailored significantly by altering the pH of the subphase.

  15. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture

    Zanini, Stefano, E-mail: [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, della Scienza, 3, I-20126 Milano (Italy); Grimoldi, Elisa [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, della Scienza, 3, I-20126 Milano (Italy); Citterio, Attilio [Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Via Mancinelli 7, I-20131 Milano (Italy); Riccardi, Claudia, E-mail: [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, della Scienza, 3, I-20126 Milano (Italy)


    Highlights: • We treated cashmere and wool/cashmere textiles with atmospheric pressure plasma. • Wettability of the fabrics was increased. • The increment in wettability derived from a surface oxidation of the fibers. • Only minor etching effects were observed with scanning electron microscopy. - Abstract: We performed atmospheric pressure plasma treatments of pure cashmere and wool/cashmere textiles with a dielectric barrier discharge (DBD) in humid air (air/water vapor mixtures). Treatment parameters have been optimized in order to enhance the wettability of the fabrics without changing their bulk properties as well as their touch. A deep characterization has been performed to study the wettability, the surface morphologies, the chemical composition and the mechanical properties of the plasma treated textiles. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy and X-ray photoelectron microscopy (XPS). The analyses reveal a surface oxidation of the treated fabrics, which enhances their surface wettability. Morphological characterization of the treated fibers with scanning electron microscopy (SEM) reveals minor etching effects, an essential feature for the maintenance of the textile softness.

  16. Langmuir and Langmuir-Blodgett films of capsules of haemoglobin at air/water and solid/air interfaces

    J Maheshkumar; A Dhathathreyan


    Organized assemblies of capsules of haemoglobin (Hb), in the size range of 0.1 to 0.3 in Langmuir films have been studied at air/water interface below and above the isoelectric point. Spread films of these organizates suggest that there is no expulsion of individual particles or particle assemblies at the interface and the particles are stable. Dynamic surface tension and the associated dilational and shear visco-elasticity in these films suggest that the capsules are highly elastic. Multilayer films of the capsules using Langmuir-Blodgett technique have been fabricated by sequential deposition on solid surfaces. These films have been characterized by circular dichroism spectroscopy (CD), atomic force microscopy (AFM), quartz crystal microbalance (QCM) and Fourier transform infrared with reflection absorption spectroscopy (FTIR-RAS). No appreciable change in the secondary structural features of Hb is seen from CD studies indicating the stability of the protein in these organized assemblies. Sizes of these capsules change near the isoelectric point and large swollen multiwalled capsules are formed. The elastic films of capsules of Hb provide a useful post preparation approach for modification of the surface roughness, porosity, and permeability of pre-assembled polypeptide microcapsules.

  17. Molecular dynamics simulations of peptides at the air-water interface: influencing factors on peptide-templated mineralization.

    Jain, Alok; Jochum, Mara; Peter, Christine


    Biomineralization is the intricate, biomedically highly relevant process by which living organisms deposit minerals on biological matrices to stiffen tissues and build skeletal structures and shells. Rapaport and coworkers ( J. Am. Chem. Soc. 2000 , 122 , 12523 ; Adv. Funct. Mater. 2008 , 18 , 2889 ; Acta Biomater. 2012 , 8 , 2466 ) have designed a class of self-assembling amphiphilic peptides that are capable of forming hydrogels and attracting ions from the environment, generating structures akin to the extracellular matrix and promoting bone regeneration. The air-water interface serves both in experiment and in simulations as a model hydrophobic surface to mimic the cell's organic-aqueous interface and to investigate the organization of the peptide matrix into ordered β-pleated monolayers and the subsequent onset of biomineral formation. To obtain insight into the underlying molecular mechanism, we have used molecular dynamics simulations to study the effect of peptide sequence on aggregate stability and ion-peptide interactions. We find-in excellent agreement with experimental observations-that the nature of the peptide termini (proline vs phenylalanine) affect the aggregate order, while the nature of the acidic side chains (aspartic vs glutamic acid) affect the aggregate's stability in the presence of ions. These simulations provide valuable microscopic insight into the way ions and peptide templates mutually affect each other during the early stages of biomineralization preceding nucleation.

  18. Two-Photon-Induced Isomerization of Spiropyran/Merocyanine at the Air/Water Interface Probed by Second Harmonic Generation.

    Lin, Lu; Zhang, Zhen; Lu, Zhou; Guo, Yuan; Liu, Minghua


    Photochromic molecules often exhibit switchable hyperpolarizabilities upon photoisomerization between two molecular states and can be widely applied in nonlinear optical materials. Photoisomerization can occur through either one-photon or two-photon processes. Two-photon-induced isomerization has several advantages over one-photon process but has not been fully explored. In the present study, we have used second harmonic generation to investigate the two-photon-induced isomerization between spiropyran and merocyanine at the air/water interface. We show that spiropyran and merocyanine can be converted into each other reversibly with 780-nm laser-beam irradiation through two-photon processes. We also investigated the isomerization rates under various incident laser powers. Quantitative analysis revealed that the isomerization rates of spiropyran and merocyanine depend differently on the laser power. We attribute the difference to the distinct molecular structures of spiropyran and merocyanine. At the interface, nonplanar spiropyran molecules exist mainly as monomers, whereas planar merocyanine molecules form aggregates. Upon aggregation, steric hindrance effects and excitonic coupling efficiently arrest the photoisomerization of merocyanine. This work provides an in-depth understanding of two-photon-induced isomerization at the interface, which is beneficial for designing and controlling optical thin-film materials.

  19. Thermal Characteristics of Air-Water Spray Impingement Cooling of Hot Metallic Surface under Controlled Parametric Conditions

    Santosh Kumar Nayak; Purna Chandra Mishra


    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8 mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates 670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.

  20. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)


    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  1. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Bae, Sung-Won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant.

  2. Effect of surfactants on surface activity and rheological properties of type I collagen at air/water interface.

    Kezwoń, Aleksandra; Góral, Ilona; Frączyk, Tomasz; Wojciechowski, Kamil


    We describe the effect of three synthetic surfactants (anionic - sodium dodecyl sulfate (SDS), cationic - cetyltrimethylammonium bromide (CTAB) and nonionic - Triton X-100 (TX-100)) on surface properties of the type I calf skin collagen at the air/water interface in acidic solutions (pH 1.8). The protein concentration was fixed at 5×10(-6)molL(-1) and the surfactant concentration was varied in the range 5×10(-6)molL(-1)-1×10(-4)molL(-1), producing the protein/surfactant mixtures with molar ratios of 1:1, 1:2, 1:5, 1:10 and 1:20. An Axisymmetric Drop Shape Analysis (ADSA) method was used to determine the dynamic surface tension and surface dilatational moduli of the mixed adsorption layers. Two spectroscopic techniques: UV-vis spectroscopy and fluorimetry allowed us to determine the effect of the surfactants on the protein structure. The thermodynamic characteristic of the mixtures was studied using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Modification of the collagen structure by SDS at low surfactant/protein ratios has a positive effect on the mixture's surface activity with only minor deterioration of the rheological properties of the adsorbed layers. The collagen/CTAB mixtures do not show that pronounced improvement in surface activity, while rheological properties are significantly deteriorated. The mixtures with non-ionic TX-100 do not show any synergistic effects in surface activity.

  3. Voidage Measurement of Air-Water Two-phase Flow Based on ERT Sensor and Data Mining Technology

    王保良; 孟振振; 黄志尧; 冀海峰; 李海青


    Based on an electrical resistance tomography(ERT) sensor and the data mining technology,a new voidage measurement method is proposed for air-water two-phase flow.The data mining technology used in this work is a least squares support vector machine(LS-SVM) algorithm together with the feature extraction method,and three feature extraction methods are tested:principal component analysis(PCA),partial least squares(PLS) and independent component analysis(ICA).In the practical voidage measurement process,the flow pattern is firstly identified directly from the conductance values obtained by the ERT sensor.Then,the appropriate voidage measurement model is selected according to the flow pattern identification result.Finally,the voidage is calculated.Experimental results show that the proposed method can measure the voidage effectively,and the measurement accuracy and speed are satisfactory.Compared with the conventional voidage measurement methods based on ERT,the proposed method doesn't need any image reconstruction process,so it has the advantage of good real-time performance.Due to the introduction of flow pattern identification,the influence of flow pattern on the voidage measurement is overcome.Besides,it is demonstrated that the LS-SVM method with PLS feature extraction presents the best measurement performance among the tested methods.

  4. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    Lin, Wei; Clark, Anthony J; Paesani, Francesco


    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  5. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun


    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines.

  6. Dynamic performance of duolayers at the air/water interface. 2. Mechanistic insights from all-atom simulations.

    Christofferson, Andrew J; Yiapanis, George; Leung, Andy H M; Prime, Emma L; Tran, Diana N H; Qiao, Greg G; Solomon, David H; Yarovsky, Irene


    The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

  7. Two-phase Lattice Boltzmann modelling of streaming potentials: influence of the air-water interface on the electrokinetic coupling

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence


    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen. The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi. The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5-30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  8. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    Pillar, E. A.; Guzman, M. I.


    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  9. Experimental Study of the APR+ Direct ECC Bypass in the Air-water Test Facility

    Kim, Kihwan; Choi, Hae-Seob; Park, Kil-won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The APR+ is an improved Korean Nuclear Power Reactor, which has been developed as a two loop evolutionary PWR (Pressure Water Reactor) with a number of advanced design features to enhance safety based on the APR-1400 technology. The emergency core cooling system (ECC) of the APR+ is different with that of the APR-1400, though the APR+ adopted a direct vessel injection (DVI) system which is the same design features of the APR-14000. The main difference of the DVI+ is the emergency core barrel duct (ECBD) which is designed to increase the amount of the injection water to the core region. The performance of the DVI system has been an important issues for past decades, and many researchers have studied the related thermal-hydraulic technical issues such as the ECC bypass fraction, the steam condensation effect, temperature distribution, sub-cooling margin, and etc. However, the previous research cannot be directly applicable to the APR+ owing to the unique features of the DVI+. The current study will elaborate on the experimental evaluation of the direct ECC bypass performance. The 1/5 ECC bypass test facility which is designed with a linearly reduced 1/5 scale referring to the APR+ was used to investigate the effect of the DVI+ injection nozzle location and the broken cold leg velocity on the direct ECC bypass fraction. However, air is used as a working fluid to simulate the steam flow induced from the broken cold leg, and thus, the direct contact condensation effect is not considered in this study. Experimental study for the direct ECC bypass phenomena has been carryout out with various the injection mode and air velocity conditions. The tests were performed in the 1/5 scale ECC bypass test facility, and the test condition was defined using a scaling law referring to the APR+ reactor. Test results showed that the direct ECC bypass fraction was greatly enhanced compared with the reference test (w/o ECBD)

  10. The Analysis of the Dynamic Equilibrium State in Linear Control System

    WANG Li


    This paper discusses not a point of equilibrium to free system, but a certain family of equilibrium state of dynamical system with inputs. This equilibrium state depends on the input, so it is called the dynamic equilibrium state. The expression of the dynamic equilibrium state can be given under some certain condition. With deductions and proofs in linear control system, establish the expression of the dynamic equilibrium state in two cases, where the linear systems are nonsingular or singular. Also present the concept and the condition of the controllability of the dynamic equilibrium state. The controllability of the dynamic equilibrium state is different from the controllability of the state to system, but these two are closely related.

  11. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Hameed Metghalchi


    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  12. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)


    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  13. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Buljit Buragohain, Sankar Chakma, Peeush Kumar, Pinakeswar Mahanta, Vijayanand S. Moholkar


    Full Text Available Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  14. Some recent developments in non-equilibrium statistical physics

    K Mallick


    We first recall the laws of classical thermodynamics and the fundamental principles of statistical mechanics and emphasize the fact that the fluctuations of a system in macroscopic equilibrium, such as Brownian motion, can be explained by statistical mechanics and not by thermodynamics. In the vicinity of equilibrium, the susceptibility of a system to an infinitesimal external perturbation is related to the amplitude of the fluctuations at equilibrium (Einstein’s relation) and exhibits a symmetry discovered by Onsager. We shall then focus on the mathematical description of systems out of equilibrium using Markovian dynamics. This will allow us to present some remarkable relations derived during the last decade and valid arbitrarily far from equilibrium: the Gallavotti–Cohen fluctuation theorem and Jarzynski’s non-equilibrium work identities. These recent results will be illustrated by applying them to simple systems such as the Brownian ratchet model for molecular motors and the asymmetric exclusion process which is a basic example of a driven lattice gas.

  15. On generalized operator quasi-equilibrium problems

    Kum, Sangho; Kim, Won Kyu


    In this paper, we will introduce the generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which generalize the operator equilibrium problem due to Kazmi and Raouf [K.R. Kazmi, A. Raouf, A class of operator equilibrium problems, J. Math. Anal. Appl. 308 (2005) 554-564] into multi-valued and quasi-equilibrium problems. Using a Fan-Browder type fixed point theorem in [S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994) 493-519] and an existence theorem of equilibrium for 1-person game in [X.-P. Ding, W.K. Kim, K.-K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. 164 (1992) 508-517] as basic tools, we prove new existence theorems on generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which includes operator equilibrium problems.

  16. Microscopic theory of equilibrium polariton condensates

    Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.


    We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.

  17. Tuning non-equilibrium superconductors with lasers

    Sentef, Michael A.; Kollath, Corinna [HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Kemper, Alexander F. [LBL Berkeley (United States); Georges, Antoine [Ecole Polytechnique and College de France, Paris (France)


    The study of the real-time dynamics dynamics of solids perturbed by short laser pulses is an intriguing opportunity of ultrafast materials science. Previous theoretical work on pump-probe photoemission spectroscopy revealed spectroscopic signatures of electron-boson coupling, which are reminiscent of features observed in recent pump-probe photoemission experiments on cuprate superconductors. Here we investigate the ordered state of electron-boson mediated superconductors subject to laser driving using Migdal-Eliashberg theory on the Kadanoff-Baym-Keldysh contour. We extract the characteristic time scales on which the non-equilibrium superconductor reacts to the perturbation, and their relation to the coupling boson and the underlying order.

  18. The Chaotic General Economic Equilibrium Model and Monopoly

    Vesna D. Jablanovic


    Full Text Available The basic aim of this study is to construct a relatively simple chaotic general economic equilibrium growth model that is capable of generating stable equilibrium, cycles, or chaos. An important example of general economic equilibrium is provided by monopolies. A key hypothesis of this study is based on the idea that the coefficient π = b mRS/m (α-1 (1+1/e mRT plays a crucial role in explaining local stability of the general equilibrium output, where, b: The coefficient of the quadratic marginal-cost function, m: The coefficient of the inverse demand function, mRS: The marginal rate of substitution, mRT: Marginal rate of transformation, α: The coefficient of the monopoly price growth, e: The coefficient of the price elasticity of demand.

  19. A non-equilibrium extension of quantum gravity

    Mandrin, Pierre A


    A variety of quantum gravity models (including spin foams) can be described using a path integral formulation. A path integral has a well-known statistical mechanical interpretation in connection with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein's Equations which depart from local thermodynamical equilibrium (one example is shown explicitly). For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium description. As a non-equilibrium description, we propose to use a global microcanonical ensemble with constraints. The constraints reduce the set of admissible microscopic states to be consistent with the macroscopic geometry. We also analyse the relation between the microcanonical description and a statistical approach not based on dynamical assumptions which has been proposed recently. This analysis is of interest for the test o...


    Mardiyah Hayati


    Full Text Available Simple paper about basic understanding of computable general equilibrium aimed to give basic understanding about CGE. It consist of history of CGE, assumption of CGE model, excess and lack of CGE model, and creation of simple CGE model for closed economy. CGE model is suitable to be used for seeing impact of new policy implementation. It is because CGE model use general equilibrium in which this theory of general equilibrium explaining about inter-relation among markets in the economy system. CGE model was introduced in 1960s known as Johansen model. Next, it is expanded into various models such as: ORANI Model, General Trade Analysis Project (GTAP Model, and Applied General Equilibrium (AGE Model. In Indonesia, there are CGE ORANI Model, Wayang, Indonesia-E3 and IRCGE. CGE Model is created by assumption of perfect competition. Consumer maximizes utility, producer maximizes profit, and company maximizes zero profit condition.

  1. Abrupt PN junctions: Analytical solutions under equilibrium and non-equilibrium

    Khorasani, Sina


    We present an explicit solution of carrier and field distributions in abrupt PN junctions under equilibrium. An accurate logarithmic numerical method is implemented and results are compared to the analytical solutions. Analysis of results shows reasonable agreement with numerical solution as well as the depletion layer approximation. We discuss extensions to the asymmetric junctions. Approximate relations for differential capacitance C-V and current-voltage I-V characteristics are also found under non-zero external bias.

  2. Monetary policy as equilibrium selection

    Gaetano Antinolfi; Costas Azariadis; Bullard, James B.


    Can monetary policy guide expectations toward desirable outcomes when equilibrium and welfare are sensitive to alternative, commonly held rational beliefs? This paper studies this question in an exchange economy with endogenous debt limits in which dynamic complementarities between dated debt limits support two Pareto-ranked steady states: a suboptimal, locally stable autarkic state and a constrained optimal, locally unstable trading state. The authors identify feedback policies that reverse ...

  3. Korshunov instantons out of equilibrium

    Titov, M.; Gutman, D. B.


    Zero-dimensional dissipative action possesses nontrivial minima known as Korshunov instantons. They have been known so far only for imaginary time representation that is limited to equilibrium systems. In this work we reconstruct and generalise Korshunov instantons using real-time Keldysh approach. This allows us to formulate the dissipative action theory for generic nonequilibrium conditions. Possible applications of the theory to transport in strongly biased quantum dots are discussed.

  4. An introduction to equilibrium thermodynamics

    Morrill, Bernard; Hartnett, James P; Hughes, William F


    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  5. On Nash Equilibrium Strategy of Two-person Zero-sum Games with Trapezoidal Fuzzy Payoffs

    Bapi Dutta


    Full Text Available In this paper, we investigate Nash equilibrium strategy of two-person zero-sum games with fuzzy payoffs. Based on fuzzy max order, Maeda and Cunlin constructed several models in symmetric triangular and asymmetric triangular fuzzy environment, respectively. We extended their models in trapezoidal fuzzy environment and proposed the existence of equilibrium strategies for these models. We also established the relation between Pareto Nash equilibrium strategy and parametric bi-matrix game. In addition, numerical examples are presented to find Pareto Nash equilibrium strategy and weak Pareto Nash equilibrium strategy from bi-matrix game.

  6. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.


    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP

  7. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air-Water Interface

    WU Di; WANG Yi-Zhen; ZHANG Jin-Xiu


    The interaction force between a solid probe and a planar air-water interface is measured by using an atomic force microscope. It is demonstrated that during the approach of the probe to the air-water interface, the force curves decline all the time due to the van der Waals attraction and induces a stable profile of water surface raised. When the tip approaches very close to the water surface, force curves jump suddenly, reflecting the complex behaviour of the unstable water surface. With a theoretical analysis we conclude that before the tip touches water surface,two water profiles appear, one stable and the other unstable. Then, with further approaching, the tip touches water surface and the non-contact to contact transition occurs.

  8. Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.

    Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin


    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.

  9. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano


    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  10. Morphodynamic equilibrium of alluvial estuaries

    Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni


    The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final

  11. The configuration of water on rough natural surfaces: Implications for understanding air-water interfacial area, film thickness, and imaging resolution

    Kibbey, Tohren C. G.


    Previous studies of air-water interfacial areas in unsaturated porous media have often distinguished between interfacial area corresponding to water held by capillary forces between grains and area corresponding to water associated with solid surfaces. The focus of this work was on developing a better understanding of the nature of interfacial area associated with solid surfaces following drainage of porous media. Stereoscopic scanning electron microscopy was used to determine surface elevation maps for eight different surfaces of varying roughness. An algorithm was developed to calculate the true configuration of an air-water interface in contact with the solid surface as a function of capillary pressure. The algorithm was used to calculate surface-associated water configurations for capillary pressures ranging from 10 to 100 cm water. The results of the work show that, following drainage, the configuration of surface-associated water is dominated by bridging of macroscopic surface roughness features over the range of capillary pressures studied, and nearly all of the surface-associated water is capillary held. As such, the thicknesses of surface-associated water were found to be orders-of-magnitude greater than might be expected at the same capillary pressures based on calculations of adsorbed film thickness. The fact that capillary forces in air-water interfaces dominate surface-associated water configuration means that interface shapes are largely unaffected by microscopic surface roughness, and interfaces are considerably smoother than the underlying solid. As such, calculations suggest that microscopic surface roughness likely has minimal impact on the accuracy of surface-associated air-water interfacial areas determined by limited-resolution imaging methods such as computed microtomography.

  12. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography.

    Tian, Lei; Loomis, Nick; Domínguez-Caballero, José A; Barbastathis, George


    We present a digital in-line holographic imaging system for measuring the size and three-dimensional position of fast-moving bubbles in air-water mixture flows. The captured holograms are numerically processed by performing a two-dimensional projection followed by local depth estimation to quickly and efficiently obtain the size and position information of multiple bubbles simultaneously. Statistical analysis on measured bubble size distributions shows that they follow lognormal or gamma distributions.

  13. On static equilibrium and balance puzzler

    Dey, Samrat; Saikia, Dipankar; Kalita, Deepjyoti; Debbarma, Anamika; Wahab, Shaheen Akhtar; Sarma, Saurabh


    The principles of static equilibrium are of special interest to civil engineers. For a rigid body to be in static equilibrium the condition is that net force and net torque acting on the body should be zero. That clearly signifies that if equal weights are placed on either sides of a balance, the balance should be in equilibrium, even if its beam is not horizontal (we have considered the beam to be straight and have no thickness, an ideal case). Thus, although the weights are equal, they will appear different which is puzzling. This also shows that the concept of equilibrium is confusing, especially neutral equilibrium is confused to be stable equilibrium. The study not only throws more light on the concept of static equilibrium, but also clarifies that a structure need not be firm and steady even if it is in static equilibrium.

  14. Equilibrium thermodynamics - Callen’s postulational approach

    Jongschaap, Robert J.J.; Öttinger, Hans Christian


    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  15. Absolute Orientation of Molecules with Competing Hydrophilic Head Groups at the Air/Water Interface Probed with Sum Frequency Generation Vibrational Spectroscopy

    Feng Wang; Zhi Huang; Zhifeng Cui; Hongfei Wang


    The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN)and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.

  16. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.


    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  17. The geometry of finite equilibrium sets

    Balasko, Yves; Tvede, Mich


    We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....

  18. Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics

    Sousa, Tânia; Domingos, Tiago


    We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.

  19. Open problems in non-equilibrium physics

    Kusnezov, D.


    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  20. The concept of equilibrium in organization theory

    Gazendam, Henk W.M.


    Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or

  1. The concept of equilibrium in organization theory

    Gazendam, Henk W.M.


    Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or

  2. Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics

    Jaksic, V; Pillet, C -A; Seiringer, R


    We extend the mathematical theory of quantum hypothesis testing to the general $W^*$-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time.

  3. Equilibrium figures of dwarf planets

    Rambaux, Nicolas; Chambat, Frederic; Castillo-Rogez, Julie; Baguet, Daniel


    Dwarf planets including transneptunian objects (TNO) and Ceres are >500 km large and display a spheroidal shape. These protoplanets are left over from the formation of the solar System about 4.6 billion years ago and their study could improve our knowledge of the early solar system. They could be formed in-situ or migrated to their current positions as a consequence of large-scale solar system dynamical evolution. Quantifying their internal composition would bring constraints on their accretion environment and migration history. That information may be inferred from studying their global shapes from stellar occultations or thermal infrared imaging. Here we model the equilibrium shapes of isolated dwarf planets under the assumption of hydrostatic equilibrium that forms the basis for interpreting shape data in terms of interior structure. Deviations from hydrostaticity can shed light on the thermal and geophysical history of the bodies. The dwarf planets are generally fast rotators spinning in few hours, so their shape modeling requires numerically integration with Clairaut's equations of rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter, to reach an accuracy better than a few kilometers depending on the spin velocity and mean density. We also show that the difference between a 500-km radius homogeneous model described by a MacLaurin ellipsoid and a stratified model assuming silicate and ice layers can reach several kilometers in the long and short axes, which could be measurable. This type of modeling will be instrumental in assessing hydrostaticity and thus detecting large non-hydrostatic contributions in the observed shapes.

  4. Risk premia in general equilibrium

    Posch, Olaf

    This paper shows that non-linearities can generate time-varying and asymmetric risk premia over the business cycle. These (empirical) key features become relevant and asset market implications improve substantially when we allow for non-normalities in the form of rare disasters. We employ explicit...... solutions of dynamic stochastic general equilibrium models, including a novel solution with endogenous labor supply, to obtain closed-form expressions for the risk premium in production economies. We find that the curvature of the policy functions affects the risk premium through controlling the individual......'s effective risk aversion....

  5. Quantum-chemical analysis of thermodynamics of two-dimensional cluster formation of racemic α-amino acids at the air/water interface.

    Vysotsky, Yu B; Fomina, E S; Belyaeva, E A; Aksenenko, E V; Fainerman, V B; Vollhardt, D; Miller, R


    The quantum-chemical semiempiric PM3 method is used to calculate the thermodynamic parameters of clusterization for the racemic α-amino acids C(n)H(2n+1)CHNH(2)COOH with n=5-15 at 278 and 298 K. Possible relative orientations of the monomers in the heterochiral clusters are considered. It is shown that, for the racemic mixtures of α-amino acids, the formation of heterochiral 2D films is most energetically preferable with the alternating (rather than "checkered") packing of the enantiomers with opposite specific rotation. The two enantiomeric forms of α-amino acids in the heterochiral 2D clusters are tilted with respect to the normal to the q direction at angles of φ(1)=20° and φ(2) = 33°, whereas the single enantiomeric forms are oriented at an angle of δ=9° with respect to the normal to the p direction. It is shown that the heterochiral 2D film based on the α-amino acid structures oriented at the angle φ(2)=33° with respect to the normal to the q direction possesses a rectangular unit cell with the geometric parameters a = 4.62 Å and b = 10.70 Å and the tilt angle of the alkyl chain of the molecule with respect to the interface t(2)=35°, which is in good agreement with the X-ray structural data a=4.80 Å, b=9.67 Å, and t(2)=37°. The parameters of the lattice structure of monolayers formed by amphiphilic amino acids are shown to be determined by the "a" type of the intermolecular H-H interactions, whereas the tilt angle of the molecules with respect to the interface depends on the volume and the structure of the functional groups involved in the hydrophilic part of the molecule. Spontaneous clusterization of the racemic form of α-amino acids at the air/water interface at 278 K takes place if the alkyl chain length is equal or higher than 12-13 carbon atoms, whereas for 298 K this clusterization threshold corresponds to 14 carbon atoms in the hydrocarbon chain. These values agree with the experimental data. © 2011 American Chemical Society

  6. The Earth's Equilibrium Climate Sensitivity and Thermal Inertia

    Royce, B S H


    The Earth's equilibrium climate sensitivity has received much attention because of its relevance and importance for global warming policymaking. This paper focuses on the Earth's \\emph{thermal inertia time scale} which has received relatively little attention. The difference between the observed transient climate sensitivity and the equilibrium climate sensitivity is shown to be proportional to the thermal inertia time scale, and the numerical value of the proportionality factor is determined using recent observational data. Many useful policymaking insights can be extracted from the resulting empirical quantitative relation.

  7. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    Silverberg, Lee J.; Raff, Lionel M.


    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  8. Pre-equilibrium plasma dynamics

    Heinz, U.


    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)

  9. Intraday evaporation and heat fluxes variation at air-water interface of extremely shallow lakes in Chilean Andean Plateau

    Vergara, Jaime; de la Fuente, Alberto


    Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, heat and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the air-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum fluxes, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent heat, sensible heat, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible heat fluxes are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday

  10. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.

    Renault, Anne; Rioux-Dubé, Jean-François; Lefèvre, Thierry; Pezennec, Stéphane; Beaufils, Sylvie; Vié, Véronique; Tremblay, Mélanie; Pézolet, Michel


    The dragline fiber of spiders is composed of two proteins, the major ampullate spidroins I and II (MaSpI and MaSpII). To better understand the assembly mechanism and the properties of these proteins, the adsorption behavior of the recombinant proteins of the spider Nephila clavipes produced by Nexia Biotechnologies Inc. has been studied at the air-water interface using ellipsometry, surface pressure, rheological, and infrared measurements. The results show that the adsorption is more rapid and more molecules are present at the interface for MaSpII than for MaSpI. MaSpII has thus a higher affinity for the interface than MaSpI, which is consistent with its higher aggregation propensity in water. The films formed at the interface consist of networks containing a high content of intermolecular beta-sheets as revealed by the in situ polarization modulation infrared absorption reflection spectra. The infrared results further demonstrate that, for MaSpI, the beta-sheets are formed as soon as the proteins adsorb to the interface while for MaSpII the beta-sheet formation occurs more slowly. The amount of beta-sheets is lower for MaSpII than for MaSpI, most likely due to the presence of proline residues in its sequence. Both proteins form elastic films, but they are heterogeneous for MaSpI and homogeneous for MaSpII most probably as a result of a more ordered and slower aggregation process for MaSpII. This difference in their mechanism of assembly and interfacial behaviors does not seem to arise from their overall hydrophobicity or from a specific pattern of hydrophobicity, but rather from the longer polyalanine motifs, lower glycine content, and higher proline content of MaSpII. The propensity of both spidroins to form beta-sheets, especially the polyalanine blocks, suggests the participation of both proteins in the silk's beta-sheet crystallites.

  11. Non-equilibrium many body dynamics

    Creutz, M.; Gyulassy, M.


    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  12. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Jian-Zhou Zhu and Gregory W. Hammett


    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  13. Diluted Equilibrium Sterile Neutrino Dark Matter

    Patwardhan, Amol V; Kishimoto, Chad T; Kusenko, Alexander


    We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large scale structure, and X-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest mass range, possibly associated with new physics at high energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to ...

  14. Diluted equilibrium sterile neutrino dark matter

    Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander


    We present a model where sterile neutrinos with rest masses in the range ˜keV to ˜MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ˜TeV to ˜EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.

  15. Entanglement equilibrium for higher order gravity

    Bueno, Pablo; Min, Vincent S.; Speranza, Antony J.; Visser, Manus R.


    We show that the linearized higher derivative gravitational field equations are equivalent to an equilibrium condition on the entanglement entropy of small spherical regions in vacuum. This extends Jacobson's recent derivation of the Einstein equation using entanglement to include general higher derivative corrections. The corrections are naturally associated with the subleading divergences in the entanglement entropy, which take the form of a Wald entropy evaluated on the entangling surface. Variations of this Wald entropy are related to the field equations through an identity for causal diamonds in maximally symmetric spacetimes, which we derive for arbitrary higher derivative theories. If the variations are taken holding fixed a geometric functional that we call the generalized volume, the identity becomes an equivalence between the linearized constraints and the entanglement equilibrium condition. We note that the fully nonlinear higher curvature equations cannot be derived from the linearized equations applied to small balls, in contrast to the situation encountered in Einstein gravity. The generalized volume is a novel result of this work, and we speculate on its thermodynamic role in the first law of causal diamond mechanics, as well as its possible application to holographic complexity.

  16. Equilibrium calculations of firework mixtures

    Hobbs, M.L. [Sandia National Labs., Albuquerque, NM (United States); Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)


    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  17. Equilibrium Analysis in Cake Cutting

    Branzei, Simina; Miltersen, Peter Bro


    Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed...... to guarantee proportional or envy-free allocations, when the participating agents follow the protocol. However, typically, all agents following the protocol is not guaranteed to result in a Nash equilibrium. In this paper, we initiate the study of equilibria of classical cake cutting protocols. We consider one...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density functions...

  18. Neoclassical equilibrium in gyrokinetic simulations

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.


    This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.

  19. Local non-equilibrium thermodynamics.

    Jinwoo, Lee; Tanaka, Hajime


    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  20. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  1. Physical Equilibrium Evaluation in Parkinson Disease

    Schmidt, Paula da Silva


    Full Text Available Introduction: The Parkinson disease can be among the multiple causes of alterations in the physical equilibrium. Accordingly, this study has the objective to evaluate Parkinson patients' physical equilibrium. Method: Potential study in which 12 Parkinson individuals were evaluated by way of tests of static and dynamic equilibrium, dynamic posturography and vectoelectronystagmograph. To compare the dynamic posturography results a group of gauged control was used. Results: Alterations in Romberg-Barré, Unterberger and Walk tests were found. The vestibular exam revealed 06 normal cases, 04 central vestibular syndrome and 02 cases of peripheral vestibular syndrome. In the dynamic posturography, an equilibrium alteration has been verified, when compared to the control group in all Sensorial Organization Tests, in average and in the utilization of vestibular system. Conclusion: Parkinson patients present a physical equilibrium alteration. The dynamic posturography was more sensitive to detect the equilibrium alterations than vectoelectronystagmograph.

  2. A Constructive Generalization of Nash Equilibrium

    Huang, Xiaofei


    In a society of multiple individuals, if everybody is only interested in maximizing his own payoff, will there exist any equilibrium for the society? John Nash proved more than 50 years ago that an equilibrium always exists such that nobody would benefit from unilaterally changing his strategy. Nash Equilibrium is a central concept in game theory, which offers the mathematical foundation for social science and economy. However, the original definition is declarative without including a solution to find them. It has been found later that it is computationally difficult to find a Nash equilibrium. Furthermore, a Nash equilibrium may be unstable, sensitive to the smallest variation of payoff functions. Making the situation worse, a society with selfish individuals can have an enormous number of equilibria, making it extremely hard to find out the global optimal one. This paper offers a constructive generalization of Nash equilibrium to cover the case when the selfishness of individuals are reduced to lower level...

  3. Equilibrium Solubility of CO2 in Alkanolamines

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas


    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  4. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    M. D. Rowe


    Full Text Available Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT substances are frequently estimated using the Whitman two-film (W2F method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB and polychlorinated biphenyls (PCBs on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs.

  5. Silica nanoparticle sols. Part 3: Monitoring the state of agglomeration at the air/water interface using the Langmuir-Blodgett technique.

    Blute, Irena; Pugh, Robert J; van de Pas, John; Callaghan, Ian


    Langmuir-Blodgett films were prepared at the air/water interface from dispersions of hydrophilic and partially, hydrophobically modified industrially manufactured silica nanoparticles. The hydrophilic particles featured expanded, fairly easily compressible, surface pressure (pi)-area (A) isotherms with well defined collapse pressures which appeared to be caused by the formation of loosely structured agglomerates which exhibited elastic behavior at low surface pressure and inelastic behavior at high surface pressure. Lateral electrostatic interparticle interactions seemingly played an important role in this hydrophilic system. This contrasted with the hydrophobically modified particles which were more difficult to disperse in the ethanol/chloroform spreading solvent and appeared to be in the semi-agglomerated state at low surface pressures and exhibited a more difficult to compress compacted film. Both types of particulate films were shown to be sensitive to the spreading environment and changes in pH were found to increase particle agglomeration which drastically reduced the particulate area for the hydrophilic sol but less so, in the case of the moderately hydrophobically modified sol. In general, the LB technique proved to be a useful method to monitor changes in the state of aggregation of nanosized silica particles at the air/water interface. These results also appear to give some support of our ideas, presented in earlier publications in which it was suggested that the major role of the hydrophobically modified hydrophilic particles in foaming was to produce an aggregated particulate film surrounding the air/water interface which provides a physical barrier preventing coalescence of bubbles.

  6. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    M. D. Rowe


    Full Text Available Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT substances are frequently estimated using the Whitman two-film (W2F method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB and polychlorinated biphenyls (PCBs on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported micrometeorological air-water exchange flux measurements of PCBs.

  7. Self-graviting Gas Spheres in Equilibrium State

    Smirnov, Andrei


    In the paper we discuss equilibrium states of stars, using a simplified analytic model. A star is considered as self-graviting body of gas. We use a condition for the equilibrium state of the body in the form of a differential equation, which relates the pressure distribution and mass density in the body. The density distributions of constant, potential, gaussian, and exponential forms are discussed. Exact expressions for the distribution of mass and pressure along the radial direction, and the central pressure were obtained.

  8. Energy flow in non-equilibrium conformal field theory

    Bernard, Denis; Doyon, Benjamin


    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  9. Insights: Simple Models for Teaching Equilibrium and Le Chatelier's Principle.

    Russell, Joan M.


    Presents three models that have been effective for teaching chemical equilibrium and Le Chatelier's principle: (1) the liquid transfer model, (2) the fish model, and (3) the teeter-totter model. Explains each model and its relation to Le Chatelier's principle. (MVL)

  10. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    of the biota relative to the sediment. Furthermore, concentrations in lipid at thermodynamic equilibrium with sediment (Clip?Sed) can be calculated via lipid/silicone partition ratios CSil × KLip:Sil, which has been done in studies with limnic, river and marine sediments. The data can then be compared to lipid...

  11. Composition and Thermodynamic Properties of Air in Chemical Equilibrium

    Moeckel, W E; Weston, Kenneth C


    Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.

  12. SRB states and nonequilibrium statistical mechanics close to equilibrium

    Gallavotti, G; Gallavotti, Giovannni; Ruelle, David


    Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.

  13. Two-Fluid Equilibrium for Transonic Poloidal Flows

    Guazzotto, Luca; Betti, Riccardo


    Much analytical and numerical work has been done in the past on ideal MHD equilibrium in the presence of macroscopic flow. In recent years, several authors have worked on equilibrium formulations for a two-fluid system, in which inertial ions and massless electrons are treated as distinct fluids. In this work, we present our approach to the formulation of the two-fluid equilibrium problem. Particular attention is given to the relation between the two-fluid equations and the equilibrium equations for the single-fluid ideal MHD system. Our purpose is to reconsider the results of one-fluid calculation with the more accurate two-fluid model, referring in particular to the so-called transonic discontinuities, which occur when the poloidal velocity spans a range crossing the poloidal sound speed (i.e., the sound speed reduced by a factor Bp/B). It is expected that the one-fluid discontinuity will be resolved into a sharp gradient region by the two-fluid model. Also, contrary to the ideal MHD case, in the two-fluid model the equations governing the equilibrium are elliptic in the whole range of interest for transonic equilibria. The numerical solution of the two-fluid system of equations is going to be based on a code built on the structure of the existing ideal-MHD code FLOW.

  14. Mathematical models and equilibrium in irreversible microeconomics

    Anatoly M. Tsirlin


    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  15. Characteristics of equilibrium reaction of zolazepam.

    Hong, W H; Szulczewski, D H


    The equilibrium reaction of zolazepam, a pyrazolodiazepinone, was studied and analyzed using the approach used previously for other pyrazolodiazepinone derivatives. The intrinsic ring closure equilibrium constant for this reaction was approximately 100 times larger than that observed for pyrazolodiazepinones studied previously. This study illustrates that the diazepinone ring can dominate in equilibrium mixtures formed at pH values far below the pKa of the corresponding form.

  16. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan;


    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring...... the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action...

  17. Electron-Dominated Spontaneous Bifurcation of Harris Equilibrium

    Lee, Kuang-Wu


    In this letter the spontaneous bifurcation of Harris equilibrium current sheet is reported. The collisionless current bifurcation is simulated by a 2D particle-in-cell approach. Explicit particle advancing method is used to resolve the transient electron dynamics. Unlike previous implicit investigations no initial perturbations is applied to trigger current bifurcation. Instead, an electron-dominated spontaneously bifurcation is observed. Electromagnetic fluctuations grow from thermal noise initially. Soon the noise triggers the eigenmodes and eventually causes current sheet bifurcation. The relative entropy of the bifurcated state exceeds the value of initial Harris equilibrium. It is also found that the Helmholtz free energy decreases in the bifurcation process. Hence it is concluded that Harris equilibrium evolves toward a more stable (smaller free energy) bifurcated state.

  18. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V


    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  19. Local covariance, renormalization ambiguity, and local thermal equilibrium in cosmology

    Verch, Rainer


    This article reviews some aspects of local covariance and of the ambiguities and anomalies involved in the definition of the stress energy tensor of quantum field theory in curved spacetime. Then, a summary is given of the approach proposed by Buchholz et al. to define local thermal equilibrium states in quantum field theory, i.e., non-equilibrium states to which, locally, one can assign thermal parameters, such as temperature or thermal stress-energy. The extension of that concept to curved spacetime is discussed and some related results are presented. Finally, the recent approach to cosmology by Dappiaggi, Fredenhagen and Pinamonti, based on a distinguished fixing of the stress-energy renormalization ambiguity in the setting of the semiclassical Einstein equations, is briefly described. The concept of local thermal equilibrium states is then applied, to yield the result that the temperature behaviour of a quantized, massless, conformally coupled linear scalar field at early cosmological times is more singul...




    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  1. Equilibrium relations in the system TiO{sub 2}/V{sub 2}O{sub 5}/P{sub 2}O{sub 5} and crystal structure of a NASICON-related vanadyl(V) titanium(IV) phosphate

    Titlbach, Sven; Hoffbauer, Wilfried [Institut fuer Anorganische Chemie der Universitaet Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany); Glaum, Robert, E-mail: [Institut fuer Anorganische Chemie der Universitaet Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany)


    Vanadyl(V)-titanium-orthophosphate (V{sup V}O)Ti{sup IV}{sub 6}(PO{sub 4}){sub 9} is formed by solid state reactions in the temperature range 525{<=}{theta}{<=}780 Degree-Sign C. At higher temperature decomposition into V{sub 2}O{sub 5} and the hitherto unknown solid solution Ti(P{sub 1-x}V{sub x}){sub 2}O{sub 7} (0{<=}x{<=}0.23; 0.30{<=}x{<=}0.43) is observed. The process of phase formation has been monitored by MAS-NMR ({sup 31}P, {sup 51}V) spectroscopy. Equilibrium phase relations in the quaternary system TiO{sub 2}/VO{sub 2.5}/PO{sub 2.5} have been determined. A structure analysis from X-ray single-crystal data (P6{sub 3}/m (No. 176), Z=2; a=8.4438(3) A, c=22.215(1) A, 14 independent atoms, 87 variables, 2066 unique reflections, R1=0.032, wR2=0.084) shows the relationship of (V{sup V}O)Ti{sup IV}{sub 6}(PO{sub 4}){sub 9} to the NASICON structure family. In marked contrast to the other members of this family [Ti{sup IV}{sub 2}O{sub 9}] double-octahedra and strongly distorted tetrahedral [(V{sup V}=O)O{sub 3}] groups are observed besides isolated [Ti{sup IV}O{sub 6}] octahedra and phosphate tetrahedra. The structure model is in agreement with the results from MAS-NMR ({sup 31}P, {sup 51}V) spectroscopy. - Graphical abstract: (V{sup V}O)Ti{sup IV}{sub 6}(PO{sub 4}){sub 9} belongs to the NASICON structure family. Its structure contains [Ti{sup IV}{sub 2}O{sub 9}] double-octahedra and unprecedented, strongly distorted tetrahedral [(V{sup V}=O)O{sub 3}] groups, in stark contrast to other members of this family. The structure model is in agreement with the results from MAS-NMR ({sup 31}P, {sup 51}V) spectroscopy. Highlights: Black-Right-Pointing-Pointer Equilibrium relations for the subsolidus have been established for the system TiO{sub 2}/V{sub 2}O{sub 5}/P{sub 2}O{sub 5}. Black-Right-Pointing-Pointer Phase formation has been monitored by XRPD as well as by {sup 31}P- and {sup 51}-MAS-NMR. Black-Right-Pointing-Pointer A solid solution Ti(P{sub 1-x}V{sub x}){sub 2}O

  2. Th17和Treg细胞的平衡状态与肺结核的关系%Relation of the equilibrium state of Th17 and Treg cells with tuberculosis

    李靖; 封文军; 何艳


    Th17和Treg细胞均来源于CD4+T细胞,在机体免疫应答中的作用基本相反,Th17促进免疫应答,而Treg细胞抑制免疫应答,正常情况下两者之间的平衡状态有利于保持机体免疫平衡.结核分枝杆菌感染可能打破两者之间的平衡从而导致疾病进展,而抗结核治疗可能恢复二者平衡关系.此文就Th17和Treg细胞的分化、调控和功能,以及两者在艾滋病及肺结核患者中的变化等进行综述.%Th17 and Treg cells are all derived from the CD4 + T cells.Their roles in the body' s immune response are basically opposite.Th17 cells promote the immune responses,though Treg cells suppress it.Under normal circumstances,the equilibrium state between them could maintain the immunologic balance of the body.Tuberchlosis infection may break the balance and lead to disease progression,however,anti-tuberculosis treatment may restore balance.The differentiation,regulation and function of Th17 and Treg cells,as well as the changes of Th17 and Treg in AIDS and tuberculosis patients are reviewed.

  3. Reflective Equilibrium: Epistemological or Political?

    Andrew Lister


    Full Text Available One of the reasons for ongoing interest in the work of political philosopher John Rawls is that he developed novel methods for thinking systematically about the nature of justice. This paper examines the moral and epistemological motivations for Rawls’s method of “reflective equilibrium,” and the tension between them in Kai Nielsen’s use of “wide reflective equilibrium” in the service of critical and emancipatory social theory. Une des raisons de l’intérêt soutenu pour l’oeuvre du philosophe politique John Rawls est qu’il a développé de nouvelles méthodes de réflexion systématique au sujet de la nature de la justice. Cet article étudie les motifs moraux et épistémologiques soutenant la méthode d’ «équilibre réflectif» de Rawls, et les tensions entre eux dans l’utilisation par Kai Nielsen d’ «équilibre réflectif étendu» au service de la théorie sociale critique et émancipatrice.

  4. Colin Rowe and ' Dynamic Equilibrium'

    Pablo López Marín


    Full Text Available AbstractIn 1944 Gyorgy Kepes published what undoubtless will be his most influential text, "The language of vision". What Kepes tried to do was a guide of grammar and syntax of vision, which allows to face art as purely sensory experience or just visual, devisted of any literary , semantic or sentimental meaning.Among all the concepts that Kepes developes in his essay perhaps the most decisive one is the so called dynamic equilibrium, which is introduced in this work for fi rst time, verbalizing something that was in the air, orbiting around the entire modern plastic but far only explained in an empirical way.Colin Rowe reverberates the recent readed kepesian ideas on his own writings Transparency: Literal and Phenomenal and Neo-'Classicism' and Modern Architecture I and II, when the author tries to highlight the founding principles of the modern movement refusing the plastic  dimension of the discipline . The article will try to expose and explain this influence.

  5. Equilibrium avalanches in spin glasses

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg


    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMmodel. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  6. Development of a free boundary Tokamak Equilibrium Solver (TES) for Advanced Study of Tokamak Equilibria

    Jeon, Y M


    A free-boundary Tokamak Equilibrium Solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered after all in equilibrium calculation with a free-boundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence on variations of computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by a direct comparison with an analytic equilibrium known as a generalized Solovev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As a valuable application, a snowflake equilibrium that requires a second order zero of the poloidal magnetic field is discussed in the circumstance of KSTAR coil system.

  7. Open Markov processes: A compositional perspective on non-equilibrium steady states in biology

    Pollard, Blake S


    In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illus...

  8. Thin film formation at the air-water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    Campos-Teran, Jose, E-mail: [Departamento de Procesos y Tecnologia, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Garza, Cristina [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico); Beltran, Hiram I. [Departamento de Ciencias Naturales, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Castillo, Rolando [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico)


    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin{sup IV} phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir-Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of {pi}-{pi}, {sigma}-{pi} and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  9. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.

    Tong, Yujin; Kampfrath, Tobias; Campen, R Kramer


    Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.

  10. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS

    Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.


    Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.

  11. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.

    Baer, Marcel D; Kuo, I-Feng W; Tobias, Douglas J; Mundy, Christopher J


    The propensities of the water self-ions, H3O(+) and OH(-), for the air-water interface have implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O(+) and/or OH(-) prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs interfacial behavior of H3O(+) and OH(-) that employs forces derived from density functional theory with a generalized gradient approximation exchange-correlation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O(+) as a function of the position of the ion in the vicinity of an air-water interface. The PMF suggests that H3O(+) has equal propensity for the interface and the bulk. We compare the PMF for H3O(+) to our previously computed PMF for OH(-) adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs in the bulk are connected with interfacial propensity. We find that the solvation shell of H3O(+) is only slightly dependent on its position in the water slab, while OH(-) partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions.

  12. Mechanism of Action of Thymol on Cell Membranes Investigated through Lipid Langmuir Monolayers at the Air-Water Interface and Molecular Simulation.

    Ferreira, João Victor N; Capello, Tabata M; Siqueira, Leonardo J A; Lago, João Henrique G; Caseli, Luciano


    A major challenge in the design of biocidal drugs is to identify compounds with potential action on microorganisms and to understand at the molecular level their mechanism of action. In this study, thymol, a monoterpenoid found in the oil of leaves of Lippia sidoides with possible action in biological surfaces, was incorporated in lipid monolayers at the air-water interface that represented cell membrane models. The interaction of thymol with dipalmitoylphosphatidylcholine (DPPC) at the air-water interface was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), polarization-modulation reflection-absorption spectroscopy (PM-IRRAS), and molecular dynamics simulation. Thymol expands DPPC monolayers, decreases their surface elasticity, and changes the morphology of the lipid monolayer, which evidence the incorporation of this compound in the lipid Langmuir film. Such incorporation could be corroborated by PM-IRRAS since some specific bands for DPPC were changed upon thymol incorporation. Furthermore, potential of mean force obtained by molecular dynamics simulations indicates that the most stable position of the drug along the lipid film is near the hydrophobic regions of DPPC. These results may be useful to understand the interaction between thymol and cell membranes during biochemical phenomena, which may be associated with its pharmaceutical properties at the molecular level.

  13. Non-equilibrium modelling of distillation

    Wesselingh, JA; Darton, R


    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  14. Approximate Equilibrium Problems and Fixed Points

    H. Mazaheri


    Full Text Available We find a common element of the set of fixed points of a map and the set of solutions of an approximate equilibrium problem in a Hilbert space. Then, we show that one of the sequences weakly converges. Also we obtain some theorems about equilibrium problems and fixed points.

  15. The Geometry of Finite Equilibrium Datasets

    Balasko, Yves; Tvede, Mich

    We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...

  16. Equilibrium Tail Distribution Due to Touschek Scattering

    Nash,B.; Krinsky, S.


    Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.

  17. System of Operator Quasi Equilibrium Problems

    Suhel Ahmad Khan


    Full Text Available We consider a system of operator quasi equilibrium problems and system of generalized quasi operator equilibrium problems in topological vector spaces. Using a maximal element theorem for a family of set-valued mappings as basic tool, we derive some existence theorems for solutions to these problems with and without involving Φ-condensing mappings.

  18. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu


    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  19. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio


    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  20. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio


    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  1. Economic networks in and out of equilibrium

    Squartini, Tiziano


    Economic and financial networks play a crucial role in various important processes, including economic integration, globalization, and financial crises. Of particular interest is understanding whether the temporal evolution of a real economic network is in a (quasi-)stationary equilibrium, i.e. characterized by smooth structural changes rather than abrupt transitions. Smooth changes in quasi-equilibrium networks can be generally controlled for, and largely predicted, via an appropriate rescaling of structural quantities, while this is generally not possible for abrupt transitions in non-stationary networks. Here we study whether real economic networks are in or out of equilibrium by checking their consistency with quasi-equilibrium maximum-entropy ensembles of graphs. As illustrative examples, we consider the International Trade Network (ITN) and the Dutch Interbank Network (DIN). We show that, despite the globalization process, the ITN is an almost perfect example of quasi-equilibrium network, while the DIN ...

  2. Cosmological particle production and generalized thermodynamic equilibrium

    Zimdahl, W


    With the help of a conformal, timelike Killing-vector we define generalized equilibrium states for cosmological fluids with particle production. For massless particles the generalized equilibrium conditions require the production rate to vanish and the well known ``global'' equilibrium of standard relativistic thermodynamics is recovered as a limiting case. The equivalence between the creation rate for particles with nonzero mass and an effective viscous fluid pressure follows as a consequence of the generalized equilibrium properties. The implications of this equivalence for the cosmological dynamics are discussed, including the possibility of a power-law inflationary behaviour. For a simple gas a microscopic derivation for such kind of equilibrium is given on the basis of relativistic kinetic theory.

  3. Equilibrium and Sudden Events in Chemical Evolution

    Weinberg, David H; Freudenburg, Jenna


    We present new analytic solutions for one-zone (fully mixed) chemical evolution models and explore their implications. In contrast to existing analytic models, we incorporate a realistic delay time distribution for Type Ia supernovae (SNIa) and can therefore track the separate evolution of $\\alpha$-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNIa. In generic cases, $\\alpha$ and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter $\\eta$, while the equilibrium abundance ratio [$\\alpha$/Fe] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Sy...

  4. Disturbances in equilibrium function after major earthquake

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi


    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  5. Conjectural Equilibrium in Water-filling Games

    Su, Yi


    This paper considers a non-cooperative game in which competing users sharing a frequency-selective interference channel selfishly optimize their power allocation in order to improve their achievable rates. Previously, it was shown that a user having the knowledge of its opponents' channel state information can make foresighted decisions and substantially improve its performance compared with the case in which it deploys the conventional iterative water-filling algorithm, which does not exploit such knowledge. This paper discusses how a foresighted user can acquire this knowledge by modeling its experienced interference as a function of its own power allocation. To characterize the outcome of the multi-user interaction, the conjectural equilibrium is introduced, and the existence of this equilibrium for the investigated water-filling game is proved. Interestingly, both the Nash equilibrium and the Stackelberg equilibrium are shown to be special cases of the generalization of conjectural equilibrium. We develop...

  6. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    Poindexter, C.; Variano, E. A.


    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind shear

  7. Some Examples of Formation of Shells and Their Role in Establishment of Equilibrium

    Koutandos, Spyridon


    In this article we discuss the concept of equilibrium establishment in four most usual instances as is electrostriction and vaporization as related to the concept of equilibrium shell formation. Two more cases are then studied which are of relevance. One is the Brownian movement, the study of which is essential for pedagogical reasons as to…

  8. Effect of a Perturbation on the Chemical Equilibrium: Comparison with Le Chatelier's Principle

    Torres, Emilio Martinez


    This article develops a general thermodynamic treatment to predict the direction of shift in a chemical equilibrium when it is subjected to a stress. This treatment gives an inequality that relates the change in the perturbed variable and the change that the equilibrium shift produces in the conjugated variable. To illustrate the generality of…

  9. A general framework for ion equilibrium calculations in compacted bentonite

    Birgersson, Martin


    An approach for treating chemical equilibrium between compacted bentonite and aqueous solutions is presented. The treatment is based on conceptualizing bentonite as a homogeneous mixture of water and montmorillonite, and assumes Gibbs-Donnan membrane equilibrium across interfaces to external solutions. An equation for calculating the electrostatic potential difference between bentonite and external solution (Donnan potential) is derived and solved analytically for some simple systems. The solutions are furthermore analyzed in order to illuminate the general mechanisms of ion equilibrium and their relation to measurable quantities. A method is suggested for estimating interlayer activity coefficients based on the notion of an interlayer ionic strength. Using this method, several applications of the framework are presented, giving a set of quantitative predictions which may be relatively simply tested experimentally, e.g.: (1) the relative amount of anions entering the bentonite depends approximately on the square-root of the external concentration for a 1:2 salt (e.g. CaCl2). For a 1:1 salt (e.g. NaCl) the dependence is approximately linear, and for a 1:2 salt (e.g. Na2SO4) the dependence is approximately quadratic. (2) Bentonite contains substantially more nitrate as compared to chloride if equilibrated with the two salt solutions at equal external concentration. (3) Potassium bentonite generally contains more anions as compared to sodium bentonite if equilibrated at the same external concentration. (4) The anion concentration ratio in two bentonite samples of different cations (but with the same density and cation exchange capacity) resembles the ion exchange selectivity coefficient for that specific cation pair. The results show that an adequate treatment of chemical equilibrium between interlayers and bulk solutions are essential when modeling compacted bentonite, and that activity corrections generally are required for relevant ion equilibrium calculations. It

  10. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    Nakamura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs.

  11. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air-Water Interface: Presence of a SP-B Analog Peptide Promotes Membrane Aggregation, Formation of Tightly Stacked Lamellae, and Growth of Myelin Figures.

    Parra, Elisa; Kinoshita, Koji; Needham, David


    The present study is a microscopic interfacial characterization of a series of lung surfactant materials performed with the micropipette technique. The advantages of this technique include the measurement of equilibrium and dynamic surface tensions while acquiring structural and dynamic information at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB)-containing formulation. It was observed that the presence of the natural hydrophobic proteins and, more strikingly, the peptide SMB, promoted vesicle condensation as thick membrane stacks beneath the interface. Only in the presence of SMB, these stacks underwent spontaneous structural transformations, consisting of the nucleation and growth of microtubes and in some cases their subsequent coiling into helices. The dimensions of these tubes (2-15 μm diameter) and their linear (2-3 μm/s) and volumetric growth rates (20-30 μm(3)/s) were quantified, and no specific effects were found on them for increasing SMB concentrations from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression but neither in the other clinical surfactants nor in protein-free preparations. Finally, the connection between this data and the observations from

  12. Electric Current Equilibrium in the Corona

    Filippov, Boris


    A hyperbolic flux-tube configuration containing a null point below the flux rope is considered as a pre-eruptive state of coronal mass ejections that start simultaneously with flares. We demonstrate that this configuration is unstable and cannot exist for a long time in the solar corona. The inference follows from general equilibrium conditions and from analyzing simple models of the flux-rope equilibrium. A direct consequence of the stable flux-rope equilibrium in the corona are separatrices in the horizontal-field distribution in the chromosphere. They can be recognized as specific "herring-bone structures" in a chromospheric fibril pattern.

  13. Electric Current Equilibrium in the Corona

    Filippov, Boris


    A hyperbolic flux-tube configuration containing a null point below the flux rope is considered as a pre-eruptive state of coronal mass ejections that start simultaneously with flares. We demonstrate that this configuration is unstable and cannot exist for a long time in the solar corona. The inference follows from general equilibrium conditions and from analyzing simple models of the flux-rope equilibrium. A direct consequence of the stable flux-rope equilibrium in the corona are separatrices in the horizontal-field distribution in the chromosphere. They can be recognized as specific "herring-bone structures" in a chromospheric fibril pattern.

  14. A Multi Period Equilibrium Pricing Model

    Pirvu, Traian A


    In this paper, we propose an equilibrium pricing model in a dynamic multi-period stochastic framework with uncertain income streams. In an incomplete market, there exist two traded risky assets (e.g. stock/commodity and weather derivative) and a non-traded underlying (e.g. temperature). The risk preferences are of exponential (CARA) type with a stochastic coefficient of risk aversion. Both time consistent and time inconsistent trading strategies are considered. We obtain the equilibriums prices of a contingent claim written on the risky asset and non-traded underlying. By running numerical experiments we examine how the equilibriums prices vary in response to changes in model parameters.




    For the evaporation of the pure liquid under the condition of constant temperature and constant external pressure, the phase equilibrium of the liquid vapor in the bubble and the liquid outside the bubble is always a kind of stable equilibrium whether there is air or not in the bubble. If there is no air in the bubble, the bubble and liquid cannot coexist in the mechanical equilibrium when the vapor pressure of the liquid in the bubble is less than or equal to the external pressure; the bubbl...

  16. General equilibrium characteristics of a dual-lift helicopter system

    Cicolani, L. S.; Kanning, G.


    The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.

  17. Planar equilibrium shapes of a liquid drop on a membrane.

    Hui, Chung-Yuen; Jagota, Anand


    The equilibrium shape of a small liquid drop on a smooth rigid surface is governed by the minimization of energy with respect to the change in configuration, represented by the well-known Young's equation. In contrast, the equilibrium shape near the line separating three immiscible fluid phases is determined by force balance, represented by Neumann's Triangle. These two are limiting cases of the more general situation of a drop on a deformable, elastic substrate. Specifically, we have analyzed planar equilibrium shapes of a liquid drop on a deformable membrane. We show that to determine its equilibrium shape one must simultaneously satisfy configurational energy and mechanical force balance along with a constraint on the liquid volume. The first condition generalizes Young's equation to include changes in stored elastic energy upon changing the configuration. The second condition generalizes the force balance conditions by relating tensions to membrane stretches via their constitutive elastic behavior. The transition from Young's equation to Neumann's triangle is governed by the value of the elasto-capillary number, β = TRo/μh, where TRo is twice the surface tension of the solid-vapor interface, μ is the shear modulus of the membrane, and h is its thickness.

  18. BOOK REVIEW: Relativistic Figures of Equilibrium

    Mars, M.


    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  19. Geometry and symmetry in non-equilibrium thermodynamic systems

    Sonnino, Giorgio


    The ultimate aim of this series of works is to establish the closure equations, valid for thermodynamic systems out from the Onsager region, and to describe the geometry and symmetry in thermodynamic systems far from equilibrium. Geometry of a non-equilibrium thermodynamic system is constructed by taking into account the second law of thermodynamics and by imposing the validity of the Glansdorff-Prigogine Universal Criterion of Evolution. These two constraints allow introducing the metrics and the affine connection of the Space of the Thermodynamic Forces, respectively. The Lie group associated to the nonlinear Thermodynamic Coordinate Transformations (TCT) leaving invariant both the entropy production σ and the Glansdorff-Prigogine dissipative quantity P, is also described. The invariance under TCT leads to the formulation of the Thermodynamic Covariance Principle (TCP): The nonlinear closure equations, i.e. the flux-force relations, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces (i.e. under TCT). The symmetry properties of a physical system are intimately related to the conservation laws characterizing the thermodynamic system. Noether's theorem gives a precise description of this relation. The macroscopic theory for closure relations, based on this geometrical description and subject to the TCP, is referred to as the Thermodynamic Field Theory (TFT). This theory ensures the validity of the fundamental theorems for systems far from equilibrium.

  20. Effect of Ultrasound on Desorption Equilibrium

    秦炜; 原永辉; 戴猷元


    Effects of ultrasound on intensification of separation process were investigated through the experiment of desorption equilibrium behavior. Tri-butyl phosphate (TBP) on NKA-X resin and phenol on a solvent impregnated resin, CL-TBP resin, were used for desorption processes. The desorption rate was measured with and without ultrasound. Desorption equilibrium was studied under various ultrasonic power densities or thermal infusion. Results showed that the desorption rate with ultrasound was much higher than that with normal thermal infusion. Both ultrasound and thermal infusion broke the desorption equilibrium existed at room temperature. However, after the systems were cooled down, the amount of solute desorbed in the liquid phase in the presence of ultrasound was much higher than that at the temperature corresponding to the same ultrasound power. It is proved that the initial desorption equilibrium was broken as a result of the spot energy effect of ultrasound.

  1. Equilibrium Analysis for Anycast in WDM Networks

    唐矛宁; 王汉兴


    In this paper, the wavelength-routed WDM network, was analyzed for the dynamic case where the arrival of anycast requests was modeled by a state-dependent Poisson process. The equilibrium analysis was also given with the UWNC algorithm.



    The author studies semilinear parabolic equations with initial and periodic boundary value conditions. In the presence of non-well-ordered sub- and super-solutions:"subsolution (≤) supersolution", the existence and stability/instability of equilibrium solutions are obtained.

  3. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E


    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  4. Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water

    Liu, Jukun; Jia, Tianqing; Zhao, Hongwei; Huang, Yaoqing


    We report the period-increasing effect of low spatial frequency ripples on a GaP crystal irradiated by 1 kHz, 50 fs, 800 nm femtosecond laser pulses. Massive free electrons are excited by a two-photon absorption process and surface plasmon is excited. The Drude model is used to estimate the changing of the dielectric constant of the GaP crystal. The period-increasing effects of low spatial frequency laser-induced ripples are theoretically predicted in air/water, and the experimental results agree well. The experimental and theoretical results indicate that surface plasmon excited by two-photon absorption plays a key role in the formation of low spatial frequency ripples.

  5. An in-situ Observation on Initial Aggregation Process of Colloidal Particles near Three-Phase Contact Line of Air, Water and Vertical Substrate

    YAO Can; WANG Yu-Ren; LAN Ding; DUAN Li; KANG Qi


    The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the selfassembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle-particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force,while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.

  6. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)


    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  7. Binding Energy and Equilibrium of Compact Objects

    Germano M.


    Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.

  8. Thermodynamics and fluctuations far from equilibrium

    Ross, John


    This book deals with the formulation of the thermodynamics of chemical and other systems far from equilibrium, including connections to fluctuations. It contains applications to non-equilibrium stationary states and approaches to such states, systems with multiple stationary states, stability and equi-stability conditions, reaction diffusion systems, transport properties, and electrochemical systems. The theoretical treatment is complemented by experimental results to substantiate the formulation. Dissipation and efficiency are analyzed in autonomous and externally forced reactions, including several biochemical systems.

  9. Equilibrium fluctuation energy of gyrokinetic plasma

    Krommes, J.A.; Lee, W.W.; Oberman, C.


    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8..pi.. = 1/2T/(1 + (klambda/sub D/)/sup 2/) valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs.

  10. Information equilibrium as an economic principle


    A general information equilibrium model in the case of ideal information transfer is defined and then used to derive the relationship between supply (information destination) and demand (information source) with the price as the detector of information exchange between demand and supply. We recover the properties of the traditional economic supply-demand diagram. Information equilibrium is then applied to macroeconomic problems, recovering some common macroeconomic models in particular limits...

  11. The Theory of Variances in Equilibrium Reconstruction

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren


    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature.

  12. Equilibrium Model Constraints on Baryon Cycling Across Cosmic Time

    Mitra, Sourav; Finlator, Kristian


    Galaxies strongly self-regulate their growth via energetic feedback from stars, supernovae, and black holes, but these processes are among the least understood aspects of galaxy formation theory. We present an analytic galaxy evolution model that directly constrains such feedback processes from observed galaxy scaling relations. The equilibrium model, which is broadly valid for star-forming central galaxies that dominate cosmic star formation, is based on the ansatz that galaxies live in a slowly-evolving equilibrium between inflows, outflows, and star formation. Using a Bayesian Monte Carlo Markov chain approach, we constrain our model to match observed galaxy scaling relations between stellar mass and halo mass, star formation rate, and metallicity from 0

  13. Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7

    Hupp, Cliff R.


    Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.

  14. Equilibrium configurations of fluids and their stability in higher dimensions

    Cardoso, V; Cardoso, Vitor; Gualtieri, Leonardo


    We study equilibrium shapes, stability and possible bifurcation diagrams of fluids in higher dimensions, held together by either surface tension or self-gravity. We consider the equilibrium shape and stability problem of self-gravitating spheroids, establishing the formalism to generalize the MacLaurin sequence to higher dimensions. We show that such simple models, of interest on their own, also provide accurate descriptions of their general relativistic relatives with event horizons. The examples worked out here hint at some model-independent dynamics, and thus at some universality: smooth objects seem always to be well described by both ``replicas'' (either self-gravity or surface tension). As an example, we exhibit an instability afflicting self-gravitating (Newtonian) fluid cylinders. This instability is the exact analogue, within Newtonian gravity, of the Gregory-Laflamme instability in general relativity. Another example considered is a self-gravitating Newtonian torus made of a homogeneous incompressib...

  15. Equilibrium Sequences and Gravitational Instability of Rotating Isothermal Rings

    Kim, Woong-Tae


    Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent field method, we first construct their equilibrium sequences specified by two parameters: alpha corresponding to the thermal energy relative to gravitational potential energy, and R_B measuring the ellipticity or ring thickness. Unlike in the incompressible case, not all values of R_B yield an isothermal equilibrium, and the range of R_B for such equilibria shrinks with decreasing alpha. The density distributions in the meridional plane are steeper for smaller alpha, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency Omega_0 and central density rho_max. Rings with smaller ...

  16. An analytical model of crater count equilibrium

    Hirabayashi, Masatoshi; Minton, David A.; Fassett, Caleb I.


    Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such that the total number of observable impacts remains constant. Despite substantial efforts to understand this process, there remain many unsolved problems. Here, we propose an analytical model that describes how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formulates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility of our newly developed model allows us to represent the processes that underlie crater count equilibrium problems. The results show that when the slope of the production function is steeper than that of the equilibrium state, the power law of the equilibrium slope is independent of that of the production function slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 landing site on the Moon and demonstrate that a consistent degradation parameterization can successfully be determined based on the empirical results of these regions. Further developments of this model will enable us to better understand the surface evolution of airless bodies due to impact bombardment.

  17. Equilibrium adjustment of disequilibrium prices

    Herings, P.J.J.; van der Laan, G.; Talman, A.J.J.; Venniker, R.


    We consider an exchange economy in which price rigidities are present. In the short run the non-numeraire commodities have a exible price level with respect to the numeraire commodity but their relative prices are mutually fixed. In the long run prices are assumed to be completely exible. For a give

  18. Local asymptotic behavior of the survival probability of the equilibrium renewal model with heavy tails

    JIANG; Tao; CHEN; Yiqing


    Recently, Tang established a local asymptotic relation for the ruin probability to the Cram(e)r-Lunbderg risk model.In this short note we extend the corresponding result to the equilibrium renewal risk model.

  19. Stable Equilibrium Based on Lévy Statistics:A Linear Boltzmann Equation Approach

    Barkai, Eli


    To obtain further insight on possible power law generalizations of Boltzmann equilibrium concepts, we consider stochastic collision models. The models are a generalization of the Rayleigh collision model, for a heavy one dimensional particle M interacting with ideal gas particles with a mass mlaw equilibrium. We show, under certain conditions, that the velocity distribution function of the heavy particle is Lévy stable, the Maxwellian distribution being a special case. We demonstrate our results with numerical examples. The relation of the power law equilibrium obtained here to thermodynamics is discussed. In particular we compare between two models: a thermodynamic and an energy scaling approaches. These models yield insight into questions like the meaning of temperature for power law equilibrium, and into the issue of the universality of the equilibrium (i.e., is the width of the generalized Maxwellian distribution functions obtained here, independent of coupling constant to the bath).

  20. Phase transition equilibrium of terthiophene isomers

    Costa, Jose C.S.; Lima, Carlos F.R.A.C.; Rocha, Marisa A.A. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Gomes, Ligia R. [CIAGEB, Faculdade de Ciencias de Saude Escola Superior de Saude da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto (Portugal); REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)


    The thermodynamic study of the phase transition (fusion and sublimation) of 2,2':5',2''-terthiophene and 3,2':5',3''-terthiophene is presented. The obtained data is used to evaluate the (solid + liquid) and (solid + gas) phase equilibrium, and draw the phase diagrams of the pure compounds near the triple point coordinates. For each compound the vapour pressures at different temperatures were measured by a combined Knudsen effusion method with a vacuum quartz crystal microbalance. Based on the previous results, the standard molar enthalpies, entropies and Gibbs energies of sublimation were derived at T = 298.15 K. For the two terthiophenes and for 3,3'-bithiophene, the temperature, and the molar enthalpies of fusion were measured in a power compensated differential scanning calorimetry. The relationship between structure and energetics is discussed based on the experimental results, ab initio calculations and previous literature data for 2,2'-bithiophene and 3,3'-bithiophene. The 3,2':5',3''-terthiophene shows a higher solid phase stability than the 2,2':5',2''-terthiophene isomer arising from the higher cohesive energy due to positioning of the sulphur atom in the thiophene ring. The higher phase stability of 3,3'-bithiophene relative to 2,2'-bithiophene isomer is also related to its higher absolute entropy in the solid phase associated with the ring positional degeneracy observed in the crystal structure of this isomer. A significant differentiation in the crystal phase stability between isomers was found.

  1. General Equilibrium Theory with Market Frictions. Part I. Quantity Equilibrium with Rational Expectations.


    general equilibrium model of an economy with market fritions. A market is said to have frictions if buyers and sellers have trouble finding each other, if it is costly for them to search for each other, and if it is costly to wait to buy or sell. Equilibrium is a stationary probability distribution over the set of possible time paths of states of the economy. This equilibrium reflects rational expectations if all agents know the stationary distribution of the variables they observe and if they exploit this information. Prices are fixed and are not necessarily equilibrium

  2. Extended irreversible thermodynamics and non-equilibrium temperature

    Casas-Vazquez, Jose'


    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  3. Phase Equilibrium Studies of CaO-SiO2-MgO-Al2O3 System with Binary Basicity of 1.5 Related to Blast Furnace Slag

    Kou, Mingyin; Wu, Shengli; Ma, Xiaodong; Wang, Laixin; Chen, Mao; Cai, Qingwu; Zhao, Baojun


    Slags play an important role in blast furnace operation, and their compositions are based on the CaO-SiO2-MgO-Al2O3 quaternary system in many steel companies. The binary basicity (CaO/SiO2 weight ratio) of blast furnace slags, especially primary slag and bosh slag, can be as high as 1.5 or higher. Phase equilibria and liquidus temperatures in the CaO-SiO2-MgO-Al2O3 system with binary basicity of 1.50 are experimentally determined for temperatures in the range 1723 K to 1823 K (1450 °C to 1550 °C). High temperature equilibration, quenching, and electron probe X-ray microanalysis techniques have been used in the present study. The isotherms are obtained in the primary phase fields of Ca2SiO4, melilite, spinel, periclase, and merwinite related to blast furnace slags. Effects of Al2O3, MgO, and binary basicity on liquidus temperatures have been discussed. In addition, extensive solid solutions have been measured for different primary phases and will be used for development and optimization of the thermodynamic database.

  4. Equilibrium moisture content of OSB panels produced with veneer inclusion and different types of adhesive

    Lourival Marin Mendes


    Full Text Available The aim of this study was to evaluate different statistical models to estimate the equilibrium moisture content of OSB panels exposed to different conditions of air temperature and relative humidity, And also to evaluate the influence of the adhesive and veneer inclusion in the equilibrium moisture content. The panels were produced with three different adhesive types (phenol-formaldehyde - FF, melamine-urea-formaldehyde - MUF, and phenol-melamine-urea-formaldehyde - PMUF and with and without veneer inclusion. The evaluation of the equilibrium moisture content of the panels was carried out at temperatures of 30, 40 and 50°C and relative humidity of 40, 50, 60, 70, 80 and 90%. The modeling of equilibrium moisture content was performed using the statistical non-linear and polynomial models. In general, the polynomial models are most indicated for determining the equilibrium moisture content of OSB. The models adjusted only with air relative humidity presented the best precision measurements. The type of adhesive affected the equilibrium moisture content of the panels, being observed for adhesives PMUF and FF the same trend of variation, and the highest values obtained for the panels produced with adhesive MUF. The veneer inclusion decreased the equilibrium moisture content only in the panels with MUF adhesive.

  5. Non-Equilibrium Transitions of Heliospheric plasma

    Livadiotis, G.; McComas, D. J.


    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  6. Aerospace Applications of Non-Equilibrium Plasma

    Blankson, Isaiah M.


    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  7. A new equilibrium torus solution and GRMHD initial conditions

    Penna, Robert F; Narayan, Ramesh


    General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum di...

  8. Molecular kinetic analysis of a local equilibrium Carnot cycle

    Izumida, Yuki; Okuda, Koji


    We identify a velocity distribution function of ideal gas particles that is compatible with the local equilibrium assumption and the fundamental thermodynamic relation satisfying the endoreversibility. We find that this distribution is a Maxwell-Boltzmann distribution with a spatially uniform temperature and a spatially varying local center-of-mass velocity. We construct the local equilibrium Carnot cycle of an ideal gas, based on this distribution, and show that the efficiency of the present cycle is given by the endoreversible Carnot efficiency using the molecular kinetic temperatures of the gas. We also obtain an analytic expression of the efficiency at maximum power of our cycle under a small temperature difference. Our theory is also confirmed by a molecular dynamics simulation.

  9. Geometric Interpretation of Surface Tension Equilibrium in Superhydrophobic Systems

    Michael Nosonovsky


    Full Text Available Surface tension and surface energy are closely related, although not identical concepts. Surface tension is a generalized force; unlike a conventional mechanical force, it is not applied to any particular body or point. Using this notion, we suggest a simple geometric interpretation of the Young, Wenzel, Cassie, Antonoff and Girifalco–Good equations for the equilibrium during wetting. This approach extends the traditional concept of Neumann’s triangle. Substances are presented as points, while tensions are vectors connecting the points, and the equations and inequalities of wetting equilibrium obtain simple geometric meaning with the surface roughness effect interpreted as stretching of corresponding vectors; surface heterogeneity is their linear combination, and contact angle hysteresis is rotation. We discuss energy dissipation mechanisms during wetting due to contact angle hysteresis, the superhydrophobicity and the possible entropic nature of the surface tension.

  10. Equilibrium and stability code for a diffuse plasma.

    Betancourt, O; Garabedian, P


    A computer code to investigate the equilibrium and stability of a diffuse plasma in three dimensions is described that generalizes earlier work on a sharp free boundary model. Toroidal equilibria of a plasma are determined by considering paths of steepest descent associated with a new version of the variational principle of magnetohydrodynamics that involves mapping a fixed coordinate domain onto the plasma. A discrete approximation of the potential energy is written down following the finite element method, and the resulting expression is minimized with respect to the values of the mapping at points of a rectangular grid. If a relative minimum of the discrete analogue of the energy is attained, the corresponding equilibrium is considered to be stable.

  11. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    徐铜文; 杨伟华; 何柄林


    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to hulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated with in chosen parameters. It is revealed that ion partition is not related solely withthe respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoreticalcal culations were compared with the experimental data and a good agreement was observed.

  12. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution


    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with mono valence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.

  13. Communication: Microphase equilibrium and assembly dynamics

    Zhuang, Yuan; Charbonneau, Patrick


    Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.

  14. Non-equilibrium quantum heat machines

    Alicki, Robert; Gelbwaser-Klimovsky, David


    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  15. Module description of TOKAMAK equilibrium code MEUDAS

    Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment


    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  16. The transformation dynamics towards equilibrium in non-equilibrium w/w/o double emulsions

    Chao, Youchuang; Mak, Sze Yi; Shum, Ho Cheung


    We use a glass-based microfluidic device to generate non-equilibrium water-in-water-in-oil (w/w/o) double emulsions and study how they transform into equilibrium configurations. The method relies on using three immiscible liquids, with two of them from the phase-separated aqueous two-phase systems. We find that the transformation is accompanied by an expansion rim, while the characteristic transformation speed of the rim mainly depends on the interfacial tension between the innermost and middle phases, as well as the viscosity of the innermost phase when the middle phase is non-viscous. Remarkably, the viscosity of the outermost phase has little effect on the transformation speed. Our results account for the dynamics of non-equilibrium double emulsions towards their equilibrium structure and suggest a possibility to utilize the non-equilibrium drops to synthesize functional particles.

  17. Return to equilibrium in the XY model

    Hume, L.; Robinson, D.W.


    We prove that the locally perturbed XY model returns to equilibrium under the unperturbed evolution but the unperturbed model does not necessarily approach equilibrium under the perturbed evolution. In fact this latter property is false for perturbation by a local magnetization. The failure is directly attributable to the formation of bound states. If the perturbation is quadratic these problems are reduced to spectral analysis of the one-particle Hamiltonian. We demonstrate that the perturbed Hamiltonian has a finite set of eigenvalues of finite multiplicity together with some absolutely continuous spectrum. Eigenvalues can occur in the continuum if, and only if, the perturbation dislocates the system. Singular continuous spectrum cannot occur.

  18. Unconstrained Optimization Reformulations of Equilibrium Problems

    Li Ping ZHANG; Ji Ye HAN


    We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function,the equilibrium problem is cast as an unconstrained minimization problem. We give conditions under which any stationary point of the D-gap function is a solution of EP and conditions under which it provides a global error bound for EP. Finally,these results are applied to box-constrained EP and then weaker conditions are established to obtain the desired results for box-constrained EP.

  19. Equilibrium-torus bifurcation in nonsmooth systems

    Zhusubahyev, Z.T.; Mosekilde, Erik


    Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... linear approximation to our system in the neighbourhood of the border. We determine the functional relationships between the parameters of the normal form map and the actual system and illustrate how the normal form theory can predict the bifurcation behaviour along the border-collision equilibrium......-torus bifurcation curve....

  20. Asymptotic stability estimates near an equilibrium point

    Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia


    We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.

  1. Putting A Human Face on Equilibrium

    Glickstein, Neil


    A short biography of chemist Fritz Haber is used to personalize the abstract concepts of equilibrium chemistry for high school students in an introductory course. In addition to giving the Haber Bosch process an historic, an economic, and a scientific background the reading and subsequent discussion allows students for whom the human perspective is of paramount importance a chance to investigate the irony of balance or equilibrium in Haber's life story. Since the inclusion of the Haber biography, performance in the laboratory and on examinations for those students who are usually only partially engaged has dramatically improved.

  2. 3种芦丁脂肪酸酯在空气/水界面的成膜性质%Monolayers of Three Amphiphilic Esters of Rutin at the Air-water Interface

    段煜; 杜宗良; 李瑞霞; 吴大诚


    The π - A isotherms for monolayers of three amphiphilic rutin esters, rutin - 4''' - 0 - stearate ( RS ), rutin - 4''' - 0 -laurate (RL) and rutin -4''' -0 -caproate (RC), were measured at the air-water interface and air-aqueous aluminum sulfate solution interface.The properties of the monolayers of three rutin esters were related to the carbon number of alkyl, the compression rate and the property of substrate.Although RS and RL showed scant water solubility, they formed monolayers with the liquid-expanded phase when spread on water.While RC could not form insoluble monolayer at the air-water interface, which may be due to the larger water solubility of RC.Appropriately low compression rate was critical to the formation of relatively stable monolayers.When spread on an aqueous aluminum sulfate solution, the formation of a complex between the aluminum ions and the rutin ester resulted in higher values of acoll for RS and RL monolayers compared with their values on water, and RC could spread as liquid-expanded phase monolayer.The present results provided valuable information for investigating the interaction of flavonoids and biomembranes and the anti-oxidant mechanism of flavonoids.%采用LB膜分析仪分别研究了芦丁硬脂酸酯(RS)、芦丁月桂酸酯(RL)和芦丁正己酸酯(RC)在空气/水界面的成膜性质,及亚相中的Al3+对3种芦丁脂肪酸酯成膜性质的影响.结果显示,3种芦丁脂肪酸酯的成膜性质与其疏水基的碳链长度、压膜速度和亚相性质有关.RS和RL能在水面铺展为液态扩张膜,RC则不能成膜.引入芦丁分子中的疏水基碳链越长,成膜越稳定.慢速压膜利于膜稳定性,膜的崩溃压大;较快速压膜能使更多膜分子保留在水表面,膜的平均分子面积大.选择适宜的压膜速度对得到比较稳定的芦丁脂肪酸酯膜很关键.当亚相中含Al3+时,RS、RL和RC均铺展成液态扩张膜,且RS膜和RL膜崩溃时的分子面积(acoll)大于它们在水表

  3. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.


    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations

  4. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    Cai, B; Ikeda, S


    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after



    Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized channel equilibrium profile. The variation of the longitudinal equilibrium profile, and the relation with the condition of the inflow water and sediment from the upper reach were analyzed. Meanwhile, the numerical simulation results were compared with the corresponding theoretical results. Finally, the equilibrium longitudinal slope variations and its impact on flood control were analyzed after the sediment transport process has changed.




    In this paper, we introduce a concept of quasi C-lower semicontinuity for set-valued mapping and provide a vector version of Ekeland’s theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient so-lution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equi-librium problems without the assumptions of compactness and convexity of the constraint set.

  7. Equilibrium relative humidity as a tool to monitor seed moisture

    Robert P. Karrfalt


    The importance of seed moisture in maintaining high seed viability is well known. The seed storage chapters in the Tropical Tree Seed Manual (Hong and Ellis 2003) and the Woody Plant Seed Manual (Bonner 2008a) give a detailed discussion and many references on this point. Working with seeds in an operational setting requires a test of seed moisture status. It is...

  8. Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2

    Joseph R. Crosswell


    Full Text Available Bubbles generated by breaking waves can drive significant gas exchange between the ocean and atmosphere, but the role of bubble-mediated gas transfer in estuaries is unknown. Here, backscatter data from 41 acoustic Doppler current profiler stations was analyzed to assess subsurface bubble distributions in nine estuaries along the U.S. East and Gulf Coast. Wind speed, wind direction, and current velocity were the dominant controls on bubble entrainment, but the relative importance of these physical drivers depended on local geomorphology. Bubble entrainment in high-current or shallow, long-fetch estuaries began at wind speeds <5 m s−1. In deep or fetch-limited estuaries, bubble entrainment was less frequent and generally began at higher wind speeds. Data observed during several storms suggests that episodic bubble-driven gas exchange may be an important component of annual CO2 fluxes in large, shallow estuaries but would be less significant in other coastal systems.

  9. Capillary equilibrium and sintering kinetics in dispersed media and catalysts

    Delannay, Francis


    The evolution of an aggregate of particles embedded in a fluid phase, no matter whether a liquid, a vapor, or a mixture of both, is determined by the dependence of the equilibrium interface area on porosity volume fraction. In system with open porosity, this equilibrium can be analyzed using a model representing the particles as a collection of cones of revolution, the number of which is the average particle coordination number. The accuracy of the model has been assessed using in situ X-ray microtomography. The model makes possible the computation of the driving force for sintering, commonly called sintering stress. It allows the mapping of the domains of relative density, coordination number, and dihedral angle that bring about aggregate densification or expansion. The contribution of liquid/vapor interfaces is enlightened, as well as the dependence of the equilibrium fluid phase distribution on particle size. Applied to foams and emulsions, the model provides insight into the relationship between osmotic pressure and coordination. Interface-governed transport mechanisms are considered dominant in the macroscopic viscosity. Both sintering stress and viscosity parameters strongly depend on particle size. The capacity of modeling the simultaneous particle growth is thus essential. The analysis highlights the microstructural parameters and material properties needed for kinetics simulation.

  10. Equilibrium Positions for UAV Flight by Dynamic Soaring

    Bingjie Zhu


    Full Text Available Dynamic soaring is a special flying technique designed to allow UAVs (unmanned aerial vehicles to extract energy from wind gradient field and enable UAVs to increase the endurance. In order to figure out the energy-extraction mechanisms in dynamic soaring, a noninertial wind relative reference frame of aircraft is built. In the noninertial frame, there is an inertial force which is created by gradient wind field. When the wind gradient (GW and the components of airspeed (vzvx are positive, inertial force (F makes positive work to the aircraft. In the meantime, an equilibrium position theory of dynamic soaring is proposed. At the equilibrium positions, the increased potential energy is greater than the wasted kinetic energy when the aircraft is flying upwards. The mechanical energy is increased in this way, and the aircraft can store energy for flight. According to the extreme value theory, contour line figures of the maximum function and the component of airspeed (vz are obtained to find out the aircraft’s lifting balance allowance in dynamic soaring. Moreover, this equilibrium position theory can also help to conduct an aircraft to acquire energy from the environment constantly.

  11. Non-equilibrium Thermodynamics of Rayleigh-Taylor instability

    Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish


    Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface

  12. Cyclic causal discovery from continuous equilibrium data

    Mooij, J.M.; Heskes, T.; Nicholson, A.; Smyth, P.


    We propose a method for learning cycliccausal models from a combination of observational and interventional equilibrium data. Novel aspects of the proposed method are its ability to work with continuous data (without assuming linearity) and to deal with feedback loops. Within the context of biochemi

  13. Non-equilibrium thermodynamics and physical kinetics

    Bikkin, Halid


    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  14. Dynamical Non-Equilibrium Molecular Dynamics

    Giovanni Ciccotti


    Full Text Available In this review, we discuss the Dynamical approach to Non-Equilibrium Molecular Dynamics (D-NEMD, which extends stationary NEMD to time-dependent situations, be they responses or relaxations. Based on the original Onsager regression hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald, the approach permits one to separate the problem of dynamical evolution from the problem of sampling the initial condition. D-NEMD provides the theoretical framework to compute time-dependent macroscopic dynamical behaviors by averaging on a large sample of non-equilibrium trajectories starting from an ensemble of initial conditions generated from a suitable (equilibrium or non-equilibrium distribution at time zero. We also discuss how to generate a large class of initial distributions. The same approach applies also to the calculation of the rate constants of activated processes. The range of problems treatable by this method is illustrated by discussing applications to a few key hydrodynamic processes (the “classical” flow under shear, the formation of convective cells and the relaxation of an interface between two immiscible liquids.

  15. Monetary Policy Frameworks and Real Equilibrium Determinacy

    Jensen, Henrik


    In a simple "prototype" model of monetary policymaking, I examine the issue of real equilibrium determinacy under targeting and instrument rules. The former framework involves minimization of a loss function (under discretion or commitment), whereas the latter involves commitment to an interest......'s stability properties. Instead, they could reveal whether targeting-rule based policy is performed under discretion or commitment...

  16. A General Thermal Equilibrium Discharge Flow Model

    ZHAO; Min-fu; ZHANG; Dong-xu; LV; Yu-feng


    In isentropic and thermal equilibrium assumptions,a discharge flow model was derived,which unified the rules of normal temperature water discharge,high temperature and high pressure water discharge,two-phase critical flow,saturated steam and superheated steam critical

  17. Equilibrium Selection in Games with Macroeconomic Complementarities

    Kaarboe, Oddvar M.; Tieman, Alexander F.


    We apply the stochastic evolutionary approach of equilibrium selection tomacroeconomic models in which a complementarity at the macro level ispresent. These models often exhibit multiple Pareto-ranked Nash equilibria,and the best response-correspondence of an individual increases with ameasure of th

  18. Equilibrium molecular thermodynamics from Kirkwood sampling.

    Somani, Sandeep; Okamoto, Yuko; Ballard, Andrew J; Wales, David J


    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide.


    刘心歌; 蔡海涛


    An existence theorem of maximal elements for a new type of preference correspondences which are Qθ-majorized is given. Then some existence theorems of equilibrium for abstract economy and qualitative game in which the constraint or preference correspondences are Qθ-majorized are obtained in locally convex topological vector spaces.

  20. Internal equilibrium layer growth over forest

    Dellwik, E.; Jensen, N.O.


    the magnitude of the scatter. Different theoretical friction velocity profiles for the Internal Boundary Layer (IBL) are tested against the forest data. The results yield information on the Internal Equilibrium Layer (IEL) growth and an equation for the IEL height fur neutral conditions is derived. For stable...