WorldWideScience

Sample records for related studies conducted

  1. Nerve conduction in relation to vibration exposure - a non-positive cohort study

    Directory of Open Access Journals (Sweden)

    Nilsson Tohr

    2010-07-01

    Full Text Available Abstract Background Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after having assessed vibration exposure over 21 years in a cohort of manual workers. Methods The study group consisted of 155 male office and manual workers at an engineering plant that manufactured pulp and paper machinery. The study has a longitudinal design regarding exposure assessment and a cross-sectional design regarding the outcome of nerve conduction. Hand-arm vibration dose was calculated as the product of self-reported occupational exposure, collected by questionnaire and interviews, and the measured or estimated hand-arm vibration exposure in 1987, 1992, 1997, 2002, and 2008. Distal motor latencies in median and ulnar nerves and sensory nerve conduction over the carpal tunnel and the finger-palm segments in the median nerve were measured in 2008. Before the nerve conduction measurement, the subjects were systemically warmed by a bicycle ergometer test. Results There were no differences in distal latencies between subjects exposed to hand-arm vibration and unexposed subjects, neither in the sensory conduction latencies of the median nerve, nor in the motor conduction latencies of the median and ulnar nerves. Seven subjects (9% in the exposed group and three subjects (12% in the unexposed group had both pathological sensory nerve conduction at the wrist and symptoms suggestive of carpal tunnel syndrome. Conclusion Nerve conduction measurements of peripheral hand nerves revealed no exposure-response association between hand-arm vibration exposure and

  2. The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites.

    Science.gov (United States)

    Huijbregts, L J; Brom, H B; Brokken-Zijp, J C M; Kemerink, M; Chen, Z; Goeje, M P de; Yuan, M; Michels, M A J

    2006-11-23

    Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-conductivity relation in this composite and the deviation from its optimal realization by combining two techniques. The real parts of the electrical conductivity of a Phthalcon-11/epoxy coating and of Phthalcon-11 powder were measured by dielectric spectroscopy as a function of frequency and temperature. Conducting atomic force microscopy (C-AFM) was applied to quantify the conductivity through the coating locally along the surface. This combination gives an excellent tool to visualize the particle network. We found that a large fraction of the crystals is organized in conducting channels of fractal building blocks. In this picture, a low percolation threshold automatically leads to a conductivity that is much lower than that of the filler. Since the structure-conductivity relation for the found network is almost optimal, a drastic increase in the conductivity of the coating cannot be achieved by changing the particle network, but only by using a filler with a higher conductivity level.

  3. The concept Conduct of Everyday Life in relation to toddlers

    DEFF Research Database (Denmark)

    Juhl, Pernille

    , they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across......In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed...... contexts (home, day care, part-time foster family) and in relation to other co-participants....

  4. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles

    2017-05-11

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes in the electrical volume conductivity of an anhydride-cured epoxy polymer during moisture sorption-desorption experiments. Gravimetric analysis showed that the polymer exhibits a two-stage sorption behavior resulting from the competition between diffusive and reactive mechanisms. As expected, the macroscopic electrical conductivity increases with the diffusion of water. However, our most surprising observation was severe hysteresis in the relation between water uptake and electrical conductivity during the sorption and desorption experiments. This indicates that change in the electrical conductivity depends on both the water uptake and the competition between the diffusive and reactive mechanisms. We studied samples with various thicknesses to determine the relative effects of the diffusive and reactive mechanisms. This is an important observation as it means that general electrical monitoring techniques should be used cautiously when it comes to measuring the moisture content of polymer or polymer-based composite samples.

  5. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  6. Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2017-12-01

    Full Text Available Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT and extended irreversible thermodynamics (EIT. The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.

  7. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2017-03-01

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R 2 =0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 2017; 40(2):90-94.]. Copyright 2016, SLACK Incorporated.

  8. Fundamental principles of conducting a surgery economic analysis study.

    Science.gov (United States)

    Kotsis, Sandra V; Chung, Kevin C

    2010-02-01

    The use of economic evaluation in surgery is scarce. Economic evaluation is used even less so in plastic surgery, in which health-related quality of life is of particular importance. This article, part of a tutorial series on evidence-based medicine, focuses on the fundamental principles of conducting a surgery economic analysis. The authors include the essential aspects of conducting a surgical cost-utility analysis by considering perspectives, costs, outcomes, and utilities. The authors also describe and give examples of how to conduct the analyses (including calculating quality-adjusted life-years and discounting), how to interpret the results, and how to report the results. Although economic analyses are not simple to conduct, a well-conducted one provides many rewards, such as recommending the adoption of a more effective treatment. For comparing and interpreting economic analysis publications, it is important that all studies use consistent methodology and report the results in a similar manner.

  9. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  10. Relational victimization and proactive versus reactive relational aggression: The moderating effects of respiratory sinus arrhythmia and skin conductance.

    Science.gov (United States)

    Wagner, Caitlin R; Abaied, Jamie L

    2015-01-01

    This research examined the moderating effect of the autonomic nervous system (ANS) on the associations between relational victimization and reactive and proactive relational aggression. Both branches of the ANS, the parasympathetic nervous system (indexed by respiratory sinus arrhythmia reactivity; RSA-Reactivity) and the sympathetic nervous system (indexed by skin conductance level reactivity; SCL-Reactivity), were examined. Emerging adults (N = 168) self-reported on relational victimization and proactive and reactive relational aggression; RSA-Reactivity and SCL-Reactivity were assessed in response to a laboratory stressor. Relational victimization predicted heightened reactive relational aggression given RSA augmentation/high SCL-Reactivity (i.e., coactivation) and RSA withdrawal/low SCL-Reactivity (i.e., coinhibition). In addition, relational victimization predicted heightened reactive relational aggression given RSA augmentation/low SCL-Reactivity (i.e., reciprocal parasympathetic activation). This study extends previous research on relational victimization and provides novel evidence that (a) exposure to relational victimization is associated with reactive relational aggression, but not proactive relational aggression, and (b) parasympathetic and sympathetic nervous system reactivity jointly moderate the link between relational victimization and reactive relational aggression. © 2015 Wiley Periodicals, Inc.

  11. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability......PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...... excitability studies are relatively novel but are acquiring an increasingly important role in the study of peripheral nerves. RECENT FINDINGS: By measuring responses in nerve that are related to nodal function (strength-duration time constant, rheobase and recovery cycle) and internodal function (threshold...

  12. Computational study of NMDA conductance and cortical oscillations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kubra eKomek Kirli

    2014-10-01

    Full Text Available N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI, incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, and γ-aminobutyric acid (GABA synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.

  13. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles; Sulaimani, Anwar Ali; El Yagoubi, Jalal; Mulle, Matthieu; Verdu, Jacques

    2017-01-01

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes

  14. Peripheral nervous system maturation in preterm infants: longitudinal motor and sensory nerve conduction studies.

    Science.gov (United States)

    Lori, S; Bertini, Giovanna; Bastianelli, M; Gabbanini, S; Gualandi, D; Molesti, E; Dani, C

    2018-04-10

    To study the evolution of sensory-motor nerves in the upper and lower limbs in neurologically healthy preterm infants and to use sensory-motor studies to compare the rate of maturation in preterm infants at term age and full-term healthy neonates. The study comprised 26 neurologically normal preterm infants born at 23-33 weeks of gestational age, who underwent sensory nerve conduction and motor nerve conduction studies from plantar medial and median nerves and from tibial and ulnar nerves, respectively. We repeated the same neurophysiological studies in 19 of the preterm infants every 2 weeks until postnatal term age. The data from the preterm infants at term was matched with a group of ten full-term babies a few days after birth. The motor nerve conduction velocity of the tibial and ulnar nerves showed progressive increases in values in relation to gestational age, but there was a decrease of values in distal latencies and F wave latencies. Similarly, there was a gradual increase of sensory nerve conduction velocity values of the medial plantar and median nerves and decreases in latencies in relation to gestational age. At term age, the preterm infants showed significantly lower values of conduction velocities and distal latencies than the full-term neonates. These results were probably because the preterm infants had significantly lower weights, total length and, in particular, distal segments of the limbs at term age. The sensory-motor conduction parameters were clearly related to gestational age, but extrauterine life did not affect the maturation of the peripheral nervous system in the very preterm babies who were neurologically healthy.

  15. Money Ethic, Moral Conduct and Work Related Attitudes: Field Study From the Public Sector in Swaziland

    OpenAIRE

    Gbadamosi, Gbolahan; Joubert, P.

    2005-01-01

    Purpose \\ud This study investigates perception of ethical and moral conduct in the public sector in Swaziland, specifically, the relationship among: money ethic, attitude towards business ethics, corruption perception, turnover intention, job performance, job satisfaction, and the demographic profile of respondents.\\ud Methodology/Approach\\ud The study was a survey using self-administered questionnaires. Using stratified sampling technique in selected organisations, usable data was collected ...

  16. Ethical considerations when conducting joint interviews with close relatives or family

    DEFF Research Database (Denmark)

    Voltelen, Barbara; Konradsen, Hanne; Østergaard, Birte

    2018-01-01

    simultaneously in the healthcare setting. AIM: To collect and share knowledge related to ethical considerations conducting joint interviews. DESIGN AND METHODS: A literature review inspired by the integrative review method was performed. Data were retrieved through a structured search in PubMed, CINAHL......; Conduction joint interviews and Reporting on joint interviews Findings: Participants should be offered the best terms for a constructive, on-going relationship after the joint interview has ended. This obligates the researcher to ensure a safe environment during the joint interview and create a delicate...

  17. Out-of-equilibrium fluctuation-dissipation relations verified by the electrical and thermoelectrical AC-conductances in a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Crepieux, Adeline [Aix Marseille Univ., Universite de Toulon, CNRS, CPT, Marseille (France)

    2017-09-15

    The electrical and heat currents flowing through a quantum dot are calculated in the presence of a time-modulated gate voltage with the help of the out-of-equilibrium Green function technique. From the first harmonics of the currents, we extract the electrical and thermoelectrical trans-admittances and ac-conductances. Next, by a careful comparison of the ac-conductances with the finite-frequency electrical and mixed electrical-heat noises, we establish the fluctuation-dissipation relations linking these quantities, which are thus generalized out-of-equilibrium for a quantum system. It is shown that the electrical ac-conductance associated to the displacement current is directly linked to the electrical noise summed over reservoirs, whereas the relation between the thermoelectrical ac-conductance and the mixed noise contains an additional term proportional to the energy step that the electrons must overcome when traveling through the junction. A numerical study reveals however that a fluctuation-dissipation relation involving a single reservoir applies for both electrical and thermoelectrical ac-conductances when the frequency dominates over the other characteristic energies. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Proton Conductivity Studies on Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-01-01

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH 4 NO 3 ) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R b ) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10 -4 Scm -1 for the sample with composition ratio of MC(50): NH 4 NO 3 (50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH 4 NO 3 -PC was enhanced up to 4.91x10 -3 Scm -1 while for the MC-NH 4 NO 3 -EC system, the highest conductivity was 1.74x10 -2 Scm -1 . The addition of more plasticizer however decreases in mechanical stability of the membranes.

  19. Perceived Parent-Child Relations, Conduct Problems, and Clinical Improvement Following the Treatment of Oppositional Defiant Disorder.

    Science.gov (United States)

    Booker, Jordan A; Ollendick, Thomas H; Dunsmore, Julie C; Greene, Ross W

    2016-05-01

    Our objective in this study was to examine the moderating influence of parent-child relationship quality (as viewed by the child) on associations between conduct problems and treatment responses for children with oppositional defiant disorder (ODD). To date, few studies have considered children's perceptions of relationship quality with parents in clinical contexts even though extant studies show the importance of this factor in children's behavioral adjustment in non-clinical settings. In this study, 123 children (ages 7 - 14 years, 61.8% male, 83.7% white) who fulfilled DSM-IV criteria for ODD received one of two psychosocial treatments: Parent Management Training or Collaborative & Proactive Solutions. In an earlier study, both treatments were found to be effective and equivalent in treatment outcomes (Ollendick et al., in press). In the current study, pre-treatment maternal reports of conduct problems and pre-treatment child reports of relations with parents were used to predict outcomes in ODD symptoms and their severity following treatment. Elevated reports of children's conduct problems were associated with attenuated reductions in both ODD symptoms and their severity. Perceived relationship quality with parents moderated the ties between conduct problems and outcomes in ODD severity but not the number of symptoms. Mother reports of elevated conduct problems predicted attenuated treatment response only when children viewed relationship quality with their parents as poorer. When children viewed the relationship as higher quality, they did not show an attenuated treatment response, regardless of reported conduct problems. The current findings underscore the importance of children's perspectives in treatment response and reductions in externalizing child behaviors.

  20. Evaluation of atrophy of foot muscles in diabetic neuropathy -- a comparative study of nerve conduction studies and ultrasonography

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Andersen, Henning

    2007-01-01

    OBJECTIVE: To evaluate the relation between the findings at nerve conduction studies and the size of small foot muscles determined by ultrasonography. METHODS: In 26 diabetic patients the size of the extensor digitorum brevis muscle (EDB) and of the muscles between the first and second metatarsal...... related to the size of the small foot muscles as determined by ultrasonography. SIGNIFICANCE: In diabetic patients motor nerve conduction studies can reliably determine the size of small foot muscles. Udgivelsesdato: 2007-Oct....... RESULTS: Seventeen patients fulfilled the criteria for diabetic neuropathy. The cross-sectional area of the EDB muscle and the thickness of the MIL muscle were 116 +/- 65 mm2 and 29.6 +/- 8.2 mm, respectively. Close relations were established between muscle size and the amplitude of the CMAP...

  1. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    Science.gov (United States)

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  2. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    International Nuclear Information System (INIS)

    Di Noto, Vito; Vittadello, Michele; Zago, Vanni; Pace, Giuseppe; Vidali, Maurizio

    2006-01-01

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C ≤ T ≤ 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10 -4 ≤ σ A ≤ 2.3 x 10 -3 S cm -1 and 1.3 x 10 -5 ≤ σ B ≤ 2.9 x 10 -4 S cm -1 , respectively, for A and B. In particular, conductivities of 2 x 10 -3 S cm -1 (A) and of 2 x 10 -4 S cm -1 (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10 2 ≤ f β ≤ 10 4 Hz) of β relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about ≅30 kJ mol -1 and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol -1 , respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high concentration of SO 3 H are necessary in order to obtain materials with a high protonic conductivity with the capacity to

  3. Perceived Parent–Child Relations, Conduct Problems, and Clinical Improvement Following the Treatment of Oppositional Defiant Disorder

    Science.gov (United States)

    Booker, Jordan A.; Ollendick, Thomas H.; Dunsmore, Julie C.; Greene, Ross W.

    2015-01-01

    Our objective in this study was to examine the moderating influence of parent-child relationship quality (as viewed by the child) on associations between conduct problems and treatment responses for children with oppositional defiant disorder (ODD). To date, few studies have considered children’s perceptions of relationship quality with parents in clinical contexts even though extant studies show the importance of this factor in children’s behavioral adjustment in non-clinical settings. In this study, 123 children (ages 7 – 14 years, 61.8% male, 83.7% white) who fulfilled DSM-IV criteria for ODD received one of two psychosocial treatments: Parent Management Training or Collaborative & Proactive Solutions. In an earlier study, both treatments were found to be effective and equivalent in treatment outcomes (Ollendick et al., in press). In the current study, pre-treatment maternal reports of conduct problems and pre-treatment child reports of relations with parents were used to predict outcomes in ODD symptoms and their severity following treatment. Elevated reports of children’s conduct problems were associated with attenuated reductions in both ODD symptoms and their severity. Perceived relationship quality with parents moderated the ties between conduct problems and outcomes in ODD severity but not the number of symptoms. Mother reports of elevated conduct problems predicted attenuated treatment response only when children viewed relationship quality with their parents as poorer. When children viewed the relationship as higher quality, they did not show an attenuated treatment response, regardless of reported conduct problems. The current findings underscore the importance of children’s perspectives in treatment response and reductions in externalizing child behaviors. PMID:27284234

  4. Thermal conductivities of ThO{sub 2}, NpO{sub 2} and their related oxides: Molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp; Yoshida, Keita; Matsumoto, Taku; Inagaki, Yaohiro; Idemitsu, Kazuya

    2014-02-01

    The thermal conductivities of ThO{sub 2}, NpO{sub 2}, (Th, U)O{sub 2}, (Th, Pu)O{sub 2} and (U, Np)O{sub 2} have been investigated by molecular dynamics (MD) simulation up to 2000 K using the Busing–Ida potential function with partial ionic charges. In the present study, the thermal conductivity was calculated mainly by the Green–Kubo formula in the equilibrium MD scheme. The thermal conductivities of above actinide dioxides decreased with the increase of temperature due to the phonon–phonon interaction (Umklapp process). Concerning the composition of solid solutions, the decrease in thermal conductivity of (Th, Pu)O{sub 2} is great as compared to other ones. Various MD calculations elucidated that this result was caused by phonon scattering by lattice defects as additives rather than the phonon–phonon interaction, and that the lattice strain dominantly contributed to it.

  5. The relation of narcissism and self-esteem to conduct problems in children: a preliminary investigation.

    Science.gov (United States)

    Barry, Christopher T; Frick, Paul J; Killian, Amber L

    2003-03-01

    Investigated several possible models to explain the seemingly discrepant relations between self-esteem and conduct problems, as both low self-esteem and exaggerated levels of self-esteem, thought to be captured by narcissism, have been associated with aggressive and antisocial behavior. Our sample consisted of 98 nonreferred children (mean age = 11.9 years; SD = 1.68 years) recruited from public schools to oversample children at risk for severe aggressive and antisocial behavior. Results indicated that certain aspects of narcissism (i.e., those indicating a need to be evaluated well by, and obtain status over, others) were particularly predictive of maladaptive characteristics and outcomes such as low self-esteem, callous-unemotional (CU) traits, and conduct problems. In addition, the relation between narcissism and conduct problems was moderated by self-esteem level, such that children with relatively high levels of narcissism and low self-esteem showed the highest rates of conduct-problem symptoms.

  6. Bereaved relatives' decision about deceased organ donation: An integrated psycho-social study conducted in Spain.

    Science.gov (United States)

    López, Jorge S; Martínez, José M; Soria-Oliver, María; Aramayona, Begoña; García-Sánchez, Rubén; Martín, María J; Almendros, Carmen

    2018-05-01

    Family refusal to organ donation of a deceased relative represents one of the most important barriers to organ transplantation. Although a large literature about family decisions has amassed, the existing evidence needs further integration and structuring. This study seeks to analyse relationships between bereaved relatives' decisions and a wide range of factors that converge in the family decision process, including interactions and complex relationship patterns, and taking psychosocial theoretical frameworks as reference to conceptualize empirical findings. This observational study examined 16 Spanish hospitals during a 36-month period. Transplant coordination teams collected data of 421 cases of family decision processes about donation (338 donations/83 refusals) through a previously validated instrument. Indicators of the following factors were collected: deceased's characteristics; circumstances of death; bereaved relatives' characteristics, beliefs, and expressions; behaviour of health and coordination staff; and family's emotional responses. Three global hypotheses related to bivariate and multivariate relations of factors with family decisions and relationships/interactions among factors were tested. Relatives' beliefs about the deceased's wishes concerning donation are the strongest predictor of family decisions. However, family decisions are also related to the deceased's characteristics, relatives' characteristics, satisfaction with medical attention, satisfaction with personal treatment and relatives' emotional responses, and other factors. Relatives' emotional reactions are related to satisfaction with health-staff interventions and condition family decision, even if deceased's will concerning donation is known and positive. Relatives' beliefs about deceased's wishes concerning donation vary as a function of deceased's characteristics and according to relatives' characteristics. Understanding of family decisions underlying organ donation may greatly

  7. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    Science.gov (United States)

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  8. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Di Noto, Vito [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)]. E-mail: vito.dinoto@unipd.it; Vittadello, Michele [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Zago, Vanni [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Pace, Giuseppe [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Vidali, Maurizio [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)

    2006-01-20

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C {<=} T {<=} 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10{sup -4} {<=} {sigma} {sub A} {<=} 2.3 x 10{sup -3} S cm{sup -1} and 1.3 x 10{sup -5} {<=} {sigma} {sub B} {<=} 2.9 x 10{sup -4} S cm{sup -1}, respectively, for A and B. In particular, conductivities of 2 x 10{sup -3} S cm{sup -1} (A) and of 2 x 10{sup -4} S cm{sup -1} (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10{sup 2} {<=} f {sub {beta}} {<=} 10{sup 4} Hz) of {beta} relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about {approx_equal}30 kJ mol{sup -1} and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol{sup -1}, respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high

  9. Studies on the under ground heating in greenhouse. Measuring of thermal conductivity of soil

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio; Takeyama, Koichi

    1987-12-21

    The underground heating system is an effective method of heating a greenhouse, because the system controls directly the temperature of soil near the roots. The thermal conductivity of soil was measured by the steady-state method, and the heat transfer characteristics in soil were examined in this study. In measuring the thermal conductivity through experiments, firstly the thermal conductivity of a reference plate was measured by the steady-state method, then on the basis of the above mentioned result, the thermal conuctivity of soil was obtained by the comparative method. Toyoura standard sands with particle size of 0.21-0.25mm were used as the sample. As the experiment result, the relations between the thermal conductivity of the reference plate (glass) and temperature was made clear, furthermore through the measurements using these relations, it was clarified that the apparent thermal conductivity is influenced by soil water content. It seems that the difference between the apparent thermal conductivity and the real one is caused mainly by a migration of latent heat with a migration of steam. (10 figs, 7 refs)

  10. A study on conductivity, density, and viscosity of molten salt systems

    International Nuclear Information System (INIS)

    Cho, Kangjo

    1976-01-01

    A relation between the equivalent conductivity and density for molten salts is deduced with the aid of significant structures theory, and the solid state density at melting point is evaluated approximately for some rare-earth metal chlorides and the other chlorides. Furthermore, the relation among the equivalent conductivity, density, and viscosity for some molten salts is discussed. (auth.)

  11. Conduct disorder, war zone stress, and war-related posttraumatic stress disorder symptoms in American Indian Vietnam veterans.

    Science.gov (United States)

    Dillard, Denise; Jacobsen, Clemma; Ramsey, Scott; Manson, Spero

    2007-02-01

    This study examined whether conduct disorder (CD) was associated with war zone stress and war-related post-traumatic stress disorder (PTSD) symptoms in American Indian (AI) Vietnam veterans. Cross-sectional lay-interview data was analyzed for 591 male participants from the American Indian Vietnam Veterans Project. Logistic regression evaluated the association of CD with odds of high war zone stress and linear regression evaluated the association of CD and PTSD symptom severity. Childhood CD was not associated with increased odds of high war zone stress. Conduct disorder was associated with elevated war-related PTSD symptoms among male AI Vietnam Veterans independent of war zone stress level and other mediators. Future efforts should examine reasons for this association and if the association exists in other AI populations.

  12. Conducting Simulation Studies in Psychometrics

    Science.gov (United States)

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  13. Study on the Electric Conductivity of Ag-Doped DNA in Transverse Direction

    Directory of Open Access Journals (Sweden)

    Ban Ge

    2009-01-01

    Full Text Available Abstract In this article, we reported a novel experiment results on Ag-doped DNA conductor in transverse direction.I–Vcharacteristics were measured and the relative conductances were calculated for different silver ions concentrations. With the increase of the concentration of silver ions, the conductive ability of DNA risen rapidly, the relative conductance of DNA enhanced about three magnitudes and reached a stable value when Ag+concentration was up to 0.005 mM. In addition, Raman spectra were carried out to analyse and confirm conduction mechanism.

  14. Fundamental relation between longitudinal and transverse conductivities in the quantum Hall system

    International Nuclear Information System (INIS)

    Endo, Akira; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryoen

    2009-07-01

    We investigate the relation between the diagonal (σ xx ) and off-diagonal (σ xy ) components of the conductivity tensor in the quantum Hall system. We calculate the conductivity components for a short-range impurity potential using the linear response theory, employing an approximation that simply replaces the self-energy by a constant value -iℎ/(2τ) with τ the scattering time. The approximation is equivalent to assuming that the broadening of a Landau level due to disorder is represented by a Lorentzian with the width Γ = ℎ/(2τ). Analytic formulas are obtained for both σ xx and σ xy within the framework of this simple approximation at low temperatures. By examining the leading terms in σ xx and σ xy , we find a proportional relation between dσ xy =dB and Bσ 2 xx . The relation, after slight modification to account for the long-range nature of the impurity potential, is shown to be in quantitative agreement with experimental results obtained in the GaAs/AlGaAs two-dimensional electron system at the low magnetic-field regime where spin splitting is negligibly small. (author)

  15. Study of thermal conductivity of multilayer insulation

    International Nuclear Information System (INIS)

    Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.

    1994-01-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)

  16. The conduct of inquiry in international relations: The view from graduate school

    OpenAIRE

    Banks, David; O'Mahoney, Joseph

    2010-01-01

    Jackson’s book, The Conduct of Inquiry in International Relations, is most likely to be assigned or recommended in graduate classes addressing the philosophy of science, qualitative methodology, and research design. It might then be useful to ask two graduate students whether this is a good idea. How helpful is yet another book on the meta-theoretical status of International Relations? Our answer to this question has four parts. First, we ask whether and how Jackson’s ordering scheme clarifie...

  17. A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale

    International Nuclear Information System (INIS)

    Bong, Victor N-S; Wong, Basil T.

    2015-01-01

    Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering

  18. A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Victor N-S; Wong, Basil T. [Swinburne Sarawak Research Centre for Sustainable Technologies, Faculty of Engineering, Computing & Science, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak (Malaysia)

    2015-08-28

    Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering.

  19. Study of thermal conductivity of multilayer insulation

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.

  20. Initial study on in vivo conductivity mapping of breast cancer using MRI.

    Science.gov (United States)

    Shin, Jaewook; Kim, Min Jung; Lee, Joonsung; Nam, Yoonho; Kim, Min-Oh; Choi, Narae; Kim, Sooyeon; Kim, Dong-Hyun

    2015-08-01

    To develop and apply a method to measure in vivo electrical conductivity values using magnetic resonance imaging (MRI) in subjects with breast cancer. A recently developed technique named MREPT (MR electrical properties tomography) together with a novel coil combination process was used to quantify the conductivity values. The overall technique was validated using a phantom study. In addition, 90 subjects were imaged (50 subjects with previously biopsy-confirmed breast tumor and 40 normal subjects), which was approved by our institutional review board (IRB). A routine clinical protocol, specifically a T2 -weighted FSE (fast spin echo) imaging data, was used for reconstruction of conductivity. By employing the coil combination, the relative error in the conductivity map was reduced from ~70% to 10%. The average conductivity values in breast cancers regions (0.89 ± 0.33S/m) was higher compared to parenchymal tissue (0.43 S/m, P conductivity compared to benign cases (0.56 S/m, n = 5) (P conductivity compared to in situ cancers (0.57 S/m) (P conductivity mapping of breast cancers is feasible using a noninvasive in vivo MREPT technique combined with a coil combination process. The method may provide a tool in the MR diagnosis of breast cancer. © 2014 Wiley Periodicals, Inc.

  1. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  2. Anisotropic electrical conduction in relation to the stacking disorder in graphite

    International Nuclear Information System (INIS)

    Tsuzuku, T.

    1979-01-01

    The in-plane and c-axis conduction behaviours of Kish graphite and of hot-worked pyrolytic graphite are discussed in relation to their structural perfection, special interest being focused onto the stacking fault disorder which appears in the form of extended basal dislocation ribbons. Analysis of the two-dimensional magneto-conductivity indicates that the carrier density of faulted specimens increases slowly with temperature (T) even below the degeneracy point of the carrier system, whereas the unfaulted ones do not. the c-axis resistivity (psub(c)) has been found to decrease with diminishing stacking disorder for a well-defined specimen group not containing such irregularities as microcracks. This verifies the applicability of the band model to the intrinsic psub(c) 's, in connection with the success of Ono's theory accounting for the wide-range scattering of past data. The discrepancy still remaining between the theoretical and experimental psub(c) vs T relationship, as well as the increase of the in-plane conduction carrier density with temperature, seems to be removed by assuming thermal liberation of the localized Tamm-state electrons from the stacking fault planes. (author)

  3. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    Science.gov (United States)

    Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.

    2013-11-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

  4. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  5. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    International Nuclear Information System (INIS)

    Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.

    2014-01-01

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures

  6. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  7. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  8. Study on thermal conductive BN/novolac resin composites

    International Nuclear Information System (INIS)

    Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng

    2011-01-01

    Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.

  9. Studies on electrical conductivity of poly phenylene vinylene

    International Nuclear Information System (INIS)

    Khattab, Asaad F.; Ahmad, Saddam M.

    2009-01-01

    Four Pp polymers have been synthesized through Wit ting reaction, 1 poly(p-phenylene vinylene), 2 = poly(p phenylene vinylene-co-m-phenylene vinylene), 3 = poly(p-phenylene vinylene-co-o-phenylene vinylene) and 4 poly(p-phenylene-1,5-hexadiene). Electrical conductivity measurements show that the conductivity of polymer 3 is higher than that of polymers 1 and 2. The dihedral angle measurements indicates that the irregularity of polymer chains is the main reason for this fact. The interruption of chain conjugation by aliphatic segments (polymer 4) will increase the conductivity by increasing the chain mobility.The electrical conductivity of the polymers is increased by doping with iodine and by raising the temperature. The effect of annealing with different temperatures on conductivity was studied; the results show that structural conformation of polymeric chain is the main factor affecting electrical conductivity. (author)

  10. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    International Nuclear Information System (INIS)

    Shukur, M F; Yusof, Y M; Zawawi, S M M; Illias, H A; Kadir, M F Z

    2013-01-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4  S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3  S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a ) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)

  11. Terrain And Laboratory Conductivity Studies Of Flood Plains Of ...

    African Journals Online (AJOL)

    A shallow electromagnetic study (electrical conductivity and magnetic susceptibility measurements) and laboratory conductivity sampling of the flood plains of Oluwatuyi/Oshinle area of Akure have been undertaken. This is with the aim of correlating the terrain conductivity mapping with laboratory measurements to establish ...

  12. Impact of Pharmacist-Conducted Comprehensive Medication Reviews for Older Adult Patients to Reduce Medication Related Problems.

    Science.gov (United States)

    Kiel, Whitney J; Phillips, Shaun W

    2017-12-31

    Older adults are demanding increased healthcare attention with regards to prescription use due in large part to highly complex medication regimens. As patients age, medications often have a more pronounced effect on older adults, negatively impacting patient safety and increasing healthcare costs. Comprehensive medication reviews (CMRs) optimize medications for elderly patients and help to avoid inappropriate medication use. Previous literature has shown that such CMRs can successfully identify and reduce the number of medication-related problems and improve acute healthcare utilization. The purpose of this pharmacy resident research study is to examine the impact of pharmacist-conducted geriatric medication reviews to reduce medication-related problems within a leading community health system in southwest Michigan. Furthermore, the study examines type of pharmacist interventions made during medication reviews, acute healthcare utilization, and physician assessment of the pharmacist's value. The study was conducted as a retrospective post-hoc analysis on ambulatory patients who received a CMR by a pharmacist at a primary care practice. Inclusion criteria included patients over 65 years of age with concurrent use of at least five medications who were a recent recipient of a CMR. Exclusion criteria included patients with renal failure, or those with multiple providers involved in primary care. The primary outcome was the difference in number of medication-related problems, as defined by the START and STOPP Criteria (Screening Tool to Alert doctors to Right Treatment/Screening Tool of Older Persons' Prescriptions). Secondary outcomes included hospitalizations, emergency department visits, number and type of pharmacist interventions, acceptance rate of pharmacist recommendations, and assessment of the pharmacist's value by clinic providers. There were a total of 26 patients that received a comprehensive medication review from the pharmacist and were compared to a

  13. The relation between the bifactor model of the Youth Psychopathic Traits Inventory and conduct problems in adolescence: Variations across gender, ethnic background, and age.

    Science.gov (United States)

    Zwaanswijk, Wendy; Veen, Violaine C; van Geel, Mitch; Andershed, Henrik; Vedder, Paul

    2017-08-01

    The current study examines how the bifactor model of the Youth Psychopathic Traits Inventory (YPI) is related to conduct problems in a sample of Dutch adolescents (N = 2,874; 43% female). It addresses to what extent the YPI dimensions explain variance over and above a General Psychopathy factor (i.e., one factor related to all items) and how the general factor and dimensional factors are related to conduct problems. Group differences in these relations for gender, ethnic background, and age were examined. Results showed that the general factor is most important, but dimensions explain variance over and above the general factor. The general factor, and Affective and Lifestyle dimensions, of the YPI were positively related to conduct problems, whereas the Interpersonal dimension was not, after taking the general factor into account. However, across gender, ethnic background, and age, different dimensions were related to conduct problems over and above the general factor. This suggests that all 3 dimensions should be assessed when examining the psychopathy construct. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Conduct Disorder Symptoms and Subsequent Pregnancy, Child-Birth and Abortion: A Population-Based Longitudinal Study of Adolescents

    Science.gov (United States)

    Pedersen, Willy; Mastekaasa, Arne

    2011-01-01

    Research on teenage pregnancy and abortion has primarily focused on socio-economic disadvantage. However, a few studies suggest that risk of unwanted pregnancy is related to conduct disorder symptoms. We examined the relationship between level of conduct disorder symptoms at age 15 and subsequent pregnancy, child-birth and abortion. A…

  15. Relative contribution of ionospheric conductivity and electric field to the auroral electrojets

    International Nuclear Information System (INIS)

    Kamide, Y.; Vickrey, J.F.

    1983-01-01

    Data from continuous scans of the Chatanika radar beam along the magnetic meridian plane are used to the determine the latitudinal profile of height-integrated ionospheric conductivities and horizontal electric fields, from which the latitudinal distribution of ionospheric currents is deduced. The observations cover invariant latitudes between 62 0 and 68 0 , where the IMS Alaska meridian chain of magnetometers was also in operation. Although the conductivities and the electric fields are interrelated, the relative importance of the two in driving the eastward and westward auroral electrojet currents can be assessed. It is found that for moderate and large current densities (i.e., > or approx. =0.2 A/m), the northward electric field strength increases as the magnitude of the eastward electrojet in the evening sector increases. The height-integrated Hall conductivity stays generally at the level of 10 mhos even when the current density becomes as large as 1 A/m. However, when the eastward electrojet is small, substantial electric fields of 10-20 mV/m may still exist as if the magnetosphere has a persistent voltage source. There appear to be two distinct components to the westward electrojet. In the midnight and early morning sestors (>0300 MLT) intensity is characterized by a weak southward electric field and a high Hall conductivity, whereas its late morning portion (>0300 MLT) is dominated by a strong southward electric field

  16. Thermal conductivity calculation of nano-suspensions using Green–Kubo relations with reduced artificial correlations

    International Nuclear Information System (INIS)

    Muraleedharan, Murali Gopal; Yang, Vigor; Sundaram, Dilip Srinivas; Henry, Asegun

    2017-01-01

    The presence of artificial correlations associated with Green–Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents ‘obstacles’ with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles. (paper)

  17. Conducting everyday life

    DEFF Research Database (Denmark)

    Juhl, Pernille

    , they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across......In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed...... contexts (home, day care, part-time foster family) and in relation to other co-participants....

  18. Studies on conductivity and dielectric properties of polyaniline–zinc ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In the present paper, we report electrical conductivity and dielectric studies on the composites of conducting polyaniline (PANI) with crystalline semiconducting ZnS powder, wherein PANI has been taken as inclusion and ZnS crystallites as the host matrix. From the studies, it has been observed that the value of.

  19. Skin Conductance Level Reactivity Moderates the Association Between Parental Psychological Control and Relational Aggression in Emerging Adulthood.

    Science.gov (United States)

    Wagner, Caitlin R; Abaied, Jamie L

    2016-04-01

    When studying factors that may heighten risk for relational aggression in youth, it is important to consider characteristics of both the individual and their environment. This research examined the associations between parental psychological control and reactive and proactive relational aggression in emerging adults in college. Given that sympathetic nervous system (SNS) activation may underlie differences between reactive and proactive aggression and has been shown to moderate the effects of parenting on youth development, the moderating role of SNS reactivity [indexed by skin conductance level reactivity (SCLR)] was also examined. Emerging adults (N = 180; 77.2 % female) self-reported on perceptions of parental psychological control and reactive and proactive relational aggression. SCLR was assessed in response to an interpersonal laboratory challenge task. Parental psychological control was positively associated with reactive relational aggression only for emerging adults who exhibited high SCLR. Parental psychological control was positively associated with proactive relational aggression only among emerging adults who showed low SCLR. This study extends previous research on parenting and aggression and suggests that parental psychological control is differentially associated with reactive versus proactive relational aggression, depending on emerging adults' SCLR to interpersonal stress.

  20. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    International Nuclear Information System (INIS)

    Aziz, M.

    1996-05-01

    Understanding the structure - conductivity relationship is of paramount importance for the development of polymer electrolytes. The present studies present the techniques found useful in the elucidation of structure - conductivity relationship in PEO n :ZnBr 2 (n = 8, 1000, 2000, 3000, 4000 and 5000) and PEO n :FeBr x (n= 8, 20 and 50; x = 2 and 3). Local structural studies have been undertaken using X-ray absorption fine structures (XAFS) which includes extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). EXAFS provides interatomic distance and coordination numbers of the nearest neighbours and results from the EXAFS studies showed that high conductivity is associated with stretched M - O interatomic distance. In the studies on ultra dilute Zn samples it was found that the cation is highly solvated by the heteroatom forming a tightly bound environment which inhibits local segmental motion thus impeding ion migration. XANES studies on the PEO and modified PEO complexes of NiBr 2 revealed the sensitivity of XANES to the structural differences. XANES on Zn and Fe samples also revealed the sensitivity to changes in interatomic distances reflected in shifts of the white line. The complementary nature of EXAFS and XANES was reflected in the studies conducted. Morphological studies were undertaken employing differential scanning calorimetry (DSC), variable temperature polarising microscopy (VTPM) and atomic force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO 8 :FeBr 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle

  1. Pregnancy risk factors in relation to oppositional-defiant and conduct disorder symptoms in the Avon Longitudinal Study of Parents and Children.

    Science.gov (United States)

    Ruisch, I Hyun; Buitelaar, Jan K; Glennon, Jeffrey C; Hoekstra, Pieter J; Dietrich, Andrea

    2018-06-01

    Pregnancy factors have been implicated in offspring oppositional-defiant disorder (ODD) and conduct disorder (CD) symptoms. Literature still holds notable limitations, such as studying only a restricted set of pregnancy factors, use of screening questionnaires which assess broadly defined outcome measures, and lack of control for disruptive behavior comorbidity and genetic confounds. We aimed to address these gaps by prospectively studying a broad range of pregnancy factors in relation to both offspring ODD and CD symptomatology in the Avon Longitudinal Study of Parent and Children. Outcomes were ODD and CD symptom scores at age 7;9 years using the Development and Well-Being Assessment interview. We analyzed maternal (N ≈ 6300) and teacher ratings (N ≈ 4400) of ODD and CD scores separately using negative binomial regression in multivariable models. Control variables included comorbid attention-deficit/hyperactivity disorder symptoms, ODD or CD symptoms as appropriate, and genetic risk scores based on an independent CD genome-wide association study. Higher ODD symptom scores were linked to paracetamol use (IRR = 1.24 [98.3% confidence interval 1.05-1.47], P = 0.002, teacher ratings) and life events stress (IRR = 1.22 [1.07-1.39], P = 0.002, maternal ratings) during pregnancy. Higher CD symptom scores were linked to maternal smoking (IRR = 1.33 [1.18-1.51], P < 0.001, maternal ratings), life events stress (IRR = 1.24 [1.11-1.38], P < 0.001, maternal ratings) and depressive symptoms (IRR = 1.14 [1.01-1.30], P = 0.006, maternal ratings) during pregnancy. Common and potentially preventable pregnancy risk factors were independently related to both offspring ODD and CD symptomatology in children from the general population. Future studies should further address genetic confounds and confounding by environmental factors later in life. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Study on thermal conductivity of HTR spherical fuel element matrix graphite

    International Nuclear Information System (INIS)

    Zhang Kaihong; Liu Xiaoxue; Zhao Hongsheng; Li Ziqiang; Tang Chunhe

    2014-01-01

    Taking the spherical fuel element matrix graphite ball samples as an example, this paper introduced the principle and method of laser thermal conductivity meter, as well as the specific heat capacity, and analyzed the effects of different test methods and sampling methods on the thermal conductivities at 1000 ℃ of graphite material. The experimental results show that the thermal conductivities of graphite materials tested by synchronous thermal analyzer combining with laser thermal conductivity meter were different from that directly by laser thermal conductivity meter, the former was more reliable and accurate than the later; When sampling from different positions, central samples had higher thermal conductivities than edging samples, which was related to the material density and porosity at the different locations; the thermal conductivities had obvious distinction between samples from different directions, which was because the layer structure of polycrystalline graphite preferred orientation under pressure, generally speaking, the thermal conductivities perpendicular to the molding direction were higher than that parallel to the molding direction. Besides this, the test results show that the thermal conductivities of all the graphite material samples were greater than 30 W/(m (K), achieving the thermal performance index of high temperature gas cooled reactor. (authors)

  3. Multi-channel grouping techniques for conducting reactor safety studies

    International Nuclear Information System (INIS)

    Waltar, A.E.; Wilburn, N.P.

    1975-01-01

    In conducting safety studies for postulated unprotected accidents in an LMFBR system, it is common practice to employ multi-channel coupled neutronics, thermal hydraulics computer programs such as SAS3A or MELT-III. The multichannel feature of such code systems is important if the natural fuel failure incoherencies and the resulting sodium void/fuel motion reactivity feedbacks--which have strong spatial variations--are to be properly modeled. Because of the large amounts of computer time associated with many channel runs, however, there is a strong incentive to conduct parametric studies with as few channels as possible. The paper presented is focused on methods successfully employed to accomplish this end for a study of the hypothetical unprotected transient overpower accident conducted for the FFTF

  4. Temporal and vertical variations radon and its progeny related to atmospheric electrical conductivity

    International Nuclear Information System (INIS)

    Pruthvi Rani, K.S.; Chandrashekara, M.S.; Paramesh, L.

    2015-01-01

    Atmospheric radon, its progeny, electrical conductivity and meteorological parameters such as wind, temperature, humidity, pressure and rainfall were continuously monitored during 2012 to 2014 at one location in Mysuru city. The annual mean atmospheric radon concentration at the study location was found to be 16.4 Bqm -3 . The diurnal cycle of radon and its progeny show a peak in the early morning hours followed by a drastic decrease after sunrise and rising to a second peak in the afternoon. It was found that the stability of the atmosphere and ambient temperature played a major role in the diurnal variations. Higher concentrations of radon and its progeny were observed in winter and lower values in summer. This may due to the variations in origin of air mass and meteorological parameters. Wind direction analyses reveal that in sectors with air which has spent a longer period over the granitic region and low wind speeds will lead to higher concentrations of radon. Atmospheric electrical conductivity near the ground is mainly due to the ionization from radon and its progeny. The diurnal variations of conductivity and ionization rate due to radon and its individual progeny were of similar trend. In addition its significant dependence on meteorological parameters is confirmed. The vertical variations of atmospheric electrical conductivity were studied at different heights up to 250 m from the ground level. Higher values were observed close to the ground surface, there was a rapid reduction up to about 10 m and beyond that the conductivity gradually decreases. The diurnal conductivity cycle is studied at 10 m and 100 m showed the expected similar trend at both the heights but early morning maxima were considerably different, this confirms the accumulation of radon gas close to the ground surface during night time leading to increase of conductivity values. (author)

  5. Priorities in public relations research: An international Delphi study

    OpenAIRE

    Watson, Tom

    2008-01-01

    A Delphi study on the priorities for public relations research, conducted in 2007 amongst\\ud academics, practitioners and senior executives of professional and industry bodies in five\\ud continents, has ranked the ten most important topics for research and proposed the associated\\ud research questions. This is the first completed Delphi study into public relations research since\\ud Synnott and McKie (1997) which was itself a development of earlier studies of this type by\\ud McElreath (1980, 1...

  6. Studying sustainable development at the intersection of conduct and counter-conduct

    DEFF Research Database (Denmark)

    Lindegaard, Laura Bang

    analyses how these documents are participating in the continuous negotiations of the governmental rationalities of global citizenship that are an inevitable part of the dispersed governing of sustainable development. In more detail, the paper analyses how the Danish transportation initiative is co......) that is sensitive to the subtle effects of counter-conduct. The paper reports on an empirical study that tracks the connections between the UN’s Agenda 21 and a ‘local’ Agenda 21 initiative in a rural Danish municipality aiming at ‘greening’ citizens’ everyday transportation practices, and, secondly, the paper...

  7. Fragility–structure–conductivity relations in vanadium tellurite glass

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Rodrigues, Ana Candida Martins

    the ability to intercalate lithium-ions, it is a candidate as cathode material. Here, we investigate the correlation between liquid fragility, structure and electronic conductivity in a series of vanadium-tellurite glasses with varying vanadium concentration. We measure dynamic and thermodynamic fragility...... the number of bonding and non-bonding oxygen atoms per network former, while we use IS and ESR to determine the electronic conductivity and the valence states of the system. We correlate the changes in local atomic structures as determined by NMR to the observed changes in macroscopic properties. Since...

  8. Considerations when conducting e-Delphi research: a case study.

    Science.gov (United States)

    Toronto, Coleen

    2017-06-22

    Background E-Delphi is a way to access a geographically dispersed group of experts. It is similar to other Delphi methods but conducted online. E-research methodologies, such as the e-Delphi method, have yet to undergo significant critical discussion. Aim To highlight some of the challenges nurse researchers may wish to consider when using e-Delphi in their research. Discussion This paper provides details about the author's approach to conducting an e-Delphi study in which a group of health literacy nurse experts (n=41) used an online survey platform to identify and prioritise essential health literacy competencies for registered nurses. Conclusion This paper advances methodological discourse about e-Delphi by critically assessing an e-Delphi case study. The online survey platform used in this study was advantageous for the researcher and the experts: the experts could participate at any time and place where the internet was available; the researcher could efficiently access a national group of experts, track responses and analyse data in each round. Implications for practice E-Delphi studies create opportunities for nurse researchers to conduct research nationally and internationally. Before conducting an e-Delphi study, researchers should carefully consider the design and methods for collecting data, to avoid challenges that could potentially compromise the quality of the findings. Researchers are encouraged to publish details about their approaches to e-Delphi studies, to advance the state of the science.

  9. Do post-trauma symptoms mediate the relation between neurobiological stress parameters and conduct problems in girls?

    Science.gov (United States)

    Babel, Kimberly A; Jambroes, Tijs; Oostermeijer, Sanne; van de Ven, Peter M; Popma, Arne; Vermeiren, Robert R J M; Doreleijers, Theo A H; Jansen, Lucres M C

    2016-01-01

    Attenuated activity of stress-regulating systems has consistently been reported in boys with conduct problems. Results in studies of girls are inconsistent, which may result from the high prevalence of comorbid post-trauma symptoms. Therefore, the aim of the present study is to investigate post-trauma symptoms as a potential mediator in the relation between stress-regulation systems functioning and conduct problems in female adolescents. The sample consisted of 78 female adolescents (mean age 15.4; SD 1.1) admitted to a closed treatment institution. The diagnosis of disruptive behaviour disorder (DBD) was assessed by a structured interview-the diagnostic interview schedule for children version IV (DISC-IV). To assess post-trauma symptoms and externalizing behaviour problems, self-report questionnaires, youth self report (YSR) and the trauma symptom checklist for Children (TSCC) were used. The cortisol awakenings response (CAR) measured hypothalamic-pituitary-adrenal (HPA) axis activity, whereas autonomous nervous system (ANS) activity was assessed by heart rate (HR), pre-ejection period (PEP) and respiratory sinus arrhythmia (RSA). Independent t-tests were used to compare girls with and without DBD, while path analyses tested for the mediating role of post- trauma symptoms in the relation between stress regulating systems and externalizing behaviour. Females with DBD (n = 37) reported significantly higher rates of post-trauma symptoms and externalizing behaviour problems than girls without DBD (n = 39). Path analysis found no relation between CAR and externalizing behaviour problems. With regard to ANS activity, positive direct effects on externalizing behaviour problems were present for HR (standardized β = 0.306, p = 0.020) and PEP (standardized β = -0.323, p = 0.031), though not for RSA. Furthermore, no relation-whether direct or indirect-could be determined from post-trauma symptoms. Present findings demonstrate that the neurobiological

  10. Comparing the similarity of responses received from studies in Amazon's Mechanical Turk to studies conducted online and with direct recruitment.

    Science.gov (United States)

    Bartneck, Christoph; Duenser, Andreas; Moltchanova, Elena; Zawieska, Karolina

    2015-01-01

    Computer and internet based questionnaires have become a standard tool in Human-Computer Interaction research and other related fields, such as psychology and sociology. Amazon's Mechanical Turk (AMT) service is a new method of recruiting participants and conducting certain types of experiments. This study compares whether participants recruited through AMT give different responses than participants recruited through an online forum or recruited directly on a university campus. Moreover, we compare whether a study conducted within AMT results in different responses compared to a study for which participants are recruited through AMT but which is conducted using an external online questionnaire service. The results of this study show that there is a statistical difference between results obtained from participants recruited through AMT compared to the results from the participant recruited on campus or through online forums. We do, however, argue that this difference is so small that it has no practical consequence. There was no significant difference between running the study within AMT compared to running it with an online questionnaire service. There was no significant difference between results obtained directly from within AMT compared to results obtained in the campus and online forum condition. This may suggest that AMT is a viable and economical option for recruiting participants and for conducting studies as setting up and running a study with AMT generally requires less effort and time compared to other frequently used methods. We discuss our findings as well as limitations of using AMT for empirical studies.

  11. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations

    International Nuclear Information System (INIS)

    Pagnon, V.

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that's incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity [fr

  12. High pressure studies of ionic conductivity in solids

    International Nuclear Information System (INIS)

    Samara, G.A.

    1979-01-01

    The pressure dependence of the ionic conductivity provides information about the volume relaxation associated with the formation of lattice defects as well as with the diffusive motion of these defects, and thereby helps elucidate the conduction process. Pressure results on a variety of crystals will be discussed with emphasis on recent results on crystals with large lattice polarizabilities and soft phonon modes. Pressure is shown to be an important--sometimes essential, variable in the study of ionic transport processes

  13. Identifying the barriers to conducting outcomes research in integrative health care clinic settings - a qualitative study

    Directory of Open Access Journals (Sweden)

    Findlay-Reece Barbara

    2010-01-01

    Full Text Available Abstract Background Integrative health care (IHC is an interdisciplinary blending of conventional medicine and complementary and alternative medicine (CAM with the purpose of enhancing patients' health. In 2006, we designed a study to assess outcomes that are relevant to people using such care. However, we faced major challenges in conducting this study and hypothesized that this might be due to the lack of a research climate in these clinics. To investigate these challenges, we initiated a further study in 2008, to explore the reasons why IHC clinics are not conducting outcomes research and to identify strategies for conducting successful in-house outcomes research programs. The results of the latter study are reported here. Methods A total of 25 qualitative interviews were conducted with key participants from 19 IHC clinics across Canada. Basic content analysis was used to identify key themes from the transcribed interviews. Results Barriers identified by participants fell into four categories: organizational culture, organizational resources, organizational environment and logistical challenges. Cultural challenges relate to the philosophy of IHC, organizational leadership and practitioner attitudes and beliefs. Participants also identified significant issues relating to their organization's lack of resources such as funding, compensation, infrastructure and partnerships/linkages. Environmental challenges such as the nature of a clinic's patient population and logistical issues such as the actual implementation of a research program and the applicability of research data also posed challenges to the conduct of research. Embedded research leadership, integration of personal and professional values about research, alignment of research activities and clinical workflow processes are some of the factors identified by participants that support IHC clinics' ability to conduct outcomes research. Conclusions Assessing and enhancing the broader

  14. a.c. conductance study of polycrystal C60

    International Nuclear Information System (INIS)

    Yan Feng; Wang Yening; Huang Yineng; Gu Min; Zhang Qingming; Shen Huimin

    1995-01-01

    The a.c. (1 60 polycrystal (grain size 30 nm) has been studied from 100 to 350 K. Below 150 K, the a.c. conductance is nearly proportional to the temperature and frequency. This is proposed to be due to the hopping of localized states around the Fermi level. Above 200 K, the a.c. conductance exhibits a rapid increase with temperature, and shows a thermally activated behaviour with an activation energy of 0.389 eV below a certain temperature and 0.104 eV above it. A frequency dependent conductance at a fixed temperature is also obtained with a power law σ similar ω s (s∼0.8). For a sample of normal grain size, we have measured a peak near 250 K and a much smaller conductance. These results indicate that the defective na ture of our sample (small grain size, disorder or impurities) plays an important role for the transport properties. The existence of nanocrystals in the sample may give rise to localized states and improve its a.c. conductance. The two activation energies can be attributed to the coexistence of the crystalline and amorphous phases of C 60 . ((orig.))

  15. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    International Nuclear Information System (INIS)

    Nagendra, K.; Babu, G. Satish; Gowda, Veeranna; Reddy, C. Narayana

    2011-01-01

    Glasses in the system xLi 2 SO 4 -20Li 2 O-(80-x) [80P 2 O 5 -20V 2 O 5 ](5≥x≥20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li 2 SO 4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aω s where 's' is the power law exponent. The ac conductivity found to increase with increase of Li 2 SO 4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  16. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  17. Statistical study of static gasket conductance; Etude statistique de la conductance d'un joint d'etancheite statique

    Energy Technology Data Exchange (ETDEWEB)

    Flukiger, F

    2005-10-15

    This work is motivated by tightness technological problems associated with metallic gasket. The objective is a better understanding of leakage mechanisms, through the development of new computational tools. In this study, the aperture field between two rough surfaces in contact is described by a short correlated isotropic random Gaussian process. The system is studied as a set of independent elementary surfaces. Joint conductances are evaluated from a statistical study on those elementary surfaces. A computational code is developed using a network approach based on lubrication theory estimation of local conductances. The global conductance computation becomes analogous to an electrical problem for which the resistances are distributed on a random network. The network is built from the identification of the aperture field critical points. Maxima are linked through saddle points. Bond conductances are estimated at the aperture field saddle points. First, a purely plastic model of deformations is considered. Near percolation threshold the conductances display a power behaviour. Far from percolation threshold, numerical results are favourably compared with an effective medium approximation. Secondly, we study the impact of elastic deformations. A computational code based on Boussinesq approximation is coupled to the network approach. The results indicate a significant impact of elastic deformations on conductances. Finally, the network approach is adapted to simulate quasi-static drainage thanks to a classical invasion percolation algorithm. A good comparison between previous experiments and numerical predictions is obtained. (author)

  18. Comparing the similarity of responses received from studies in Amazon's Mechanical Turk to studies conducted online and with direct recruitment.

    Directory of Open Access Journals (Sweden)

    Christoph Bartneck

    Full Text Available Computer and internet based questionnaires have become a standard tool in Human-Computer Interaction research and other related fields, such as psychology and sociology. Amazon's Mechanical Turk (AMT service is a new method of recruiting participants and conducting certain types of experiments. This study compares whether participants recruited through AMT give different responses than participants recruited through an online forum or recruited directly on a university campus. Moreover, we compare whether a study conducted within AMT results in different responses compared to a study for which participants are recruited through AMT but which is conducted using an external online questionnaire service. The results of this study show that there is a statistical difference between results obtained from participants recruited through AMT compared to the results from the participant recruited on campus or through online forums. We do, however, argue that this difference is so small that it has no practical consequence. There was no significant difference between running the study within AMT compared to running it with an online questionnaire service. There was no significant difference between results obtained directly from within AMT compared to results obtained in the campus and online forum condition. This may suggest that AMT is a viable and economical option for recruiting participants and for conducting studies as setting up and running a study with AMT generally requires less effort and time compared to other frequently used methods. We discuss our findings as well as limitations of using AMT for empirical studies.

  19. Neurological Assessment and Nerve Conduction Study Findings in 22 Patients with Alkaptonuria from Jordan.

    Science.gov (United States)

    Alrawashdeh, Omar; Alsbou, Mohammad; Alzoubi, Hamed; Al-Shagahin, Hani

    2016-11-02

    Alkaptonuria is a rare metabolic disease characterised by accumulative deposition of homogentisic acid in the connective tissue of the body. This results in early degeneration of tendons, cartilages, heart valves, and other tissues. The main objective of the study is to examine the possibility of the nervous system involvement in patients with alkaptonuria The sample consists of two groups; 22 patients with AKU and 20 controls. A neurological assessment has been carried out including detailed medical history, neurological examination, and a nerve conduction study of the nerves of the dominant hand. The prevalence of any abnormality was compared between the two groups using chi square test. The mean values of the nerve conduction study were compared between the two groups using student t-test. There was a higher prevalence of low back pain, hearing problems and tinnitus, numbness and neuropathic pain in alkaptonuria patients. There was no significant difference between the two groups in other conditions such as seizures, headache, and syncope. The values of the nerve conduction study did not show significant difference between the two groups. Neurologically related symptoms in alkaptonuria mostly represent complications of the connective tissue degeneration rather than direct involvement of the nervous system. This has been supported further by the normal findings of the neurophysiology study in patients with alkaptonuria.

  20. Neurological assessment and nerve conduction study findings in 22 patients with alkaptonuria from Jordan

    Directory of Open Access Journals (Sweden)

    Omar Alrawashdeh

    2017-01-01

    Full Text Available Alkaptonuria is a rare metabolic disease characterised by accumulative deposition of homogentisic acid in the connective tissue of the body. This results in early degeneration of tendons, cartilages, heart valves, and other tissues. The main objective of the study is to examine the possibility of the nervous system involvement in patients with alkaptonuria The sample consists of two groups; 22 patients with AKU and 20 controls. A neurological assessment has been carried out including detailed medical history, neurological examination, and a nerve conduction study of the nerves of the dominant hand. The prevalence of any abnormality was compared between the two groups using chi square test. The mean values of the nerve conduction study were compared between the two groups using student t-test. There was a higher prevalence of low back pain, hearing problems and tinnitus, numbness and neuropathic pain in alkaptonuria patients. There was no significant difference between the two groups in other conditions such as seizures, headache, and syncope. The values of the nerve conduction study did not show significant difference between the two groups. Neurologically related symptoms in alkaptonuria mostly represent complications of the connective tissue degeneration rather than direct involvement of the nervous system. This has been supported further by the normal findings of the neurophysiology study in patients with alkaptonuria.

  1. Conductive Education: Feasibility Study on Developing a National Curriculum Plan for Those Working in Conductive Education in New Zealand.

    Science.gov (United States)

    Wagner, Graham A.

    This study sought to determine whether there are national training needs among staff of conductive education programs in New Zealand. Conductive education is a unified system of education for children and adults with a motor disorder whose disability has been caused by damage to the central nervous system. The study, which focuses primarily on…

  2. Requirements Relating To Manufacturing Constructions In The Aspect Of Conducting Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Kaczmarek R.

    2015-09-01

    Full Text Available Basic factors which have an influence on conducting manual ultrasonic testing of joints in the welded constructions are presented in the following article. These factors are specified on the base of the guidelines referring to conditions and methods of carrying out examinations which are currently in force in the following standards PN-EN ISO 17640 and PN-EN ISO 22825. Due to the vastness of subject of ultrasonic testing the main aim of the following article is to collect all important information which relates to design and manufacture of constructions and has a key influence on the following examinations.

  3. Recovery from distal ulnar motor conduction block injury: serial EMG studies.

    Science.gov (United States)

    Montoya, Liliana; Felice, Kevin J

    2002-07-01

    Acute conduction block injuries often result from nerve compression or trauma. The temporal pattern of clinical, electrophysiologic, and histopathologic changes following these injuries has been extensively studied in experimental animal models but not in humans. Our recent evaluation of a young man with an injury to the deep motor branch of the ulnar nerve following nerve compression from weightlifting exercises provided the opportunity to follow the course and recovery of a severe conduction block injury with sequential nerve conduction studies. The conduction block slowly and completely resolved, as did the clinical deficit, over a 14-week period. The reduction in conduction block occurred at a linear rate of -6.1% per week. Copyright 2002 Wiley Periodicals, Inc.

  4. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  5. Electrical conductivity study on polythiophenes films

    International Nuclear Information System (INIS)

    Youm, I.; Cadene, M.

    1994-10-01

    The electrical conduction mechanism of two classes of polythiophenes: polythiophene (PT) and poly(3-methylthiophene) (PMT) films containing various levels of doping counter-ions was investigated. The temperature dependence of electrical conductivity obeys the Mott equation based on variable range hopping. The dimension of the variable range hopping is correlated with the structure of the conducting polymer. It seems for these polymers that carrier transport via mobile conjugational defects does not play a detectable role. (author). 17 refs, 3 figs, 1 tab

  6. First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5

    Science.gov (United States)

    Wang, Cong; Wang, Haifeng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian

    2018-05-01

    Recently, the layered transition-metal pentatellurides ZrTe5 and HfTe5 have attracted increasing attention because of their interesting topological electronic properties. Nevertheless, some of their other good physical properties seem to be ignored now. Actually, both ZrTe5 and HfTe5 have high electric conductivities (>105 Ω-1 m-1) and Seebeck coefficients (> 100 μV/K) at room temperature, thus making them promising thermoelectric materials. However, the disadvantage is that the thermal conductivities of the two materials are relatively high according to the few available experiments; meanwhile, the detailed mechanism of the intrinsic thermal conductivity has not been studied yet. Based on the density functional theory and the Boltzmann transport theory, we present here the theoretical study of the intrinsic lattice thermal conductivities of ZrTe5 and HfTe5, which are found to be in the range of 5-8 W/mṡK at room temperature and well consistent with the experimental results. We also find that the thermal conductivities of the two materials are anisotropic, which are mainly caused by their anisotropic crystal structures. Based on the detailed analysis, we proposed that the thermal conductivities of the two materials could possibly be reduced by different kinds of structural engineering at the atomic and mesoscopic scales, such as alloying, doping, nano-structuring, and polycrystalline structuring, which could make ZrTe5 and HfTe5 good thermoelectric materials for room temperature thermoelectric applications.

  7. Code of Conduct for wind-power projects - Feasibility study; Code of Conduct fuer windkraftprojekte. Machbarkeitsstudie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Strub, P. [Pierre Strub, freischaffender Berater, Binningen (Switzerland); Ziegler, Ch. [Inter Act, Basel (Switzerland)

    2009-02-15

    This final report deals with the results of a feasibility study concerning the development of a Code of Conduct for wind-power projects. The aim is to strengthen the acceptance of wind-power by the general public. The necessity of new, voluntary market instruments is discussed. The urgency of development in this area is quoted as being high, and the authors consider the feasibility of the definition of a code of conduct as being proven. The code of conduct can, according to the authors, be of use at various levels but primarily in project development. Further free-enterprise instruments are also suggested that should help support socially compatible and successful market development. It is noted that the predominant portion of those questioned are prepared to co-operate in further work on the subject

  8. The familial basis of facial emotion recognition deficits in adolescents with conduct disorder and their unaffected relatives.

    Science.gov (United States)

    Sully, K; Sonuga-Barke, E J S; Fairchild, G

    2015-07-01

    There is accumulating evidence of impairments in facial emotion recognition in adolescents with conduct disorder (CD). However, the majority of studies in this area have only been able to demonstrate an association, rather than a causal link, between emotion recognition deficits and CD. To move closer towards understanding the causal pathways linking emotion recognition problems with CD, we studied emotion recognition in the unaffected first-degree relatives of CD probands, as well as those with a diagnosis of CD. Using a family-based design, we investigated facial emotion recognition in probands with CD (n = 43), their unaffected relatives (n = 21), and healthy controls (n = 38). We used the Emotion Hexagon task, an alternative forced-choice task using morphed facial expressions depicting the six primary emotions, to assess facial emotion recognition accuracy. Relative to controls, the CD group showed impaired recognition of anger, fear, happiness, sadness and surprise (all p emotion recognition deficits are present in adolescents who are at increased familial risk for developing antisocial behaviour, as well as those who have already developed CD. Consequently, impaired emotion recognition appears to be a viable familial risk marker or candidate endophenotype for CD.

  9. A Collection of Studies Conducted in Education about "Global Warming" Problem

    Science.gov (United States)

    Bozdogan, Aykut Emre

    2011-01-01

    The studies global warming problem conducted in education discipline in the world and in Turkey were analysed for this study. The literature was reviewed extensively especially through the articles in the indexed journals of Ebsco Host, Science Direct, Taylor and Francis and Web of Science databases and this study was conducted according to the…

  10. Paper use in research ethics applications and study conduct.

    Science.gov (United States)

    Chakladar, Abhijoy; Eckstein, Sue; White, Stuart M

    2011-02-01

    Application for Research Ethics Committee (REC) approval and the conduct of medical research is paper intensive. This retrospective study examined all applications to a single REC in the south of England over one year. It estimated the mass of paper used, comparing the proportional paper consumption of different trial types and during different stages of the research process, quantifying the consumption in terms of carbon dioxide emissions. In 2009, 68 trials were submitted to the REC. Total paper consumption for the REC process and study conduct was 176,150 sheets of A4 paper (879 kg), equivalent to an estimated 11.5 million sheets (88 tonnes, 2100 trees) a year for the U.K.; the REC process accounted for 26.4%. REC applications and the conduct of approved trials generate considerable environmental impact through paper consumption contributing to the NHS's carbon footprint. Paper use might be reduced through the implementation of digital technologies and revised research methods, namely changing attitudes in both researchers and ethics committees.

  11. Electrodiagnosis and nerve conduction studies.

    Science.gov (United States)

    Posuniak, E A

    1984-08-01

    The use of electrodiagnostic techniques in evaluation of complaints in the lower extremities provides an objective method of assessment. A basic understanding of principles of neurophysiology, EMG and NCV methodology, and neuropathology of peripheral nerves greatly enhances physical diagnosis and improves the state of the art in treatment of the lower extremity, especially foot and ankle injuries. Familiarity with the method of reporting electrodiagnostic studies and appreciation of the electromyographer's interpretation of the EMG/NCV studies also reflects an enhanced fund of knowledge, skills, and attitudes as pertains to one's level of professional expertise. Information regarding the etiology of positive sharp waves, fibrillation potentials, fasciculation, and normal motor action potentials and conduction studies serves as a sound basis for the appreciation of the categories of nerve injury. Competence in understanding the degree of axonal or myelin function or dysfunction in a nerve improve one's effectiveness not only in medical/surgical treatment but in prognostication of recovery of function. A review of the entrapment syndromes in the lower extremity with emphasis on tarsal tunnel syndrome summarizes the most common nerve entrapments germane to the practice of podiatry. With regard to tarsal tunnel syndrome, the earliest electrodiagnostic study to suggest compression was reported to be the EMG of the foot and leg muscles, even before prolonged nerve latency was noted.

  12. a.c. conductance study of polycrystal C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Yan Feng [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Wang Yening [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Huang Yineng [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Gu Min [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Zhang Qingming [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Shen Huimin [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure

    1995-06-05

    The a.c. (1conductance of a C{sub 60} polycrystal (grain size 30 nm) has been studied from 100 to 350 K. Below 150 K, the a.c. conductance is nearly proportional to the temperature and frequency. This is proposed to be due to the hopping of localized states around the Fermi level. Above 200 K, the a.c. conductance exhibits a rapid increase with temperature, and shows a thermally activated behaviour with an activation energy of 0.389 eV below a certain temperature and 0.104 eV above it. A frequency dependent conductance at a fixed temperature is also obtained with a power law {sigma} similar {omega}{sup s} (s{approx}0.8). For a sample of normal grain size, we have measured a peak near 250 K and a much smaller conductance. These results indicate that the defective na ture of our sample (small grain size, disorder or impurities) plays an important role for the transport properties. The existence of nanocrystals in the sample may give rise to localized states and improve its a.c. conductance. The two activation energies can be attributed to the coexistence of the crystalline and amorphous phases of C{sub 60}. ((orig.)).

  13. Fluid conductivity sensor

    International Nuclear Information System (INIS)

    Miller, F. M.

    1985-01-01

    Apparatus for sensing the electrical conductivity of fluid which can be used to detonate an electro explosive device for operating a release mechanism for uncoupling a parachute canopy from its load upon landing in water. An operating network connected to an ignition capacitor and to a conductivity sensing circuit and connected in controlling relation to a semiconductor switch has a voltage independent portion which controls the time at which the semiconductor switch is closed to define a discharge path to detonate the electro explosive device independent of the rate of voltage rise on the ignition capacitor. The operating network also has a voltage dependent portion which when a voltage of predetermined magnitude is developed on the conductivity sensing circuit in response to fluid not having the predetermined condition of conductivity, the voltage dependent portion closes the semiconductor switch to define the discharge path when the energy level is insufficient to detonate the electro explosive device. A regulated current source is connected in relation to the conductivity sensing circuit and to the electrodes thereof in a manner placing the circuit voltage across the electrodes when the conductivity of the fluid is below a predetermined magnitude so that the sensing circuit does not respond thereto and placing the circuit voltage across the sensing circuit when the conductivity of the fluid is greater than a predetermined magnitude. The apparatus is operated from a battery, and the electrodes are of dissimilar metals so selected and connected relative to the polarity portions of the circuit to maximize utilization of the battery output voltage

  14. Electronic conductivity studies on oxyhalide glasses containing TMO

    Energy Technology Data Exchange (ETDEWEB)

    Vijayatha, D. [R& D Center, Bharatiar University, Coimbatore, Tamil Nadu (India); Department of Physics, Gurunanak Institute of Technology, Hyderabad -040 (India); Viswanatha, R. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Sujatha, B. [Department of Electronics and Communcation, MSRIT, Bangalore 560054 (India); Narayana Reddy, C., E-mail: nivetejareddy@gmail.com [Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur 572102 (India)

    2016-05-06

    Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.

  15. Transport and dielectric studies on silver based molybdo-tungstate quaternary superionic conducting glasses

    International Nuclear Information System (INIS)

    Prasad, P.S.S.; Radhakrishna, S.

    1988-01-01

    The molybdo-tungstate (MoO 3 -WO 3 ) combination of glass formers with silver oxide (Ag 2 O) as glass modifier and silver iodide (AgI) as ionic conductor were prepared to study the transport and dielectric properties of 60% AgI-40% (x Ag 2 O-y(WO 3 -MoO 3 )) for x/y=0.33 to 3.0 and establish the feasibility of using these glasses as electrolytes in the fabrication and characterisation of solid state batteries and potential memory devices. The details of the preparation of glasses and methods of measurement of their capacitance, dielectric loss factor and ac conductivity in the frequency range 100 Hz - 100 kHz from 30-120 C have been reported. The electronic contribution to the total conductivity, the ionic and electronic transport numbers were determined using Wagners dc polarisation technique. The observed high ionic and low electronic conductivities were attributed to the formation of ionic clusters in the glass and the effect of mixing two glass formers. The observed total ionic conductivity and its temperature dependence was explained using Arrhenius relation σ=σ 0 /T exp(-E/RT) and the measured dielectric constant and dielectric loss were explained on the basis of Jonschers theory. The frequency dependence of dielectric constant obeys the theory based on the polarisation of ions. 25 refs.; 8 figs

  16. Whole plantar nerve conduction study with disposable strip electrodes.

    Science.gov (United States)

    Hemmi, Shoji; Kurokawa, Katsumi; Nagai, Taiji; Okamoto, Toshio; Murakami, Tatsufumi; Sunada, Yoshihide

    2016-02-01

    A new method to evaluate whole plantar nerve conduction with disposable strip electrodes (DSEs) is described. Whole plantar compound nerve action potentials (CNAPs) were recorded at the ankle. DSEs were attached to the sole for simultaneous stimulation of medial and lateral plantar nerves. We also conducted medial plantar nerve conduction studies using an established method and compared the findings. Whole plantar CNAPs were recorded bilaterally from 32 healthy volunteers. Mean baseline to peak amplitude for CNAPs was 26.9 ± 11.8 μV, and mean maximum conduction velocity was 65.8 ± 8.3 m/s. The mean amplitude of CNAPs obtained by our method was 58.2% higher than that of CNAPs obtained by the Saeed method (26.9 μV vs. 17.0 μV; P < 0.0001). The higher mean amplitude of whole plantar CNAPs obtained by our method suggests that it enables CNAPs to be obtained easily, even in elderly people. © 2015 Wiley Periodicals, Inc.

  17. Using framework-based synthesis for conducting reviews of qualitative studies.

    Science.gov (United States)

    Dixon-Woods, Mary

    2011-04-14

    Framework analysis is a technique used for data analysis in primary qualitative research. Recent years have seen its being adapted to conduct syntheses of qualitative studies. Framework-based synthesis shows considerable promise in addressing applied policy questions. An innovation in the approach, known as 'best fit' framework synthesis, has been published in BMC Medical Research Methodology this month. It involves reviewers in choosing a conceptual model likely to be suitable for the question of the review, and using it as the basis of their initial coding framework. This framework is then modified in response to the evidence reported in the studies in the reviews, so that the final product is a revised framework that may include both modified factors and new factors that were not anticipated in the original model. 'Best fit' framework-based synthesis may be especially suitable in addressing urgent policy questions where the need for a more fully developed synthesis is balanced by the need for a quick answer. Please see related article: http://www.biomedcentral.com/1471-2288/11/29.

  18. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  19. Study of temperature-dependent charge conduction in silicon-nanocrystal/SiO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Mavilla, Narasimha Rao; Chavan, Vinayak [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Solanki, Chetan Singh [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Vasi, Juzer [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2016-08-01

    Silicon-nanocrystals (Si-NCs) realized by SiO{sub x} {sub <} {sub 2}/SiO{sub 2} multilayer (ML) approach have shown promise for realizing tightly-controlled dimensions, thus efficiently exploiting the size-dependent quantum effects for device applications. Unfortunately, the confining insulating barriers (SiO{sub 2} sublayers), instrumental for realizing quantum size effects in Si-NC MLs, can also hinder the charge conduction which is crucial for device applications including Si-NC based tandem solar cells and multi-exciton solar cells. Owing to this, a comprehensive study of conduction mechanisms has been carried out using a thorough analysis of temperature-dependent dark I-V measurements of SiO{sub 2} thin film and Si-NC multilayer samples fabricated by Inductively Coupled Plasma CVD (ICPCVD). As the ML samples consisted of interleaved SiO{sub 2} sublayers, current in SiO{sub 2} thin film has initially been studied to understand the conduction properties of bulk ICPCVD SiO{sub 2}. For 21 nm thick SiO{sub 2} film, conduction is observed to be dominated by Fowler–Nordheim (FN) tunneling for higher electric fields (> 8 MV/cm; independent of temperature), while for lower electric fields (5–8 MV/cm) at higher temperatures, the trap-related Generalized Poole–Frenkel (GPF) is dominant. This signified the role of traps in modifying the conduction in bulk ICPCVD SiO{sub 2} films. We then present the conduction in ML samples. For multilayer samples with SiO{sub 2} sublayer thickness of 1.5 nm and 2.5 nm, Direct Tunneling (DT) is observed to be dominant, while for SiO{sub 2} sublayer thickness of 3.5 nm, Space Charge Limited Conduction (SCLC) with exponential trap distribution is found to be the dominant conduction mechanism. This signifies the role of traps in modifying the conduction in Si-NC multilayer samples and SiO{sub 2} sublayer thickness dependence. - Highlights: • Electrical conduction in SiO{sub 2} film & Si-nanocrystal layers (Si-NCs) is reported. • Si

  20. Experimental study of effective thermal conductivity of stainless steel fiber felt

    International Nuclear Information System (INIS)

    Li, W.Q.; Qu, Z.G.

    2015-01-01

    An experimental apparatus was designed to measure the effective thermal conductivity of porous stainless steel fiber felt under different operating pressures. The total effective thermal conductivity was studied by analyzing matrix heat conduction, air natural convection, and matrix thermal radiation at ambient pressure. The contribution of air natural convection was experimentally obtained by changing the ambient pressure to vacuum condition and the solid matrix heat conduction was evaluated using a theoretical model. The ratios of the three mechanisms to the total effective thermal conductivity were approximately 40%, 37.9%, and 22.1%, respectively. In addition, the effects of fiber diameter and porosity on the three mechanisms and on the total effective thermal conductivity were studied. The air natural convection was found to gradually intensify when the operating pressure increases from vacuum condition (15 Pa) to ambient pressure (1.0 × 10 5  Pa). With an increase in fiber diameter under fixed porosity, the solid matrix heat conduction remained unchanged, and air natural convection and thermal radiation decreased, thereby resulting in reduced effective thermal conductivity. With an increase in porosity under fixed fiber diameter, the air natural convection was almost unchanged, and solid matrix heat conduction and thermal radiation were reduced, thereby resulting in reduced effective thermal conductivity. - Highlights: • Matrix conduction, radiation and air convection were in the same order of magnitude. • Air natural convection was suppressed by reducing operating pressure. • Intensity of air convection was more sensitive to fiber diameter than porosity. • Surface area and permeability was comparable in air convection as fiber diameter fixed. • Interfacial area exerted dominant role in radiation and air convection as porosity fixed

  1. HEREDITARY INTRAVENTRICULAR CONDUCTION DISORDERS IN THE FAMILY FROM KRASNOYARSK

    Directory of Open Access Journals (Sweden)

    A. A. Chernova

    2011-01-01

    Full Text Available Pedigree of the family from Krasnoyarsk city with hereditary disorders of intracardiac conduction was studied. The diagnosis of each family member was verified by electrocardiography (ECG, echocardiography , bicycle ergometry , ECG Holter monitoring. The family 10-year follow-up showed familial aggregation of intracardiac conduction disorders in grandson, niece, son of the proband niece, ie, in the III-degree relatives. Family history of III-degree relatives with intracardiac conduction disorders and discordant pathology is identified.

  2. Conductive open frameworks

    Science.gov (United States)

    Yaghi, Omar M.; Wan, Shun; Doonan, Christian J.; Wang, Bo; Deng, Hexiang

    2018-05-22

    The disclosure relates generally to materials that comprise conductive covalent organic frameworks. The disclosure also relates to materials that are useful to store and separate gas molecules and sensors.

  3. Anisotropy of heat conduction in Mo/Si multilayers

    International Nuclear Information System (INIS)

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-01-01

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers

  4. Stroke survivors' and relatives' negotiation of relational and activity changes: A qualitative study.

    Science.gov (United States)

    Arntzen, Cathrine; Hamran, Torunn

    2016-01-01

    This study explores stroke survivors' and relatives' negotiation of relational and activity change in their interrelated long-term meaning-making processes of everyday life and what it means for the experience of progress and well-being. Repeated retrospective in-depth interviews were conducted with both the stroke survivor and relatives. A Critical Psychological Perspective gives the frame of reference to study more closely what is going on in and across particular contexts in family members' ongoing social practices. An asymmetric problematic relationship can develop among the participants in the context of family life. However, the analysis identifies six beneficial relational and activity changes, which contribute to a reciprocal, balanced repositioning, and help the family move in a more positive direction. The repositioning processes facilitate a new transformation of family we-ness, which is important for the participants' experience of process and well-being. The comprehensive family work that has to be done is about managing the imbalance of everyday life, upholding separate activities outside the family sphere and dealing with the fact that peripheral others become more peripheral. The study addresses some arguments for taking a family-centred perspective in occupational therapy practice, as well as in a stroke rehabilitation service in general.

  5. Published research studies conducted amongst Indian medical undergraduate students: Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Sandeep Sachdeva

    2017-09-01

    Full Text Available Objective: Evaluation of published original research conducted amongst Indian medical undergraduate students. Methodology: A systematic review was undertaken using keywords “MBBS students” or “medical students” or “health students” or “university students” and “India” through search engines, PUBMED and Google scholar. Considering feasibility, time frame of published original research article was restricted to one-year only i.e. 2016. Research domain, research design, author and other bibliometric details of research manuscript were captured using check-list and analysis carried out using descriptive statistics. Results: A total of 99 suitable original research articles were identified under certain criteria and considered in present analysis. With regard to thematic research domain, highest, 29 (29.2% articles were related to teaching and learning process followed by 13 (13.1% to mental health (depression, anxiety, sleep, spirituality of students; 07 (7.0% were based on physical fitness/ exercise/yoga; and substance abuse (6.0% amongst medical students etc. Nearly, 86 (86.8% of articles were cross-sectional descriptive based studies while 13 (13.1% had intervention based research design. A total of 34 (34.3% research articles could be labeled as “KAP” (knowledge, attitude and practice survey. Department wise detail of corresponding author was largely dominated by faculty from pre and para-clinical departments. Highest was community medicine in (35.3% articles, pharmacology (23.2%, physiology (17.1%, microbiology (6.0%, and biochemistry (4.0% etc. The studies covered an average sample size of 188.8 MBBS students (20-360, range; 57.5% of research article covered students from only one professional year. However, in 42 (42.4% articles there was no further mention of gender based sample information. Out of all the references used in research articles, only 57.3% were of recent (2005-2015 origin while the rest were from older

  6. Measurement of thermal conductance

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1977-01-01

    The 6-m long, 45-kG, warm-iron superconducting magnets envisioned for the Energy Doubler stage of the Fermilab accelerator require stiff supports with minimized thermal conductances in order to keep the refrigeration power reasonable. The large number of supports involved in the system required a careful study of their heat conduction from the room temperature wall to the intercepting refrigeration at 20 0 K and to the liquid helium. For this purpose the thermal conductance of this support was measured by comparing it with the thermal conductance of a copper strap of known geometry. An association of steady-state thermal analysis and experimental thermal conductivity techniques forms the basis of this method. An important advantage is the automatic simulation of the 20 0 K refrigeration intercept by the copper strap, which simplifies the apparatus considerably. This relative resistance technique, which uses electrical analogy as a guideline, is applicable with no restrictions for materials with temperature-independent thermal conductivity. For other materials the results obtained are functions of the specific temperature interval involved in the measurements. A comprehensive review of the literature on thermal conductivity indicates that this approach has not been used before. A demonstration of its self-consistency is stressed here rather than results obtained for different supports

  7. Code of Conduct for wind-power projects - Feasibility study

    International Nuclear Information System (INIS)

    Strub, P.; Ziegler, Ch.

    2009-02-01

    This final report deals with the results of a feasibility study concerning the development of a Code of Conduct for wind-power projects. The aim is to strengthen the acceptance of wind-power by the general public. The necessity of new, voluntary market instruments is discussed. The urgency of development in this area is quoted as being high, and the authors consider the feasibility of the definition of a code of conduct as being proven. The code of conduct can, according to the authors, be of use at various levels but primarily in project development. Further free-enterprise instruments are also suggested that should help support socially compatible and successful market development. It is noted that the predominant portion of those questioned are prepared to co-operate in further work on the subject

  8. The Relative Utility of Skin Resistance and Skin Conductance

    National Research Council Canada - National Science Library

    Barland, Gordon

    1990-01-01

    The effectiveness of two circuits (constant current = skin resistance; constant voltage = skin conductance) used for measuring electrodermal activity during a psychophysiological detection of deception...

  9. Current distribution in conducting nanowire networks

    Science.gov (United States)

    Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, Giridhar U.

    2017-07-01

    Conducting nanowire networks find diverse applications in solar cells, touch-screens, transparent heaters, sensors, and various related transparent conducting electrode (TCE) devices. The performances of these devices depend on effective resistance, transmittance, and local current distribution in these networks. Although, there have been rigorous studies addressing resistance and transmittance in TCE, not much attention is paid on studying the distribution of current. Present work addresses this compelling issue of understanding current distribution in TCE networks using analytical as well as Monte-Carlo approaches. We quantified the current carrying backbone region against isolated and dangling regions as a function of wire density (ranging from percolation threshold to many multiples of threshold) and compared the wired connectivity with those obtained from template-based methods. Further, the current distribution in the obtained backbone is studied using Kirchhoff's law, which reveals that a significant fraction of the backbone (which is believed to be an active current component) may not be active for end-to-end current transport due to the formation of intervening circular loops. The study shows that conducting wire based networks possess hot spots (extremely high current carrying regions) which can be potential sources of failure. The fraction of these hot spots is found to decrease with increase in wire density, while they are completely absent in template based networks. Thus, the present work discusses unexplored issues related to current distribution in conducting networks, which are necessary to choose the optimum network for best TCE applications.

  10. Study of the thermal conductivity of ZnO nanowires/PMMA composites

    International Nuclear Information System (INIS)

    Igamberdiev, Kh. T.; Yuldashev, Sh. U.; Cho, H. D.; Kang, T. W.; Rakhimova, Sh. M.; Akhmedov, T. Kh.

    2012-01-01

    From thermal conductivity measurements on ZnO nanowires (NWs)/poly(methyl methacrylate) PMMA composites, the thermal conductivities of the ZnO nanowires were determined. The thermal conductivity of a ZnO NW decreases considerably with decreasing nanowire diameter, and for a ZnO nanowire with a diameter of 250 nm, the thermal conductivity at room temperature is approximately two times lower than that of bulk ZnO at the same temperature. The results of this study show that the thermal conductivity of a ZnO NW is mainly determined by increased phonon-surface boundary scattering. These results could be useful for the design of ZnO-nanowire-based devices.

  11. Phonon studies of intercalated conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Prassides, K; Bell, C J [School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom); Dianoux, A J [Inst. Laue-Langevin, 38 - Grenoble (France); Chunguey, Wu; Kanatzidis, M G [Dept. of Chemistry, Michigan State Univ., East Lansing (United States)

    1992-06-01

    The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).

  12. Thermal conductivity at the nanoscale: A molecular dynamics study

    Science.gov (United States)

    Lyver, John W., IV

    With the growing use of nanotechnology and nanodevices in many fields of engineering and science, a need for understanding the thermal properties of such devices has increased. The ability for nanomaterials to conduct heat is highly dependent on the purity of the material, internal boundaries due to material changes and the structure of the material itself. Experimentally measuring the heat transport at the nanoscale is extremely difficult and can only be done as a macro output from the device. Computational methods such as various Monte Carlo (MC) and molecular dynamics (MD) techniques for studying the contribution of atomic vibrations associated with heat transport properties are very useful. The Green--Kubo method in conjunction with Fourier's law for calculating the thermal conductivity, kappa, has been used in this study and has shown promise as one approach well adapted for understanding nanosystems. Investigations were made of the thermal conductivity using noble gases, modeled with Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures. MC and MD simulations were done to study homogeneous monatomic and binary materials as well as slabs of these materials possessing internal boundaries. Additionally, MD simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using a potential containing two-body and three-body terms. The results of the MC and MD simulations were matched against available experimental and other simulations and showed that both methods can accurately simulate real materials in a fraction of the time and effort. The results of the study show that in compositionally disordered materials the selection of atomic components by their mass, hard-core atomic diameter, well depth, and relative concentration can change the kappa by as much as an order of magnitude. It was found that a 60% increase in mass produces a 25% decrease in kappa. A 50% increase in interatomic strength produces a 25% increase in

  13. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  14. Poor relation between biomechanical and clinical studies for the proximal femoral locking compression plate

    DEFF Research Database (Denmark)

    Viberg, Bjarke; Voergård Rasmussen, Katrine Marie; Overgaard, Søren

    2017-01-01

    Background and purpose — The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between biomecha......Background and purpose — The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between...

  15. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  16. Studies on conductance of uranyl soaps

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Sharma, M.; Gahlaut, A.S.

    1987-01-01

    Specific conductance of uranyl soaps in dimethylformamide indicates two critical micelle concentrations CMC(I) and CMC(II). The value of CMC(II) decreases with the increase in chain length of the soap, whereas CMC(I) does not vary at all. The results show that the soaps behave as simple electrolyte. The major conductance at infinite dilution (μsub(o)) and dissociation constant (K) of these soaps have been evaluated. (author). 12 refs

  17. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas.

    Science.gov (United States)

    Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G

    2017-04-01

    The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

  18. Participants' Reactions to and Suggestions for Conducting Intimate Partner Violence Research: A Study of Rural Young Adults.

    Science.gov (United States)

    Edwards, Katie M; Greaney, Kayleigh; Palmer, Kelly M

    2016-01-01

    To document rural young adults' reasons for emotional reactions to participating in intimate partner violence (IPV) research as well as to hear young adults' perspectives on how to most effectively conduct comprehensive IPV research in their rural communities. The data presented in this paper draw from 2 studies (ie, an online survey study and an in-person or telephone interview study) that included the same 16 US rural counties in New England and Appalachia. Participants, 47% of whom were in both studies, were young (age range 18-24), white (92%-94%), heterosexual (89%-90%), female (62%-68%), and mostly low to middle income. Nine percent of participants reported they were upset by the questions due to personal experiences with IPV or for other reasons not related to personal IPV experiences. Forty percent of participants reported they personally benefited from participating in the study, and they provided various reasons for this benefit. Regarding suggestions for conducting IPV research with rural young adults, participants believed that both online recruitment and online data collection methods were the best ways to engage young adults, although many participants suggested that more than 1 modality was ideal, which underscores the need for multimethod approaches when conducting research with rural young adults. These findings are reassuring to those committed to conducting research on sensitive topics with rural populations and also shed light on best practices for conducting this type of research from the voices of rural young adults themselves. © 2015 National Rural Health Association.

  19. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  20. Paramagnetic resonance and electronic conduction in organic semiconductors; Resonance paramagnetique et conduction electroniques dans les semi-conducteurs organiques

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Laboratoire de Resonance Magnetique (France)

    1963-07-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  1. Thermal conductance of heat transfer interfaces for conductively cooled superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, T.L.; Walters, J.D.; Fikse, T.H.

    1996-01-01

    Minimizing thermal resistances across interfaces is critical for efficient thermal performance of conductively cooled superconducting magnet systems. Thermal conductance measurements have been made for a flexible thermal coupling, designed to accommodate magnet-to-cryocooler and cryocooler-to-shield relative motion, and an interface incorporating Multilam designed as a sliding thermal connector for cryocoolers. Temperature changes were measured across each interface as a function of heat input. Thermal conductances have been calculated for each interface, and the impact of each interface on conductively cooled magnet systems will be discussed

  2. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  3. Dose-related ethanol intake, Cx43 and Nav1.5 remodeling: Exploring insights of altered ventricular conduction and QRS fragmentation in excessive alcohol users.

    Science.gov (United States)

    Hung, Chung-Lieh; Lai, Yu-Jun; Chi, Po-Ching; Chen, Liang-Chia; Tseng, Ya-Ming; Kuo, Jen-Yuan; Lin, Cheng-I; Chen, Yao-Chang; Lin, Shing-Jong; Yeh, Hung-I

    2018-01-01

    Chronic, excessive ethanol intake has been linked with various electrical instabilities, conduction disturbances, and even sudden cardiac death, but the underlying cause for the latter is insufficiently delineated. We studied surface electrocardiography (ECG) in a community-dwelling cohort with moderate-to-heavy daily alcohol intake (grouped as >90g/day, ≤90g/day, and nonintake). Compared with nonintake, heavier alcohol users showed markedly widened QRS duration and higher prevalence of QRS fragmentation (64.3%, 50.9%, and 33.7%, respectively, χ 2 12.0, both pchronically given a 4% or 6% alcohol diet and showed dose-related slower action potential upstroke, reduced resting membrane potential, and disorganized or decreased intraventricular conduction (all pChronic excessive alcohol ingestion is associated with dose-related phenotypic intraventricular conduction disturbances and QRS fragmentation that can be recapitulated in mice. The mechanisms may involve suppressed gap junction and sodium channel functions, together with enhanced cardiac fibrosis that may contribute to arrhythmogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis, characterization and DC conductivity studies of conducting polyaniline/PVA/Fly ash polymer composites

    Science.gov (United States)

    Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.

    2018-05-01

    The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.

  5. [Conduct disorders in seven-year-old children--results of ELSPAC study. 2. Risk factors].

    Science.gov (United States)

    Kukla, L; Hrubá, D; Tyrlík, M; Matejová, H

    2008-01-01

    Conduct disorders related to hyperactivity and significant attention deficit are caused by several types of risk factors-genetic, biological, environmental and psychosocial. A cohort of children was followed longitudinally in a prospective study during the pregnancy and childhood (ELSPAC). In the age of 7 years, marked behavioural divergences were described in 4,4% of children by their attending physicians. These children were also more often afflicted by other pathological symptoms (hyperactivity, sleep and psychomotor disorders). From the data collected from parents and physicians in the previous phases of investigation we selected possible risk factors which affect the prenatal and postnatal periods: prenatal exposure of children to smoking, alcohol, chemical substances, prenatal development complications, the level of education of parents, family dysfunction, alcoholism of both parents, conflicts with the police, mother's disturbed mental health. In the sample of 3752 children from the city of Brno, no behavioural divergence was found in 96.5% of cases. The presence of one or two of the four observed divergences occurred in 3.2% and 3 to 4 conduct disorder symptoms occurred in 0.3% children, significantly more often in boys. The children with conduct disorders compared to the children with no symptoms had significantly lower average birthweight, lower head circumference, their mothers had more often lower education, smoked and had psychological problems in childhood and as adults and the fathers had more often conflicts with the law. The ELSPAC study did not have the methodological possibility of studying the genetic-environmental interactions; nevertheless it contributes to the evidence supporting that some factors can negatively effect the foetal development and the unfavourable family environment can participate in the development of conduct disorders which can progress during lifetime.

  6. Empowerment of Government Public Relations Office Post Restructuring ( Case Study on Informatics and Public Relations Office of Jakarta City Administration)

    OpenAIRE

    Patrianti, Tria

    2011-01-01

    This research aims to seek better understanding on the empowerment of the public relations office following the restructuring conducted by Jakarta City Administration. Involving 11 respondents, the research utilizes qualitative research method with case study approach.The background issues in the research are as followed: (1) Why the role and function of public relations office at Jakarta Administration remain insignificant regardless of the restructuring; (2) What the public relations offi...

  7. Conducting feasibilities in clinical trials: An investment to ensure a good study

    Directory of Open Access Journals (Sweden)

    Viraj Rajadhyaksha

    2010-01-01

    Full Text Available Conducting clinical trial feasibility is one of the first steps in clinical trial conduct. This process includes assessing internal and environmental capacity, alignment of the clinical trial in terms of study design, dose of investigational product, comparator, patient type, with the local environment and assessing potential of conducting clinical trial in a specific country. A robust feasibility also ensures a realistic assessment and capability to conduct the clinical trial. For local affiliates of pharmaceutical organizations, and contract research organizations, this is a precursor to study placement and influences the decision of study placement. This article provides details on different types of feasibilities, information which is to be included and relevance of each. The article also aims to provide practical hands-on suggestions to make feasibilities more realistic and informative.

  8. Conducting feasibilities in clinical trials: an investment to ensure a good study.

    Science.gov (United States)

    Rajadhyaksha, Viraj

    2010-07-01

    Conducting clinical trial feasibility is one of the first steps in clinical trial conduct. This process includes assessing internal and environmental capacity, alignment of the clinical trial in terms of study design, dose of investigational product, comparator, patient type, with the local environment and assessing potential of conducting clinical trial in a specific country. A robust feasibility also ensures a realistic assessment and capability to conduct the clinical trial. For local affiliates of pharmaceutical organizations, and contract research organizations, this is a precursor to study placement and influences the decision of study placement. This article provides details on different types of feasibilities, information which is to be included and relevance of each. The article also aims to provide practical hands-on suggestions to make feasibilities more realistic and informative.

  9. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    Science.gov (United States)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  10. Solitons and polarons in quasi-one dimensional conducting polymers and related materials

    International Nuclear Information System (INIS)

    Campbell, D.K.

    1983-01-01

    In recent years it has become increasingly appreciated that fundamentally nonlinear excitations - solitons - play an essential role in an incredible variety of natural systems. These solitons, which frequently exhibit remarkable stability under interactions and perturbations, often dominate the transport, response, or structural properties of the systems in which they occur. In this article, we present an introduction to the solitons that occur in quasi-one-dimensional conducting polymers (synmetals) and related systems. The relevance of this subject to molecular electronic devices is twofold. First, many of these materials have molecular structures similar to possible prototype molecular switches. Second, to understand in detail how a molecular electronic device could work, it is essential to have a broad perspective on the nature of possible excitations in a variety of natural and synthetic molecular materials. 51 references

  11. Influence of Polyethylene Glycol (PEG in CMC-NH4BR Based Polymer Electrolytes: Conductivity and Electrical Study

    Directory of Open Access Journals (Sweden)

    Nur Khalidah Zainuddin

    2017-04-01

    Full Text Available The present work was carried with new type and promising polymer electrolytes system by development of carboxylmethylcellulose (CMC doped NH4Br and plasticized with polyethylene glycol (PEG. The sample was successfullyprepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity andthermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedancespectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable forthe conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, ε* and complex electrical modulus, M* of the sample at different temperature.

  12. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study.

    Science.gov (United States)

    Zhang, J; Liu, H J; Cheng, L; Wei, J; Liang, J H; Fan, D D; Jiang, P H; Shi, J

    2017-07-04

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes (α-, β-, γ-, δ- and ζ-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the α-phosphorene exhibits considerable anisotropic thermal transport, while it is less obvious in the other four phosphorene allotropes. The highest thermal conductivity is found in the β-phosphorene, followed by the δ-, γ- and ζ-phase. The much lower thermal conductivity of the ζ-phase can be attributed to its relatively complex atomic configuration. It is expected that the rich thermal transport properties of phosphorene allotropes can have potential applications in the thermoelectrics and thermal management.

  13. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  14. 21 CFR 7.87 - Records related to opportunities for presentation of views conducted before report of criminal...

    Science.gov (United States)

    2010-04-01

    ... of views conducted before report of criminal violation. 7.87 Section 7.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ENFORCEMENT POLICY Criminal... criminal violation. (a) Records related to a section 305 opportunity for presentation of views constitute...

  15. Conductivity studies on commercially available proton-conducting membranes with different equivalent weight

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Two perfluorosulfonic acid membranes, Nafion{sup R} 105 and Nafion{sup R} 115 with the same thickness but different equivalent weights (EW = 1000 g/eq. resp. 1100 g/eq.) were characterised by conductivity measurements at different water vapour activities in the temperature range of 25-70{sup o}C. The results demonstrate that a lower membrane equivalent weight opens the possibility to obtain the needed proton conductivity at lower water vapour activity. This is especially important for those fuel cell applications, in which the cell is operated without external humidification of the fuel gases. (author) 5 figs., 5 refs.

  16. Quantum conductance staircase of holes in silicon nanosandwiches

    Directory of Open Access Journals (Sweden)

    Nikolay T. Bagraev

    2017-03-01

    Full Text Available The results of studying the quantum conductance staircase of holes in one-dimensional channels obtained by the split-gate method inside silicon nanosandwiches that are the ultra-narrow quantum well confined by the delta barriers heavily doped with boron on the n-type Si (100 surface are reported. Since the silicon quantum wells studied are ultra-narrow (~2 nm and confined by the delta barriers that consist of the negative-U dipole boron centers, the quantized conductance of one-dimensional channels is observed at relatively high temperatures (T>77 K. Further, the current-voltage characteristic of the quantum conductance staircase is studied in relation to the kinetic energy of holes and their sheet density in the quantum wells. The results show that the quantum conductance staircase of holes in p-Si quantum wires is caused by independent contributions of the one-dimensional (1D subbands of the heavy and light holes. In addition, the field-related inhibition of the quantum conductance staircase is demonstrated in the situation when the energy of the field-induced heating of the carriers become comparable to the energy gap between the 1D subbands. The use of the split-gate method made it possible to detect the effect of a drastic increase in the height of the quantum conductance steps when the kinetic energy of holes is increased; this effect is most profound for quantum wires of finite length, which are not described under conditions of a quantum point contact. In the concluding section of this paper we present the findings for the quantum conductance staircase of holes that is caused by the edge channels in the silicon nanosandwiches prepared within frameworks of the Hall geometry. This longitudinal quantum conductance staircase, Gxx, is revealed by the voltage applied to the Hall contacts, with the plateaus and steps that bring into correlation respectively with the odd and even fractional values.

  17. Thermal conductivity of sedimentary rocks - selected methodological, mineralogical and textural studies

    Energy Technology Data Exchange (ETDEWEB)

    Midttoemme, Kirsti

    1997-12-31

    The thermal conductivity of sedimentary rocks is an important parameter in basin modelling as the main parameter controlling the temperature within a sedimentary basin. This thesis presents measured thermal conductivities, mainly on clay- and mudstone. The measured values are compared with values obtained by using thermal conductivity models. Some new thermal conductivity models are developed based on the measured values. The values obtained are less than most previously published values. In a study of unconsolidated sediments a constant deviation was found between thermal conductivities measured with a needle probe and a divided bas apparatus. Accepted thermal conductivity models based on the geometric mean model fail to predict the thermal conductivity of clay- and mudstone. Despite this, models based on the geometric mean model, where the effect of porosity is taken account of by the geometric mean equation, seem to be the best. Existing models underestimate the textural influence on the thermal conductivity of clay- and mudstone. The grain size was found to influence the thermal conductivity of artificial quartz samples. The clay mineral content seems to be a point of uncertainty in both measuring and modelling thermal conductivity. A good universal thermal conductivity model must include many mineralogical and textural factors. Since this is difficult, different models restricted to specific sediment types and textures are suggested to be the best solution to obtain realistic estimates applicable in basin modelling. 243 refs., 64 figs., 31 tabs.

  18. MECHANISM OF BORAX CRYSTALLIZATION USING CONDUCTIVITY METHOD

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    The kinetics of crystal growth of borax has been studied by using conductivity method at temperature of 25 °C and at various relative supersaturations. It was found that the growth rate increases with increasing supersaturation. At low concentration, growth occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating.     Keywords: borax; growth rate; crystallization; conductivity method

  19. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  20. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  1. Guidelines for the conduction of follow-up studies measuring injury-related disability

    NARCIS (Netherlands)

    van Beeck, Ed F.; Larsen, Claus F.; Lyons, Ronan A.; Meerding, Willem-Jan; Mulder, Saakje; Essink-Bot, Marie-Louise

    2007-01-01

    BACKGROUND: Scientific knowledge on functional outcome after injury is limited. During the past decade, a variety of measures have been used at various moments in different study populations. Guidelines are needed to increase comparability between studies. METHODS: A working group of the European

  2. Experimental and modeling study of forest fire effect on soil thermal conductivity

    Science.gov (United States)

    Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett

    2016-01-01

    An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....

  3. Conductivity, XRD, and FTIR studies of New Mg2+-ion-conducting solid polymer electrolytes: [PEG: Mg(CH3COO)2

    International Nuclear Information System (INIS)

    Polu, Anji Reddy; Kumar, Ranveer; Causin, Valerio; Neppalli, Ramesh

    2011-01-01

    Solid polymer electrolytes based on poly (ethylene glycol) (PEG) doped with Mg(CH 3 COO) 2 have been prepared by using the solution-casting method. The X-ray diffraction patterns of PEG with Mg(CH 3 COO) 2 salt indicated a decrease in the degree of crystallinity with increasing concentration of the salt. The complexation of Mg(CH 3 COO) 2 salt with the polymer was confirmed by using Fourier transform infrared spectroscopy (FTIR) studies. The ionic conductivity was measured for the [PEG: Mg(CH 3 COO) 2 ] system in the frequency range 50 Hz - 1 MHz. The addition of Mg salt was found to improve the ionic conductivity significantly. The 15-wt-% Mg(CH 3 COO) 2 -doped system had a maximum conductivity of 1.07 x 10 -6 S/cm at 303 K. The conductance spectrum shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the ionic conductivity reveals the conduction mechanism to be an Arrhenius-type thermally activated process.

  4. Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures.

    Science.gov (United States)

    Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2017-12-26

    The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.

  5. INVESTIGATIVE RESEARCH PROJECTS RELATED TO THE TOHOKU EARTHQUAKE (THE GREAT EAST JAPAN EARTHQUAKE) CONDUCTED IN FUKUSHIMA.

    Science.gov (United States)

    Yamamoto, Toshiyuki; Hashimoto, Yasuhiro; Yoshida, Masayuki; Ohno, Kikuo; Ohto, Hitoshi; Abe, Masafumi

    2015-01-01

    On March 11(th) 2011, the Tohoku region of Japan was struck by catastrophic disasters. Thousands of people were killed due to a magnitude 9.0 earthquake and its subsequent tsunami. Furthermore, a serious nuclear crisis occurred in Fukushima Prefecture as a result of the disasters, and an emergency evacuation was ordered to people living near the nuclear power plants. There was a lot of anxiety regarding lost families as well as the influences of radioactivity on the health of people and their children. Based on these urgent and uncertain situations, a number of research projects were developed at many institutes both inside and outside Fukushima. We herein report the investigative research projects related to the Tohoku Earthquake (The Great East Japan Earthquake) conducted after the disasters. The research projects were reviewed by the Institutional Review Board in Fukushima Medical University during the two years following the disasters. The research projects conducted in universities other than Fukushima Medical University were also examined using questionnaire analysis. Among the research projects conducted in Fukushima Medical University (n=424), 7% (n=32) were disaster-related investigative research. The mean duration planned to pursue the projects was 25.5 months. Among these projects, those focusing on the health of Fukushima citizens were most common (n=9), followed by the influence of chronic exposure of radiation on chronic inflammatory disorders (n=6), and the mental health of Fukushima citizens (n=5). They were carefully reviewed for the purpose, suitability, and necessity from ethical as well as scientific viewpoints. The majority of the research projects focused on the effects of the Tohoku Earthquake and/or chronic exposure to low-dose radioactivity on the health of children and pregnant women, as well as on various disorders, such as mental health and chronic inflammatory diseases. On the other hand, among 58 projects we collected from 22

  6. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  7. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Liliental-Weber, Z.; Gullikson, E.M. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.

  8. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    International Nuclear Information System (INIS)

    Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Gullikson, E.M.

    1997-01-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties

  9. Contextualising case studies in entrepreneurship: A tandem approach to conducting a longitudinal cross-country case study

    DEFF Research Database (Denmark)

    Chetty, S. K.; Partanen, J.; Rasmussen, Erik Stavnsager

    2014-01-01

    Using predictive and effectuation logics as a framework, this research note explains how case study research was conducted to demonstrate rigour and relevance. The study involves a longitudinal cross-country case study on small and medium-sized firm growth and networks undertaken by research teams...... in three countries (Finland, Denmark and New Zealand) involving 33 firms. This research note outlines the implications of this research and provides valuable guidance and reflections upon opportunities for future research regarding the conduct of contextual studies in entrepreneurship without compromising...

  10. MECHANISM OF BORAX CRYSTALLIZATION USING CONDUCTIVITY METHOD

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The kinetics of crystal growth of borax has been studied by using conductivity method at temperature of 25 °C and at various relative supersaturations. It was found that the growth rate increases with increasing supersaturation. At low concentration, growth occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating.     Keywords: borax; growth rate; crystallization; conductivity method

  11. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  12. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.

    Science.gov (United States)

    Lenin, Ramanujam; Joy, Pattayil Alias

    2017-11-15

    To study the role of unsaturation in the surfactant molecule on the thermal conductivity of magnetite nanofluids, four different fatty acid (stearic, oleic, linoleic, and linolenic acids with different degree of unsaturation) coated magnetite nanoparticles of comparable size are prepared and dispersed in toluene. It is found that the nanofluid with the saturated fatty acid coated nanoparticles show larger viscosity than the fluid with the unsaturated fatty acid coated particles at all concentrations. Thermal conductivity studies show enhancement only above a critical concentration for all fluids. The critical concentration for thermal conductivity enhancement varies with the surfactant, possibly due to the difference in the degree of aggregation of the nanoparticles in the fluid, because of the difference in the conformation of the surfactant molecules on the nanoparticle's surface. The experimental thermal conductivity follows the Maxwell model at higher concentrations. From the overall studies, it is observed that the thermal conductivity of the fluids with aggregated or assembled nanoparticles shows slightly larger enhancement than that of the fluids with isolated particles. However, in the presence of a magnetic field, the fluids with isolated nanoparticles showed relatively larger enhancement, possibly due to the easy response of the isolated magnetite nanoparticles to the applied field. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  14. Comparative study of electron conduction in azulene and naphthalene

    Indian Academy of Sciences (India)

    Wintec

    tional or electronic devices. Recent advances in experi- mental techniques have allowed ... stimulates us to study the electronic conduction in azulene molecule and to compare that with its isomer, naphthalene. ..... ernment of India, for funding and (SD) acknowledges CSIR,. Government of India, for a research fellowship.

  15. Phrenic nerve conduction studies: normative data and technical aspects

    Directory of Open Access Journals (Sweden)

    Analucia Abreu Maranhão

    Full Text Available ABSTRACT Objective: The aim of the present study was to define normative data of phrenic nerve conduction parameters of a healthy population. Methods: Phrenic nerve conduction studies were performed in 27 healthy volunteers. Results: The normative limits for expiratory phrenic nerve compound muscle action potential were: amplitude (0.47 mv - 0.83 mv, latency (5.74 ms - 7.10 ms, area (6.20 ms/mv - 7.20 ms/mv and duration (18.30 ms - 20.96 ms. Inspiratory normative limits were: amplitude (0.67 mv - 1.11 mv, latency (5.90 ms - 6.34 ms, area (5.62 ms/mv - 6.72 ms/mv and duration (13.77 ms - 15.37 ms. Conclusion: The best point of phrenic nerve stimulus in the neck varies among individuals between the medial and lateral border of the clavicular head of the sternocleidomastoid muscle and stimulation of both sites, then choosing the best phrenic nerve response, seems to be the appropriate procedure.

  16. Phrenic nerve conduction studies: normative data and technical aspects.

    Science.gov (United States)

    Maranhão, Analucia Abreu; Carvalho, Sonia Regina da Silva; Caetano, Marcelo Ribeiro; Alamy, Alexandre Hofke; Peixoto, Eduardo Mesquita; Filgueiras, Pedro Del Esporte Peçanha

    2017-12-01

    The aim of the present study was to define normative data of phrenic nerve conduction parameters of a healthy population. Phrenic nerve conduction studies were performed in 27 healthy volunteers. The normative limits for expiratory phrenic nerve compound muscle action potential were: amplitude (0.47 mv - 0.83 mv), latency (5.74 ms - 7.10 ms), area (6.20 ms/mv - 7.20 ms/mv) and duration (18.30 ms - 20.96 ms). Inspiratory normative limits were: amplitude (0.67 mv - 1.11 mv), latency (5.90 ms - 6.34 ms), area (5.62 ms/mv - 6.72 ms/mv) and duration (13.77 ms - 15.37 ms). The best point of phrenic nerve stimulus in the neck varies among individuals between the medial and lateral border of the clavicular head of the sternocleidomastoid muscle and stimulation of both sites, then choosing the best phrenic nerve response, seems to be the appropriate procedure.

  17. Study of the conductivity of a metallic tube by analysing the damped fall of a magnet

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V; Hernandez-Lopez, A; Flores, A G; Zazo, M

    2004-01-01

    The fall of a magnet through a hollow conducting tube is described. Although this experiment is well known, a detailed treatment by means of a circuit analysis allows us to relate the conductivity of the tube to the characteristic parameters of the experiment

  18. Study of temperature-dependent charge conduction in silicon-nanocrystal/SiO_2 multilayers

    International Nuclear Information System (INIS)

    Mavilla, Narasimha Rao; Chavan, Vinayak; Solanki, Chetan Singh; Vasi, Juzer

    2016-01-01

    Silicon-nanocrystals (Si-NCs) realized by SiO_x _ 8 MV/cm; independent of temperature), while for lower electric fields (5–8 MV/cm) at higher temperatures, the trap-related Generalized Poole–Frenkel (GPF) is dominant. This signified the role of traps in modifying the conduction in bulk ICPCVD SiO_2 films. We then present the conduction in ML samples. For multilayer samples with SiO_2 sublayer thickness of 1.5 nm and 2.5 nm, Direct Tunneling (DT) is observed to be dominant, while for SiO_2 sublayer thickness of 3.5 nm, Space Charge Limited Conduction (SCLC) with exponential trap distribution is found to be the dominant conduction mechanism. This signifies the role of traps in modifying the conduction in Si-NC multilayer samples and SiO_2 sublayer thickness dependence. - Highlights: • Electrical conduction in SiO_2 film & Si-nanocrystal layers (Si-NCs) is reported. • SiO_2/SiO_x multilayer based Si-NCs were realized by Inductively Coupled plasma CVD. • For SiO_2 film, Fowler–Nordheim tunneling & Generalized Poole–Frenkel are observed. • For Si-NCs with thin SiO_2 sublayers (< 2.5 nm) Direct Tunneling is dominant. • For Si-NCs with 3.5 nm SiO_2 sublayers Space Charge Limited Conduction is dominant.

  19. Study of conduction aphasia by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Mikio; Harigawa, Yasuo; Kawarabayashi, Takeshi; Hirai, Shunsaku; Tamada, Junpei.

    1988-04-01

    We reported two cases of conduction aphasia with distinctive language disorder from early stage of stroke, as well as their cerebral blood flow and oxygen consumption investigated with PET. The case was a 72-year-old right handed man whose speech disturbance began acutely. On admission, neurological examination revealed hand pronation sign on the right and speech disturbance. Other neurological findings including cortical functions were normal. Brain CT scan showed low density area in the white matter of the left supramarginal gyrus. The diagnosis was cerebral infarction. The case 2 was a 64-year-old right handed man. He suffered right hemiparesis 2 months before. Neurological examination revealed mild right hemiparesis and speech disturbance. Other cortical functions were noncontributory. Brain CT scan showed old subcortical infarction of the left frontal lobe and new cerebral infarction. with supramarginal gyrus. The low density area of the supramarginal cortex extended into the subcortical white matter. The language performances in these two cases were similar. Two patients were definitely fluent, but the verbal output was contaminated by paraphasias which were predominantly literal. They performed poorly when attempting to repeat despite good comprehension. Thus, the primary characteristics of conduction aphasia were present. PET studies resulted as follows. 1) rCBF reduced 36 % in the supramarginal cortex, 50 % in the white matter. 2) rCMRO/sub 2/ reduced 37 % in the supramarginal cortex, 45 % in the white matter. 3) The CBF and the CMRO/sub 2/ images indicated that cerebral blood flow and oxygen consumption reduced in wider range of area than that shown by brain CT. These results indicated that not only the cortex but also the white matter were damaged in conduction aphasia and several methods including PET should be used to determine the locus of abnormality in conduction aphasia.

  20. 42 CFR 90.7 - Decision to conduct health effects study.

    Science.gov (United States)

    2010-10-01

    ... occurred, and any possible health effects resulting from such exposure. (b) Should ATSDR decide, in its... 42 Public Health 1 2010-10-01 2010-10-01 false Decision to conduct health effects study. 90.7... ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES ADMINISTRATIVE...

  1. Saturated hydraulic conductivity in relation to physical properties of soils in the Nsukka Plains, SE Nigeria

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1994-05-01

    The objective of the study is to develop and validate statistical models for estimating the saturated hydraulic conductivity of soils with high water intake rates from more easily-determined properties and to test the hypothesis that it is equal to Philip transmissivity term and the steady infiltration rate. The results of the study show that the dominant physical property influencing saturated hydraulic conductivity of the investigated soils is the macroporosity. 37 refs, 6 figs, 5 tabs

  2. Good news or bad news: Conducting sentiment analysis on Dutch texts to distinguish between positive and negative relations

    NARCIS (Netherlands)

    van Atteveldt, W.H.; Kleinnijenhuis, J.; Ruigrok, N.; Schlobach, S.

    2008-01-01

    Many research questions in political communication can be answered by representing text as a network of positive or negative relations between actors and issues such as conducted by semantic network analysis. This article presents a system for automatically determining the polarity

  3. The Korean Study of Women’s Health-Related Issues (K-Stori: Rationale and Study Design

    Directory of Open Access Journals (Sweden)

    Ha Na Cho

    2017-06-01

    Full Text Available Abstract Background Measures to address gender-specific health issues are essential due to fundamental, biological differences between the sexes. Studies have increasingly stressed the importance of customizing approaches directed at women’s health issues according to stages in the female life cycle. In Korea, however, gender-specific studies on issues affecting Korean women in relation to stages in their life cycle are lacking. Accordingly, the Korean Study of Women’s Health-Related Issues (K-Stori was designed to investigate life cycle-specific health issues among women, covering health status, awareness, and risk perceptions. Methods K-Stori was conducted as a nationwide cross-sectional survey targeting Korean women aged 14–79 years. Per each stage in the female life cycle (adolescence, childbearing age, pregnancy & postpartum, menopause, and older adult stage, 3000 women (total 15,000 were recruited by stratified multistage random sampling for geographic area based on the 2010 Resident Registration Population in Korea. Specialized questionnaires per each stage (total of five were developed in consultation with multidisciplinary experts and by reflecting upon current interests into health among the general population of women in Korea. This survey was conducted from April 1 to June 31, 2016, at which time investigators from a professional research agency went door-to-door to recruit residents and conducted in-person interviews. Discussion The study’s findings may help with elucidating health issues and unmet needs specific to each stage in the life cycle of Korean women that have yet to be identified in present surveys.

  4. Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology

    Directory of Open Access Journals (Sweden)

    S. Kalia

    2014-04-01

    Full Text Available Gum ghatti-cl-poly(acrylamide-aniline interpenetrating network (IPN was synthesized by a two-step aqueous polymerization method, in which aniline monomer was absorbed into the network of gum ghatti-cl-poly(acrylamide and followed by a polymerization reaction between aniline monomers. Initially, semi-IPN based on acrylamide and gum ghatti was prepared by free-radical copolymerization in aqueous media with optimized process parameters, using N,N'-methylenebis-acrylamide, as cross-linker and ammonium persulfate, as an initiator system. Optimum reaction conditions affording maximum percentage swelling were: solvent [mL] =12, Acrylamide (AAm [mol•L–1] = 1.971, Ammonium peroxydisulfate (APS [mol•L–1] = 0.131•10–1, N,N'-methylene-bis-acrylamide (MBA [mol•L–1] = 0.162•10–1, reaction time [min] = 210, temperature [°C] = 100 and pH = 7.0. The resulting IPN was doped with different protonic acids. The effect of the doping has been investigated on the conductivity and surface morphology of the IPN hydrogel. The maximum conductivity was observed with 1.5N HClO4 concentration. The morphological, structural and electrical properties of the candidate polymers were studied using scanning electron micrscopy (SEM, Fourier transform infrared spectroscopy FTIR and two-probe method, respectively.

  5. Experiences from a pilot study on how to conduct a qualitative multi-country research project regarding use of antibiotics in Southeast Europe

    DEFF Research Database (Denmark)

    Kaae, Susanne; Sporrong, Sofia Kälvemark; Traulsen, Janine Morgall

    2016-01-01

    regarding how to conduct these types of research projects by evaluating a pilot study of the project. METHODS: Local data collectors conducted the study according to a developed protocol and evaluated the study with the responsible researcher-team from University of Copenhagen. The pilot study focused......BACKGROUND: In 2014, a qualitative multi-country research project was launched to study the reasons behind the high use of antibiotics in regions of Southeast Europe by using previously untrained national interviewers (who were engaged in other antibiotic microbial resistance-related investigations......) to conduct qualitative interviews with local patients, physicians and pharmacists. Little knowledge exists about how to implement qualitative multi-country research collaborations involving previously untrained local data collectors. The aim of this paper was therefore to contribute to the knowledge...

  6. Is Cannabis Use Related to Road Crashes? A Study of Long ...

    African Journals Online (AJOL)

    Factors associated with driving under the influence of cannabis (DUIC) and related road crashes among 422 commercial drivers were studied. A multivariate analysis was conducted to understand the associations between risk factors and DUIC and car crashes respectively. Young age, OR = 3.6, 95% CI 1.9-7.6; cannabis ...

  7. Review of The Conduct of Inquiry in International Relations

    OpenAIRE

    McArthur, Daniel

    2011-01-01

    Book reviews in this journal usually proceed by considering the value of the book in question for Dewey scholarship. In this case I would rather say that this book is of interest to Dewey Scholars. Jackson's general project is heavily informed by Dewey's pluralistic brand of pragmatism. As Jackson notes “Dewey's Logic... stand[s] firmly in the tradition leading to this book” (216). Dewey scholars will greet Jackson's extension of this approach to the study of international relations warmly.

  8. Tritium conductivity and isotope effect in proton-conducting perovskites

    International Nuclear Information System (INIS)

    Mukundan, R.; Brosha, E.L.; Birdsell, S.A.; Costello, A.L.; Garzon, F.H.; Willms, R.S.

    1999-01-01

    The tritium ion conductivities of SrZr 0.9 Yb 0.1 O 2.95 and BaCe 0.9 Yb 0.1 O 2.95 have been measured by ac impedance analysis. The high tritium conductivity of these perovskites could potentially lead to their application as an electrochemical membrane for the recovery of tritium from tritiated gas streams. The conductivities of these perovskites, along with SrCe 0.95 Yb 0.05 O 2.975 , were also measured in hydrogen- and deuterium-containing atmospheres to illustrate the isotope effect. For the strontium zirconate and barium cerate samples, the impedance plot consists of two clearly resolved arcs, a bulk and a grain boundary arc, in the temperature range 50--350 C. However, for the strontium cerate sample, the clear resolution of the bulk conductivity was not possible and only the total conductivity was measurable. Thus, the isotope effect was clearly established only for the strontium zirconate and barium cerate samples. The decrease in bulk conductivity with increasing isotope mass was found to be a result of an increase in the activation energy for conduction accompanied by a decrease in the pre-exponential factor. Since the concentration of the mobile species (H+, D+, or T+) should remain relatively constant at T < 350 C, this increase in activation energy is directly attributable to the increased activation energy for the isotope mobility

  9. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  10. Exploring novice nurses' needs regarding their work-related health: a qualitative study

    NARCIS (Netherlands)

    Ketelaar, Sarah M.; Nieuwenhuijsen, Karen; Frings-Dresen, Monique H. W.; Sluiter, Judith K.

    2015-01-01

    To investigate Dutch novice nurses' experiences and needs regarding occupational health support to prevent work-related health problems and to keep them well-functioning. A qualitative interview study was conducted with six nursing students and eight newly qualified nurses. The interviews covered

  11. Cardiovascular risk factors associated with age-related macular degeneration: the Tromso Study

    DEFF Research Database (Denmark)

    Erke, M. G.; Bertelsen, G.; Peto, T.

    2014-01-01

    PurposeTo examine associations between cardiovascular risk factors and age-related macular degeneration (AMD). MethodsA population-based, cross-sectional study of Caucasians aged 65-87years was conducted in Norway in 2007/2008. Retinal photographs were graded for AMD. Multivariable logistic...

  12. Study of growth mechanism of conducting polymers by pulse radiolysis

    International Nuclear Information System (INIS)

    Coletta, Cecilia

    2016-01-01

    Today conductive polymers have many applications in several devices. For these reasons they have received much attention in recent years. Despite intensive research, the mechanism of conducting polymers growth is still poorly understood and the methods of polymerization are limited to two principal ways: chemical and electrochemical synthesis. On the other hand, the complex properties of polymers can be controlled only if a good knowledge of polymerization process is acquired. In this case, it is possible to control the process during the synthesis (functionalization, hydrophilicity, chain length, doping level), and consequently to improve the conductive properties of the synthesized polymers. Water radiolysis represents an easy and efficient method of synthesis comparing to chemical and electrochemical polymerization routes. It enables the polymerization under soft conditions: ambient temperature and pressure, without any external dopant. Among all conductive polymers, poly(3, 4-ethylenedioxy-thiophene) (PEDOT, a derivative of poly-thiophene) and poly-Pyrrole (PPy) have gained some large scale applications for their chemical and physical proprieties. The aim of the present work was the synthesis of PEDOT and PPy in aqueous solution and the study of their growth mechanism by pulsed radiolysis. Thanks to the electron accelerator ELYSE, the use of pulsed radiolysis coupled with time-resolved absorption spectroscopy allowed to study the kinetics of polymerization. The first transient species involved in the mechanism were identified by time resolved spectroscopy and the rate constants were determined. First, the reaction of hydroxyl radicals onto EDOT and Py monomers was studied, as well as the corresponding radiation induced polymerization. Then, the study was transposed to others oxidizing radicals such as CO3 .- , N 3 . and SO 4 .- at different pHs. This approach allowed to check and to highlight the influence of oxidizing species onto the first transient species

  13. The Electronic Thermal Conductivity of Graphene.

    Science.gov (United States)

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-04-13

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

  14. Exploring the relationship difficulties of Iranian adolescents with conduct disorder: a qualitative content analysis.

    Science.gov (United States)

    Salmanian, Maryam; Ghobari-Bonab, Bagher; Alavi, Seyyed-Salman; Jokarian, Ali-Akbar; Mohammadi, Mohammad-Reza

    2016-01-20

    Conduct disorder is characterized by aggressive behaviors, deceitfulness or theft, destruction of property and serious violations of rules prior to age 18 years. The object relations theory provides an integrative model to understand the problems of conduct disorder, and proposes that child-caregiver relationships develop the internal working models of self and others. The aim of this study was to explore the relationship difficulties of Iranian adolescents with conduct disorder. This study was a qualitative directed content analysis research. The in-depth interview was conducted with nine male adolescents aged 12-17 years who had conduct disorder with or without substance use disorder at the reformatory in Tehran. All tape-recorded data were fully transcribed and analyzed. The relations with different objects including parents, siblings, relatives, friends, peers, teachers, other school members, colleagues and employers were analyzed, and four themes were extracted: 1) Object relations based on insecurity and fear; 2) Object relations based on inability and abjection; 3) Object relations based on pessimism and mistrust; 4) Object relations based on non-maintenance of boundaries and limits. The importance of object relations and attachment problems in adolescents with conduct disorder, and their need to participate in special intervention programs should be reconsidered.

  15. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  16. Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage

    Science.gov (United States)

    Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu

    2018-05-01

    Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.

  17. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.

    Science.gov (United States)

    Bilić, A; Sanvito, S

    2013-07-10

    Pyrene, the smallest two-dimensional mesh of aromatic rings, with various terminal thiol substitutions, has been considered as a potential molecular interconnect. Charge transport through two terminal devices has been modeled using density functional theory (with and without self interaction correction) and the non-equilibrium Green's function method. A tetra-substituted pyrene, with dual thiol terminal groups at opposite ends, has been identified as an excellent candidate, owing to its high conductance, virtually independent of bias voltage. The two possible extensions of its motif generate two series of graphene nanoribbons, with zigzag and armchair edges and with semimetallic and semiconducting electron band structure, respectively. The effects related to the wire length and the bias voltage on the charge transport have been investigated for both sets. The conductance of the nanoribbons with a zigzag edge does not show either length or voltage dependence, owing to an almost perfect electron transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature.

  18. Feasibility study of injection mouldable conductive plastic for the hearing aid applications

    DEFF Research Database (Denmark)

    Merca, Timea D.den; Lindberg, Torbjörn; Islam, Aminul

    2016-01-01

    Electrically conductive polymers can combine the advantage of plastic processing with the unique electrical properties which are usually found in metals. This article presents a feasibility study of an electrically conductive plastic for hearing aid antennas. Focus will be placed to critically......) 3D measuring system in comparison with an ideal copper antenna at 2.4 GHz. An analysis of the association between the conductive plastic processing parameters in regards to its electrical performance is discussed and evaluated....

  19. Stomatal conductance, mesophyll conductance, and trans piration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought

    NARCIS (Netherlands)

    Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang

    2017-01-01

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were

  20. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  1. Behavioral trends in young children with conductive hearing loss: a case-control study.

    Science.gov (United States)

    Gouma, Panagiota; Mallis, Antonios; Daniilidis, Vasilis; Gouveris, Haralambos; Armenakis, Nikolaos; Naxakis, Stephanos

    2011-01-01

    Otitis media with effusion (OME) is a common condition affecting children and a well-known cause of conductive hearing loss that can potentially lead to speech development disorders. Recent studies, however, have demonstrated the influence of OME on development of attention disorders or social adaptation and acceptance. Hence, this study aimed to investigate the behavioral trends of children with OME based on the Achenbach test. A group of 117 patients with episodes of OME at the age of 4-5 was compared with a control group according to the Achenbach system of evaluation, by application of the Child Behavior Checklist questionnaire (CBCL). Patients suffering from OME had more anxiety/depression related disorders and attention disorders as compared with the control group. The psychological effect of OME in children of ages 6-8 is evident with anxiety and depression disorders being especially prominent among these patients.

  2. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lin, Changpeng; Rao, Zhonghao

    2017-01-01

    Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.

  3. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  4. Neural Connectivity and Immunocytochemical Studies of Anatomical Sites Related to Nauseogenic and Emetic Reflexes

    Science.gov (United States)

    Fox, Robert A. (Principal Investigator)

    1992-01-01

    The studies conducted in this research project examined several aspects of neuroanatomical structures and neurochemical processes related to motion sickness in animal models. A principle objective of these studies was to investigate neurochemical changes in the central nervous system that are related to motion sickness with the objective of defining neural mechanisms important to this malady. For purposes of exposition, the studies and research finding have been classified into five categories. These are: immunoreactivity in the brainstem, vasopressin effects, lesion studies of area postrema, role of the vagus nerve, and central nervous system structure related to adaptation to microgravity.

  5. Simulation and Experimental Study on Thermal Conductivity of [EMIM][DEP] + H_2 O + SWCNTs Nanofluids as a New Working Pairs

    Science.gov (United States)

    Li, Chang; Zhao, Zongchang; Zhang, Xiaodong; Li, Tianyu

    2018-03-01

    In this paper, the single-wall carbon nanotubes (SWCNTs) were dispersed into ionic liquid, 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), and its aqueous solution [EMIM][DEP](1) + H2O(2) to enhance the thermal conductivity of base liquids, which will be the promising working pairs for absorption heat pumps and refrigerators. The enhancement effects on thermal conductivity were studied by experiment and molecular dynamic simulation (MD) methods. The thermal conductivities of [EMIM][DEP] + SWCNTs (INF) and [EMIM][DEP](1) + H2O(2) + SWCNT(SNF) both with SWCNT mass fraction of 0.5, 1, and 2 (wt%) were measured by transient hot-wire method. The results indicate that the enhancement ratio of thermal conductivity of INF, and SNF can approach 1.30 when SWCNT is 2 (wt%). Moreover, SWCNTs has a higher enhancement ratio than multi-wall carbon nanotubes (MWCNTs). Density and thermal conductivity of [EMIM][DEP], [EMIM][DEP](1) + H2O(2), INF and SNF systems, together with self-diffusion coefficients of [EMIM]+, [DEP]-, [EMIM][DEP] and water in solution [EMIM][DEP](1) + H2O(2), were investigated by MD simulations. The results indicate that the maximum relative error between the simulated and experimental densities is about 2 %, and the simulated self-diffusion coefficient of [EMIM][DEP] is in the order of magnitude of 10^{-11} m2\\cdot s^{-1}. The average relative deviation for the simulated thermal conductivity of [EMIM][DEP](1) + H2O(2), INF and SNF from experimental ones are 23.57 %, 5 %, and 5 %, respectively. In addition, the contributions of kinetic energy, potential energy, and virial and partial enthalpy terms to thermal conductivity were also calculated. The results indicate that virial term's contribution to thermal conductivity is the maximum, which accounts for 75 % to 80 % of total thermal conductivity.

  6. Conductivity-limiting bipolar thermal conductivity in semiconductors

    Science.gov (United States)

    Wang, Shanyu; Yang, Jiong; Toll, Trevor; Yang, Jihui; Zhang, Wenqing; Tang, Xinfeng

    2015-01-01

    Intriguing experimental results raised the question about the fundamental mechanisms governing the electron-hole coupling induced bipolar thermal conduction in semiconductors. Our combined theoretical analysis and experimental measurements show that in semiconductors bipolar thermal transport is in general a “conductivity-limiting” phenomenon, and it is thus controlled by the carrier mobility ratio and by the minority carrier partial electrical conductivity for the intrinsic and extrinsic cases, respectively. Our numerical method quantifies the role of electronic band structure and carrier scattering mechanisms. We have successfully demonstrated bipolar thermal conductivity reduction in doped semiconductors via electronic band structure modulation and/or preferential minority carrier scatterings. We expect this study to be beneficial to the current interests in optimizing thermoelectric properties of narrow gap semiconductors. PMID:25970560

  7. Conducting single-molecule magnet materials.

    Science.gov (United States)

    Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro

    2018-05-11

    Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.

  8. Conductivity studies on microwave synthesized glasses

    Indian Academy of Sciences (India)

    It has been found that conductivity in these glasses changes from the predominantly 'ionic' to predominantly 'electronic' depending upon the chemical composition. ... Indian Institute of Science, Bangalore 560012, India; Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur University, ...

  9. Method and device for electromagnetic pumping by conduction of liquid metals having low electrical conductivity

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1976-01-01

    The invention is related to a method for pumping of liquid metals having a low electrical conductivity. To lower the resistance of the conductive spire containing liquid metal to be pumped, a tape formed by a conductive metal such as copper or nickel is inserted in that spire. The tape is interrupted at the level of the air gap of the main magnetic circuit at least when the conductive spire passes through that air gap

  10. Key Health Information Technologies and Related Issues for Iran: A Qualitative Study.

    Science.gov (United States)

    Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh

    2018-01-01

    Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making.

  11. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study

    KAUST Repository

    Bilić, A

    2013-06-14

    Pyrene, the smallest two-dimensional mesh of aromatic rings, with various terminal thiol substitutions, has been considered as a potential molecular interconnect. Charge transport through two terminal devices has been modeled using density functional theory (with and without self interaction correction) and the non-equilibrium Green\\'s function method. A tetra-substituted pyrene, with dual thiol terminal groups at opposite ends, has been identified as an excellent candidate, owing to its high conductance, virtually independent of bias voltage. The two possible extensions of its motif generate two series of graphene nanoribbons, with zigzag and armchair edges and with semimetallic and semiconducting electron band structure, respectively. The effects related to the wire length and the bias voltage on the charge transport have been investigated for both sets. The conductance of the nanoribbons with a zigzag edge does not show either length or voltage dependence, owing to an almost perfect electron transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature. © 2013 IOP Publishing Ltd.

  12. The shadow of inequitable conduct in the US patent application.

    Science.gov (United States)

    Chang, Bao-Chi; Wang, Shyh-Jen

    2016-05-03

    Inequitable conduct regarding any single claim can render the entire patent unenforceable and further damage other related patents and applications in the assignee's patent portfolio. The adverse impact of inequitable conduct significantly became a litigation strategy. The US Federal Circuit (CAFC) observed that inequitable conduct as a patent litigation strategy had become a plague and thus tightened the standard for finding inequitable conduct in a case with full court judges. However, under the shadow of previous adverse impact of inequitable conduct, patent applicants may still submit many marginal related references. This study demonstrates that an applicant even prepared an information disclosure statement (IDS) as many as 50 pages. Actually, under the new standard, inequitable conduct would not further produce significant impact in the US patent system. Thus, a patent applicant need not submit marginal references but should distinguish the prior art from the current application, especially for those listed in the IDS, to avoid the novelty rejection.

  13. A study on nanocomposites made of a conducting polymer and metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.

  14. Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    2018-05-01

    Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.

  15. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  16. Experimental investigation of thermal conduction and related phenomena in a laser heated plasma

    International Nuclear Information System (INIS)

    Gray, D.R.

    1979-02-01

    Thermal conduction in plasmas is of major importance especially in controlled nuclear fusion studies. Direct measurements are rare. When the temperature gradient in a plasma becomes large enough classical thermal conduction (Heat flux q = -kΔT) no longer applies and it is thought that q is limited to some fraction of the free streaming limit qsub(m). The main experiment is the heating of a z-pinch plasma by a fast rising, intense carbon dioxide laser pulse. Electron temperature and density in time and space are diagnosed by ruby laser scattering. The profiles obtained were consistent with a flux limited to approximately 3% of the free streaming limit. Ion acoustic turbulence is observed along the temperature gradient. It is shown that the observed turbulence level is consistent with the heat flux limitation. At electron densities > 10 17 cm -3 backscattered light is observed from the plasma whose growth rate implies that it is Brillouin scattered. (author)

  17. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  18. Comparison study of different head model structures with homogeneous/inhomogeneous conductivity

    International Nuclear Information System (INIS)

    Wen, P.; Li, Y.

    2001-01-01

    Most of the human head models used in dipole localisation research, which have been reported in the literature to date, assume a simplified cranial structure wherein the head is modelled as a set of distinct homogenous tissue compartments. The inherent inhomogeneity of the tissues has so far been ignored in these models due to the difficulties involved in obtaining the conductivity characteristics with sufficiently high enough spatial resolution throughout the head. A technique for developing an inhomogeneous head model based on the generation of pseudo-conductivity values from the existing but sparse conductivity values is proposed in this paper. Comparative studies are conducted on different model structures and different mechanisms for generating the pseudo conductivities. An evaluation of the results of these studies as reported in this paper, shows that contrary to current simplifying assumptions, tissue inhomogeneity has a major influence on the computation of electrical potential distributions in the head. Brain electrical activity is spatially distributed in three dimensions in the head and evolves with time. Electroencephalography (EEG) is a widely used noninvasive technique which measures the potential distribution on the scalp caused by the brain electrical activity. A number of interesting correlations between features of the recorded EEG waveforms and various aspects of attention memory and linguistic tAS/Ks have been discovered. These correlations are estimated by comparing, for a given brain function, the recorded EEGs against the scalp potentials obtained from the computation of an electric field model of the head. The accuracy of these estimates depends not only on such factors as EEG measured errors but also, more importantly, on how closely the head model approximates the physiological head. This has spurred interest in the use of a more realistic head geometry with more accurate conductivity values which would use the detailed anatomical

  19. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  20. Prospective radiological study concerning a series of patients suffering from conductive or mixed hearing loss due to superior semicircular canal dehiscence.

    Science.gov (United States)

    Martin, Christian; Chahine, Pierre; Veyret, Charles; Richard, Céline; Prades, Jean Michel; Pouget, Jean François

    2009-08-01

    The aim of this study is to appreciate the incidence of patients with isolated conductive hearing loss with normal drum due to superior semicircular canal dehiscence (SCD). It is a prospective radiological study. Two hundred and seventy-two patients with a normal drum suffering from isolated unilateral or bilateral conductive or mixed hearing loss were included in a prospective radiological study. A high resolution computerized tomography (HRCT) was performed in all the patients. Those who were found to have a unilateral or bilateral SCD underwent further etiological, clinical, audiologic evaluation. Ten patients with conductive or mixed hearing loss were found to have a unilateral or bilateral SCD. The disease was bilateral in five cases, and most often associated with a dehiscence of the tegmen tympani on both sides, supporting the theory of the congenital nature of the disease. There was no clear correlation between symptoms and the size of the SCD. Because patients were not suffering from incapacitating vestibular symptoms, they were not operated for surgical occlusion of the SCD, and were referred to a hearing aid specialist to improve hearing. Conductive or mixed hearing loss due to SCD is relatively frequent, justifying in our opinion that a systematic HRCT be carried out before surgery of any patient with conductive hearing loss.

  1. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    Science.gov (United States)

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  2. A study of conduction aphasia by positron emission tomography

    International Nuclear Information System (INIS)

    Shoji, Mikio; Harigawa, Yasuo; Kawarabayashi, Takeshi; Hirai, Shunsaku; Tamada, Junpei.

    1988-01-01

    We reported two cases of conduction aphasia with distinctive language disorder from early stage of stroke, as well as their cerebral blood flow and oxygen consumption investigated with PET. The case was a 72-year-old right handed man whose speech disturbance began acutely. On admission, neurological examination revealed hand pronation sign on the right and speech disturbance. Other neurological findings including cortical functions were normal. Brain CT scan showed low density area in the white matter of the left supramarginal gyrus. The diagnosis was cerebral infarction. The case 2 was a 64-year-old right handed man. He suffered right hemiparesis 2 months before. Neurological examination revealed mild right hemiparesis and speech disturbance. Other cortical functions were noncontributory. Brain CT scan showed old subcortical infarction of the left frontal lobe and new cerebral infarction. with supramarginal gyrus. The low density area of the supramarginal cortex extended into the subcortical white matter. The language performances in these two cases were similar. Two patients were definitely fluent, but the verbal output was contaminated by paraphasias which were predominantly literal. They performed poorly when attempting to repeat despite good comprehension. Thus, the primary characteristics of conduction aphasia were present. PET studies resulted as follows. 1) rCBF reduced 36 % in the supramarginal cortex, 50 % in the white matter. 2) rCMRO 2 reduced 37 % in the supramarginal cortex, 45 % in the white matter. 3) The CBF and the CMRO 2 images indicated that cerebral blood flow and oxygen consumption reduced in wider range of area than that shown by brain CT. These results indicated that not only the cortex but also the white matter were damaged in conduction aphasia and several methods including PET should be used to determine the locus of abnormality in conduction aphasia. (author)

  3. Investigating Relational Aggression and Bullying for Girls' of Color in Oklahoma: A Phenomenological Study

    Science.gov (United States)

    Flynn, Gayle L.

    2016-01-01

    This qualitative research study, applying aspects of van Manen's framework for hermeneutic phenomenological research, was conducted to investigate the narratives of relationally aggressive girls of color. The study focused on nine adolescent girls of color who were ages 14-17 years old and exhibited aggressive/bullying behaviors representing the…

  4. Diabetes-related distress over the course of illness: results from the Diacourse study.

    NARCIS (Netherlands)

    Kasteleyn, M.J.; Vries, L. de; Puffelen, A.L. van; Schellevis, F.G.; Rijken, M.; Vos, R.C.; Rutten, G.E.H.M.

    2015-01-01

    Aims To investigate the relationship between diabetes duration and diabetes-related distress and to examine the impact of micro- and macrovascular complications and blood glucose-lowering treatment on this relationship. Methods We conducted a cross-sectional study in people with Type 2 diabetes who

  5. A Directory of Public Employment Relations Boards and Agencies. A Guide to the Administrative Machinery for the Conduct of Public Employee-Management Relations Within the States.

    Science.gov (United States)

    Labor-Management Services Administration (DOL), Washington, DC.

    Given the diversity of existing patterns of regulations and agencies, this directory is intended to be a guide to the administrative structure and functional responsibilities of the agencies within the various states for the conduct of public sector labor relations. It is not meant to be a statutory analysis nor does it deal with the extent of…

  6. Advantages of a cohort study on cardiac arrest conducted by nurses

    Directory of Open Access Journals (Sweden)

    Cássia Regina Vancini Campanharo

    2015-10-01

    Full Text Available AbstractOBJECTIVEIdentifying factors associated to survival after cardiac arrest.METHODAn experience report of a cohort study conducted in a university hospital, with a consecutive sample comprised of 285 patients. Data were collected for a year by trained nurses. The training strategy was conducted through an expository dialogue lecture. Collection monitoring was carried out by nurses via telephone calls, visits to the emergency room and by medical record searches. The neurological status of survivors was evaluated at discharge, after six months and one year.RESULTSOf the 285 patients, 16 survived until hospital discharge, and 13 remained alive after one year, making possible to identify factors associated with survival. There were no losses in the process.CONCLUSIONCohort studies help identify risks and disease outcomes. Considering cardiac arrest, they can subsidize public policies, encourage future studies and training programs for CPR, thereby improving the prognosis of patients.

  7. A study into psychosocial factors as predictors of work-related fatigue.

    Science.gov (United States)

    Rahman, Hanif Abdul; Abdul-Mumin, Khadizah; Naing, Lin

    2016-07-14

    To explore and determine relationship between psychosocial factors and work-related fatigue among emergency and critical care nurses in Brunei. Cross-sectional study conducted on all emergency and critical care nurses across Brunei public hospitals from February to April 2016. 201 nurses participated in the study (82% response rate). A total of 36% of the variance of chronic fatigue was explained by stress, trust in management, decision latitude, self-rated health, and work-family conflict. Burnout, self-rated health, commitment to workplace, and trust in management explained 30% of the variance of acute fatigue. Stress, work-family conflict and reward explained 28% of the variance of intershift recovery after controlling for significant sociodemographic variables. Smoking was identified as an important sociodemographic factor for work-related fatigue. Psychosocial factors were good predictors of work-related fatigue. A range of psychosocial factors were established, however more research is required to determine all possible causation factors of nurses' work-related fatigue.

  8. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  9. Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO)

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A.A., E-mail: aaadarwish@gmail.com [Department of Physics, Faculty of Education at Al-Mahweet, Sana’a University, Al-Mahwit (Yemen); Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); El-Zaidia, E.F.M.; El-Nahass, M.M. [Department of Physics, Faculty of Education, Ain Shams University, Rorxy, Cairo 11757 (Egypt); Hanafy, T.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); Department of Physics, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt); Al-Zubaidi, A.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia)

    2014-03-15

    Highlights: • The AC measurements of PbO were measured at temperature range 313–523 K. • The dielectric constants increased with temperature. • The mechanism responsible for AC conduction is electronic hopping. -- Abstract: The dielectric properties, the impedance spectroscopy and AC conductivity of bulk PbO have been investigated as a function of frequency and temperature. The measurements were carried out in the frequency range from 40 to 5 × 10{sup 6} Hz and in temperature range from 313 to 523 K. The frequency response of dielectric constant, ε{sub 1}, and dielectric loss index, ε{sub 2}, as a function of temperature were studied. The values of ε{sub 1} and ε{sub 2} were found to decrease with the increase in frequency. However, they increase with the increase in temperature. The presence of a single arc in the complex modulus spectrum at different temperatures confirms the single-phase character of the PbO. The AC conductivity exhibited a universal dynamic response: σ{sub AC} = Aω{sup s}. The AC conductivity was also found to increase with increasing temperature and frequency. The correlation barrier hopping (CBH) model was found to apply to the AC conductivity data. The calculated values of s were decreased with temperature. This behavior reveals that the conduction mechanism for PbO samples is CBH. The activation energy for AC conductivity decreases with increasing frequency. This confirms that the hopping conduction to the dominant mechanism for PbO samples.

  10. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Evren [Department of Electrical and Electronics Engineering, Mersin University, Mersin (Turkey); Eyueboglu, B Murat [Department of Electrical and Electronics Engineering, Middle East Technical University, 06531, Ankara (Turkey)

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  11. Contribution to the study of the conductivity of high purity water

    International Nuclear Information System (INIS)

    Nens, Ch.

    1964-01-01

    In this work a study is made more particularly of two points: the production of high purity water and the estimation of this purity by means of conductivity measurements. As far as water purification is concerned it is observed that the de-ionisation produced by ion exchange resins in mixed beds leads to a water having a lower conductivity than that obtained by distillation. This low conductivity however, measured at the column exit before the water comes into contact with air is not stable. In fact the carbon dioxide in the water gives rise to an equilibrium with production of the ions HCO 3 - , CO 3 -- . These ions are retained during the passage of the water through the resins. They reappear again at the column exit as a result of the displacement of the hydration equilibrium of CO 2 ; because of this the conductivity of the water increases with time. The water obtained by successive distillations does not behave in the same way because no carbon dioxide is present. Distillation is however a costly purification process on an industrial scale, especially if large quantities of water have to be treated. The measurement of these low conductivities is very delicate. The method employed makes use of a direct current and gives reproducible results if care is taken to exclude interfering electric fields by screening the apparatus. (author) [fr

  12. Transport and solid state battery characteristic studies of silver based super ion conducting glasses

    International Nuclear Information System (INIS)

    Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.

    2005-01-01

    Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances

  13. Formative study conducted in five countries to adapt the community popular opinion leader intervention.

    Science.gov (United States)

    2007-04-01

    To obtain information about the social and cultural factors related to health behaviors influencing HIV/sexually transmitted disease (STD) transmission in study communities in China, India, Peru, Russia, and Zimbabwe so that the assessment and intervention of the National Institute for Mental Health (NIMH) Collaborative HIV/STD Prevention Trial could be adapted appropriately. Field observations, focus groups, in-depth interviews with key informants, and an observation of community social dynamics were conducted as part of a rapid ethnographic assessment. All five sites reported a power dynamic tilted towards men, which rendered women particularly vulnerable to HIV and other STDs. Women's relative lack of power was exemplified by a double standard for extramarital sex, women's limited ability to negotiate sex or condom use, and sexual and physical violence against women. In all sites except Russia, extramarital sex is tolerated for men but proscribed for women. In Peru, power dynamics between men who have sex with men were tilted towards men who self-identified as heterosexual. Condom use (reported to be low across all sites) was often linked to having sex with only those perceived as high-risk partners. Regardless of site or study population, participants agreed on the following characteristics of an ideal community popular opinion leader (C-POL): respectable, credible, experienced (life and sexual), trustworthy, empathetic, well-spoken, and self-confident. The ethnographic studies provided critical information that enabled the study teams to adapt elements of the Trial in culturally appropriate ways in diverse international settings.

  14. Heat conduction in graphene: experimental study and theoretical interpretation

    International Nuclear Information System (INIS)

    Ghosh, S; Nika, D L; Pokatilov, E P; Balandin, A A

    2009-01-01

    We review the results of our experimental investigation of heat conduction in suspended graphene and offer a theoretical interpretation of its extremely high thermal conductivity. The direct measurements of the thermal conductivity of graphene were performed using a non-contact optical technique and special calibration procedure with bulk graphite. The measured values were in the range of ∼3000-5300 W mK -1 near room temperature and depended on the lateral dimensions of graphene flakes. We explain the enhanced thermal conductivity of graphene as compared to that of bulk graphite basal planes by the two-dimensional nature of heat conduction in graphene over the whole range of phonon frequencies. Our calculations show that the intrinsic Umklapp-limited thermal conductivity of graphene grows with the increasing dimensions of graphene flakes and can exceed that of bulk graphite when the flake size is on the order of a few micrometers. The detailed theory, which includes the phonon-mode-dependent Gruneisen parameter and takes into account phonon scattering on graphene edges and point defects, gives numerical results that are in excellent agreement with the measurements for suspended graphene. Superior thermal properties of graphene are beneficial for all proposed graphene device applications.

  15. Convective and conduction heat transfer study on a mig-type electron gun

    International Nuclear Information System (INIS)

    Patire Junior, H.; Barroso, J.J.

    1996-01-01

    A convective and conducting heat transfer study of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the electron gun. A thermal probe to determine the air velocity and the convective heat transfer coefficient has been constructed to determine the external boundary condition of the ceramic shell and external flanges. A study the contact resistance for all the gun elements has been made to minimize the conduction thermal losses. A software has been used to simulate a thermal model considering the three processes of thermal transfer, namely, conduction, convection and radiation and the influence of the physical properties of the materials used. (author). 7 refs., 5 figs., 1 tab

  16. Conducting a Grounded Theory Study in a Language Other Than English

    Directory of Open Access Journals (Sweden)

    Intansari Nurjannah

    2014-03-01

    Full Text Available Translation can be a problem area for researchers conducting qualitative studies in languages other than English who intend to publish the results in an English-language journal. Analyzing the data is also complex when the research team consists of people from different language backgrounds. Translation must be considered as an issue in its own right to maintain the integrity of the research, especially in a grounded theory study. In this article, we offer guidelines for the process of translation for data analysis in a grounded theory study in which the research was conducted in a language other than English (Indonesian. We make recommendations about procedures to choose when, who, and how to translate data. The translation procedure is divided into four steps which are as follows: translation in the process of coding, translation in the process of team discussion, translation in the process of advanced coding, and ensuring the accuracy of translation.

  17. A case study to estimate thermal conductivity of ABS in Cold Climate Chamber

    OpenAIRE

    Mughal, Umair Najeeb; Makarova, Marina; Virk, Muhammad Shakeel; Polanco Pinerez, Geanette

    2015-01-01

    Open Access (Romeo Green journal), publishers version / PDF may be used http://www.scirp.org/journal/wjet/ Non steady state thermal conductivity of ABS was estimated using an analytical approach in a Cold Climate Chamber at ?10?C and ?14?C. Two hollow cylinders of ABS of varying thickness were used to estimate the conductivity. The material was porous but the porosity was unknown. This paper is a case study to understand, if it is reasonable to estimate the thermal conductivity using th...

  18. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  19. Modeling the cost-benefit of nerve conduction studies in pre-employment screening for carpal tunnel syndrome.

    Science.gov (United States)

    Evanoff, Bradley; Kymes, Steve

    2010-06-01

    The aim of this study was to evaluate the costs associated with pre-employment nerve conduction testing as a screening tool for carpal tunnel syndrome (CTS) in the workplace. We used a Markov decision analysis model to compare the costs associated with a strategy of screening all prospective employees for CTS and not hiring those with abnormal nerve conduction, versus a strategy of not screening for CTS. The variables included in our model included employee turnover rate, the incidence of CTS, the prevalence of median nerve conduction abnormalities, the relative risk of developing CTS conferred by abnormal nerve conduction screening, the costs of pre-employment screening, and the worker's compensation costs to the employer for each case of CTS. In our base case, total employer costs for CTS from the perspective of the employer (cost of screening plus costs for workers' compensation associated with CTS) were higher when screening was used. Median costs per employee position over five years were US$503 for the screening strategy versus US$200 for a no-screening strategy. A sensitivity analysis showed that a strategy of screening was cost-beneficial from the perspective of the employer only under a few circumstances. Using Monte Carlo simulation varying all parameters, we found a 30% probability that screening would be cost-beneficial. A strategy of pre-employment screening for CTS should be carefully evaluated for yield and social consequences before being implemented. Our model suggests such screening is not appropriate for most employers.

  20. [Conduction block: a notion to let through].

    Science.gov (United States)

    Fournier, E

    2012-12-01

    Historical study of electrodiagnosis indicates that nerve conduction block is an old notion, used as early as the second century by Galien and then early in the 19th by physiologists such as Müller and Mateucci. Although introduced into the field of human pathology by Mitchell in 1872, who used it to study nerve injuries, and then by Erb in 1874 to study radial palsy, the contribution of nerve conduction blocks to electrodiagnosis was not exploited until the 1980s. At that time, attempts to improve early diagnosis of Guillain-Barré syndrome showed that among the electrophysiological consequences of demyelination, conduction block was the most appropriate to account for the paralysis. At the same time, descriptions of neuropathies characterized by conduction blocks led to considering conduction block as a major electrophysiological sign. Why was it so difficult for this sign to be retained for electrodiagnosis? Since the notion is not always associated with anatomical lesions, it doesn't fit easily into anatomoclinical reasoning, but has to be thought of in functional terms. Understanding how an uninjured axon could fail to conduct action potentials leads to an examination of the intimate consequences of demyelinations and axonal dysfunctions. But some of the difficulty encountered in adding this new old sign to the armamentarium of electrophysiological diagnosis was related to the technical precautions required to individualize a block. Several pitfalls have to be avoided if a conduction block is to be afforded real diagnostic value. Similar precautions and discussions are also needed to establish an opposing sign, the "excitability block" or "inverse block". Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD statement.

    Directory of Open Access Journals (Sweden)

    Eric I Benchimol

    2015-10-01

    Full Text Available Routinely collected health data, obtained for administrative and clinical purposes without specific a priori research goals, are increasingly used for research. The rapid evolution and availability of these data have revealed issues not addressed by existing reporting guidelines, such as Strengthening the Reporting of Observational Studies in Epidemiology (STROBE. The REporting of studies Conducted using Observational Routinely collected health Data (RECORD statement was created to fill these gaps. RECORD was created as an extension to the STROBE statement to address reporting items specific to observational studies using routinely collected health data. RECORD consists of a checklist of 13 items related to the title, abstract, introduction, methods, results, and discussion section of articles, and other information required for inclusion in such research reports. This document contains the checklist and explanatory and elaboration information to enhance the use of the checklist. Examples of good reporting for each RECORD checklist item are also included herein. This document, as well as the accompanying website and message board (http://www.record-statement.org, will enhance the implementation and understanding of RECORD. Through implementation of RECORD, authors, journals editors, and peer reviewers can encourage transparency of research reporting.

  2. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity.

    Science.gov (United States)

    Loggia, Marco L; Juneau, Mylène; Bushnell, M Catherine

    2011-03-01

    In human pain experiments, as well as in clinical settings, subjects are often asked to assess pain using scales (eg, numeric rating scales). Although most subjects have little difficulty in using these tools, some lack the necessary basic cognitive or motor skills (eg, paralyzed patients). Thus, the identification of appropriate nonverbal measures of pain has significant clinical relevance. In this study, we assessed heart rate (HR), skin conductance (SC), and verbal ratings in 39 healthy male subjects during the application of twelve 6-s heat stimuli of different intensities on the subjects' left forearm. Both HR and SC increased with more intense painful stimulation. However, HR but not SC, significantly correlated with pain ratings at the group level, suggesting that HR may be a better predictor of between-subject differences in pain than is SC. Conversely, changes in SC better predicted variations in ratings within a given individual, suggesting that it is more sensitive to relative changes in perception. The differences in findings derived from between- and within-subject analyses may result from greater within-subject variability in HR. We conclude that at least for male subjects, HR provides a better predictor of pain perception than SC, but that data should be averaged over several stimulus presentations to achieve consistent results. Nevertheless, variability among studies, and the indication that gender of both the subject and experimenter could influence autonomic results, lead us to advise caution in using autonomic or any other surrogate measures to infer pain in individuals who cannot adequately report their perception. Skin conductance is more sensitive to detect within-subject perceptual changes, but heart rate appears to better predict pain ratings at the group level. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites

    Science.gov (United States)

    Hebbar, Vidyashree; Bhajantri, R. F.

    2018-04-01

    The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.

  4. Theorizing Small Children’s Conduct of Everyday Life

    DEFF Research Database (Denmark)

    Røn Larsen, Maja; Stanek, Anja Hvidtfeldt

    The aim of this paper is to relate the concept conduct of everyday life to small children (ages 0 to 3 years). The paper will contribute to the understanding of small children’s common and shared lives in day care or public nursery, as well as their developmental and social learning processes......, 2011). We thus approach the empirical and theoretical challenge related to the study of small children’s every day life through analysis of the dialectic relation of the small child as a subject with agency, participating in societal contexts in which the child develops and learns. Accordingly, we...... argue that children develop their conduct of everyday life though play and learning in interconnected social practices among peers, parents and professionals. These activities take place in- and across various societal settings, such as home and institutional arrangements, e.g. nursery or day care. We...

  5. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    International Nuclear Information System (INIS)

    Esnouf, Stephane

    1995-01-01

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author) [fr

  6. Consumer Health-Related Activities on Social Media: Exploratory Study.

    Science.gov (United States)

    Benetoli, Arcelio; Chen, Timothy F; Aslani, Parisa

    2017-10-13

    Although a number of studies have investigated how consumers use social media for health-related purposes, there is a paucity of studies in the Australian context. This study aimed to explore how Australian consumers used social media for health-related purposes, specifically how they identified social media platforms, which were used, and which health-related activities commonly took place. A total of 5 focus groups (n=36 participants), each lasting 60 to 90 minutes, were conducted in the Sydney metropolitan area. The group discussions were audiorecorded and transcribed verbatim. The transcripts were coded line-by-line and thematically analyzed. Participants used general search engines to locate health-related social media platforms. They accessed a wide range of social media on a daily basis, using several electronic devices (in particular, mobile phones). Although privacy was a concern, it did not prevent consumers from fully engaging in social media for health-related purposes. Blogs were used to learn from other people's experiences with the same condition. Facebook allowed consumers to follow health-related pages and to participate in disease-specific group discussions. Wikipedia was used for factual information about diseases and treatments. YouTube was accessed to learn about medical procedures such as surgery. No participant reported editing or contributing to Wikipedia or posting YouTube videos related to health topics. Twitter was rarely used for health-related purposes. Social media allowed consumers to obtain and provide disease and treatment-related information and social and emotional support for those living with the same condition. Most considered their participation as observational, but some also contributed (eg, responded to people's questions). Participants used a wide range of social media for health-related purposes. Medical information exchange (eg, disease and treatment) and social and emotional support were the cornerstones of their online

  7. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    Science.gov (United States)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  8. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  9. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    Science.gov (United States)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  10. Conductivity studies of Chitosan doped with different ammonium salts: Effect of ion size

    Science.gov (United States)

    Mohan, C. Raja; Senthilkumar, M.; Jayakumar, K.

    2015-06-01

    In the present investigation influence of ion size on the electrical properties of various ammonium salts of various concentrations doped with Chitosan liquid electrolyte has been studied. The attachment of ammonium salts with Chitosan has been confirmed through FTIR Spectrum. Polarizability is calculated from the refractive index data. Addition of ammonium salts increases the conductivity. It is also observed that increase in ion size, increases the ionic conductivity due to increase in amorphous nature of the material. Increase in concentration leads to increase in conductivity due to the presence of more number of free ions.

  11. Recommendations for designing and conducting veterinary clinical pathology biologic variation studies

    DEFF Research Database (Denmark)

    Freeman, Kathleen P; Baral, Randolph M; Dhand, Navneet K

    2017-01-01

    The recent creation of a veterinary clinical pathology biologic variation website has highlighted the need to provide recommendations for future studies of biologic variation in animals in order to help standardize and improve the quality of published information and to facilitate review......). These recommendations provide a valuable resource for clinicians, laboratorians, and researchers interested in conducting studies of biologic variation and in determining the quality of studies of biologic variation in veterinary laboratory testing....

  12. Functionalization of silicon nanowires by conductive and non-conductive polymers

    Science.gov (United States)

    Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.

    2017-11-01

    The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.

  13. Experimental study on thermal conductivity of He-Ar binary mixture at low temperatures

    International Nuclear Information System (INIS)

    Nesterov, N.A.

    1977-01-01

    The results of the experimental and theoretical investigation of helium-argon mixture thermal conductivity for three concentrations of helium (25,50 and 75%) in the 90-273 K temperature range at 1 atm. pressure are presented. At the calculation of the thermal conductivity coefficients corrections for the heat removal from the heater ends, for radiation and temperature drop in the wall of a glass tube and a measuring cell have been considered. On the basis of the thermal conductivity coefficient values the empiric concentration dependences of the mixture thermal conductivity are obtained by the method of least squares at different temperatures. Experimental data have been compared with theoretical values of thermal conductivity, calculated according to the molecular-kinetic theory. The results of this investigation can be used for determining potential energy of interparticle interaction and studying heat exchange processes at the external flow over body

  14. Experimental studies of microwave interaction with a plasma-covered planar conducting surface

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; DeGrange, J.E.; Segalov, Z.

    1990-01-01

    The authors present experimental studies of the reflection and absorption of microwave radiation from a plasma-covered planar conducting surface. In the experiments, microwave radiation from both highpower, short pulse (10 GHz, 100 MW, 30 ns) and low power (10 GHz, 10 mW, CW) sources is radiated at a 30 cm diameter conducting plate. A time-varying plasma is created on the surface of the conductor by 19 coaxial plasma guns embedded in the surface of the plate and discharged using a fast-rise capacitor bank. The plasma density distribution on the conducting surface is a function of time and the charging voltage on the capacitor bank. Incident and reflected microwave radiation has been measured for a wide variety of experimental conditions

  15. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  16. Molecular dynamics study on interfacial thermal conductance of unirradiated and irradiated SiC/C

    International Nuclear Information System (INIS)

    Wang, Qingyu; Wang, Chenglong; Zhang, Yue; Li, Taosheng

    2014-01-01

    SiC f /SiC composite materials have been considered as candidate structural materials for several types of advanced nuclear reactors. Both experimental and computer simulations studies have revealed the degradation of thermal conductivity for this material after irradiation. The objective of this study is to investigate the effect of SiC/graphite interface structure and irradiation on the interfacial thermal conductance by using molecular dynamics simulation. Five SiC/graphite composite models were created with different interface structures, and irradiation was introduced near the interfaces. Thermal conductance was calculated by means of reverse-NEMD method. Results show that there is a positive correlation between the interfacial energy and interfacial C–Si bond quantity, and irradiated models showed higher interfacial energy compared with their unirradiated counterparts. Except the model with graphite atom plane parallel to the interface, the interfacial thermal conductance of unirradiated and irradiated (1000 eV) models, increases as the increase of interfacial energy, respectively. For all irradiated models, lattice defects are of importance in impacting the interfacial thermal conductance depending on the interface structure. For the model with graphite layer parallel to the interface, the interfacial thermal conductance increased after irradiation, for the other models the interfacial thermal conductance decreased. The vibrational density of states of atoms in the interfacial region was calculated to analyze the phonon mismatch at the interface

  17. Courtesy stigma--a focus group study of relatives of schizophrenia patients.

    Science.gov (United States)

    Angermeyer, Matthias C; Schulze, Beate; Dietrich, Sandra

    2003-10-01

    Stigmatization of people with mental illness has been investigated in numerous studies. Little research, however, has been done to explore how relatives of people with schizophrenia perceive and experience stigmatization and how they can fight such stigmatization. Aiming to explore stigma from the perspective of relatives of people with schizophrenia, focus group interviews were conducted with 122 members of advocacy groups from different parts of Germany. Focus group sessions were tape- and video-recorded and transcribed. Transcripts were coded using an inductive method, generating categories (domains) from the material. The analysis of focus group data shows that, contrary to previous research findings, discrimination and disadvantages encountered by relatives of schizophrenia patients reach far beyond the spheres of direct social interaction and access to social roles. Our study revealed two additional domains in which relatives encounter stigmatization: structural discrimination and public images of mental illness. Furthermore, psychiatry has been identified as one important source of stigma. Relatives also suggested numerous anti-stigma interventions. These can be grouped into five main categories: communication measures, support for the ill and their relatives, changes in mental health care, education and training, and control and supervision. Based on our findings,ways of how relatives of schizophrenia patients and mental health professionals can fight against stigma are discussed.

  18. Correction: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Directory of Open Access Journals (Sweden)

    Kleinstreuer Clement

    2011-01-01

    Full Text Available Abstract Correction to Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters 2011, 6:229.

  19. New conducted electrical weapons: Electrical safety relative to relevant standards.

    Science.gov (United States)

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  20. Conductivity in insulators due to implantation of conducting species

    International Nuclear Information System (INIS)

    Prawer, S.; Kalish, R.

    1993-01-01

    Control of the surface conductivity of insulators can be accomplished by high dose ion implantation of conductive species. The use of C + as the implant species is particularly interesting because C can either form electrically insulating sp 3 bonds or electrically conducting sp 2 bonds. In the present work, fused quartz plates have been irradiated with 100 keV C + ions to doses up to 1 x 10 17 ions/cm 2 at room temperature and at 200 deg C. The ion beam induced conductivity was monitored in-situ and was found to increase by up to 8 orders to magnitude for the ion dose range studied. Xe implantations over a similar range did not induce any changes in the conductivity showing that the increase in conductivity is caused by the presence of the C in the fused quartz matrix and not by damage. The dependence of the conductivity on implantation temperature and on post implantation annealing sheds light on the clustering of the C implants. The temperature dependence of the conductivity for the highest doses employed (1 x 10 17 C + /cm 2 ) can be described very well by lnσ α T. This is considered to be a peculiar dependence which does not comply with any of the standard models for conduction. 9 refs., 1 tab., 6 figs

  1. Perspectives of HIV-related stigma in a community in Vietnam: a qualitative study.

    Science.gov (United States)

    Gaudine, Alice; Gien, Lan; Thuan, Tran T; Dung, Do V

    2010-01-01

    While HIV/AIDS is increasing in Vietnam, very few published studies focus on HIV-related stigma in Vietnam. This study reports on findings from a community development project to reduce HIV-related stigma within one community in Vietnam. The purpose of this qualitative study is to describe HIV-related stigma from the perspective of three groups within one community in Vietnam: people living with HIV, their family members, and community members and leaders, including health care professionals. SETTING, PARTICIPANTS AND METHODS: Fifty-eight individuals from a poor, industrial district on the outskirts of a large city participated in the study and were asked to describe HIV-related stigma. Interviews were conducted with 10 people living with HIV, 10 family members of a person living with HIV, and 10 community members and 5 community leaders including health care professionals. We also conducted three focus groups, one with people living with HIV (n=8), one with family members of people living with HIV (n=8), and one with community leaders including health care professionals (n=7). Stigma across the three groups is characterized by four dimensions of HIV-related stigma: feeling shamed and scorned, behaving differently, stigma due to association, and fear of transmission. The manifestation of these dimensions differs for each group. Four themes of HIV-related stigma as described by people living with HIV are: being avoided, experiencing anger and rejection, being viewed as a social ill, and hiding the illness. Seven themes of HIV-related stigma as described by family members are: shunned by neighbors, viewed as poor parents, discriminated by health professionals, overhearing discussions about people with HIV, maintaining the secret, financial hardship for family, and fear of contracting HIV. Four themes of HIV-related stigma as described by community members and leaders including health professionals are: stigma as a fair reward, avoidance and shunning by neighbors

  2. Atomistic simulations of contact area and conductance at nanoscale interfaces.

    Science.gov (United States)

    Hu, Xiaoli; Martini, Ashlie

    2017-11-09

    Atomistic simulations were used to study conductance across the interface between a nanoscale gold probe and a graphite surface with a step edge. Conductance on the graphite terrace was observed to increase with load and be approximately proportional to contact area calculated from the positions of atoms in the interface. The relationship between area and conductance was further explored by varying the position of the contact relative to the location of the graphite step edge. These simulations reproduced a previously-reported current dip at step edges measured experimentally and the trend was explained by changes in both contact area and the distribution of distances between atoms in the interface. The novel approach reported here provides a foundation for future studies of the fundamental relationships between conductance, load and surface topography at the atomic scale.

  3. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  4. Identification of induced and naturally occurring conductive hearing loss in mice using bone conduction.

    Science.gov (United States)

    Chhan, David; McKinnon, Melissa L; Rosowski, John J

    2017-03-01

    While many mouse models of hearing loss have been described, a significant fraction of the genetic defects in these models affect both the inner ear and middle ears. A common method used to separate inner-ear (sensory-neural) from middle-ear (conductive) pathologies in the hearing clinic is the combination of air-conduction and bone-conduction audiometry. In this report, we investigate the use of air- and bone-conducted evoked auditory brainstem responses to perform a similar separation in mice. We describe a technique by which we stimulate the mouse ear both acoustically and via whole-head vibration. We investigate the sensitivity of this technique to conductive hearing loss by introducing middle-ear lesions in normal hearing mice. We also use the technique to investigate the presence of an age-related conductive hearing loss in a common mouse model of presbycusis, the BALB/c mouse. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Association Study of Three Gene Polymorphisms Recently Identified by a Genome-Wide Association Study with Obesity-Related Phenotypes in Chinese Children.

    Science.gov (United States)

    Song, Qi-Ying; Song, Jie-Yun; Wang, Yang; Wang, Shuo; Yang, Yi-De; Meng, Xiang-Rui; Ma, Jun; Wang, Hai-Jun; Wang, Yan

    2017-01-01

    This study aimed to examine associations of three single-nucleotide polymorphisms (SNPs) with obesity-related phenotypes in Chinese children. These SNPs were identified by a recent genome-wide association (GWA) study among European children. Given that varied genetic backgrounds across different ethnicity may result in different association, it is necessary to study these associations in a different ethnic population. A total of 3,922 children, including 2,191 normal-weight, 873 overweight and 858 obese children, from three independent studies were included in the study. Logistic and linear regressions were performed, and meta-analyses were conducted to assess the associations between the SNPs and obesity-related phenotypes. The pooled odds ratios of the A-allele of rs564343 in PACS1 for obesity and severe obesity were 1.180 (p = 0.03) and 1.312 (p = 0.004), respectively. We also found that rs564343 was nominally associated with BMI, BMI standard deviation score (BMI-SDS), waist circumference, and waist-to-height ratio (p obesity in a non-European population. This SNP was also found to be associated with common obesity and various obesity-related phenotypes in Chinese children, which had not been reported in the original study. The results demonstrated the value of conducting genetic researches in populations with different ethnicity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  6. Work Related Stress: Application of a Special Study to the General Business Community.

    Science.gov (United States)

    Gallagher, Denise M.; And Others

    There has been much recent attention given to stress and the negative side effects associated with excessive stress. Employers need to recognize the effect that stress can have on the productivity and attitudes of their employees. To examine work-related stress and to develop stress management strategies, a study was conducted of flight attendants…

  7. Early conduct problems, school achievement and later crime: findings from a 30-year longitudinal study

    DEFF Research Database (Denmark)

    Jakobsen, Ida Skytte; Fergusson, David; Horwood, John L.

    2012-01-01

    This study used dato from a 30-year longitudinal study to esamine the associations between early conduct problems, school achievement and later crime. The analysis showed that, even following extensive adjustment for confounding, both early conduct problems and later educational achievement made...... experimental research is required to ascertain the extent that: a) the educational achievement of young people with early-onset conduct problems can be improved; and b) the extent to which any such improvements translate into reductions in subsequent antisocial behviour....

  8. Experiences from a pilot study on how to conduct a qualitative multi-country research project regarding use of antibiotics in Southeast Europe.

    Science.gov (United States)

    Kaae, Susanne; Sporrong, Sofia Kälvemark; Traulsen, Janine Morgall; Wallach Kildemoes, Helle; Nørgaard, Lotte Stig; Jakupi, Arianit; Raka, Denis; Gürpinar, Emre Umut; Alkan, Ali; Hoxha, Iris; Malaj, Admir; Cantarero, Lourdes Arevalo

    2016-01-01

    In 2014, a qualitative multi-country research project was launched to study the reasons behind the high use of antibiotics in regions of Southeast Europe by using previously untrained national interviewers (who were engaged in other antibiotic microbial resistance-related investigations) to conduct qualitative interviews with local patients, physicians and pharmacists. Little knowledge exists about how to implement qualitative multi-country research collaborations involving previously untrained local data collectors. The aim of this paper was therefore to contribute to the knowledge regarding how to conduct these types of research projects by evaluating a pilot study of the project. Local data collectors conducted the study according to a developed protocol and evaluated the study with the responsible researcher-team from University of Copenhagen. The pilot study focused on 'local ownership', 'research quality' and 'feasibility' with regard to successful implementation and evaluation. The evaluation was achieved by interpreting 'Skype' and 'face to face' meetings and email correspondence by applying 'critical common sense'. Local data collectors achieved a sense of joint ownership. Overall, the protocol worked well. Several minor challenges pertaining to research quality and feasibility were identified, in particular obtaining narratives when conducting interviews and recruiting patients for the study. Furthermore, local data collectors found it difficult to allocate sufficient time to the project. Solutions were discussed and added to the protocol. Despite the challenges, it was possible to achieve an acceptable scientific level of research when conducting qualitative multi-country research collaboration under the given circumstances. Specific recommendations to achieve this are provided by the authors.

  9. A study of some factors which are related to indoor radon concentrations in Greece

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Lobotesi, E.; Mavroudaki, E.; Koukouliou, V.K.; Chanioti, M.; Papadimitriou, D.; Yiakoumakis, M.; Proukakis, C.

    1997-01-01

    The Medical Physics Department of the University of Athens is conducting radon-222 measurements in Greek dwellings. It is well known that the concentration of radon gas indoors, are related to various factors. A study of these factors has started and first results are reported. (authors)

  10. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics.

    Science.gov (United States)

    Zhu, Huayang; Ricote, Sandrine; Coors, W Grover; Kee, Robert J

    2015-01-01

    A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein relationship, equilibrium conductivity measurements are sufficient to establish thermodynamic and transport properties. However, in practice it is difficult to establish unique sets of properties using equilibrium conductivity alone. Combining equilibrium and conductivity-relaxation measurements serves to significantly improve the quantitative fidelity of the derived material properties. The models are developed using a Nernst-Planck-Poisson (NPP) formulation, which enables the quantitative representation of conductivity relaxations caused by very large changes in oxygen partial pressure.

  11. Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Woongkee; Kaviany, Massoud; Shim, J. H.

    2014-01-01

    It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments

  12. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    Science.gov (United States)

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  13. Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct-disordered juvenile offenders.

    Science.gov (United States)

    Aghajani, Moji; Colins, Olivier F; Klapwijk, Eduard T; Veer, Ilya M; Andershed, Henrik; Popma, Arne; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-11-01

    Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit-level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct-disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait-specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self-centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017-4033, 2016. © 2016 The Authors Human

  14. Laser ablation under different electron heat conduction models in inertial confinement fusion

    Science.gov (United States)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  15. Moral Emotion Attributions and Personality Traits as Long-Term Predictors of Antisocial Conduct in Early Adulthood: Findings from a 20-Year Longitudinal Study

    Science.gov (United States)

    Krettenauer, Tobias; Asendorpf, Jens B.; Nunner-Winkler, Gertrud

    2013-01-01

    The study investigated long-term relations between moral emotion attributions in childhood and adolescence and antisocial conduct in early adulthood while taking into account potentially confounding personality factors. Specifically, onset of prediction, unique and indirect effects of moral emotion attributions were examined. In a longitudinal…

  16. Phase relations and conductivity of Sr-zirconates and La-zirconates

    DEFF Research Database (Denmark)

    Poulsen, F.W.; Vanderpuil, N.

    1992-01-01

    phase orthorhombic SrZrO3 and somewhat impure, tetragonal Sr2ZrO4 were observed, whereas the formation of ordered Ruddlesden-Popper phases, SrnZrn-1O3n-2, where n = 4 and 3, could not be verified. The conductivity of La2Zr2O7 was 3.7 X 10(-6) S/cm at 750-degrees-C and 3.8 x 10(-5) S/cm at 1000-degrees...

  17. A study of frequency effects on conductivity measurements

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Mahmood Dollah; Mohd Khidir Kamaron; Suaib Ibrahim

    2010-01-01

    In eddy current testing (ET), different measurement can be carry out through the selection of the test frequency. In conductivity measurement, the selection of eddy current test frequencies permits to select the specific material properties to be measured. The test frequency selected should be sufficient high that eddy current penetration is limited only to fraction of the test material thickness. This paper describes the effects of test frequency on the conductivity measurement. This experiment done by applying different values of test frequency which is 20 kHz, 100 kHz and 1 MHz. (author)

  18. A qualitative study exploring issues related to medication management in residential aged care facilities

    Directory of Open Access Journals (Sweden)

    Ahmad Nizaruddin M

    2017-11-01

    Full Text Available Mariani Ahmad Nizaruddin, Marhanis-Salihah Omar, Adliah Mhd-Ali, Mohd Makmor-Bakry Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Globally, the population of older people is on the rise. As families are burdened with the high cost of care for aging members, demand is increasing for medical care and nursing homes. Thus, medication management is crucial to ensure that residents in a care center benefit and assist the management of the care center in reducing the burden of health care. This study is aimed to qualitatively explore issues related to medication management in residential aged care facilities (RACFs.Participants and methods: A total of 11 stakeholders comprising health care providers, administrators, caretakers and residents were recruited from a list of registered government, nongovernmental organization and private RACFs in Malaysia from September 2016 to April 2017. An exploratory qualitative study adhering to Consolidated Criteria for Reporting Qualitative Studies was conducted. In-depth interview was conducted with consent of all participants, and the interviews were audio recorded for later verbatim transcription. Observational analysis was also conducted in a noninterfering manner.Results and discussion: Three themes, namely medication use process, personnel handling medications and culture, emerged in this study. Medication use process highlighted an unclaimed liability for residents’ medication by the RACFs, whereas personnel handling medications were found to lack sufficient training in medication management. Culture of the organization did affect the medication safety and quality improvement. The empowerment of the residents in their medication management was limited. There were unclear roles and responsibility of who manages the medication in the nongovernment-funded RACFs, although they were well structured in the private nursing homes.Conclusion: There are important issues

  19. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  20. Quasiparticle relaxation in Heavy Fermions studied using Inverse Fourier Transform of optical conductivity

    International Nuclear Information System (INIS)

    Dordevic, S.V.

    2012-01-01

    Inverse Fourier Transform of optical conductivity is used for studies of quasiparticle relaxation in Heavy Fermions in time domain. We demonstrate the usefulness of the procedure on model spectra and then use it to study quasiparticle relaxation in two Heavy Fermions YbFe 4 Sb 12 and CeRu 4 Sb 12 . Optical conductivity in time domain reveals details of quasiparticle relaxation close to the Fermi level, not readily accessible from the spectra in the frequency domain. In particular, we find that the relaxation of heavy quasiparticles does not start instantaneously, but typically after a few hundred femto-seconds.

  1. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  2. Studies of natural and 60Co gamma radio-induced conduction in metaphosphate glasses and silica

    International Nuclear Information System (INIS)

    Mengual Gil, M.A.

    1977-01-01

    A study of natural and 60 Co gamma radio-induced conduction in metaphosphate glasses and silica is presented. The experimental study of natural conduction current in metaphosphate glasses in function of temperature enables to observe two different values of the activation energies in the respective temperature ranges T>223K and T [fr

  3. Development of conductivity probe and temperature probe for in-situ measurements in hydrological studies

    International Nuclear Information System (INIS)

    Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.

    1981-05-01

    A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt

  4. Location and social context does matter when conducting consumer studies!

    DEFF Research Database (Denmark)

    Andersen, Barbara Vad; Kraggerud, Hilde; Bruun Brockhoff, Per

    2015-01-01

    an adequate level of research conducted in realistic eating contexts. In the aim to study how location and social context affected consumers’ feeling of food satisfaction and physical well-being a study was set up with, combined yoghurt with muesli products in two settings; a) in a sensory lab facility (n...... of food satisfaction. Test products were two variants of yoghurt (differing in protein content) and two variants of muesli (a berry and a nut variant) eaten as combined products. An effect of location context (lab- vs. natural context) was found for immediate post intake rating of hunger, fullness...

  5. Case studies of heat conduction in rotary drums with L-shaped lifters via DEM

    Directory of Open Access Journals (Sweden)

    Qiang Xie

    2018-03-01

    Full Text Available Rotary drums are widely used in numerous processes in industry to handle granular materials. In present work, heat transfer processes in drums with L-shaped lifters have been investigated by coupling the discrete element method (DEM with heat transfer model. Effects of both operational and structural parameters have been analyzed. It is found that increasing rotational speed could improve heat transfer to a certain extent, however, just in relatively low speed stage. When lifter number increases, the heat transfer speed slightly decreases. An increasing lifter height could promote heat transfer first and then reduces it, but the amplitude of variation keeps small. The heat transfer rate descends with increasing lifter width. The heat transfer mechanisms have also been discussed by comparing mixing rates, total contact areas for thermal conduction, time constants (TC indicating apparent heat transfer rate and effective heat transfer coefficients(HTC. It is concluded that dynamic conduction due to particle flow is dominated in all cases. The L-shaped lifers are turned out not a good choice when heat conduction between particles is prominent.

  6. Reciprocal relations between workplace bullying, anxiety, and vigor: a two-wave longitudinal study.

    Science.gov (United States)

    Rodríguez-Muñoz, Alfredo; Moreno-Jiménez, Bernardo; Sanz-Vergel, Ana Isabel

    2015-01-01

    Workplace bullying has been classified as an extreme social stressor in work contexts and has been repeatedly linked to several negative consequences. However, little research has examined reversed or reciprocal relations of bullying and outcomes. We conducted a two-wave longitudinal study with a time lag of six months. The study sample consisted of 348 employees of the Spanish workforce. The present study examined longitudinal relationships between workplace bullying, psychological health, and well-being. On the basis of conservation of resources theory, we hypothesized that we would find reciprocal relations among study variables over time. Results of cross-lagged structural equation modeling analyses supported our hypotheses. Specifically, it was found that Time 1 (T1) workplace bullying was negatively related to Time 2 (T2) vigor and positively related to T2 anxiety. Additionally, T1 anxiety and vigor had an effect on T2 workplace bullying. Overall, these findings support the validity of the theoretical models postulating a reciprocal bullying-outcome relationship, rather than simple one-way causal pathways approaches.

  7. Lattice thermal conductivity of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Cohn, J.L.; Wolf, S.A.; Vanderah, T.A.; Selvamanickam, V.; Salama, K.

    1992-01-01

    We report a systematic study of the ab-plane thermal conductivity (K) on single crystal and liquid-phase processed (LPP) specimens of YBa 2 Cu 3 O 7-δ (δ≤0.16) in the temperature range 10 K ≤ T ≤ 300 K. From measurements of electrical conductivity on the same specimens and application of the Wiedemann-Franz law we estimate the relative contributions to the heat conduction from the carriers and the lattice. The normal-state phonon scattering mechanisms are quantified by calculations which employ the conventional theory of lattice heat conduction by longitudinal acoustic phonons. Differences in the magnitude and temperature dependence of K for the LPP and crystal specimens are accounted for by differences in the relative weight of phonon-defect, phonon-carrier, and phonon-phonon scattering. For all specimens phonon-defect scattering predominates throughout most of the temperature range. (orig.)

  8. Studying the influence of substrate conductivity on the optoelectronic properties of quantum dots langmuir monolayer

    Science.gov (United States)

    Al-Alwani, Ammar J.; Chumakov, A. S.; Begletsova, N. N.; Shinkarenko, O. A.; Markin, A. V.; Gorbachev, I. A.; Bratashov, D. N.; Gavrikov, M. V.; Venig, S. B.; Glukhovskoy, E. G.

    2018-04-01

    The formation of CdSe quantum dots (QDs) monolayers was studied by Langmuir Blodgett method. The fluorescence (PL) spectra of QD monolayers were investigated at different substrate type (glass, silicon and ITO glass) and the influence of graphene sheets layer (as a conductive surface) on the QDs properties has also been studied. The optoelectronic properties of QDs can be tuned by deposition of insulating nano-size layers of the liquid crystal between QDs and conductive substrate. The monolayer of QDs transferred on conductive surface (glass with ITO) has lowest intensity of PL spectra due to quenching effect. The PL intensity of QDs could be tuned by using various type of substrates or/and by transformed high conductive layer. Also the photooxidation processes of CdSe QDs monolayer on the solid surface can be controlled by selection of suitable substrate. The current-voltage (I–V) characteristics of QDs thin film on ITO surface was studied using scanning tunneling microscope (STM).

  9. Summarizing knowledge about ethical considerations when conducting Joint Interviews with close relatives

    DEFF Research Database (Denmark)

    Voltelen, Barbara; Konradsen, Hanne; Østergaard, Birte

    interviewing poses some specific ethical challenges although similarities to other qualitative research methods exist. The main difference occurs on behalf of the relationship. The potential creation of conflicts between participants should be given much consideration because of the possible negative impact...... the researcher not to jeopardize it doing joint interviews. Ethical considerations conducting joint interviews remain largely undescribed in the literature. Our purpose was to illuminate the literature regarding specific ethical challenges conducting joint interviews with interrelated people in order to avoid...... it has on interviewees’ ongoing health status. This obligates the researcher to balance delicately between the needs of the interviewees, before, under and after the joint interview....

  10. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  11. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  12. A Systematic Review and Narrative Synthesis of Health Economic Studies Conducted for Hereditary Haemochromatosis.

    Science.gov (United States)

    de Graaff, Barbara; Neil, Amanda; Sanderson, Kristy; Si, Lei; Yee, Kwang Chien; Palmer, Andrew J

    2015-10-01

    Hereditary haemochromatosis (HH) is a common genetic condition amongst people of northern European heritage. HH is associated with increased iron absorption leading to parenchymal organ damage and multiple arthropathies. Early diagnosis and treatment prevents complications. Population screening may increase early diagnosis, but no programmes have been introduced internationally: a paucity of health economic data is often cited as a barrier. To conduct a systematic review of all health economic studies in HH. Studies were identified through electronic searching of economic/biomedical databases. Any study on HH with original economic component was included. Study quality was formally assessed. Health economic data were extracted and analysed through narrative synthesis. Thirty-eight studies met the inclusion criteria. The majority of papers reported on costs or cost effectiveness of screening programmes. Whilst most concluded screening was cost effective compared with no screening, methodological flaws limit the quality of these findings. Assumptions regarding clinical penetrance, effectiveness of screening, health-state utility values (HSUVs), exclusion of early symptomatology (such as fatigue, lethargy and multiple arthropathies) and quantification of costs associated with HH were identified as key limitations. Treatment studies concluded therapeutic venepuncture was the most cost-effective intervention. There is a paucity of high-quality health economic studies relating to HH. The development of a comprehensive HH cost-effectiveness model utilising HSUVs is required to determine whether screening is worthwhile.

  13. Conductivity study of nitrogen-doped calcium zinc oxide prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Hsu, Yu-Ting; Lan, Wen-How; Huang, Kai-Feng; Lin, Jia-Ching; Chang, Kuo-Jen

    2016-01-01

    In this study, the spray pyrolysis method was used to prepare unintentionally doped and nitrogen-doped calcium zinc oxide films by using zinc acetate, calcium nitrate precursor, and ammonium acetate precursor. Morphological and structural analyses were conducted using scanning electron microscopy and X-ray diffraction. The results indicated that film grain size decreased as the nitrogen doping was increased. Both calcium oxide and zinc oxide structures were identified in the unintentionally doped calcium zinc oxide. When nitrogen doping was introduced, the film mainly exhibited a zinc oxide structure with preferred (002) and (101) orientations. The concentration and mobility were investigated using a Hall measurement system. P-type films with a mobility and concentration of 10.6 cm"2 V"−"1 s"−"1 and 2.8×10"1"7 cm"−"3, respectively, were obtained. Moreover, according to a temperature-dependent conductivity analysis, an acceptor state with activation energy 0.266 eV dominated the p-type conduction for the unintentionally doped calcium zinc oxide. By contrast, a grain boundary with a barrier height of 0.274–0.292 eV dominated the hole conduction for the nitrogen-doped calcium zinc oxide films.

  14. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.

    Science.gov (United States)

    Wojnarowska, Z; Swiety-Pospiech, A; Grzybowska, K; Hawelek, L; Paluch, M; Ngai, K L

    2012-04-28

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M(")(f) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across T(g). The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below T(g). At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  15. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  16. Public summaries of feasibility studies conducted for the trinidad LNG project. Export trade information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The study, conducted by The M. W. Kellog Company, was funded by the U.S. Trade and Development Agency on behalf of the National Gas Company of Trinidad and Tobago. It shows the results of Project Definition Phase which was implemented as a follow-up to two previous feasibility studies which were conducted for a LNG plant in Trinidad. The objective of this report is to develop a project design basis and implementation plan plus a cost estimate. The study is divided into the following sections: (1) Introduction; (2) Project Design Basis; (3) Seismic Hazard Assessment; (4) Geotechnical; and (5) Environmental Assessment.

  17. Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bogeat, A., E-mail: adrianbogeat@unex.es [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Alexandre-Franco, M.; Fernández-González, C. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Sánchez-González, J. [Department of Mechanical, Energetic and Materials Engineering, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Gómez-Serrano, V. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain)

    2015-02-15

    From a granular commercial activated carbon (AC) and six metal (hydr)oxide precursors, including Al(NO{sub 3}){sub 3}, Fe(NO{sub 3}){sub 3}, SnCl{sub 2}, TiO{sub 2}, Na{sub 2}WO{sub 4} and Zn(NO{sub 3}){sub 2}, a broadly varied series of metal (hydr)oxide–AC composites were prepared by wet impregnation and subsequent oven-drying at 120 °C. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The dc electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays show that the mechanical properties of the composites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density under compression were very small and only significant at pressures lower than 100 kPa for AC and most composites. By contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the nature, content and intrinsic conductivity of the supported metal phases, which act as insulating thin layers thereby hindering the effective electron transport between AC cores of neighbouring sample particles in contact under compression. Conductivity values for the composites were lower than for the raw AC, all of them falling in the range of typical semiconductor materials. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure effects rather than the volume ones. - Highlights: • Pressure-dependent conductivity is studied for metal (hydr)oxide–AC composites. • Mechanical properties of the composites are essentially determined by AC. • Supported metal (hydr)oxides determine the bulk conductivity of the composites. • Metal (hydr)oxides act as insulating thin layers hindering the

  18. Numerical Investigation of the Thermal Conductivity of Graphite Nanofibers

    Science.gov (United States)

    Hakak Khadem, Masoud

    The thermal conductivity of graphite nano-fibers (GNFs) with different styles is predicted computationally. GNFs are formed as basal planes of graphene stacked based on the catalytic configuration. The large GNF thermal conductivity relative to a base phase change material (PCM) may lead to improved PCM performance when embedded with GNFs. Three different types of GNFs are modeled: platelet, ribbon, and herringbone. Molecular dynamics (MD) simulations are used in this study as a means to predict the thermal conductivity tensor based on atomic behavior. The in-house MD code, Molecular Dynamics in Arbitrary Geometries (MDAG), was updated with the features required to create the predictions. To model both interlayer van-der Waals and intralayer covalent bonding of carbon atoms in GNFs, a combination of the optimized Tersoff potential function for atoms within the layers and a pairwise Lennard-Jones (LJ) potential function to model the interactions between the layers was used. Tests of energy conservation in the NVE ensemble have been performed to validate the employed potential model. Nose-Hoover, Andersen, and Berendsen thermostats were also incorporated into MDAG to enable MD simulations in NVT ensembles, where the volume, number of atoms, and temperature of the system are conserved. Equilibrium MD with Green-Kubo (GK) relations was then employed to extract the thermal conductivity tensor for symmetric GNFs (platelet and ribbon). The thermal conductivity of solid argon at different temperatures was calculated and compared to other studies to validate the GK implementation. Different heat current formulations, as a result of using the three-body Tersoff potential, were considered and the discrepancy in the calculated thermal conductivity values of graphene using each formula was resolved by employing a novel comparative technique that identifies the most accurate formulation. The effect of stacking configuration on the thermal conductivity of platelet and ribbon GNFs

  19. HYDROGEOLOGICAL RELATIONS ON KARSTIFIED ISLANDS - VIS ISLAND CASE STUDY

    Directory of Open Access Journals (Sweden)

    Josip Terzić

    2004-12-01

    Full Text Available An approach to the hydrogeological investigations on Adriatic islands is presented on the Island of Vis case study. Infiltration, accumulation and discharge of the groundwater occur in karstified rock mass. Hydrogeological relations are mostly a consequence of the geological setting, because of the complete hydrogeologic barrier in Komiža bay, and relative barrier in the area of karst poljes. Significant research was performed in the 1999 – 2000 period aimed of better understanding of hydrogeological relations. These investigations, as well as reinterpretation of some previously known data, included structural geology, hydrogeology, hydrology and hydrochemistry. Approximate rock mass hydraulic conductivity calculation is also shown, as well as level of its usability in such terrain. Based on all these methods, it is possible to conclude that on the Island of Vis there is no saline water present underneath the entire island. There is only a saline water wedge which is formed on the top of relatively impermeable base rock, some few tens of meters under recent sea level. With such a model, and taking in account the hydrological balance, it is possible to conclude that there is possibility of higher amount of groundwater exploitation then it is today (the paper is published in Croatian.

  20. Conducting polymers doped with a mineral phase: structural and electrical study

    International Nuclear Information System (INIS)

    González, C P; Montaño, A M; Estrada, S; Ortiz, C

    2013-01-01

    This work reports the results obtained of a series of novel doped conducting polymers (CPs) of polyaniline/hematite (PANI/HEM), which were synthesized in acidic aqueous solution by the in situ chemical oxidative polymerization, using ammonium peroxydisulfate as oxidant reagent. The synthesis was carried out with 20, 40 y 60 % (weight percent) contents of hematite (HEM) at 8 and 14 h of polymerization times (tP). These composites were structurally characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). An electrochemical analysis was made by Electrochemical impedance spectroscopy (EIS). Results of this study allow to evaluate the influence of hematite on the improvement of the structural properties and in the increase of the electric conductivity (sac) of the doped polymers compared to CPs without dopant agents

  1. Mixed conductivity studies in silver oxide based barium vanado-tellurite glasses

    International Nuclear Information System (INIS)

    Pant, Meenakshi; Kanchan, D.K.; Sharma, Poonam; Jayswal, Manish S.

    2008-01-01

    The dc conductivity and frequency dependent ac conductivity of the quaternary glass system x(BaO:1.5 Ag 2 O)-(95 - x)V 2 O 5 -5TeO 2 , are reported in the frequency range 1 Hz to 32 MHz in the temperature range from room temperature to 433 K. The dc conductivity measured in high temperature range increased with transition metal oxide content while the activation range decreased. The conductivity arises mainly from polaron hopping between V 4+ and V 5+ ions. High temperature conductivity data satisfy Mott's small polaron hopping model. It is found that a mechanism of non-adiabatic hopping is the most appropriate conduction model for these glasses. A power law behavior σ(ω) = σ dc + Aω n (with 0 < n < 1) is well exhibited by the ac conductivity data of the glasses. The activation energy calculated from both the relaxation time and dc conductivity is found to be nearly same in both the cases. A scaling of the conductivity spectra with respect to temperature and composition is attempted and it is observed that the relaxation dynamics of charge carriers in the present glasses is independent of temperature and composition

  2. Relation between microstructure and thermal conductivity in aluminium nitride substrates; Relations entre la microstructure et la conductivite thermique dans les substrats de nitrure d`aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Jarrige, J.; Lecompte, J.P.; Seck, O. [Faculte des Sciences (CNRS), 87 - Limoges (France). Laboratoire de Materiaux Ceramiques et Traitements de Surface

    1996-12-31

    Sintered aluminium nitride is a promising ceramic substrate for future power electronics applications. This ceramic is characterized by a high thermal conductivity (100 to 200 W/m.K) which depends on two main factors: the oxygen content of the AlN powder used for the sintering process and the microstructure of the sintered material. The oxygen content changes with sintering additions. For instance, boron nitride allows the diffusion of oxygen from the nitride grains to the grain joints. With a complement of yttrium oxide in the liquid phase, the BN/Y{sub 2}O{sub 3} couple allows to increase the conductivity to 190 W/m.K with a reduction of the oxygen content. The second part of the study concerns the microstructure of sintered materials. A control of conductivity can be obtained using an adjustment of the sintering cycles. Only two types of microstructure, the secondary phase dispersed in the AlN matrix and the secondary phase that concentrates around triple junctions, allow a better contact between nitride grains and thus higher conductivities of 210 W/m.K. (J.S.) 6 refs.

  3. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  4. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  6. Describing Case Study Method and Identifying the Factors that Contribute to the Successful Conduct of Case Studies

    OpenAIRE

    Ahmad H. Juma'h; Mustafa Cavus

    2001-01-01

    This article has attempted to describe case study, the limitations and critiques on case study methodology and how the proponents have responded to these. Our special focus have been on the debate on theory building from case study research, and a framework for conducting case study research as well as the factors for a successful case study research. The overall conclusion is that the case study has been inappropriately used to generate theories.

  7. Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms

    Science.gov (United States)

    Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo

    2014-11-01

    We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.

  8. Optical conductivity of the Hubbard model

    International Nuclear Information System (INIS)

    Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.

    1996-07-01

    We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs

  9. Structural and optical studies on mesoscopic defect structure in highly conductive AgI-ZnO composites

    International Nuclear Information System (INIS)

    Fujishiro, Fumito; Mochizuki, Shosuke

    2003-01-01

    The electrical conductivity of (x)AgI-(1-x)ZnO (0≤x≤1) composites at room temperature increases with increasing AgI content and reaches a maximum at about 50% AgI. The results obtained by the scanning electron microscopy, X-ray diffractometry and photoluminescence spectroscopy have clarified high-ionic-conduction pathways related to mesoscopic defect structure at AgI/ZnO interfaces and mesoscopically disordered structure in AgI domain. We have observed also new optical phenomenon, which may arise from excitation energy transfer between AgI-exciton and photoinduced oxygen vacancy at the AgI/ZnO interface

  10. Sonography-guided recording for superficial peroneal sensory nerve conduction study.

    Science.gov (United States)

    Kim, Ki Hoon; Park, Byung Kyu; Kim, Dong Hwee; Kim, Yuntae

    2018-04-01

    We sought to establish the optimal recording position for antidromic conduction of the superficial peroneal nerve (SPN) by using ultrasonography (USG). The sensory nerve action potentials (SNAPs) of the intermediate dorsal cutaneous nerve (IDCN) and medial dorsal cutaneous nerve (MDCN) in 64 limbs of 32 healthy participants were recorded (nerve conduction study [NCS]-1). Both nerves were identified by using USG, and the SNAPs were obtained from the USG-guided repositioned electrodes (NCS-2). The IDCN and MDCN were located at 29.3% ± 5.1% and 43.9% ± 4.9% of the intermalleolar distance from the lateral malleolus, respectively. Significantly greater amplitude was shown for SNAPs of both nerves in NCS-2 versus NCS-1. The optimal recording position is likely to be lateral, one-third from the lateral malleolus for the IDCN, and just lateral to the midpoint of the intermalleolar line for the MDCN. When the SPN response is unexpectedly attenuated, USG-guided repositioning of the electrodes should be considered. Muscle Nerve 57: 628-633, 2018. © 2017 Wiley Periodicals, Inc.

  11. Detecting Kondo Entanglement by Electron Conductance

    Science.gov (United States)

    Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.

    2018-04-01

    Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.

  12. Quantum conductance of zigzag graphene oxide nanoribbons

    International Nuclear Information System (INIS)

    Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza

    2014-01-01

    The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs

  13. Thermal and electrical conductivities of Cd-Zn alloys

    International Nuclear Information System (INIS)

    Saatci, B; Ari, M; Guenduez, M; Meydaneri, F; Bozoklu, M; Durmus, S

    2006-01-01

    The composition and temperature dependences of the thermal and electrical conductivities of three different Cd-Zn alloys have been investigated in the temperature range of 300-650 K. Thermal conductivities of the Cd-Zn alloys have been determined by using the radial heat flow method. It has been found that the thermal conductivity decreases slightly with increasing temperature and the data of thermal conductivity are shifting together to the higher values with increasing Cd composition. In addition, the electrical measurements were determined by using a standard DC four-point probe technique. The resistivity increases linearly and the electrical conductivity decreases exponentially with increasing temperature. The resistivity and electrical conductivity are independent of composition of Cd and Zn. Also, the temperature coefficient of Cd-Zn alloys has been determined, which is independent of composition of Cd and Zn. Finally, Lorenz number has been calculated using the thermal and electrical conductivity values at 373 and 533 K. The results satisfy the Wiedemann-Franz (WF) relation at T 373 K), the WF relation could not hold and the phonon component contribution of thermal conductivity dominates the thermal conduction

  14. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study

    Science.gov (United States)

    Shaikh, S.; Lafdi, K.; Ponnappan, R.

    2007-03-01

    The present work involves a study on the thermal conductivity of nanoparticle-oil suspensions for three types of nanoparticles, namely, carbon nanotubes (CNTs), exfoliated graphite (EXG), and heat treated nanofibers (HTT) with PAO oil as the base fluid. To accomplish the above task, an experimental analysis is performed using a modern light flash technique (LFA 447) for measuring the thermal conductivity of the three types of nanofluids, for different loading of nanoparticles. The experimental results show a similar trend as observed in literature for nanofluids with a maximum enhancement of approximately 161% obtained for the CNT-PAO oil suspension. The overall percent enhancements for different volume fractions of the nanoparticles are highest for the CNT-based nanofluid, followed by the EXG and the HTT. The findings from this study for the three different types of carbon nanoparticles can have great potential in the field of thermal management.

  15. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes

    Science.gov (United States)

    2014-01-01

    Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45°C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the

  16. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs). A Study on Creep Response and Dynamic Loading.

    Science.gov (United States)

    Paredes-Madrid, Leonel; Matute, Arnaldo; Bareño, Jorge O; Parra Vargas, Carlos A; Gutierrez Velásquez, Elkin I

    2017-11-21

    Force Sensing Resistors (FSRs) are manufactured by sandwiching a Conductive Polymer Composite (CPC) between metal electrodes. The piezoresistive property of FSRs has been exploited to perform stress and strain measurements, but the rheological property of polymers has undermined the repeatability of measurements causing creep in the electrical resistance of FSRs. With the aim of understanding the creep phenomenon, the drift response of thirty two specimens of FSRs was studied using a statistical approach. Similarly, a theoretical model for the creep response was developed by combining the Burger's rheological model with the equations for the quantum tunneling conduction through thin insulating films. The proposed model and the experimental observations showed that the sourcing voltage has a strong influence on the creep response; this observation-and the corresponding model-is an important contribution that has not been previously accounted. The phenomenon of sensitivity degradation was also studied. It was found that sensitivity degradation is a voltage-related phenomenon that can be avoided by choosing an appropriate sourcing voltage in the driving circuit. The models and experimental observations from this study are key aspects to enhance the repeatability of measurements and the accuracy of FSRs.

  17. Studies on normal-conducting coils for Wendelstein VII-X

    International Nuclear Information System (INIS)

    Harmeyer, E.; Kisslinger, J.; Rau, F.; Sapper, J.; Wobig, H.

    1990-08-01

    For Wendelstein VII-X, the next step stellarator experiment at IPP Garching, a Helias configuration has been chosen. The goals of Wendelstein VII-X are to continue the development of the modular stellarator and to demonstrate the reactor capability of this stellarator line. The main data of the selected HS5-10 configuration with five field periods are: major radius R 0 = 5.5 m, magnetic induction B 0 = 3 T and stored magnetic energy W ≅ 0.6 GJ. For comparison with the superconducting coil system which is foreseen for Wendelstein VII-X, a pulsed water-cooled normal-conducting version has been designed in order to explore the limitations and restrictions of this approach. Limitations are the high ohmic power dissipated in the coils and the electric energy currently available at IPP. Normal-conducting coils would allow to apply the well-known techniques in manufactoring these coils, as successful in use in the Wendelstein VII-AS experiment. But these techniques are applicable also for the conductor proposed for the superconducting coils of Wendelstein VII-X. In this report the time-dependent current and resistance of the coil system circuit is considered; the electric power needed, the total dissipated energy, and the temperature rise of the coil copper is calculated. Scaling laws are derived and parameter studies are made by varying the geometrical dimensions of the system. (orig.)

  18. Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden Longevity Study

    NARCIS (Netherlands)

    Streppel, M.T.; Vries, de J.H.M.; Meyboom, S.; Beekman, M.; Craen, A.J.M.; Slagboom, P.E.; Feskens, E.J.M.

    2013-01-01

    Background - Invalid information on dietary intake may lead to false diet-disease associations. This study was conducted to examine the relative validity of the food frequency questionnaire (FFQ) used to assess dietary intake in the Leiden Longevity Study. Methods - A total of 128 men and women

  19. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate

  20. A phase 2a randomized, parallel group, dose-ranging study of molindone in children with attention-deficit/hyperactivity disorder and persistent, serious conduct problems.

    Science.gov (United States)

    Stocks, Jennifer Dugan; Taneja, Baldeo K; Baroldi, Paolo; Findling, Robert L

    2012-04-01

    To evaluate safety and tolerability of four doses of immediate-release molindone hydrochloride in children with attention-deficit/hyperactivity disorder (ADHD) and serious conduct problems. This open-label, parallel-group, dose-ranging, multicenter trial randomized children, aged 6-12 years, with ADHD and persistent, serious conduct problems to receive oral molindone thrice daily for 9-12 weeks in four treatment groups: Group 1-10 mg (5 mg if weight conduct problems. Secondary outcome measures included change in Nisonger Child Behavior Rating Form-Typical Intelligence Quotient (NCBRF-TIQ) Conduct Problem subscale scores, change in Clinical Global Impressions-Severity (CGI-S) and -Improvement (CGI-I) subscale scores from baseline to end point, and Swanson, Nolan, and Pelham rating scale-revised (SNAP-IV) ADHD-related subscale scores. The study randomized 78 children; 55 completed the study. Treatment with molindone was generally well tolerated, with no clinically meaningful changes in laboratory or physical examination findings. The most common treatment-related adverse events (AEs) included somnolence (n=9), weight increase (n=8), akathisia (n=4), sedation (n=4), and abdominal pain (n=4). Mean weight increased by 0.54 kg, and mean body mass index by 0.24 kg/m(2). The incidence of AEs and treatment-related AEs increased with increasing dose. NCBRF-TIQ subscale scores improved in all four treatment groups, with 34%, 34%, 32%, and 55% decreases from baseline in groups 1, 2, 3, and 4, respectively. CGI-S and SNAP-IV scores improved over time in all treatment groups, and CGI-I scores improved to the greatest degree in group 4. Molindone at doses of 5-20 mg/day (children weighing <30 kg) and 20-40 mg (≥ 30 kg) was well tolerated, and preliminary efficacy results suggest that molindone produces dose-related behavioral improvements over 9-12 weeks. Additional double-blind, placebo-controlled trials are needed to further investigate molindone in this pediatric population.

  1. Impedance and ac conductivity studies of Ba (Pr1/2Nb1/2) O3 ceramic

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Impedance and a.c. conductivity studies of ... Abstract. Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell ...

  2. The Validity of Graduate Management Admission Test Scores: A Summary of Studies Conducted from 1997 to 2004

    Science.gov (United States)

    Talento-Miller, Eileen; Rudner, Lawrence M.

    2008-01-01

    The validity of Graduate Management Admission Test (GMAT) scores is examined by summarizing 273 studies conducted between 1997 and 2004. Each of the studies was conducted through the Validity Study Service of the test sponsor and contained identical variables and statistical methods. Validity coefficients from each of the studies were corrected…

  3. Synthesis, characterization and AC conductivity studies of silver doped conducting polyaniline/graphene/SrTiO3 composites

    Science.gov (United States)

    Vinay, K.; Shivakumar, K.; Ravikiran, Y. T.; Revanasiddappa, M.

    2018-05-01

    The present work is an investigation of ac conduction behaviour and dielectric response of Polyaniline/Ag/Graphene/SrTiO3 (PAGS) composite prepared by in-situ chemical oxidative interfacial polymerization using (NH4)2S2O8 as an oxidising agent at 0-5°C. The structural characterization of the samples was examined using FT-IR and XRD techniques. The ac conductivity and dielectric response of synthesized polymer composites were investigated at room temperature in the frequency range varying from 5 × 101 - 5 × 106 Hz using HIOKI make 3532-50 LCR Hi-tester. The ac conductivity increases with increase in frequency and follows the regular trend, the real dielectric constant (ɛ') and imaginary dielectric constant (ɛ'') decreases with increase in frequency and exhibits almost zero dielectric loss at higher frequencies, which suggests that the composite is a lossless material at frequencies beyond 3Hz.

  4. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  5. A qualitative study exploring issues related to medication management in residential aged care facilities.

    Science.gov (United States)

    Ahmad Nizaruddin, Mariani; Omar, Marhanis-Salihah; Mhd-Ali, Adliah; Makmor-Bakry, Mohd

    2017-01-01

    Globally, the population of older people is on the rise. As families are burdened with the high cost of care for aging members, demand is increasing for medical care and nursing homes. Thus, medication management is crucial to ensure that residents in a care center benefit and assist the management of the care center in reducing the burden of health care. This study is aimed to qualitatively explore issues related to medication management in residential aged care facilities (RACFs). A total of 11 stakeholders comprising health care providers, administrators, caretakers and residents were recruited from a list of registered government, nongovernmental organization and private RACFs in Malaysia from September 2016 to April 2017. An exploratory qualitative study adhering to Consolidated Criteria for Reporting Qualitative Studies was conducted. In-depth interview was conducted with consent of all participants, and the interviews were audio recorded for later verbatim transcription. Observational analysis was also conducted in a noninterfering manner. Three themes, namely medication use process, personnel handling medications and culture, emerged in this study. Medication use process highlighted an unclaimed liability for residents' medication by the RACFs, whereas personnel handling medications were found to lack sufficient training in medication management. Culture of the organization did affect the medication safety and quality improvement. The empowerment of the residents in their medication management was limited. There were unclear roles and responsibility of who manages the medication in the nongovernment-funded RACFs, although they were well structured in the private nursing homes. There are important issues related to medication management in RACFs which require a need to establish policy and guidelines.

  6. Comparative study of ion conducting pathways in borate glasses

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-01-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity

  7. Community Violence Exposure and Conduct Problems in Children and Adolescents with Conduct Disorder and Healthy Controls

    OpenAIRE

    Linda Kersten; Noortje Vriends; Martin Steppan; Nora M. Raschle; Martin Praetzlich; Helena Oldenhof; Robert Vermeiren; Lucres Jansen; Katharina Ackermann; Anka Bernhard; Anne Martinelli; Karen Gonzalez-Madruga; Ignazio Puzzo; Amy Wells; Jack C. Rogers

    2017-01-01

    Exposure to community violence through witnessing or being directly victimized has been associated with conduct problems in a range of studies. However, the relationship between community violence exposure (CVE) and conduct problems has never been studied separately in healthy individuals and individuals with conduct disorder (CD). Therefore, it is not clear whether the association between CVE and conduct problems is due to confounding factors, because those with high conduct problems also te...

  8. Techniques for Conducting Effective Concept Design and Design-to-Cost Trade Studies

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Concept design plays a central role in project success as its product effectively locks the majority of system life cycle cost. Such extraordinary leverage presents a business case for conducting concept design in a credible fashion, particularly for first-of-a-kind systems that advance the state of the art and that have high design uncertainty. A key challenge, however, is to know when credible design convergence has been achieved in such systems. Using a space system example, this paper characterizes the level of convergence needed for concept design in the context of technical and programmatic resource margins available in preliminary design and highlights the importance of design and cost evaluation learning curves in determining credible convergence. It also provides techniques for selecting trade study cases that promote objective concept evaluation, help reveal unknowns, and expedite convergence within the trade space and conveys general practices for conducting effective concept design-to-cost studies.

  9. Association between Work Related Stress and Health Related Quality of Life: The Impact of Socio-Demographic Variables. A Cross Sectional Study in a Region of Central Italy.

    Science.gov (United States)

    La Torre, Giuseppe; Sestili, Cristina; Mannocci, Alice; Sinopoli, Alessandra; De Paolis, Massimiliano; De Francesco, Sara; Rapaccini, Laura; Barone, Marco; Iodice, Valentina; Lojodice, Bruno; Sernia, Sabina; De Sio, Simone; Del Cimmuto, Angela; De Giusti, Maria

    2018-01-19

    The aim of this work is investigate relationship between health-related quality of life and work-related stress and the impact of gender, education level, and age on this relationship. A cross-sectional study was conducted among workers of various setting in Rome and Frosinone. Work-related stress was measured with a demand-control questionnaire and health-related functioning by SF (short form)-12 health survey. There were 611 participants. Men reported high mental composite summary (MCS) and physical composite summary (PCS). In multivariate analysis age, gender ( p work-related stress should consider socio-demographic factors.

  10. Electrical conductivity studies of anatase TiO2 with dominant highly reactive {0 0 1} facets

    International Nuclear Information System (INIS)

    Pomoni, K.; Sofianou, M.V.; Georgakopoulos, T.; Boukos, N.; Trapalis, C.

    2013-01-01

    Highlights: ► Anatase TiO 2 with reactive {0 0 1} facets were synthesized by a solvothermal method. ► The structure and the electrical conductivity were studied. ► Different conduction mechanisms act at different temperature regions. ► Environment and calcination influence significantly the conductivity. - Abstract: Nanostructured powders of titanium dioxide anatase nanoplates with dominant highly reactive {0 0 1} facets were fabricated using a solvothermal method. Two kinds of samples, as prepared and calcinated at 600 °C, were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrical conductivity in vacuum and in air. The dependence of the conductivity versus the inverse of temperature in the temperature range 150–440 K indicated the contribution of at least two conduction mechanisms in vacuum. The electron transport was controlled by partially depleted of charge carriers grains and adiabatic small polaron conduction in the high temperature regime and by Mott variable-range hopping (VRH) at lower temperatures. The environment was found from the experimental results to influence significantly the electrical conductivity values and its temperature dependence. A decrease with temperature in air is observed in the ranges 290–370 and 285–330 K for the as prepared and the calcinated sample respectively. Potential barriers caused by partial depletion of carriers at grain boundaries control the electrical conductivity behavior in air at high temperatures and VRH in the lower temperature regime.

  11. IRSN methodological guide to conducting workplace studies in compliance with French regulations

    International Nuclear Information System (INIS)

    Donadille, L.; Rehel, J. L.; Deligne, J. M.; Queinnec, F.; Aubert, B.; Bottollier-Depois, J. F.; Clairand, I.; Jourdain, J. R.; Rannou, A.

    2007-01-01

    Under French regulations governing radiation protection of workers, dosimetric workplace studies are mandatory. However, their practical implementation is not described. IRSN has developed a guide to help stakeholders in the radiological protection of workers conduct such studies. It proposes a general methodology applicable to most cases and 'workplace sheets', which apply this methodology to specific occupational settings. At present, two sheets are available: Conventional radiology and interventional radiology. (authors)

  12. International Conference on Harmonisation; Guidance on M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals; availability. Notice.

    Science.gov (United States)

    2010-01-21

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals.'' The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance, which is a revision of an existing guidance, discusses the types of nonclinical studies, their scope and duration, and their relation to the conduct of human clinical trials and marketing authorization for pharmaceuticals. The guidance is intended to facilitate the timely conduct of clinical trials and reduce the unnecessary use of animals and other drug development resources.

  13. Composition and conductance distributions of single GeSi quantum rings studied by conductive atomic force microscopy combined with selective chemical etching.

    Science.gov (United States)

    Lv, Y; Cui, J; Jiang, Z M; Yang, X J

    2013-02-15

    Atomic force microscopy imaging combined with selective chemical etching is employed to quantitatively investigate three-dimensional (3D) composition distributions of single GeSi quantum rings (QRs). In addition, the 3D quantitative composition distributions and the corresponding conductance distributions are simultaneously obtained on the same single GeSi QRs by conductive atomic force microscopy combined with selective chemical etching, allowing us to investigate the correlations between the conductance and composition distributions of single QRs. The results show that the QRs' central holes have higher Ge content, but exhibit lower conductance, indicating that the QRs' conductance distribution is not consistent with their composition distribution. By comparing the topography, composition and conductance profiles of the same single QRs before and after different etching processes, it is found that the conductance distributions of GeSi QRs do not vary with the change of composition distribution. Instead, the QRs' conductance distributions are found to be consistent with their topographic shapes, which can be supposed to be due to the shape determined electronic structures.

  14. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  15. Study of the electrical conductivity at finite temperature in 2D Si- MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Limouny, L., E-mail: kaaouachi21@yahoo.fr; Kaaouachi, A. El, E-mail: kaaouachi21@yahoo.fr; Tata, O.; Daoudi, E.; Errai, M.; Dlimi, S. [Research Group ESNPS, Physics Department, University Ibn Zohr, Faculty of Sciences, B.P 8106, Hay Dakhla, 80000 Agadir (Morocco); Idrissi, H. El [Faculté des Sciences et Techniques de Mohammedia, Département de physique. B.P 146 Quartier Yasmina Mohammedia (Morocco); Zatni, A. [Laboratoire MSTI, Ecole Supérieure de Technologie d' Agadir, B.P: 33/S Agadir (Morocco)

    2014-01-27

    We investigate the low temperature density dependent conductivity of two dimensional electron systems in zero magnetic field for sample Si-15 MOSFETs. The first purpose of this paper is to establish that the knee of the conductivity σ{sub 0} (σ{sub 0} is the T = 0.3 conductivity obtained by linear extrapolation of the curves of σ (T) for different values of electron density, n{sub s}) as a function of the carrier densities n{sub s} for T = 0.3 K, observed by Lai et al. and Limouny et al. in previous work for two different samples, is independent of temperature. The second aim is the determination of the critical density, n{sub c}, of the metal-insulator transition. Many methods are used in this investigation of n{sub c} which have been already used for other samples. The motivation behind this last study is the observation of many values of n{sub c} that have been obtained from different methods and that are slightly different. We will use in this study three methods with the intention to infer which one is more appropriate to obtain n{sub c}.

  16. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  17. Case-control study of gadodiamide-related nephrogenic systemic fibrosis

    DEFF Research Database (Denmark)

    Marckmann, Peter; Skov, Lone; Rossen, Kristian

    2007-01-01

    exposed to gadodiamide develop nephrogenic systemic fibrosis. METHODS: We conducted a case-control study of 19 histologically verified cases and 19 sex- and age-matched controls. All subjects had chronic renal failure when exposed to gadodiamide. Clinical, biochemical and pharmacological data were.......02). CONCLUSIONS: Increasing cumulative gadodiamide exposure, high-dose epoietin-beta treatment, and higher serum concentrations of ionized calcium and phosphate increase the risk of gadodiamide-related nephrogenic systemic fibrosis in renal failure patients. Severe cases seem to develop primarily among patients......BACKGROUND: Nephrogenic systemic fibrosis may be caused by gadolinium (Gd)-containing magnetic resonance imaging contrast agents. Most reported cases were associated with one particular agent, gadodiamide. Yet, unidentified cofactors might explain why only a minority of renal failure patients...

  18. Combined impact of lifestyle-related factors on total and cause-specific mortality among Chinese women: prospective cohort study.

    OpenAIRE

    Sarah J Nechuta; Xiao-Ou Shu; Hong-Lan Li; Gong Yang; Yong-Bing Xiang; Hui Cai; Wong-Ho Chow; Butian Ji; Xianglan Zhang; Wanqing Wen; Yu-Tang Gao; Wei Zheng

    2010-01-01

    Editors' Summary Background It is well established that lifestyle-related factors, such as limited physical activity, unhealthy diets, excessive alcohol consumption, and exposure to tobacco smoke are linked to an increased risk of many chronic diseases and premature death. However, few studies have investigated the combined impact of lifestyle-related factors and mortality outcomes, and most of such studies of combinations of established lifestyle factors and mortality have been conducted in ...

  19. Modeling liver electrical conductivity during hypertonic injection.

    Science.gov (United States)

    Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni

    2018-01-01

    Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Studies on phase evolution and electrical conductivity of barium doped gadolinium aluminate

    International Nuclear Information System (INIS)

    Sinha, Amit; Sharma, B.P.; Gopalan, P.

    2012-01-01

    Highlights: ► Barium doped GdAlO 3 compositions were prepared from citrate gel derived powders. ► The solid solubility of barium in GdAlO 3 was less than 4 mol%. ► The un-dissolved barium precipitated in the form of BaAl 2 O 4 phase. ► The conductivity of Ba-doped GdAlO 3 increased with increasing amounts of Ba. ► In Gd 1−x Ba x AlO 3−δ system, specimen with x = 0.02 exhibited maximum conductivity. - Abstract: The phase evolution and electrical conductivity of barium doped GdAlO 3 samples have been investigated. The Ba- doped compositions of GdAlO 3 were prepared through citrate gel process. Analysis of the phases was carried out using X-ray diffraction (XRD). The morphology of the calcined powders was studied by scanning electron microscopy. The electrical conductivity of Gd 1−x Ba x AlO 3−δ (x = 0–0.04) was measured using ac impedance spectroscopy as a function of temperature ranging from 300 to 1000 °C under air. The solid solubility of barium in GdAlO 3 was found to be less than 4 mol%. The undissolved barium precipitated in the form of BaAl 2 O 4 phase. The barium doped GdAlO 3 powders obtained after calcination at 1000 °C was found to be porous agglomerate composed of nanocrystalline grains. The total electrical conductivity of Ba-doped GdAlO 3 increased with increasing amounts of barium up to 2 mol% doping.

  1. Thermal conductivity of electrospun polyethylene nanofibers.

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu

    2015-10-28

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  2. Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer

    Science.gov (United States)

    Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.

    2017-11-01

    Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products - liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.

  3. Recent geoscientific information relating to deep crustal studies

    International Nuclear Information System (INIS)

    Smellie, John

    2004-01-01

    still greater depths. This reduction in permeability is matched by a reduction in porosity. In areas of subdued topography (e.g. typical Baltic Shield terrain), a zone of active downward moving meteoric water exchange exists in the upper 0-2 km; at greater depths the highly saline fluids and brines are extremely ancient and no recent meteoric water input is observed. In areas of more extreme topography the zone of active meteoric recharge may reach 4-5 km before highly saline fluids are encountered. At the KTB site highly saline fluids appear to be present throughout the rock matrix to at least 9 km. Most, however, are present in microfractures which lack connectivity due to the very low permeability of the host rocks and therefore do not participate in any active groundwater circulation. If hydraulic circulation is indicated at favourable fracture zones of higher hydraulic conductivity, the presence of highly saline to brine fluid compositions may be expected to minimise such circulation. Evidence shows that active saline groundwater circulation does exist but is restricted to intermittently occurring hydraulically conductive fracture zones. Nevertheless at some locations (i.e. the KTB site) it was concluded that in a high brine environment relatively rapid solute transport in fracture systems is possible. Hydrogeochemistry: At repository depths long-term hydrochemical stability appears to be assured where hydraulic conditions are favourable (i.e. low topography; weak hydraulic gradients; low permeability). This is further supported by the presence of highly saline fluids to brines and associated gases at great depths which reveal ages of millions of years with no evidence of recent meteoric water exchange. Fracture mineral chemistry and fluid inclusion studies support long-term stability. Highly saline fluids, whilst undesirable from a near-field viewpoint (e.g. corrosion potential), are less conducive to radionuclide mobilisation and transport. Solute transport

  4. Recent geoscientific information relating to deep crustal studies

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John [Conterra AB, Uppsala (Sweden)

    2004-01-01

    the order of 10{sup -20}-10{sup -19} m{sup 2} at still greater depths. This reduction in permeability is matched by a reduction in porosity. In areas of subdued topography (e.g. typical Baltic Shield terrain), a zone of active downward moving meteoric water exchange exists in the upper 0-2 km; at greater depths the highly saline fluids and brines are extremely ancient and no recent meteoric water input is observed. In areas of more extreme topography the zone of active meteoric recharge may reach 4-5 km before highly saline fluids are encountered. At the KTB site highly saline fluids appear to be present throughout the rock matrix to at least 9 km. Most, however, are present in microfractures which lack connectivity due to the very low permeability of the host rocks and therefore do not participate in any active groundwater circulation. If hydraulic circulation is indicated at favourable fracture zones of higher hydraulic conductivity, the presence of highly saline to brine fluid compositions may be expected to minimise such circulation. Evidence shows that active saline groundwater circulation does exist but is restricted to intermittently occurring hydraulically conductive fracture zones. Nevertheless at some locations (i.e. the KTB site) it was concluded that in a high brine environment relatively rapid solute transport in fracture systems is possible. Hydrogeochemistry: At repository depths long-term hydrochemical stability appears to be assured where hydraulic conditions are favourable (i.e. low topography; weak hydraulic gradients; low permeability). This is further supported by the presence of highly saline fluids to brines and associated gases at great depths which reveal ages of millions of years with no evidence of recent meteoric water exchange. Fracture mineral chemistry and fluid inclusion studies support long-term stability. Highly saline fluids, whilst undesirable from a near-field viewpoint (e.g. corrosion potential), are less conducive to radionuclide

  5. 28 CFR 549.80 - Authority to conduct autopsies.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Authority to conduct autopsies. 549.80... MEDICAL SERVICES Authority To Conduct Autopsies § 549.80 Authority to conduct autopsies. (a) The Warden may order an autopsy and related scientific or medical tests to be performed on the body of a deceased...

  6. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    International Nuclear Information System (INIS)

    R. JONES

    2004-01-01

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu and others (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value

  7. A follow-up of adolescents with conduct disorder:

    DEFF Research Database (Denmark)

    Olsson, Martin; Hansson, Kjell

    2009-01-01

    and adolescent psychiatric unit. Using structured questionnaires as independent variables, this study uses multiple regression analysis to predict health outcomes. Results: The results showed that self-concept and verbal intelligence could significantly predict health outcomes. However, in the multivariate......Abstract Background: This study examines Swedish young adults (age 21) with a history of conduct disorder (CD) in adolescence. Research has established CD as a condition for a range of adverse outcomes. Intelligence, aggression, parent–child conflict, parent–child relation and peer......-rejection are known factors influencing the outcome. Aim: The aim of this longitudinal study is to find how self-confidence and intelligence in an inpatient group diagnosed with CD are related to health in young adulthood. Methods: The subjects were diagnosed with CD in their adolescence at the inpatient child...

  8. Induced-charge electroosmosis around conducting and Janus cylinder in microchip

    Directory of Open Access Journals (Sweden)

    Zhang Kai

    2012-01-01

    Full Text Available The induced-charge elecetroosmosis around conducting/Janus cylinder with arbitrary Debye thickness is studied numerically, when an direct current weak electric filed is suddenly applied in a confined microchannel. It’s found that there are four large circulations around the conducting cylinder, and the total flux in the microchannel is zero; there are two smaller circulations around the Janus cylinder, and they are compressed to wall. A bulk flux, which has a parabolic relation with the applied electric field, is also predicted.

  9. Recommendations for designing and conducting veterinary clinical pathology biologic variation studies.

    Science.gov (United States)

    Freeman, Kathleen P; Baral, Randolph M; Dhand, Navneet K; Nielsen, Søren Saxmose; Jensen, Asger L

    2017-06-01

    The recent creation of a veterinary clinical pathology biologic variation website has highlighted the need to provide recommendations for future studies of biologic variation in animals in order to help standardize and improve the quality of published information and to facilitate review and selection of publications as standard references. The following recommendations are provided in the format and order commonly found in veterinary publications. A checklist is provided to aid in planning, implementing, and evaluating veterinary studies on biologic variation (Appendix S1). These recommendations provide a valuable resource for clinicians, laboratorians, and researchers interested in conducting studies of biologic variation and in determining the quality of studies of biologic variation in veterinary laboratory testing. © 2017 American Society for Veterinary Clinical Pathology.

  10. The Relation between the Electric Conductance of Nanostructure Bridge and Friedel Sum Rule

    International Nuclear Information System (INIS)

    Kotani, Y; Shima, N; Makoshi, K

    2012-01-01

    We analyze the electric conductance through nanostructure bridges in terms of phase-shifts, which satisfy the Friedel sum rule. The phase-shifts are given by solving the eigenvalue equation obtained by extending the method applied to a single impurity problem in a metal. The local charge neutrality condition is introduced through the Friedel sum rule. It is analytically shown that the electric conductance can increase as the two electrodes separate with the condition in which the phase-shifts satisfy the Friedel sum rule. The increment of the distance between two electrodes is obtained by gradually separating interatomic distance.

  11. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    Science.gov (United States)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as

  12. Facing the Challenge--Conduct Disorders and Aggression.

    Science.gov (United States)

    Arllen, Nancy L.; Gable, Robert A.

    This paper examines the nature of student conduct disorders, including both the origin and treatment of such disorders. In Part I, distinguishing characteristics of the syndrome are discussed and issues related to philosophy, definition, and delivery of services are considered. Two major subcategories of conduct disorder, socialized and…

  13. Analysis of the Air Force ISO 14001 Pilot Study Conducted by DoD

    National Research Council Canada - National Science Library

    Harris, Rodney

    2000-01-01

    The Department of Defense (DoD) conducted an ISO 14001 pilot study with the primary goal of determining how ISO 14001 could help DoD organizations reduce risks, improve compliance with environmental regulations, enhance stewardship...

  14. PSYCHIATRIC MORBIDITY PATTERN OF THE FIRST-DEGREE RELATIVES OF SCHIZOPHRENICS: CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Alexander Gnana Durai

    2015-11-01

    Full Text Available : CONTEXT: Family, Twin and Adoption studies show the inheritance patterns of schizophrenia. The findings from these studies provide support to the claim that familial clustering of schizophrenia is a combined expression of genetic and environmental factors. AIMS: Following the line of previous research, this study attempts to find out any difference in the psychiatric morbidity pattern among the first-degree relatives of familial and sporadic schizophrenics. SETTINGS AND DESIGN: We conducted a cross-sectional survey among a convenience sample of 100 first-degree relatives (age between 18 to 55 years of familial (n=22 and sporadic (n=29 schizophrenics from psychiatric outpatient clinic, of a Government Hospital, India. The schizophrenics satisfied the DSM-IV criteria and all the first degree relatives interviewed never had any psychiatric consultation before or were abusing alcohol or other substances or having any organic pathology. METHODS AND MATERIAL: Informed consent from the patients and relatives was obtained. Survey questionnaires were administered and no personal identifying information was collected. Middle Sex Hospital Questionnaire (MHQ, Eysenck's Personality Questionnaire (EPQ, Multi-Phasic Personality Questionnaire (MPQ and Screening Test for Co-Morbid Personality Disorders (STCPD were administered to the participants.

  15. [Conduct disorders in seven-year-old children--results of ELSPAC study 1. Co-morbidity].

    Science.gov (United States)

    Kukla, L; Hrubá, D; Tyrlík, M; Matejová, H

    2008-01-01

    The interest of experts in conduct disorders (CD) research is growing during the last two decades. The research areas include the diagnostics, ethiopathogenesis and treatment and also the comorbidity, especially with the hyperkinetic syndrome incidence (Attention Deficit Hyperactivity Disorder--ADHD). This paper intends to describe the conduct disorder occurrence and its other manifestations of divergence found during the investigation of children followed in the prospective longitudinal study ELSPAC in seven, respectively eight years of their age. Data of 6100 seven-year-old children characterizing their behaviour was collected from mothers and attending physicians. In the school year during which this investigation phase took place 2518 of the children reached eight years of age and their behaviour, temperament and school results were also evaluated by their teachers. The children were divided into three groups according to the presence or absence of the symptoms, which characterize conduct disorders (found by physicians): "stubborn negativistic behaviour", "inability to pay attention", "aggressiveness" and "inadequacy of reactions". The presence of two of these symptoms was found in 3%, presence of all four symptoms in additional 1.4% of children. Parents and teachers more often indicated various symptoms of hyperactivity in children with conduct disorders. In almost 5% of the ELSPAC cohort children in seven years of their age those symptoms were diagnosed, which match the Conduct Disorder criteria and Attention Deficit Hyperactivity Disorder (ADHD) criteria. In agreement with similar studies these frequent comorbidities were found: sleep disorders, psychomotor development disorders and laterality changes. The cognitive abilities evaluated by mothers and also teachers based on schoolwork results were more often worsened in children with conduct disorders. Various data indicating their worse social adaptability (which significantly disturbed the class) occurred

  16. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    Science.gov (United States)

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. A Morphology Study of Nanofiller Networks in Polymer Nanocomposites: Improving Their Electrical Conductivity through Better Doping Strategies

    KAUST Repository

    Mora, Angel

    2018-02-01

    Over the past years, research efforts have focused on adding highly conductive nanoparticles, such as carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), into polymers to improve their electrical conductivity or to tailor their piezoresistive behavior. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. The weight/volume fraction alone is a very global quantity, making it a poor evaluator of a doping configuration. Knowing which particles actually participate in improving electrical conductivity can optimize the doping strategy. Additionally, conductive particles are only capable of charge transfer over a very short range, thus most of them do not form part of the conduction path. Thus, understanding how these particles are arranged is necessary to increase their efficiency. First, this work focuses on polymers loaded with CNTs. A computational modeling strategy based on a full morphological analysis of the CNT network is presented to systematically analyze conductive networks and show how particles are arranged. A definition of loading efficiency is provided based on the results obtained from this morphology analysis. This study provides useful guidelines for designing these types of materials based on important features, such as representative volume element, nanotube tortuosity and length, tunneling cutoff distance, and efficiency. Second, a computational approach is followed to study the conductive network formed by hybrid particles in polymer nanocomposites. These hybrid particles are synthesized by growing CNTs on the surfaces of GNPs. The objective of this study is to show that the higher electrical conductivity of these composites is due to the hybrids forming a segregated structure. Polymers loaded with hybrid particles have shown a higher electrical conductivity compared with classical carbon fillers: only CNTs, only GNPs or mixed CNTs and GNPs. This is done to understand and compare the doping

  18. Kindergarten Teachers' Perspectives on Developmentally Appropriate Practices (DAP): A Study Conducted in Mumbai (India)

    Science.gov (United States)

    Hegde, Archana V.; Cassidy, Deborah J.

    2009-01-01

    A qualitative study examining teachers' beliefs regarding developmentally appropriate practices was conducted in the city of Mumbai, India. Twelve kindergarten teacher's were interviewed for this study, and a constant comparative method was used to analyze the interviews. Six themes were identified within this study. The themes highlighted…

  19. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  20. Conductivity ageing studies on 1M10ScSZ (M4+=Ce, Hf)

    DEFF Research Database (Denmark)

    Omar, Shobit; Bin Najib, Waqas; Bonanos, Nikolaos

    2011-01-01

    The long-term conductivity stability is tested on zirconia based electrolyte materials for solid oxide fuel cell applications. The ageing studies have been performed on the samples of ZrO2 co-doped with 10mol% of Sc2O3 and 1mol% MO2, where M = Ce or Hf (denoted respectively 1Ce10ScSZ and 1Hf10Sc......SZ) in oxidising and reducing atmospheres, at 600°C for 3000h. At 600°C, these compositions show initial conductivity of around 9–12mS∙cm−1 in air. After 3000h of ageing, no phase transitions are observed in any of the samples. For the first 1000h, the degradation rate is higher than in the subsequent 2000h......; thereafter, conductivity degrades linearly with time for all samples. In air, the loss in the conductivity is lower than in reducing conditions. The 1Ce10ScSZ shows the highest degradation rate of 3.8%/1000h in wet H2/N2 after the first 1000h of ageing. A colour change of the 1Ce10ScSZ sample from white...

  1. Authoritarian parenting attitudes as a risk for conduct problems Results from a British national cohort study.

    Science.gov (United States)

    Thompson, Anne; Hollis, Chris; Dagger, David Richards

    2003-04-01

    This study examines the associations, and possible causal relationship, between mothers' authoritarian attitudes to discipline and child behaviour using cross-sectional and prospective data from a large population sample surveyed in the 1970 British Cohort Study. Results show a clear linear relationship between the degree of maternal approval of authoritarian child-rearing attitudes and the rates of conduct problems at age 5 and age 10. This association is independent of the confounding effects of socio-economic status and maternal psychological distress. Maternal authoritarian attitudes independently predicted the development of conduct problems 5 years later at age 10. The results of this longitudinal study suggest that authoritarian parenting attitudes expressed by mothers may be of significance in the development of conduct problems.

  2. The Connoisseurship of Conducting: A Qualitative Study of Exemplary Wind Band Conductors

    Science.gov (United States)

    Barry, Nancy; Henry, Daniel

    2015-01-01

    This study aimed to gain an in-depth perspective through examining how the conducting pedagogy of three selected exemplary high school and college instrumental music conductors function within the context of an actual rehearsal. A typical rehearsal was video recorded, followed by a "think-aloud" session in which the conductor viewed the…

  3. Responsible conduct of research

    CERN Document Server

    Shamoo, Adil E

    2015-01-01

    Since the early 2000s, the field of Responsible Conduct of Research has become widely recognized as essential to scientific education, investigation, and training. At present, research institutions with public funding are expected to have some minimal training and education in RCR for their graduate students, fellows and trainees. These institutions also are expected to have a system in place for investigating and reporting misconduct in research or violations of regulations in research with human subjects, or in their applications to federal agencies for funding. Public scrutiny of the conduct of scientific researchers remains high. Media reports of misconduct scandals, biased research, violations of human research ethics rules, and moral controversies in research occur on a weekly basis. Since the 2009 publication of the 2nd edition of Shamoo and Resnik's Responsible Conduct of Research, there has been a vast expansion in the information, knowledge, methods, and diagnosis of problems related to RCR and the ...

  4. Thermal conductivity measurements in relation to the geothermal exploration of the Gorleben salt dome

    International Nuclear Information System (INIS)

    Kopietz, J.

    1985-01-01

    The results of thermal conductivity measurements on rock salt and associated structures are presented in this paper. Thermal conductivity data obtained from laboratory measurements on the core material are compared with high-precision temperature gradient logs from the exploration boreholes. This work is part of an extensive investigation into the suitability of the Gorleben salt done in northern Germany as a radioactive waste disposal site

  5. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migrai...

  6. Conducting model ecosystem studies in tropical climate zones: Lessons learned from Thailand and way forward

    Energy Technology Data Exchange (ETDEWEB)

    Daam, Michiel A., E-mail: mdaam@isa.utl.pt [Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon (Portugal); Van den Brink, Paul J., E-mail: Paul.vandenbrink@wur.nl [Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-04-15

    Little research has been done so far into the environmental fate and side effects of pesticides in the tropics. In addition, those studies conducted in tropical regions have focused almost exclusively on single species laboratory tests. Hence, fate and effects of pesticides on higher-tier levels have barely been studied under tropical conditions. To address this lack of knowledge, four outdoor aquatic model ecosystem experiments using two different test systems were conducted in Thailand evaluating the insecticide chlorpyrifos, the herbicide linuron and the fungicide carbendazim. Results of these experiments and comparisons of recorded fate and effects with temperate studies have been published previously. The present paper discusses the pros and cons of the methodologies applied and provides indications for i) possible improvements; ii) important aspects that should be considered when performing model ecosystem experiments in the tropics; iii) future research. - Research highlights: > Methodologies used overall seemed adequate to evaluate pesticide stress. > Identification and sampling of tropical macroinvertebrates should be improved. > Additional studies needed for different compounds and greater geographical scale. > Different exposure regimes and ecosystem types should be simulated. > Trophic interrelationship and recovery potential need to be evaluated. - Methodologies for conducting model ecosystem studies in the tropics.

  7. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids

    International Nuclear Information System (INIS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Mohamed, Abdellatif Belhadj

    2007-01-01

    We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-10 6 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T 0 , density of states at the Fermi level (N(E F )), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σ ac (ω,T) A(T)ω s(T,ω) , which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems

  8. Perceptions of Health-Related Information on Facebook: Cross-Sectional Study Among Vietnamese Youths.

    Science.gov (United States)

    Zhang, Melvyn Wb; Tran, Bach Xuan; Le, Huong Thi; Nguyen, Hinh Duc; Nguyen, Cuong Tat; Tran, Tho Dinh; Latkin, Carl A; Ho, Roger Cm

    2017-09-07

    While health information websites may have previously been the core source of information about health-related conditions on the Internet, social networking sites are increasingly replacing those websites as a source of health-related information. The increasingly popularity of social networking sites among the general population has consequential impact on health policies as well as health-related interventions. To date, there remains a paucity of research conducted in developing countries like Vietnam looking at the influence of social networking sites. Our goal is to establish the baseline use of Facebook among Vietnamese youths and establish their perception of the reliability and usefulness of health-related information that they previously encountered while using the social networking site. An online cross-sectional study was conducted from August 2015 to October 2015. Respondent-driven sampling (RDS) technique was used in the recruitment of participants. Sociodemographic, health status, behaviors, Facebook use and belief of information on Facebook, and interpersonal influence of social network sites were collected via an online structured questionnaire. Among 1080 participants, 72.87% (787/1080) reported being interested in health information on Facebook, and 50.74% (548/1080) and 17.50% (189/1080) perceived the information to be reliable and useful, respectively. A total of 10.93% (118/1080) of the participants also reported that they would follow the health advice they obtained from Facebook. Of significance, 7.13% (77/1080) of the participants also reported peer influences on their behavior. Factors that mediate Vietnamese perceptions of the information online include gender, level of perceived stress, age, educational level, and interpersonal influences from Facebook. Our study is perhaps one of the first conducted in Vietnam that looks at the relationship between health information on Facebook and factors that might influence young Vietnamese

  9. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  10. The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites

    NARCIS (Netherlands)

    Huijbregts, L.J.; Brom, H.B.; Brokken-Zijp, J.C.M.; Kemerink, M.; Chen, Z.; Goeje, de M.P.; Yuan, M.; Michels, M.A.J.

    2006-01-01

    Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-cond. relation in this composite and the deviation from its optimal

  11. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    Science.gov (United States)

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  12. Relational Research and Organisation Studies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland; Larsen, Mette Vinther; Hansen, Lone Hersted

    , analyzing organizational dialoguing, and polyphonic future-forming ways of writing up research.  Relational Research and Organisation Studies does not only present and discuss guidelines for practice at a onto-epistemological level but also presents and discusses concrete cases of research projects building...... on relational constructionist ideas. Furthermore, excerpts of data are presented and analyzed in order to explain the co-constructed processes of the inquiries more in detail. Relational Research and Organisation Studies invites the reader into the process of planning and carrying out relational constructionist......This volume lays out a variety of ways of engaging in research projects focused on exploring the everyday relational practices of organizing and leading is presented. The main focus is through elaborate examples from the author’s own research to further the understanding of how it is possible...

  13. Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Worosz, Ted [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Bernard, Matt [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States); Kong, Ran; Toptan, Aysenur [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Kim, Seungjin, E-mail: skim@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Hoxie, Chris [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2016-12-15

    Highlights: • Revised conductivity probe circuit to eliminate signal “ghosting” among sensors. • Higher sampling frequencies suggested for bubble number frequency and a{sub i} measurements. • Two-phase parameter sensitivity to measurement duration and bubble number investigated. • Sensors parallel to pipe wall recommended for symmetric bubble velocity measurements. • Sensor separation distance ratio (s/d) greater than four minimizes bubble velocity error. - Abstract: The objective of this study is to advance the local multi-sensor conductivity probe measurement technique through systematic investigation into several practical aspects of a conductivity probe measurement system. Firstly, signal “ghosting” among probe sensors is found to cause artificially high bubble velocity measurements and low interfacial area concentration (a{sub i}) measurements that depend on sampling frequency and sensor impedance. A revised electrical circuit is suggested to eliminate this artificial variability. Secondly, the sensitivity of the probe measurements to sampling frequency is investigated in 13 two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00–5.00 m/s and 0.17–2.0 m/s, respectively. With increasing gas flow rate, higher sampling frequencies, greater than 100 kHz in some cases, are required to adequately capture the bubble number frequency and a{sub i} measurements. This trend is due to the increase in gas velocity and the transition to the slug flow regime. Thirdly, the sensitivity of the probe measurements to the measurement duration as well as the sample number is investigated for the same flow conditions. Measurements of both group-I (spherical/distorted) and group-II (cap/slug/churn-turbulent) bubbles are found to be relatively insensitive to both the measurement duration and the number of bubbles, as long as the measurements are made for a duration long enough to capture a collection of samples characteristic to a

  14. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  15. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J. [Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Kwiatkowski, L. [Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Krakow (Poland)

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  16. Public participation in energy related decision making: Six case studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, F.; Cole, J.; Kloman, E.; McCabe, J.; Sawicki, P.

    1977-12-01

    Each of the six case studies documents public participation in Federal and/or state governmental decisions related to energy facility siting. Four of the cases involved decisions on specific facilities at specific sites, namely: (1) various state and federal licensing procedures for the Seabrook, New Hampshire nuclear facility; (2) the Maine Environmental Improvement Commission's denial of a permit for an oil refinery on Sears Island in Penobscot Bay; (3) the Atomic Energy Commission's amendment to the license for the Big Rock Point, Michigan, nuclear reactor to allow an increased level of plutonium-enriched fuel use; (4) the AEC's review, arising from disclosure of a geological fault, of the North Anna River, Virginia, nuclear facility. A fifth case documents a series of public meetings conducted in Pennsylvania by the Governor's Energy Council to consider the energy park concept. The sixth study was a narrative history and analysis of RM-50-1, a rulemaking proceeding conducted by the AEC in 1972 and 73 on emergency core cooling system operating standards.

  17. A Methodological Study of Order Effects in Reporting Relational Aggression Experiences.

    Science.gov (United States)

    Serico, Jennifer M; NeMoyer, Amanda; Goldstein, Naomi E S; Houck, Mark; Leff, Stephen S

    2018-03-01

    Unlike the overt nature of physical aggression, which lends itself to simpler and more direct methods of investigation, the often-masked nature of relational aggression has led to difficulties and debate regarding the most effective tools of study. Given concerns with the accuracy of third-party relational aggression reports, especially as individuals age, self-report measures may be particularly useful when assessing experiences with relational aggression. However, it is important to recognize validity concerns-in particular, the potential effects of item order presentation-associated with self-report of relational aggression perpetration and victimization. To investigate this issue, surveys were administered and completed by 179 young adults randomly assigned to one of four survey conditions reflecting manipulation of item order. Survey conditions included presentation of (a) perpetration items only, (b) victimization items only, (c) perpetration items followed by victimization items, and (d) victimization items followed by perpetration items. Results revealed that participants reported perpetrating relational aggression significantly more often when asked only about perpetration or when asked about perpetration before victimization, compared with participants who were asked about victimization before perpetration. Item order manipulation did not result in significant differences in self-reported victimization experiences. Results of this study indicate a need for greater consideration of item order when conducting research using self-report data and the importance of additional investigation into which form of item presentation elicits the most accurate self-report information.

  18. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  19. Scanning tunneling spectroscopy study of DNA conductivity

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Král, Karel; Bunček, M.; Nešpůrek, Stanislav; Todorciuc, Tatiana; Weiter, M.; Navrátil, J.; Schneider, Bohdan; Pavluch, J.

    2008-01-01

    Roč. 6, č. 3 (2008), s. 422-426 ISSN 1895-1082 R&D Projects: GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN400720701; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505; CEZ:AV0Z40550506 Keywords : molecular electronics * DNA * scanning tunneling microscopy * conductivity * charge carrier transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.448, year: 2008

  20. Risk of Suicide Attempt among Adolescents with Conduct Disorder: A Longitudinal Follow-up Study.

    Science.gov (United States)

    Wei, Han-Ting; Lan, Wen-Hsuan; Hsu, Ju-Wei; Bai, Ya-Mei; Huang, Kai-Lin; Su, Tung-Ping; Li, Cheng-Ta; Lin, Wei-Chen; Chen, Tzeng-Ji; Chen, Mu-Hong

    2016-10-01

    To assess the independent or comorbid effect of conduct and mood disorders on the risk of suicide. The Taiwan National Health Insurance Research Database was used to derive data for 3711 adolescents aged 12-17 years with conduct disorder and 14 844 age- and sex-matched controls between 2001 and 2009. The participants were followed up to the end of 2011, and those who attempted suicide during the follow-up period were identified. Adolescents with conduct disorder had a higher incidence of suicide (0.9% vs 0.1%; P suicide at a younger age (17.38 ± 2.04 vs 20.52 ± 1.70 years of age) than did the controls. The Cox proportional hazards regression model, after adjustment for demographic data and psychiatric comorbidities, determined that conduct disorder was an independent risk factor for subsequent suicide attempts (hazard ratio, 5.17; 95% CI, 2.29-11.70). The sensitivity after those with other psychiatric comorbidities were excluded revealed a consistent finding (hazard ratio, 10.32; 95% CI, 3.71-28.71). Adolescents with conduct disorder had an increased risk of suicide attempts over the next decade. Future studies are required to clarify the underlying pathophysiology and elucidate whether prompt intervention for conduct disorder could reduce this risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. FUTURE MUSIC TEACHERS’ PROFESSIONAL AND INDIVIDUAL DEVELOPMENT WHILE STUDYING CONDUCTING AND CHORAL DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Alla Kozyr

    2017-04-01

    Full Text Available The article deals with the problem of professional and individual development of Art Institute students. The aim of the article is to disclose the effectiveness of organising future music teachers’ methodological training which causes their professional and individual development. There is an urgent necessity of implementing integrated knowledge system in musical and pedagogical education which requires greater coordination of the disciplines. The article gives a detailed analysis of future music teachers ‘theoretic and methodological training in the course of conducting and choral disciplines that takes place during the whole period of studying at Art Institutes and at Music and Pedagogics Faculties of Pedagogical Universities. The author claims that the course of conducting and choral disciplines helps overcome drawbacks of future teachers’ training to practice. But this course should be combined with vocal and instrumental training, the unity of these components promote to forming performance skills. It is shown that the main task of learning conducting and choral disciplines at Art Institutes and at Music and Pedagogics Faculties of Pedagogical Universities is directing students to the constant acmeological self-development. The basis for this is future teachers’ independent work that is supervised by tutors. Tutors should encourage students to have responsible attitude to the author’s text. The future conductor should have a habit of accurate reading of author’s text which is one of the preconditions of successful performance. In the article much attention is given to getting basic professional skills that involves training the leaders of school choral groups according to the following trends: studying music and theoretical materials thoroughly; mastering conducting techniques; learning vocal and choral technique and methodology of working with the choir. The author concludes that mastering the main professional skills means

  2. Improvement of the Work Environment and Work-Related Stress: A Cross-Sectional Multilevel Study of a Nationally Representative Sample of Japanese Workers.

    Science.gov (United States)

    Watanabe, Kazuhiro; Tabuchi, Takahiro; Kawakami, Norito

    2017-03-01

    This cross-sectional multilevel study aimed to investigate the relationship between improvement of the work environment and work-related stress in a nationally representative sample in Japan. The study was based on a national survey that randomly sampled 1745 worksites and 17,500 nested employees. The survey asked the worksites whether improvements of the work environment were conducted; and it asked the employees to report the number of work-related stresses they experienced. Multilevel multinominal logistic and linear regression analyses were conducted. Improvement of the work environment was not significantly associated with any level of work-related stress. Among men, it was significantly and negatively associated with the severe level of work-related stress. The association was not significant among women. Improvements to work environments may be associated with reduced work-related stress among men nationwide in Japan.

  3. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  4. Smoking Status and the Five-Factor Model of Personality: Results of a Cross-Sectional Study Conducted in Poland.

    Science.gov (United States)

    Buczkowski, Krzysztof; Basinska, Małgorzata A; Ratajska, Anna; Lewandowska, Katarzyna; Luszkiewicz, Dorota; Sieminska, Alicja

    2017-01-27

    Tobacco smoking is the single most important modifiable factor in increased morbidity and premature mortality. Numerous factors-including genetics, personality, and environment-affect the development and persistence of tobacco addiction, and knowledge regarding these factors could improve smoking cessation rates. This study compared personality traits between never, former, and current smokers, using the Five-Factor Model of Personality in a country with a turbulent smoking reduction process. : In this cross-sectional study, 909 Polish adults completed the Revised Neuroticism-Extraversion-Openness Personality Inventory. Our results showed that current smokers' scores for extraversion, one of the five global dimensions of personality, were higher relative to never smokers. Neuroticism, openness to experience, agreeableness, and conscientiousness did not differ significantly according to smoking status. Facet analysis, which described each dimension in detail, showed that current smokers' activity and excitement seeking (facets of extraversion) scores were higher relative to those of never and former smokers. In turn, current smokers' dutifulness and deliberation (facets of conscientiousness) scores were lower than those found in former and never smokers. Never smokers scored the highest in self-consciousness (a facet of neuroticism) and compliance (a component of agreeableness). The study conducted among Polish individuals showed variation in personality traits according to their smoking status; however, this variation differed from that reported in countries in which efforts to reduce smoking had begun earlier relative to Poland. Knowledge regarding personality traits could be useful in designing smoking prevention and cessation programs tailored to individuals' needs.

  5. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Science.gov (United States)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  6. Low temperature thermal conductivities of glassy carbons

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures

  7. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    Science.gov (United States)

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  8. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  9. Implementing Quality Criteria in Designing and Conducting a Sequential Quan [right arrow] Qual Mixed Methods Study of Student Engagement with Learning Applied Research Methods Online

    Science.gov (United States)

    Ivankova, Nataliya V.

    2014-01-01

    In spite of recent methodological developments related to quality assurance in mixed methods research, practical examples of how to implement quality criteria in designing and conducting sequential QUAN [right arrow] QUAL mixed methods studies to ensure the process is systematic and rigorous remain scarce. This article discusses a three-step…

  10. Study of gap conductance model for thermo mechanical fully coupled finite element model

    International Nuclear Information System (INIS)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2012-01-01

    accurately, gap conductance model for thermomechanical fully coupled FE should be developed. However, gap conductance in FE can be difficult issue in terms of convergence because all elements which are positioned in gap have different gap conductance at each iteration step. It is clear that our code should have gap conductance model for thermo-mechanical fully coupled FE in three-dimension. In this paper, gap conductance model for thermomechanical coupled FE has been built using commercial FE code to understand gap conductance model in FE. We coded commercial FE code using APDL because it does not have iterative gap conductance model. Through model, convergence parameter and characteristics were studied

  11. Electrical conductivity of metal powders under pressure

    Science.gov (United States)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  12. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    OpenAIRE

    Jinyi TAO; Yuchen ZHANG

    2014-01-01

    The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These p...

  13. Building Connections While Conducting Qualitative Health Fieldwork in Vietnam

    Directory of Open Access Journals (Sweden)

    Victoria L. Boggiano

    2015-11-01

    Full Text Available Researchers are increasingly embarking on international qualitative health research projects, where unknown social structures and government systems make inquiry uniquely challenging. In this article, we document our experiences conducting two related studies on HIV/AIDS in Northern Vietnam. We describe how our research relied on harnessing the social capital of vital community stakeholders, such as key informants, interpreters, and host organizations, to effectively engage with government bodies on a macro level and with local communities on a microlevel. By highlighting our processes, pitfalls, and successes, we provide current and future scholars with strategies to use when conducting cross-national field research.

  14. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    Science.gov (United States)

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  15. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  16. A Fractal Study on the Effective Thermal Conductivity of Porous Media

    Science.gov (United States)

    Qin, X.; Cai, J.; Wei, W.

    2017-12-01

    Thermal conduction in porous media has steadily received attention in science and engineering, for instance, exploiting and utilizing the geothermal energy, developing the oil-gas resource, ground water flow in hydrothermal systems and investigating the potential host nuclear wastes, etc. The thermal conductivity is strongly influenced by the microstructure features of porous media. In this work, based on the fractal characteristics of the grains, a theoretical model of effective thermal conductivity is proposed for saturated and unsaturated porous media. It is found that the proposed effective thermal conductivity solution is a function of geometrical parameters of porous media, such as the porosity, fractal dimension of granular matrix and the thermal conductivity of the grains and pore fluid. The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data. The proposed model may provide a better understanding of the physical mechanisms of thermal transfer in porous media than conventional models.

  17. Lifestyle-Related Factors Associated with Reproductive Health in Couples Seeking Fertility Treatments: Results of A Pilot Study

    Directory of Open Access Journals (Sweden)

    Marie-Lou Piché

    2018-01-01

    Full Text Available Background The objective of this pilot study was to evaluate the feasibility of conducting a larger prospective cohort study, which will aim at determining the independent contribution of male and female lifestyle-related factors to assisted reproductive technology (ART success. The study also examined whether couples seeking fertility treatments present lifestyle-related factors that may interfere with their reproductive health. Materials and Methods This prospective pilot study was conducted in a fertility clinic between May 2015 and February 2016. Feasibility factors evaluated were recruitment rates, compliance with the protocol, retention rate and ART outcomes at six-month follow-up. Anthropometric profile and lifestyle habits of both partners were evaluated before the beginning of infertility treatments. Results We approached 130 eligible infertile couples. Among them, 32 (25% agreed to participate and 28 (88% complied with the protocol. At six-month follow-up, seven couples (25% did not start, or stop, infertility treatments and 13 couples (62% achieved a clinical pregnancy. Among the 28 couples included in the analyses, 16% of the partners were obese and 23% had abdominal obesity. The majority of the subjects were still drinking alcohol (84%. Sixty-eight percent of women needed improvement in their diet (vs. 95% of men, P=0.05 and none of them achieved the Canadian recommendations for physical activity (vs. 33% of men, P=0.001. Moreover, 35% of the partners had a poor sleep quality. Overall, women presented a worse reproductive health profile than men, with 3.1 and 2.4 out of seven adverse factors, respectively (P=0.04. Conclusion Conducting a large prospective cohort study in our fertility clinic will be feasible but recruitment and compliance with the protocol need to be improved. Many women and men seeking fertility treatments present unfavourable lifestyle-related factors that may explain, at least partially, their difficulties in

  18. Conduct Disorder and Neighborhood Effects.

    Science.gov (United States)

    Jennings, Wesley G; Perez, Nicholas M; Reingle Gonzalez, Jennifer M

    2018-05-07

    There has been a considerable amount of scholarly attention to the relationship between neighborhood effects and conduct disorder, particularly in recent years. Having said this, it has been nearly two decades since a comprehensive synthesis of this literature has been conducted. Relying on a detailed and comprehensive search strategy and inclusion criteria, this article offers a systematic and interdisciplinary review of 47 empirical studies that have examined neighborhood effects and conduct disorder. Described results suggest that there are generally robust linkages between adverse neighborhood factors and conduct disorder and externalizing behavior problems, as 67 of the 93 (72.04%) effect sizes derived from these studies yielded statistically significant neighborhood effects. The review also identifies salient mediating and moderating influences. It discusses study limitations and directions for future research as well.

  19. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    Science.gov (United States)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The

  20. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  1. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    R. JONES

    2004-10-22

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data

  2. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  3. The conductivity of neonatal piglet skulls

    International Nuclear Information System (INIS)

    Pant, Shilpa; Te, Tang; Tucker, Aaron; Sadleir, Rosalind J

    2011-01-01

    We report the first measured values of conductivities for neonatal mammalian skull samples. We measured the average radial (normal to the skull surface) conductivity of fresh neonatal piglet skull samples at 1 kHz and found it to be around 30 mS m −1 at ambient room temperatures of about 23 °C. Measurements were made on samples of either frontal or parietal cranial bone, using a saline-filled cell technique. The conductivity value we observed was approximately twice the values reported for adult skulls (Oostendorp et al 2000 IEEE Trans. Biomed. Eng. 47 1487–92) using a similar technique, but at a frequency of around 5 Hz. Further, we found that the conductivity of skull fragments increased linearly with thickness. We found evidence that this was related to differences in composition between the frontal and parietal bone samples tested, which we believe is because frontal bones contained a larger fraction of higher conductivity cancellous bone material

  4. Ballistic and Diffusive Thermal Conductivity of Graphene

    Science.gov (United States)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  5. Longitudinal effects of disaster-related experiences on mental health among Fukushima nuclear plant workers: The Fukushima NEWS Project Study.

    Science.gov (United States)

    Ikeda, A; Tanigawa, T; Charvat, H; Wada, H; Shigemura, J; Kawachi, I

    2017-08-01

    The Fukushima Nuclear Energy Workers' Support (NEWS) Project Study previously showed that experiences related to the Fukushima nuclear disaster on 11 March 2011 had a great impact on psychological states, including post-traumatic stress response (PTSR) and general psychological distress (GPD), among the Fukushima nuclear plant workers. To determine the causal relationship between disaster-related experiences and levels of psychological states, we conducted a 3-year longitudinal study from 2011 to 2014. PTSR and GPD of the nuclear plant workers were assessed by annual questionnaires conducted from 2011 to 2014. The present study included a total of 1417 workers who provided an assessment at baseline (2011). A total of 4160 observations were used in the present analysis. The relationship between disaster-related experiences and psychological states over time was analysed using mixed-effects logistic regression models. A declining influence of disaster-related experiences on PTSR over time was found. However, the impact on PTSR remained significantly elevated even 3 years after the disaster in several categories of exposure including the experience of life-threatening danger, experiences of discrimination, the witnessing of plant explosion, the death of a colleague and home evacuation. The associations between GPD and disaster-related experiences showed similar effects. The effects of disaster-related experiences on psychological states among the nuclear plant workers reduced over time, but remained significantly high even 3 years after the event.

  6. Mechanistic interaction study of thin oxide dielectric with conducting organic electrode

    International Nuclear Information System (INIS)

    Sharma, Himani; Sethi, Kanika; Raj, P. Markondeya; Gerhardt, R.A.; Tummala, Rao

    2012-01-01

    Highlights: ► Thin film-oxide dielectric-organic electrode interface studies for investigating the leakage mechanism. ► XPS to elucidate chemical-structural changes on dielectric oxide surface. ► Correlates structural characterization data with capacitor leakage current and impedance spectroscopy characteristics. - Abstract: This paper aims at understanding the interaction of intrinsic conducting polymer, PEDT, with ALD-deposited Al 2 O 3 and thermally oxidized Ta 2 O 5 dielectrics, and the underlying mechanisms for increase in leakage currents in PEDT-based capacitors. Conducting polymers offer several advantages as electrodes for high surface area capacitors because of their lower resistance, self-healing and enhanced conformality. However, capacitors with in situ polymerized PEDT show poor electrical properties that are attributed to the interfacial interaction between the organic electrode and the oxide dielectric. This study focuses on characterizing these interactions. A combination of compositional, structural and electrical characterization techniques was applied to polymer-solid-state-capacitor to understand the interfacial chemical behavior and dielectric property deterioration of alumina and tantalum-oxide films. XPS and impedance studies were employed to understand the stiochiometric and compositional changes that occur in the dielectric film on interaction with in situ deposited PEDT. Based on the observations from several complimentary techniques, it is concluded that tantalum-pentoxide has more resistance towards chemical interaction with in situ polymerized PEDT. The thermally oxidized Ta 2 O 5 -PEDT system showed leakage current of 280 nA μF −1 at 3 V with a breakdown voltage of 30 V. On the other hand, Al 2 O 3 -PEDT capacitor showed leakage current of 50 μA μF −1 and a breakdown voltage of 40 V. The study reports direct evidence for the mechanism of resistivity drop in alumina dielectric with in situ polymerized PEDT electrode.

  7. Guidelines for Conducting Positivist Case Study Research in Information Systems

    Directory of Open Access Journals (Sweden)

    Graeme Shanks

    2002-11-01

    Full Text Available The case study research approach is widely used in a number of different ways within the information systems community. This paper focuses on positivist, deductive case study research in information systems. It provides clear definitions of important concepts in positivist case study research and illustrates these with an example research study. A critical analysis of the conduct and outcomes of two recently published positivist case studies is reported. One is a multiple case study that validated concepts in a framework for viewpoint development in requirements definition. The other is a single case study that examined the role of social enablers in enterprise resource planning systems implementation. A number of guidelines for successfully undertaking positivist case study research are identified including developing a clear understanding of key concepts and assumptions within the positivist paradigm; providing clear and unambiguous definitions of the units and interactions when using any theory; carefully defining the boundary of the theory used in the case study; using hypotheses rather than propositions in the empirical testing of theory; using fuzzy or probabilistic propositions in recognising that reality can never be perfectly known; selecting case studies carefully, particularly single case studies; and recognising that generalisation from positivist, single case studies is inherently different from generalisation from single experiments. When properly undertaken, positivist, deductive case study research is a valuable research approach for information systems researchers, particularly when used within pluralist research programs that use a number of different research approaches from different paradigms.

  8. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  9. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    Science.gov (United States)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  10. Conductive polymeric compositions for lithium batteries

    Science.gov (United States)

    Angell, Charles A [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  11. Intrinsic Motivation and Creativity Related to Product: A Meta-Analysis of the Studies Published between 1990-2010

    Science.gov (United States)

    de Jesus, Saul Neves; Rus, Claudia Lenuta; Lens, Willy; Imaginário, Susana

    2013-01-01

    Although the relationship between motivation (especially intrinsic motivation) and creativity (especially as a product), no meta-analyses have been conducted on the relationship between these 2 concepts. This study aimed to analyze the relationship between intrinsic motivation and creativity related to product (i.e., creative outcomes) through…

  12. Maternal smoking during pregnancy and offspring conduct problems: Evidence from three independent genetically-sensitive research designs

    Science.gov (United States)

    Gaysina, Darya; Fergusson, David M.; Leve, Leslie D.; Horwood, John; Reiss, David; Shaw, Daniel S.; Elam, Kit K.; Natsuaki, Misaki N.; Neiderhiser, Jenae M.; Harold, Gordon T.

    2013-01-01

    Context A number of studies report an association between maternal smoking during pregnancy and offspring conduct disorder. However, past research evidences difficulty disaggregating prenatal environmental from genetic and postnatal environmental influences. Objective To examine the relationship between maternal smoking during pregnancy and offspring conduct problems among children reared by genetically-related and genetically-unrelated mothers. Design, Setting and Participants Three studies employing distinct but complementary research designs were utilized: The Christchurch Health and Development Study (a longitudinal cohort study that includes biological and adopted children), the Early Growth and Development Study (a longitudinal adoption at birth study), and the Cardiff IVF Study (genetically-related and -unrelated families; an adoption at conception study). Maternal smoking during pregnancy was measured as the average number of cigarettes/day (0, 1–9 or 10+) smoked during pregnancy. A number of possible covariates (child gender, ethnicity, birth weight, breast feeding, maternal age at birth, maternal education, family SES, family breakdown, placement age, and parenting practices) were controlled in the analyses. Main Outcome Measure Child conduct problems (age 4–10 years) reported by parents and/or teachers using the Rutter and Conners behaviour scales, the Child Behavior Checklist and Children's Behavior Questionnaire, and the Strengths and Difficulties Questionnaire. Results A significant association between maternal smoking during pregnancy and child conduct problems was observed among children reared by genetically-related and genetically-unrelated mothers. Results from a meta-analysis affirmed this pattern of findings across pooled study samples. Conclusions Findings across the three studies using a complement of genetically-sensitive research designs suggest smoking during pregnancy is a prenatal risk factor for offspring conduct problems, when

  13. Factors impacting the electro conductivity variations of clayey soils

    International Nuclear Information System (INIS)

    Ouhadi, V. R.; Goodarzi, A. R.

    2007-01-01

    The variation of pore fluid properties in soil has a major effect on soil behaviour. This effect is a function of pore fluid properties and soil mineralogy. Such variation usually happens in the reservoirs of dams or in some geotechnical projects. The electro conductivity measurement is a simple method to monitor any variation in the pore fluid of soils. electro conductivity is the ability of a material to transmit (conduct) an electrical current. This paper focuses attention on the effect of soil-pore fluid interaction on the electro conductivity of clayey soils. A set of physico-chemical experiments are performed and the role of different factors including soil pH, soil mineralogy, soil: water ratio, cation and anion effects are investigated. The results of this study indicate that for soil that has a relatively low CEC, the anion type is an important factor, while the cation type does not noticeably affect the electro conductivity of the soil-solution. However, for such soil, an electrolyte property, i.e. its solubility, is much more effective than the CEC of the soil. In addition, it was observed that in the presence of neutral salts such as pore fluid, the pH of the soil-solution decreases causing an increase in the electro conductivity of the soil sample

  14. [A study of relation between hopelessness and causal attribution in school-aged children].

    Science.gov (United States)

    Sakurai, S

    1989-12-01

    This study was conducted to investigate the relation between hopelessness and causal attribution in Japanese school-aged children. In Study 1, the Japanese edition of hopelessness scale for children developed by Kazdin, French, Unis, Esveldt-Dawsan, and Sherick (1983) was constructed. Seventeen original items were translated into Japanese and they were administrated to 405 fifth- and sixth-graders. All of the items could be included to the Japanese edition of hopelessness scale. The reliability and validity was examined. In Study 2, the relation between hopelessness and causal attribution in children were investigated. The causal attribution questionnaire developed by Higuchi, Kambare, and Otsuka (1983) and the hopelessness scale developed by Study 1 were administered to 188 sixth-graders. Children with high scores in hopelessness scale significantly attributed negative events to much more effort factor than children with low scores. It supports neither the reformulated learned helplessness model nor the causal attribution theory of achievement motivation. It was explained mainly from points of self-serving attribution, cultural difference, and social desirability. Some questions were discussed for developing studies on depression and causal attribution in Japan.

  15. Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Samsudin, A. S.; Isa, M. I. N. [Universiti Malaysia Terengganu, Terengganu (Mali)

    2014-11-15

    Biodegradable carboxymethyl cellulose (CMC) doped with various compositions of NH{sub 4}Br biopolymer electrolytes (BE) were successfully prepared via a solution-cast technique. The ionic conductivity for the CMC-NH{sub 4}Br BE system was measured by using impedance spectroscopy, and the highest ambient temperature conductivity was observed to be 1.12 x 10{sup -4} S cm{sup -1} for the sample containing 25-wt.% NH{sub 4}Br. The temperature dependence of the ionic conductivity revealed that the BE system followed an Arrhenius behavior. Jonscher's universal power law was applied to analyze the AC conductivity of the highest conducting sample in the BE system, and the results indicate that the conduction is due to small polaron hopping (SPH) caused by a non-adiabatic mechanism.

  16. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  17. Electrical conductivity measurement and thermogravimetric study of chromium-doped uranium dioxide

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The electrical conductivity and nonstoichiometric composition of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.001 and 0.05) were measured in the range 1173 -17 2 ) -2 Pa by the four inserted wires method and thermogravimetry, respectively. The electrical conductivities of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.01 and 0.05) were about one-order lower than that of UOsub(2+x), probably due to the presence of the chromium ion as an electron donor. The activation energies of (Usub(0.99)Crsub(0.01))Osub(2+x) and (Usub(0.95)Crsub(0.05))Osub(2+x) for the extrinsic conduction in the low oxygen partial pressure region were calculated to be 24.7+-1.3 and 25.9+-1.0 kJ.mol -1 , respectively from the Arrhenius plots of the electrical conductivities. These small values of the activation energy of (Usub(1-y)Crsub(y))Osub(2+x) may suggest the presence of the hopping mechanism for hole conduction, similarly to the case of UOsub(2+x). From the oxygen partial pressure dependences of both the electrical conductivity and the deviation x in (Usub(1-y)Crsub(y))Osub(2+x), the defect structure was discussed with the complex defect model consisting of oxygen vacancies and two kinds of interstitial oxygens. (orig.)

  18. Electrical conduction studies of hot wall deposited CdSe{sub x}Te{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore 641014 (India); Balasundaraprabhu, R.; Jayakumar, S.; Kannan, M.D. [Department of Physics, PSG College of Technology, Coimbatore (India)

    2008-08-15

    CdSe{sub x}Te{sub 1-x} thin films of different compositions have been deposited on cleaned glass substrates using the hot wall deposition technique under conditions very close to thermodynamical equilibrium with minimum loss of material. The electrical conductivity of the deposited films has been studied as a function of temperature. All the films showed a transition from phonon-assisted hopping conduction through the impurity band to grain-boundary-limited conduction in the conduction/valence band at temperature around 325 K. The conductivity has been found to vary with composition; it varied from 0.0027 to 0.0198 {omega}{sup -1} cm{sup -1} when x changed from 0 to 1. The activation energies of the films of different compositions determined at 225 and 400 K have been observed to lie in the range 0.0031-0.0098 and 0.0285-0.0750 eV, respectively. The Hall-effect studies carried out on the deposited films revealed that the nature of conductivity (p or n-type) was dependent on film composition; films with composition x=0 and 0.15 have been found to be p-type and the ones with composition x=0.4, 0.6, 0.7, 0.85 and 1 have been observed to exhibit n-type conductivity. The carrier concentration has been determined and is of the order of 10{sup 17} cm{sup -3}. The majority of carrier mobilities of the films have been observed to vary from 0.032 to 0.183 cm{sup 2} V{sup -1} s{sup -1} depending on film composition. The study of the mobility of the charge carriers with temperature in the range of 300-450 K showed that the mobility increased with 3/2 power of temperature indicating that the type of scattering mechanism in the studied temperature range is the ionized impurity scattering mechanism. (author)

  19. Variability of Heart Rate in Primitive Horses and Their Relatives as an Indicator of Stress Level, Behavioural Conduct Towards Humans and Adaptation to Living in Wild

    Directory of Open Access Journals (Sweden)

    Pluta Michał

    2014-10-01

    Full Text Available The aim of the study was to evaluate the possibility of using heart rate (HR as a metric parameter that can be used for the characterisation of behaviour of primitive horses and their relatives, related to reactions to the stress resulting from the contact with humans and adaptation to living in various conditions, including natural environment. This characterisation served the authors to expand the knowledge of such behaviour of primitive horses, and to assess the impact of the environmental and genetic factors. Studies were conducted in three populations of horses: two herds of Polish Konik and one herd of Biłgoraj horses. The studies were performed between 1993 and 2010. They concerned the behaviour of horses during grooming - breeding procedures (hooves clearing, body measurements performed cyclically and the daily observations when HR was monitored continuously. HR results for the respective age categories, during particular grooming - breeding procedures and reserve observations indicate that Polish Konik horses, closely related to the primitive Tarpan breed, are genetically better adapted to living in conditions similar to the natural (reserve than the Biłgoraj horses. They show less stress symptoms, which are evidenced by HR values noted during inhabiting the natural environment.

  20. Study of Risk Assessment Programs at Federal Agencies and Commercial Industry Related to the Conduct or Regulation of High Hazard Operations

    International Nuclear Information System (INIS)

    Bari, R.; Rosenbloom, S.; O'Brien, J.

    2011-01-01

    In the Department of Energy (DOE) Implementation Plan (IP) for Defense Nuclear Facilities Safety Board's Recommendation 2009-1, the DOE committed to studying the use of quantitative risk assessment methodologies at government agencies and industry. This study consisted of document reviews and interviews of senior management and risk assessment staff at six organizations. Data were collected and analyzed on risk assessment applications, risk assessment tools, and controls and infrastructure supporting the correct usage of risk assessment and risk management tools. The study found that the agencies were in different degrees of maturity in the use of risk assessment to support the analysis of high hazard operations and to support decisions related to these operations. Agencies did not share a simple, 'one size fits all' approach to tools, controls, and infrastructure needs. The agencies recognized that flexibility was warranted to allow use of risk assessment tools in a manner that is commensurate with the complexity of the application. The study also found that, even with the lack of some data, agencies application of the risk analysis structured approach could provide useful insights such as potential system vulnerabilities. This study, in combination with a companion study of risk assessment programs in the DOE Offices involved in high hazard operations, is being used to determine the nature and type of controls and infrastructure needed to support risk assessments at the DOE.

  1. The potential therapeutic value for bereaved relatives participating in research: An exploratory study.

    Science.gov (United States)

    Germain, Alison; Mayland, Catriona R; Jack, Barbara A

    2016-10-01

    Conducting research with the bereaved presents an immediate ethical challenge, as they are undoubtedly a vulnerable group, associated with high levels of distress and susceptible to both physical and mental health issues. A comprehensive understanding of the potential therapeutic benefits for bereaved relatives participating in palliative care research is limited, and therefore the ethics of engaging this group remain questionable. This paper describes a secondary analysis of qualitative data collected in the Care of the Dying Evaluation (CODE) project, examining the experiences of patients who died at home. It explores the motivations and potential benefits for bereaved relatives participating in research with reference to the recently developed concepts in bereavement theory. Cognitive interviews were conducted with 15 bereaved relatives and secondary analysis using a content analysis framework was employed to classify the data. The results center around six recurring concepts identified as adaptive in current bereavement theory: an opportunity to share the narrative accounts of the final hours of their relative's life; a search for sense and meaning in loss; an ongoing bond/attachment with the deceased; altruistic motivations; oscillation between loss and restorative orientations; and a sense of resilience. Overall, the participants found that taking part in the research was valuable and that it could be described as offering therapeutic benefits. The need for bereaved relatives to take part in research studies should be encouraged, as they provide an accurate proxy for the patient's experience of end-of-life care while also providing a valuable account of their own perspective as family member and carer. In addition, we highlight the need for ethics committees to be aware of the potential benefits for bereaved relatives participating in research of this kind.

  2. Study of the Kinetics of an S[subscript N]1 Reaction by Conductivity Measurement

    Science.gov (United States)

    Marzluff, Elaine M.; Crawford, Mary A.; Reynolds, Helen

    2011-01-01

    Substitution reactions, a central part of organic chemistry, provide a model system in physical chemistry to study reaction rates and mechanisms. Here, the use of inexpensive and readily available commercial conductivity probes coupled with computer data acquisition for the study of the temperature and solvent dependence of the solvolysis of…

  3. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  4. A Study on Relative Importance and Priority Regarding Airport Selection Attributes Utilizing AHP

    Directory of Open Access Journals (Sweden)

    Sung-Oun Oh

    2014-10-01

    Full Text Available The aim of this study is to investigate relative importance and priority regarding airport selection attributes using Incheon International Airport and Gimpo International Airport, the two main gateway airports to Seoul, Korea, as the target. For the purpose, a survey was carried out with aviation experts as target utilizing five factors which consist of 15 airport selection attributes. The analysis has been conducted on the relative importance and priority of the airport selection factors by expert group using Analytic Hierarchy Process (AHP. As a result of the analysis, the relative importance of airport selection attributes turned out to be different depending on the expert group. Aviation experts working in government agencies and aviation experts working in educational institutions and research institutes regarded accessibility as the most important airport selection factor, and aviation experts working for airlines and companies related to air travel regarded operation as the most important selection factor.

  5. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    Science.gov (United States)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  6. Mortality related to novel psychoactive substances in Scotland, 2012: an exploratory study.

    Science.gov (United States)

    McAuley, Andrew; Hecht, Garry; Barnsdale, Lee; Thomson, Catherine S; Graham, Lesley; Priyadarshi, Saket; Robertson, J Roy

    2015-05-01

    The growth of novel psychoactive substances (NPS) over the last decade, both in terms of availability and consumption, is of increasing public health concern. Despite recent increases in related mortality, the circumstances surrounding and characteristics of individuals involved in NPS deaths at a population level remain relatively unknown. The Scottish National Drug Related Death Database (NDRDD) collects a wide-range of data relating to the nature and circumstances of individuals who have died a drug-related death (DRD). We conducted exploratory descriptive analysis of DRDs involving NPS recorded by the NDRDD in 2012. Statistical testing of differences between sub-groups was also conducted where appropriate. In 2012, we found 36 DRDs in Scotland to have NPS recorded within post-mortem toxicology. However, in only 23 of these cases were NPS deemed by the reporting pathologist to be implicated in the actual cause of death. The majority of NPS-implicated DRDs involved Benzodiazepine-type drugs (13), mainly Phenazepam (12). The remaining 10 NPS-implicated deaths featured a range of different Stimulant-type drugs. The majority of these NPS-implicated deaths involved males and consumption of more than one drug was recorded by toxicology in all except one case. NPS-implicated deaths involving Benzodiazepine-type NPS drugs appeared to involve older individuals known to be using drugs for a considerable period of time, many of whom had been in prison at some point in their lives. They also typically involved combinations of opioids and benzodiazepines; no stimulant drugs were co-implicated. Deaths where stimulant-type NPS drugs were implicated appeared to be a younger group in comparison, all consuming two or more Stimulant-type drugs in combination. This exploratory study provides an important insight into the circumstances surrounding and characteristics of individuals involved in NPS deaths at a population level. It identifies important issues for policy and practice

  7. Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites

    National Research Council Canada - National Science Library

    Manocha, Lalit M; Manocha, Satish M; Roy, Ajit

    2007-01-01

    The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...

  8. Genetic Influences on Conduct Disorder

    Science.gov (United States)

    Salvatore, Jessica E.; Dick, Danielle M.

    2016-01-01

    Conduct disorder (CD) is a moderately heritable psychiatric disorder of childhood and adolescence characterized by aggression toward people and animals, destruction of property, deceitfulness or theft, and serious violation of rules. Genome-wide scans using linkage and association methods have identified a number of suggestive genomic regions that are pending replication. A small number of candidate genes (e.g., GABRA2, MAOA, SLC6A4, AVPR1A) are associated with CD related phenotypes across independent studies; however, failures to replicate also exist. Studies of gene-environment interplay show that CD genetic predispositions also contribute to selection into higher-risk environments, and that environmental factors can alter the importance of CD genetic factors and differentially methylate CD candidate genes. The field’s understanding of CD etiology will benefit from larger, adequately powered studies in gene identification efforts; the incorporation of polygenic approaches in gene-environment interplay studies; attention to the mechanisms of risk from genes to brain to behavior; and the use of genetically informative data to test quasi-causal hypotheses about purported risk factors. PMID:27350097

  9. Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization

    International Nuclear Information System (INIS)

    Wang, Yingjun; Xie, Guofeng

    2015-01-01

    The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction–dependent phonon–boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron–length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.

  10. Do Transmasculine Speakers Present with Gender-Related Voice Problems? Insights from a Participant-Centered Mixed-Methods Study

    Science.gov (United States)

    Azul, David; Arnold, Aron; Neuschaefer-Rube, Christiane

    2018-01-01

    Purpose: The purpose of this study was to investigate whether there are indications of gender-related voice problems in our transmasculine participants and to analyze how discrepancies between participant self-evaluations and researcher-led examinations can be best negotiated to ensure a participant-centered interpretation. Method: We conducted a…

  11. Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics

    International Nuclear Information System (INIS)

    Pal, Dharmendra; Pandey, J. L.; Pal, Shri

    2009-01-01

    The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates (Na 1.9 Li 0.1 Ti 3 O 7 ). The dependence of loss tangent (Tanδ), relative permittivity (ε r ) and ac conductivity (σ ac ) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tanδ) in manganese-doped derivatives of layered Na 1.9 Li 0.1 Ti 3 O 7 ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping

  12. [Nationwide Survey on Informed Consent and Ethical Review at Hospitals Conducting Post-marketing Studies Sponsored by Pharmaceutical Companies].

    Science.gov (United States)

    Urushihara, Hisashi; Murakami, Yuka; Matsui, Kenji; Tashiro, Shimon

    2018-01-01

     Under the Japanese drug regulatory system, post-marketing studies (PMS) must be in compliance with Good Post-marketing Study Practice (GPSP). The GPSP Ordinance lacks standards for the ethical conduct of PMSs; although only post-marketing clinical trials are subject to Good Clinical Practice. We conducted a web-based questionnaire survey on the ethical conduct of PMSs in collaboration with the Japanese Society of Hospital Pharmacists and pharmacists belonging to the Society. 1819 hospitals around Japan answered the questionnaire, of which 503 hospitals had conducted company-sponsored PMSs in 2015. 40.2% of the hospitals had obtained informed consent from participating patients in at least one PMS conducted in 2015, the majority of which was in written form. The first and second most frequent reasons for seeking informed consent in PMSs were to meet protocol requirements, followed by the requirement to meet institutional standard operational procedures and the request of the ethical review board of the hospital. Ethical review of PMSs was conducted in 251 hospitals. Despite a lack of standards for informed consent and ethical review in PMSs, a considerable number of study sites employed informed consent and ethical review for PMSs. While company policies and protocols are likely to be major determinants of the ethical conduct of PMSs, the governmental regulatory agency should also play a significant role in implementing a standardized ethical code for the conduct of PMSs.

  13. The bedrock electrical conductivity structure of Northern Ireland

    OpenAIRE

    Beamish, David

    2013-01-01

    An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the condu...

  14. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  15. Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Huang, Yong-Hua; Liu, Na; Ma, Ran

    2012-01-01

    Thermal conductivity is a key parameter for evaluating wellbore heat losses which plays an important role in determining the efficiency of steam injection processes. In this study, an unsteady formation heat-transfer model was established and a cost-effective in situ method by using stochastic approximation method based on well-log temperature data was presented. The proposed method was able to estimate the thermal conductivity and the volumetric heat capacity of geological formation simultaneously under the in situ conditions. The feasibility of the present method was assessed by a sample test, the results of which shown that the thermal conductivity and the volumetric heat capacity could be obtained with the relative errors of −0.21% and −0.32%, respectively. In addition, three field tests were conducted based on the easily obtainable well-log temperature data from the steam injection wells. It was found that the relative errors of thermal conductivity for the three field tests were within ±0.6%, demonstrating the excellent performance of the proposed method for calculating thermal conductivity. The relative errors of volumetric heat capacity ranged from −6.1% to −14.2% for the three field tests. Sensitivity analysis indicated that this was due to the low correlation between the volumetric heat capacity and the wellbore temperature, which was used to generate the judgment criterion. -- Highlights: ► A cost-effective in situ method for estimating thermal properties of formation was presented. ► Thermal conductivity and volumetric heat capacity can be estimated simultaneously by the proposed method. ► The relative error of thermal conductivity estimated was within ±0.6%. ► Sensitivity analysis was conducted to study the estimated results of thermal properties.

  16. A study on the effective hydraulic conductivity of an anisotropic porous medium

    International Nuclear Information System (INIS)

    Seong, Kwan Jae

    2002-01-01

    Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropic is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities

  17. Conduction mechanism studies on electron transfer of disordered system

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞; 李新梅

    2002-01-01

    Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.

  18. Experimental study of electric conductivity, density and viscosity of Wood's alloy

    International Nuclear Information System (INIS)

    Kazandzhan, B.I.; Matveev, V.M.; Savich, T.B.; Umarov, A.M.

    1989-01-01

    Electric conductivity, density and kinematic viscosity of commercially pure Wood's alloy are obtained in a wide temperature range. Electric conductivity and density are investigated from the room temperature to 1000 K. Measurements of kinematic viscosity are carried out from 372 to 1000 K by means of torsional vibrations method using informatiom computer system permitting to automate data acquisition and processing and to increase the measurement accuracy. On the basis of analysis the character of electric conductivity and kinematic viscosity polyterms Wood's alloy liquidus and solidus temperatures are estimated

  19. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.

    Science.gov (United States)

    Felix, Isaac M; Pereira, Luiz Felipe C

    2018-02-09

    Superlattices are ideal model systems for the realization and understanding of coherent (wave-like) and incoherent (particle-like) phonon thermal transport. Single layer heterostructures of graphene and hexagonal boron nitride have been produced recently with sharp edges and controlled domain sizes. In this study we employ nonequilibrium molecular dynamics simulations to investigate the thermal conductivity of superlattice nanoribbons with equal-sized domains of graphene and hexagonal boron nitride. We analyze the dependence of the conductivity with the domain sizes, and with the total length of the ribbons. We determine that the thermal conductivity reaches a minimum value of 89 W m -1 K -1 for ribbons with a superlattice period of 3.43 nm. The effective phonon mean free path is also determined and shows a minimum value of 32 nm for the same superlattice period. Our results also reveal that a crossover from coherent to incoherent phonon transport is present at room temperature for BNC nanoribbons, as the superlattice period becomes comparable to the phonon coherence length. Analyzing phonon populations relative to the smallest superlattice period, we attribute the minimum thermal conductivity to a reduction in the population of flexural phonons when the superlattice period equals 3.43 nm. The ability to manipulate thermal conductivity using superlattice-based two-dimensional materials, such as graphene-hBN nanoribbons, opens up opportunities for application in future nanostructured thermoelectric devices.

  20. Practical Issues of Conducting a Q Methodology Study: Lessons Learned From a Cross-cultural Study.

    Science.gov (United States)

    Stone, Teresa Elizabeth; Maguire, Jane; Kang, Sook Jung; Cha, Chiyoung

    This article advances nursing research by presenting the methodological challenges experienced in conducting a multination Q-methodology study. This article critically analyzes the relevance of the methodology for cross-cultural and nursing research and the challenges that led to specific responses by the investigators. The use of focus groups with key stakeholders supplemented the Q-analysis results. The authors discuss practical issues and shared innovative approaches and provide best-practice suggestions on the use of this flexible methodology. Q methodology has the versatility to explore complexities of contemporary nursing practice and cross-cultural health research.

  1. [Seasonal variation of soil heat conduction in a larch plantation and its relations to environmental factors].

    Science.gov (United States)

    Wang, Wen-Jie; Cui, Song; Liu, Wei; Zu, Yuan-Gang; Sun, Wei; Wang, Hui-Min

    2008-10-01

    Based on a 3-year (2003-2005) observation of soil heat flux (SHF) in a larch (Larix gmelinii) plantation, the characteristics of soil heat conduction in the plantation and their relationships with environment factors were analyzed. The results showed that there was an obvious seasonal variation of SHF in different years and sampling sites. The SHF was positive from April to August and mostly negative from September to next March, with an almost balance between heat income and outcome at annual scale. Solar net radiation had significant effects on the SHF and soil heat conductance (k), and an obvious time-lag effect was found, with 4-5 hours' time-lag in winter and 2-3 hours' time-lag in summer. Based on the real-time measurement of SHF and soil temperature difference at the study sites, the k value was significantly higher in early spring (P 0.05). Therefore, when we use the observation data of soil temperature from weather stations to estimate soil heat flux, the k value in spring (from March to May) could induce a bias estimation.

  2. An inspection to the hyperbolic heat conduction problem in processed meat

    Directory of Open Access Journals (Sweden)

    Liu Kuo-Chi

    2017-01-01

    Full Text Available This paper analyzes a hyperbolic heat conduction problem in processed meat with the non-homogenous initial temperature. This problem is related to an experimental study for the exploration of thermal wave behavior in biological tissue. Because the fundamental solution of the hyperbolic heat conduction model is difficult to be obtained, a modified numerical scheme is extended to solve the problem. The present results deviate from that in the literature and depict that the reliability of the experimentally measured properties presented in the literature is doubtful.

  3. Impedance ratio method for urine conductivity-invariant estimation of bladder volume

    Directory of Open Access Journals (Sweden)

    Thomas Schlebusch

    2014-09-01

    Full Text Available Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to reduce the influence of urine conductivity to cystovolumetry and bring bioimpedance cystovolumetry closer to a clinical application.

  4. Getting started in research: designing and preparing to conduct a research study.

    Science.gov (United States)

    Macfarlane, Matthew D; Kisely, Steve; Loi, Samantha; Macfarlane, Stephen; Merry, Sally; Parker, Stephen; Power, Brian; Siskind, Dan; Smith, Geoff; Looi, Jeffrey C

    2015-02-01

    To discuss common pitfalls and useful tips in designing a quantitative research study, the importance and process of ethical approval, and consideration of funding. Through careful planning, based on formulation of a research question, early career researchers can design and conduct quantitative research projects within the framework of the Scholarly Project or in their own independent projects. © The Royal Australian and New Zealand College of Psychiatrists 2014.

  5. 77 FR 60441 - Pediatric Studies of Sodium Nitroprusside Conducted in Accordance With Section 409I of the Public...

    Science.gov (United States)

    2012-10-03

    ...] Pediatric Studies of Sodium Nitroprusside Conducted in Accordance With Section 409I of the Public Health Service Act; Establishment of Public Docket AGENCY: Food and Drug Administration, HHS. ACTION: Notice... available to the public a report of the pediatric studies of sodium nitroprusside that were conducted in...

  6. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  7. Structural, dielectric and a.c. conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    X-ray diffraction; a.c. conductivity; dielectric properties; complex electric modulus. ... the study disordered systems because of the unusual temper- ..... energy. tunnelling model suggested by Wang et al [31], (s) should decrease with increase in ...

  8. Conduct disorders as a result of specific learning disorders

    OpenAIRE

    VOKROJOVÁ, Nela

    2012-01-01

    This thesis focuses on relationship between specific learning disorders and conduct disorders in puberty. The theoretical part explains the basic terms apearing in the thesis such as specific learning disorders, conduct disorders, puberty and prevention of conduct disorder formation. It presents Czech and foreign research which have already been done in this and related areas. The empirical part uses a quantitative method to measure anxiety and occurrence of conduct disorders in second grade ...

  9. Studies of protonic self-diffusion and conductivity in 12-tungstophophoric acid hydrates by pulsed field gradient 1H NMR and ac Conductivity

    International Nuclear Information System (INIS)

    Slade, R.C.; Pressman, H.A.; Barker, J.; Strange, J.H.

    1988-01-01

    Temperature dependent protonic conductivities σ and 1/H self-diffusion coefficients, D, are reported for polycrystalline hydrates of 12-tungstophosphoric acid (TPA). Conductivities were measured using ac admittane spectrometry and diffusion coefficients by the pulsed field gradient NMR technique. Conductivities for the hydrates TPA.nH 2 O (n=6, 14, 21) increase with n. Examination of σ and D values and of activation techniques shows self-diffusion and conduction to occur by different mechanisms in the higher hydrates. 25 refs.; 14 figs.; 1 table

  10. Structural study of TiO2-based transparent conducting films

    International Nuclear Information System (INIS)

    Hitosugi, T.; Yamada, N.; Nakao, S.; Hatabayashi, K.; Shimada, T.; Hasegawa, T.

    2008-01-01

    We have investigated microscopic structures of sputter and pulsed laser deposited (PLD) anatase Nb-doped TiO 2 transparent conducting films, and discuss what causes the degradation of resistivity in sputter-deposited films. Cross-sectional transmission electron microscope and polarized optical microscope images show inhomogeneous intragrain structures and small grains of ∼10 μm in sputter-deposited films. From comparison with PLD films, these results suggest that homogeneous film growth is the important factor to obtain highly conducting sputter-deposited film

  11. The State of Water in Proton Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  12. Improvements in or relating to devices for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1976-01-01

    Reference is made to radioisotope powered heat engines. Should such an engine stop working for any reason the radioisotope heat source will continue to generate heat, and this may cause overheating and possible damage to the engine as well as the heat source. A device is described for conducting excess heat from the heat source to a heat sink but which in normal operation of the engine will impede heat conduction and so reduce thermal losses. The device may be used to support and/or locate the heat source. Constructional and operational details are given. (U.K.)

  13. Thermal conductivity of sedimentary rocks as function of Biot’s coefficient

    DEFF Research Database (Denmark)

    Orlander, Tobias; Pasquinelli, Lisa; Asmussen, J.J.

    2017-01-01

    A theoretical model for prediction of effective thermal conductivity with application to sedimentary rocks is presented. Effective thermal conductivity of sedimentary rocks can be estimated from empirical relations or theoretically modelled. Empirical relations are limited to the empirical...... conductivity of solids is typically orders of magnitude larger than that of fluids, grain contacts constituting the solid connectivity governs the heat transfer of sedi-mentary rocks and hence should be the basis for modelling effective thermal con-ductivity. By introducing Biot’s coefficient, α, we propose (1...... – α) as a measure of the solid connectivity and show how effective thermal conductivity of water saturated and dry sandstones can be modelled....

  14. Stay connected: Electrical conductivity of microbial aggregates.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2017-11-01

    The discovery of direct extracellular electron transfer offers an alternative to the traditional understanding of diffusional electron exchange via small molecules. The establishment of electronic connections between electron donors and acceptors in microbial communities is critical to electron transfer via electrical currents. These connections are facilitated through conductivity associated with various microbial aggregates. However, examination of conductivity in microbial samples is still in its relative infancy and conceptual models in terms of conductive mechanisms are still being developed and debated. The present review summarizes the fundamental understanding of electrical conductivity in microbial aggregates (e.g. biofilms, granules, consortia, and multicellular filaments) highlighting recent findings and key discoveries. A greater understanding of electrical conductivity in microbial aggregates could facilitate the survey for additional microbial communities that rely on direct extracellular electron transfer for survival, inform rational design towards the aggregates-based production of bioenergy/bioproducts, and inspire the construction of new synthetic conductive polymers. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    Science.gov (United States)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  16. [Risk factors and development course of conduct disorder in girls; a review].

    Science.gov (United States)

    Merckx, W; Van West, D

    2016-01-01

    So far there have been relatively few studies of conduct disorder in girls. It is very important that professionals engaged in preventing and treating this disorder have a sound knowledge of the risk factors involved and of the developmental course of the disorder. To provide an overview of what is known about the risk factors and about the way in which conduct disorder develops in girls. We searched the Eric, PubMed and Medline databases for articles on conduct disorder in girls. We reviewed 41 studies and we summarised the results. Several risk factors contribute to the development of conduct disorder in girls. Just like boys, girls too can display the life-course-persistent pathway of antisocial behavior. Such girls are often associated with serious risk factors. Those with serious forms of antisocial behaviour have an increased risk of experiencing adjustment problems in later life. Future research in this area will have to concentrate on the creation of adequate prevention and treatment programs.

  17. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  18. Determination of thermal conductivity of magnesium-alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0-450 ℃ is about 95%. The method is applicable in the given temperature range.

  19. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  20. Only-Child Status in Relation to Perceived Stress and Studying-Related Life Satisfaction among University Students in China: A Comparison with International Students.

    Science.gov (United States)

    Chu, Janet Junqing; Khan, Mobarak Hossain; Jahn, Heiko J; Kraemer, Alexander

    2015-01-01

    University students in general face multiple challenges, which may affect their levels of perceived stress and life satisfaction. Chinese students currently face specific strains due to the One-Child Policy (OCP). The aim of this study was to assess (1) whether the levels of perceived stress and studying-related life satisfaction are associated with only-child (OC) status after controlling for demographic and socio-economic characteristics and (2) whether these associations differ between Chinese and international students. A cross-sectional health survey based on a self-administrated standardised questionnaire was conducted among 1,843 (1,543 Chinese, 300 international) students at two Chinese universities in 2010-2011. Cohen's Perceived Stress Scale (PSS-14) and Stock and Kraemer's Studying-related Life Satisfaction Scale were used to measure perceived stress and studying-related life satisfaction respectively. Multivariable logistic regression analyses were used to examine the associations of OC status with perceived stress and studying-related life satisfaction by sex for Chinese students and international students separately. The Chinese non-only-children (NOCs) were more likely to come from small cities. Multivariable regression models indicate that the Chinese NOCs were more stressed than OCs (OR = 1.39, 1.11-1.74) with a stronger association in men (OR = 1.48, 1.08-2.02) than women (OR = 1.26, 0.89-1.77). NOCs were also more dissatisfied than their OC fellows in the Chinese subsample (OR = 1.37, 1.09-1.73). Among international students, no associations between OC status and perceived stress or studying-related life satisfaction were found. To promote equality between OCs and NOCs at Chinese universities, the causes of more stress and less studying-related life satisfaction among NOCs compared to OCs need further exploration.

  1. Only-Child Status in Relation to Perceived Stress and Studying-Related Life Satisfaction among University Students in China: A Comparison with International Students.

    Directory of Open Access Journals (Sweden)

    Janet Junqing Chu

    Full Text Available University students in general face multiple challenges, which may affect their levels of perceived stress and life satisfaction. Chinese students currently face specific strains due to the One-Child Policy (OCP. The aim of this study was to assess (1 whether the levels of perceived stress and studying-related life satisfaction are associated with only-child (OC status after controlling for demographic and socio-economic characteristics and (2 whether these associations differ between Chinese and international students.A cross-sectional health survey based on a self-administrated standardised questionnaire was conducted among 1,843 (1,543 Chinese, 300 international students at two Chinese universities in 2010-2011. Cohen's Perceived Stress Scale (PSS-14 and Stock and Kraemer's Studying-related Life Satisfaction Scale were used to measure perceived stress and studying-related life satisfaction respectively. Multivariable logistic regression analyses were used to examine the associations of OC status with perceived stress and studying-related life satisfaction by sex for Chinese students and international students separately.The Chinese non-only-children (NOCs were more likely to come from small cities. Multivariable regression models indicate that the Chinese NOCs were more stressed than OCs (OR = 1.39, 1.11-1.74 with a stronger association in men (OR = 1.48, 1.08-2.02 than women (OR = 1.26, 0.89-1.77. NOCs were also more dissatisfied than their OC fellows in the Chinese subsample (OR = 1.37, 1.09-1.73. Among international students, no associations between OC status and perceived stress or studying-related life satisfaction were found.To promote equality between OCs and NOCs at Chinese universities, the causes of more stress and less studying-related life satisfaction among NOCs compared to OCs need further exploration.

  2. Only-Child Status in Relation to Perceived Stress and Studying-Related Life Satisfaction among University Students in China: A Comparison with International Students

    Science.gov (United States)

    Chu, Janet Junqing; Khan, Mobarak Hossain; Jahn, Heiko J.; Kraemer, Alexander

    2015-01-01

    Objectives University students in general face multiple challenges, which may affect their levels of perceived stress and life satisfaction. Chinese students currently face specific strains due to the One-Child Policy (OCP). The aim of this study was to assess (1) whether the levels of perceived stress and studying-related life satisfaction are associated with only-child (OC) status after controlling for demographic and socio-economic characteristics and (2) whether these associations differ between Chinese and international students. Materials and Methods A cross-sectional health survey based on a self-administrated standardised questionnaire was conducted among 1,843 (1,543 Chinese, 300 international) students at two Chinese universities in 2010–2011. Cohen’s Perceived Stress Scale (PSS-14) and Stock and Kraemer’s Studying-related Life Satisfaction Scale were used to measure perceived stress and studying-related life satisfaction respectively. Multivariable logistic regression analyses were used to examine the associations of OC status with perceived stress and studying-related life satisfaction by sex for Chinese students and international students separately. Results The Chinese non-only-children (NOCs) were more likely to come from small cities. Multivariable regression models indicate that the Chinese NOCs were more stressed than OCs (OR = 1.39, 1.11–1.74) with a stronger association in men (OR = 1.48, 1.08–2.02) than women (OR = 1.26, 0.89–1.77). NOCs were also more dissatisfied than their OC fellows in the Chinese subsample (OR = 1.37, 1.09–1.73). Among international students, no associations between OC status and perceived stress or studying-related life satisfaction were found. Conclusions To promote equality between OCs and NOCs at Chinese universities, the causes of more stress and less studying-related life satisfaction among NOCs compared to OCs need further exploration. PMID:26675032

  3. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  4. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  5. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  6. Exploratory study of a crisis commander’s perspectives on the role and value of public relations in crisis management

    OpenAIRE

    Mat Tazin Saidathul Nizah; Kaur Kiranjit

    2017-01-01

    This is an exploratory study into understanding the dominant coalition perspectives on role and values of public relations in crisis management in an energy company in Malaysia. In this study, the senior public relations of the energy company reports directly to the crisis commander (CC) in times of crisis thus, the CC was chosen as a sample where an in-depth interview was conducted. Notably, the CC perceptions represents the dominant coalition with the power to shape organisation policies an...

  7. Study of Arc-Related RF Faults in the CEBAF Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Curry; Ganapati Myneni; Ganapati Rao Myneni; John Musson; Thomas Powers; Timothy Whitlatch; Isidoro Campisi; Haipeng Wang

    2004-07-01

    A series of measurements has been conducted on two superconducting radio-frequency (RF) cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime, and directly affect the accelerator's availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors, and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing, and operation. Measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.

  8. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  10. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  11. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  12. Conductive polypropylene composites

    International Nuclear Information System (INIS)

    Koszkul, J.

    1997-01-01

    The results of studies on polypropylene composites with three sorts of Polish-made carbon blacks were presented. It was found that composite of 20% black content had properties of an electrically conducting material

  13. Power-plant-related estuarine zooplankton studies

    International Nuclear Information System (INIS)

    Sage, L.E.; Olson, M.M.

    1981-01-01

    In-plant studies examining the effects of entrainment on zooplankton and field studies examining zooplankton abundance, composition, and distribution in the Chesapeake Bay in the vicinity of Calvert Cliffs Nuclear Power Plant have been conducted from 1974 to the present. The evolution of these studies, with particular emphasis on design and statistical treatment, is discussed. Entrainment study designs evolved from discrete sampling episodes at 4-h intervals over 24 h to a time-series sampling design in which sampling took place every 30 min over 24 and 48-h periods. The near-field study design and samping methods have included replicated net tows, using 0.5-m nets, and replicated and nonreplicated pumped sampling, using a high-speed centrifugal pump. 16 refs

  14. Studies of Electrolytic Conductivity of Some Polyelectrolyte Solutions: Importance of the Dielectric Friction Effect at High Dilution

    Directory of Open Access Journals (Sweden)

    Anis Ghazouani

    2013-01-01

    Full Text Available We present a general description of conductivity behavior of highly charged strong polyelectrolytes in dilute aqueous solutions taking into account the translational dielectric friction on the moving polyions modeled as chains of charged spheres successively bounded and surrounded by solvent molecules. A general formal limiting expression of the equivalent conductivity of these polyelectrolytes is presented in order to distinguish between two concentration regimes and to evaluate the relative interdependence between the ionic condensation effect and the dielectric friction effect, in the range of very dilute solutions for which the stretched conformation is favored. This approach is illustrated by the limiting behaviors of three polyelectrolytes (sodium heparinate, sodium chondroitin sulfate, and sodium polystyrene sulphonate characterized by different chain lengths and by different discontinuous charge distributions.

  15. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Virtual resistive network and conductivity reconstruction with Faraday's law

    International Nuclear Information System (INIS)

    Lee, Min Gi; Ko, Min-Su; Kim, Yong-Jung

    2014-01-01

    A network-based conductivity reconstruction method is introduced using the third Maxwell equation, or Faraday's law, for a static case. The usual choice in electrical impedance tomography is the divergence-free equation for the electrical current density. However, if the electrical current density is given, the curl-free equation for the electrical field gives a direct relation between the current and the conductivity and this relation is used in this paper. Mimetic discretization is applied to the equation, which gives the virtual resistive network system. Properties of the numerical schemes introduced are investigated and their advantages over other conductivity reconstruction methods are discussed. Numerically simulated results, with an analysis of noise propagation, are presented. (paper)

  17. Energies of conduction bands in dielectric liquids

    International Nuclear Information System (INIS)

    Holroyd, R.

    1975-01-01

    The properties of excess electrons in non-polar liquids depend on the relative energies of the trapped and conducting states. We have measured the energies of the conducting states, denoted V 0 , for about twenty non-polar liquids. Two methods were used: In one the work functions of metals immersed in the liquid were measured. In the other, solutes (TMPD) were photoionized in the liquid and V 0 calculated from the wavelength at which ionization onsets occur. A wide variation in conduction state energies is observed from a high of +0.21 eV for tetradecane to a low of --0.60 eV for tetramethylsilane. In general V 0 shifts to more negative values with increasing molecular symmetry, and correlates well with electron mobility. The photoionization results indicate that V 0 decreases with increasing temperature. In mixtures V 0 is linearly dependent on mole fraction. It was found empirically for n-hexane-neopentane mixtures that μ = 0.34 exp [--15.2(V 0 )]. This equation relating V 0 to the electron mobility also applies approximately to pure hydrocarbons. Thus the role of the conduction state energy in influencing electron mobilities and photoionization onsets is established and recent evidence indicates V 0 also influences the rates of electron reactions in these liquids

  18. Perception, Knowledge and Behaviors Related to Typhoon: A Cross Sectional Study among Rural Residents in Zhejiang, China

    OpenAIRE

    Zhang, Wenchao; Wang, Wei; Lin, Junfen; Zhang, Ying; Shang, Xiaopeng; Wang, Xin; Huang, Meilin; Liu, Shike; Ma, Wei

    2017-01-01

    (1) The objective of this study was to assess the risk perceptions, attitudes, knowledge, and behaviors related to typhoon among rural residents in Zhejiang province of China. A cross-sectional study was conducted among rural residents in Zhejiang province, China. Information was collected from 659 participants using a structured questionnaire. Univariate analysis and multivariable analysis were used to analyze the data. Participants were most concerned about property damage, followed by thei...

  19. Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites

    International Nuclear Information System (INIS)

    He Da; Ekere, N N

    2004-01-01

    In this paper, we apply Monte Carlo simulation to investigate the conductive percolation threshold of granular composite of conductive and insulating powders with amorphous structure. We focus on the effect of insulating to conductive particle size ratio λ = d i /d c on the conducting percolation threshold p c (the volume fraction of the conductive powder). Simulation results show that, for λ = 1, the percolation threshold p c lies between simple cubic and body centred cubic site percolation thresholds, and that as λ increases the percolation threshold decreases. We also use the structural information obtained by the simulation to study the nonlinear current-voltage characteristics of composite with solid volume fraction of conductive powder below p c in terms of electron tunnelling for nanoscale powders, dielectric breakdown for microscale or larger powders, and pressing induced conduction for non-rigid insulating powders

  20. Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system

    Directory of Open Access Journals (Sweden)

    Long LIU

    2017-04-01

    Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.

  1. Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-04-01

    Full Text Available We study what effect a possible surface conductivity of Mercury has on the closure of magnetospheric currents by making six runs with a quasi-neutral hybrid simulation. The runs are otherwise identical but use different synthetic conductivity models: run 1 has a fully conducting planet, run 2 has a poorly conducting planet ( m and runs 3-6 have one of the hemispheres either in the dawn-dusk or day-night directions, conducting well, the other one being conducting poorly. Although the surface conductivity is not known from observations, educated guesses easily give such conductivity values that magnetospheric currents may close partly within the planet, and as the conductivity depends heavily on the mineral composition of the surface, the possibility of significant horizontal variations cannot be easily excluded. The simulation results show that strong horizontal variations may produce modest magnetospheric asymmetries. Beyond the hybrid simulation, we also briefly discuss the possibility that in the nightside there may be a lack of surface electrons to carry downward current, which may act as a further source of surface-related magnetospheric asymmetry. Key words. Magnetospheric physics (planetary magnetospheres; current systems; solar wind-magnetosphere interactions.6

  2. Association between Work-Related Stress and Risk for Type 2 Diabetes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies.

    Science.gov (United States)

    Sui, Hua; Sun, Nijing; Zhan, Libin; Lu, Xiaoguang; Chen, Tuo; Mao, Xinyong

    2016-01-01

    The prevalence of type 2 diabetes is increasing rapidly around the world. Work-related stress is thought to be a major risk factor for type 2 diabetes; however, this association has not been widely studied, and the findings that have been reported are inconsistent. Therefore, we conducted a meta-analysis of prospective cohort studies to explore the association between work-related stress and risk for type 2 diabetes. A systematic literature search and manual search limited to articles published in English were performed to select the prospective cohort studies evaluated the association between work-related stress and risk for type 2 diabetes up to September 2014 from four electronic databases including PubMed, EMBASE, the Cochrane Library and Web of Science. A random-effects model was used to estimate the overall risk. No significant association was found between work-related stress and risk for type 2 diabetes based on meta-analysis of seven prospective cohort studies involving 214,086 participants and 5,511 cases (job demands: relative risk 0.94 [95% confidence interval 0.72-1.23]; decision latitude: relative risk 1.16 [0.85-1.58]; job strain: relative risk 1.12 [.0.95-1.32]). However, an association between work-related stress and risk for type 2 diabetes was observed in women (job strain: relative risk 1.22 [1.01-1.46]) (P = 0.04). A sensitivity analysis conducted by excluding one study in each turn yielded similar results. No publication bias was detected with a funnel plot despite the limited number of studies included in the analysis. The results of this meta-analysis did not confirm a direct association between work-related stress and risk for type 2 diabetes. In subgroup analyses we found job strain was a risk factor for type 2 diabetes in women.

  3. The Association between Parent-Child Conflict and Adolescent Conduct Problems over Time: Results from a Longitudinal Adoption Study

    Science.gov (United States)

    Klahr, Ashlea M.; McGue, Matt; Iacono, William G.; Burt, S. Alexandra

    2010-01-01

    A handful of prior adoption studies have confirmed that the cross-sectional relationship between child conduct problems and parent/child conflict is at least partially shared environmental in origin. However, as the direction of causation between parenting and delinquency remains unclear, this relationship could be better explained by the adolescent's propensity to elicit conflictive parenting, a phenomenon referred to as an evocative gene-environment correlation. The current study thus examined the prospective relationship between conduct problems and parent-child conflict in a sample of adoptive families. Participants included 672 adolescents in 405 adoptive families assessed at two time points roughly 4 years apart. Results indicated that parent-child conflict predicts the development of conduct problems, whereas conduct problems do not predict increases in parent-child conflict. Such findings suggest that evocative gene-environment correlations are highly unlikely as an explanation of prior shared environmental effects during adolescence. Moreover, because the adolescents in this study do not share genes with their adoptive parents, the association between conduct problems and parent-child conflict is indicative of shared environmental mediation in particular. Implications of our findings are discussed. PMID:21038930

  4. Conducting interactive experiments online.

    Science.gov (United States)

    Arechar, Antonio A; Gächter, Simon; Molleman, Lucas

    2018-01-01

    Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.

  5. The bedrock electrical conductivity structure of Northern Ireland

    Science.gov (United States)

    Beamish, David

    2013-08-01

    An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the conductivity estimates using a lithological classification of the bedrock formations. A 1:250k geological classification of the data is performed leading to a 56 unit lithological and geostatistical analysis of the conductivity information. The central moments (medians) of the classified data are used to provide a new digital bedrock conductivity map of Northern Ireland with values ranging from 0.32 to 41.36 mS m-1. This baseline map of conductivities displays a strong correspondence with an existing 4 quadrant, chrono-geological description of Northern Ireland. Once defined, the baseline conductivity map allows departures from the norm to be assessed across each specific lithological unit. Bulk electrical conductivity is controlled by a number of petrophysical parameters and it is their variation that is assessed by the procedures employed. The igneous rocks are found to display the largest variability in conductivity values and many of the statistical distributions are multi-modal. A sequence of low-value modes in these data are associated with intrusives within volcanic complexes. These and much older Neoproterzoic rocks appear to represent very low porosity formations that may be the product of rapid cooling during emplacement. By way of contrast, extensive flood basalts (the Antrim lavas) record a well-defined and much higher median value (12.24 mS m-1) although they display complex spatial behaviour in detail. Sedimentary rocks appear to follow the broad behaviours anticipated

  6. Employment-related difficulties and distressed living condition in patients with hepatitis B virus: A qualitative and quantitative study.

    Science.gov (United States)

    Oka, Taeko; Enoki, Hiroaki; Tokimoto, Yukari; Kawanishi, Teruaki; Minami, Meguru; Okuizumi, Takahiro; Katahira, Kiyohiko

    2017-06-12

    In Japan, an estimated 400,000 people have the hepatitis B virus (HBV), many of whom were infected as a result of group vaccinations. People with HBV face many challenges, including disease progression, employment-related difficulties, and increased medical expenses. The relationship between HBV victims' daily life suffering and poverty associated with HBV-related employment changes has not been examined. We aimed to clarify the employment-related hardships experienced by Japanese HBV victims, and the relationships between these hardships and daily life suffering, including poverty, through qualitative and quantitative analyses. The study population comprised 11,046 people infected with HBV via group vaccination who filed lawsuits in Japan's District Courts by 2014. First, we conducted a qualitative study (2013) using the KJ method, with 107 participants (68 men, mean age 58.9 years; 39 women, mean age 55.3 years). Semi-structured interviews were conducted covering participants' current condition, treatment, medical expenses, and life difficulties (employment- and family-related problems). In 2014, we conducted a quantitative study. We mailed questionnaires to the entire study population, investigating the topics covered in the interviews (response rate 60.1%). Daily life suffering was determined by responses to the question "What do you think about your everyday life situation?" We performed binomial logistic regression analyses to verify the relationships between daily life suffering and disease, employment, and income status. Interview data were integrated into seven islands: intention to work, lack of understanding of HBV in the workplace, inability to buy life insurance, burden due to medical expenses, life failure, dissatisfaction with the system, and wishing for life balance. The quantitative analyses showed significant positive correlations between daily life suffering and liver cancer (odds ratio [OR] 1.47, 95% confidence interval [CI]: 1.00-2.17, p

  7. The Burden of Gastroesophageal Reflux Disease on Patients' Daily Lives: A Cross-Sectional Study Conducted in a Primary Care Setting in Serbia.

    Science.gov (United States)

    Bjelović, Miloš; Babić, Tamara; Dragicević, Igor; Corac, Aleksandar; Goran Trajković

    2015-01-01

    Recent data from the studies conducted in the Western countries have proved that patients with gastroesophageal reflux disease have significantly impaired health-related quality of life compared to general population. The study is aimed at evaluating the burden of reflux symptoms on patients'health-related quality of life. The study involved 1,593 patients with diagnosed gastroesophageal reflux disease.The Serbian version of a generic self-administered Centers for Disease Control and Prevention questionnaire was used. Statistical analyses included descriptive statistics, Pearson chi-square test and a multiple regression model. Among all participants, 43.9% reported fair or poor health. Mean value of unhealthy days during the past 30 days was 10.4 days, physically unhealthy days 6.4 days, mentally unhealthy days 5.3 days and activity limitation days 4.3 days. Furthermore, 24.8% participants reported having ≥ 14 unhealthy days, 14.9% had 14 physically unhealthy days, 11.8% reported 14 mentally unhealthy days, and 9.4% had ≥ 14 activity limitation days. This study addressed complex relationships between reflux symptoms and patients'impaired everyday lives.

  8. Thermal conductivity model of vibro-packed fuel

    International Nuclear Information System (INIS)

    Yeon Soo, Kim

    2001-01-01

    In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)

  9. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)

  10. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  11. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    Science.gov (United States)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  12. Thermal Conductivity of Moulding Sand with Chemical Binders, Attempts of its Increasing

    Directory of Open Access Journals (Sweden)

    Zych J.

    2015-04-01

    Full Text Available The investigation results of the thermal conductivity of the selected group of moulding sands with chemical binders, mainly organic, are presented in the hereby paper. Studies encompassed also moulding sands into which additions improving the thermal conductivity were introduced. Two testing methods were applied, i.e. investigations at a steady and unsteady temperature zone. For investigations at a steady temperature zone the new original experimental stand was designed and built, adapted also for testing moulding sands with binders undergoing destruction at relatively low temperatures.

  13. Sociodemographic and health-(care-)related characteristics of online health information seekers: a cross-sectional German study.

    Science.gov (United States)

    Nölke, Laura; Mensing, Monika; Krämer, Alexander; Hornberg, Claudia

    2015-01-29

    Although the increasing dissemination and use of health-related information on the Internet has the potential to empower citizens and patients, several studies have detected disparities in the use of online health information. This is due to several factors. So far, only a few studies have examined the impact of socio-economic status (SES) on health information seeking on the Internet. This study was designed to identify sociodemographic and health-(care-)related differences between users and non-users of health information gleaned from the Internet with the aim of detecting hard-to-reach target groups. This study analyzed data from the NRW Health Survey LZG.NRW 2011 (n = 2,000; conducted in North Rhine-Westphalia, Germany, via telephone interviews). Logistic regression analysis was used to examine the determinants of online health information seeking behavior. 68% of Internet users refer to the Internet for health-related purposes. Of the independent variables tested, SES proved to exert the strongest influence on searching the Internet for health information. The final multivariate regression model shows that people from the middle (OR: 2.2, 95% CI: 1.6-3.2) and upper (OR: 4.0, 95% CI: 2.7-6.2) social classes are more likely to seek health information on the Internet than those from the lower class. Also, women are more likely to look for health information on the Internet than men (OR: 1.5, 95% CI: 1.1-2.1). Individuals with a migration background are less likely to conduct health searches on the Internet (OR: 0.6, 95% CI: 0.4-0.8). Married people or individuals in a stable relationship search the Internet more often for health information than do singles (OR: 1.9, 95% CI: 1.2-2.9). Also, heavy use of health-care services compared to non-use is associated with a higher likelihood of using the Internet for health-related matters (OR: 1.7, 95% CI: 1.2-2.5). In order to achieve equity in health, health-related Internet use by the socially deprived should be

  14. A study on effective thermal conductivity of crystalline layers in layer melt crystallization

    International Nuclear Information System (INIS)

    Kim, Kwang-Joo; Ulrich, Joachim

    2002-01-01

    An effective thermal conductivity in layer melt crystallization was explored based on a model considering inclusions inside a crystalline layer during crystal growth, molecular diffusion of inclusions migration due to temperature gradient and heat generation due to recrystallization of inclusions in the crystalline layer. The effective thermal conductivity increases with time, in general, as a result of compactness of the layer. Lower cooling temperature, i.e. greater supercooling, results in a more porous layer with lower effective thermal conductivity. A similar result is seen for the parameter of melt temperature, but less pronounced. A high concentration of the melt results in a high effective thermal conductivity while low concentration yields low effective thermal conductivity. At higher impurity levels in the melt phase, constitutional supercooling becomes more pronounced and unstable growth morphologies occur more easily. Cooling rate and Reynolds number also affect the effective thermal conductivity. The predictions of an effective thermal conductivity agree with the experimental data. The model was applied to estimate the thermal conductivities of the crystalline layer during layer melt crystallization. (author)

  15. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    International Nuclear Information System (INIS)

    Mtangi, W.; Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M.; Nyamhere, C.

    2012-01-01

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zn i related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X Zn . The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×10 17 cm −3 at 200 °C to 4.37×10 18 cm -3 at 800 °C.

  16. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  17. Analyses of the studies on cancer-related quality of life published in Korea

    International Nuclear Information System (INIS)

    Lee, Eun Hyun; Park, Hee Boong; Kim, Myung Wook; Kang, Sung Hee; Chun, Mi Son; Lee, Hye Jin; Lee, Won Hee

    2002-01-01

    The purpose of the present study was to analyze and evaluate prior studies published in Korea on the cancer-related quality of life, in order to make recommendations for further research. A total of 31 studies were selected from three different databases. The selected studies were analyzed according to 11 criteria, such as site of cancer, domain, independent variable, research design, self/proxy rating, single/battery instrument, translation/back translation, reliability, validity, scoring, and findings. Of the 31 studies, approximately half of them were conducted using a mixed cancer group of patient. Many of the studies asserted that the concept of quality of life had a multidimensional attribute. Approximately 30% were longitudinal design studies giving information about the changes in quality of life. In all studies, except one, patients directly rated their level of quality of life. With respect to the questionnaires used for measuring the quality of life, most studies did not consider whether or not their reliability and validity had been established. In addition, when using questionnaires developed in other languages, no studies employed a translation/back-translation technique. All studies used sum or total scoring methods when calculating the level of quality of life. The types of variables tested for their influence on quality of life were quite limited. It is recommended that longitudinal design studies be performed, using methods of data collection whose validity and reliability has been confirmed, and that studies be conducted to identify new variables having an influence on the quality of life

  18. Evidence based administration of risperidone and paliperidone for the treating conduct disorder

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2013-01-01

    Full Text Available Background: This study evaluates the evidence-based administration of risperidone and paliperidone for the treating children and adolescents with conduct disorder (CD. Materials and Methods: A review of the current literature from clinical trials that investigated the efficacy of risperidone and paliperidone on CD considering the inclusion criteria and search strategies was performed by a search of PubMed and Google Scholar databases. Results: Out of 53 titles, 31 were irrelevant. The abstract of 22 potentially related articles were studied. Only six articles reported the results of clinical trial. However, one of them reported the effect of risperidone on conduct behaviors in autistic disorders. One study was a re-analysis of two previous studies, one study reported the effects of maintenance versus withdrawal of risperidone treatment and two studies included children with sub-average intelligence. Headache, somnolence and increased appetite are among the most common reported adverse effects. No study examined the effect of paliperidone on CD was found. Conclusion: Current literature suggests that risperidone could be effective for treating some conduct behaviors in children and adolescents. The effect of risperidone on CD is not a well-researched area. There is no well-controlled evidence based reports about the safety and efficacy of risperidone for the treatment of CD. Further trials should examine the efficacy of these medications on CD rather than conduct behaviors or disruptive behavior disorders.

  19. Spiritual Psychotherapy for Adolescents with Conduct Disorder: Designing and Piloting a Therapeutic Package.

    Science.gov (United States)

    Mohammadi, Mohammad Reza; Salmanian, Maryam; Ghobari-Bonab, Bagher; Bolhari, Jafar

    2017-10-01

    Objective: Spiritual psychotherapy has been conceptualized in the context of love and belief as principles of existence. Spiritual psychotherapy can provide an opportunity to design programs to treat conduct disorder. The aim of this study was to introduce the Spiritual Psychotherapy Package for Adolescents with Conduct Disorder and execute it as a pilot study. Method: The intervention is a manual-guided program conducted over 14 group sessions, using the perspectives of object relations and attachment approach. It was executed for a group of eight adolescent boys with conduct disorder (mean age: 17.01 years) at Tehran reformatory. The Aggression Questionnaire and the Attachment to God Inventory were completed pre- and post-intervention. Results: There were no significant differences in outcome measures from pre- to post- intervention. Cohen's dav was applied to estimate the measure of the effect size in this study. Cohen's dav measures of avoidance and anxious attachment to God showed acceptable effect sizes. However, Cohen's dav measure of verbal aggression indicated a small effect size. Conclusion: We found evidence indicating acceptability of spiritual psychotherapy among adolescents with conduct disorder in attachment to God.

  20. Assessing environmental features related to mental health: a reliability study of visual streetscape images.

    Science.gov (United States)

    Wu, Yu-Tzu; Nash, Paul; Barnes, Linda E; Minett, Thais; Matthews, Fiona E; Jones, Andy; Brayne, Carol

    2014-10-22

    An association between depressive symptoms and features of built environment has been reported in the literature. A remaining research challenge is the development of methods to efficiently capture pertinent environmental features in relevant study settings. Visual streetscape images have been used to replace traditional physical audits and directly observe the built environment of communities. The aim of this work is to examine the inter-method reliability of the two audit methods for assessing community environments with a specific focus on physical features related to mental health. Forty-eight postcodes in urban and rural areas of Cambridgeshire, England were randomly selected from an alphabetical list of streets hosted on a UK property website. The assessment was conducted in July and August 2012 by both physical and visual image audits based on the items in Residential Environment Assessment Tool (REAT), an observational instrument targeting the micro-scale environmental features related to mental health in UK postcodes. The assessor used the images of Google Street View and virtually "walked through" the streets to conduct the property and street level assessments. Gwet's AC1 coefficients and Bland-Altman plots were used to compare the concordance of two audits. The results of conducting the REAT by visual image audits generally correspond to direct observations. More variations were found in property level items regarding physical incivilities, with broad limits of agreement which importantly lead to most of the variation in the overall REAT score. Postcodes in urban areas had lower consistency between the two methods than rural areas. Google Street View has the potential to assess environmental features related to mental health with fair reliability and provide a less resource intense method of assessing community environments than physical audits.

  1. Perceived Neighborhood Quality and HIV-related Stigma among African Diasporic Youth; Results from the African, Caribbean, and Black Youth (ACBY) Study.

    Science.gov (United States)

    Kerr, Jelani; Northington, Toya; Sockdjou, Tamara; Maticka-Tyndale, Eleanor

    2018-01-01

    Socio-environmental factors such as neighborhood quality are increasingly recognized drivers of HIV disparities. Additionally, HIV- related stigma heightens HIV vulnerability among youth in the African Diaspora. However, little research examines the intersection of neighborhood quality and HIV- related stigma. This study uses survey data (N=495) from African, Caribbean, and Black youth in a midsized city in Ontario, Canada to address this research deficit. Analysis of variance and multivariate ordinary least squares regressions were conducted to determine differences in HIV- related stigma by neighborhood quality, experiences of discrimination, HIV- knowledge, and demographic factors. Residents in more socially disordered neighborhoods (p<.05), males (p<.0001), African- Muslim youth (p<.01), and individuals with lower HIV- knowledge (p<.0001) endorsed stigmatizing beliefs more often. Addressing neighborhood disadvantage may have implications for HIV- related stigma. More research should be conducted to understand the impact of socio- environmental disadvantage and HIV- related stigma.

  2. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  3. Conductive properties of methanogenic biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2018-02-01

    Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular structures. Conductive mechanisms and relationship between conductivity and the community composition in mixed-species methanogenic biofilms are not well understood. The present study investigated conductive behaviors of methanogenic biofilms and examined the correlation between biofilm conductivity and community composition between different anaerobic biofilms enriched from the same inoculum. Highest conductivity observed in methanogenic biofilms was 71.8±4.0μS/cm. Peak-manner response of conductivity upon changes over a range of electrochemical potentials suggests that electron transfer in methanogenic biofilms occurs through redox driven super-exchange. The strong correlation observed between biofilm conductivity and Geobacter spp. in the metabolically diverse anaerobic communities suggests that the efficiency of DEET may provide pressure for microbial communities to select for species that can produce electrical conduits. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electric conductivity of molten mixtures of ternary mutual KF-KCl-ZrF4 system

    International Nuclear Information System (INIS)

    Darienko, S.E.; Raspopin, S.P.; Chervinskij, Yu.F.

    1988-01-01

    Using the relative capillary method at the frequency of 50 kHz the specific electric conductivity of molten mixtures of the KF-KCl-ZnF 4 system is measured. All the measurements were made in the atmosphere of purified argon. Temperature dependence of electric conductivity of the mixtures studied (800-1260 K) is described by the equations of exponential type with sufficient accuracy. Curves of identical specific electric conductivity of the three-component system are presented. With an increase in zirconium tetrachloride concentration in the mixtures electric conductivity of the melts decreases. On the basis of the measurement results of KF-ZrF 4 and KCl-ZrF 4 molten mixture specific electric conductivity and data on the melt density the values of molar electric conductivity at 1200 K are calculated

  5. Effects of nano-void density, size and spatial population on thermal conductivity: a case study of GaN crystal

    International Nuclear Information System (INIS)

    Zhou, X W; Jones, R E

    2012-01-01

    The thermal conductivity of a crystal is sensitive to the presence of surfaces and nanoscale defects. While this opens tremendous opportunities to tailor thermal conductivity, true ‘phonon engineering’ of nanocrystals for a specific electronic or thermoelectric application can only be achieved when the dependence of thermal conductivity on the defect density, size and spatial population is understood and quantified. Unfortunately, experimental studies of the effects of nanoscale defects are quite challenging. While molecular dynamics simulations are effective in calculating thermal conductivity, the defect density range that can be explored with feasible computing resources is unrealistically high. As a result, previous work has not generated a fully detailed understanding of the dependence of thermal conductivity on nanoscale defects. Using GaN as an example, we have combined a physically motivated analytical model and highly converged large-scale molecular dynamics simulations to study the effects of defects on thermal conductivity. An analytical expression for thermal conductivity as a function of void density, size, and population has been derived and corroborated with the model, simulations, and experiments. (paper)

  6. Size dictated thermal conductivity of GaN

    Science.gov (United States)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  7. Theoretical and Experimental Studies of Functionalized Carbon Nanotubes for Improved Thermal Conductivity

    Science.gov (United States)

    Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul

    The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.

  8. Ionic conducting poly-benzimidazoles

    International Nuclear Information System (INIS)

    Jouanneau, J.

    2006-11-01

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO 3 H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO 3 H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  9. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    Science.gov (United States)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  10. A case-crossover study on transient risk factors of work-related eye injuries.

    Science.gov (United States)

    Chen, S-Y; Fong, P-C; Lin, S-F; Chang, C-H; Chan, C-C

    2009-08-01

    To investigate modifiable risk and preventive factors of work-related eye injuries. A case-crossover study conducted to explore the associations between transient risk factors and work-related eye injuries. Patients seen at seven medical centres in Taiwan with work-related eye injuries over a 4-year period were enrolled in the study. Clinical information was collected from medical charts and detailed information on exposure to eight potentially modifiable factors during the 60 minutes prior to the occurrence of each injury, as well as during the same time interval on the last work day prior to the injury, were obtained using questionnaire surveys. Matched-pair interval analysis was adopted to assess the odds ratios (ORs) for work-related eye injuries given exposure to the eight modifiable factors. A total of 283 subjects were interviewed. Most of these injured workers were young, male, and self-employed or small enterprise workers. The most common injury type was photokeratitis (33.2%), mainly caused by welding (30.4%). The OR for a work-related eye injury was increased with the performance of an unfamiliar task (57.0), operation of a faulty tool or piece of equipment (48.5), distractions (24.0), being rushed (13.0), or fatigued (10.0), and a poor work environment (4.3). Wearing eye protection devices was found to have a significant protective effect on workers who might otherwise have been exposed to eye injuries (OR = 0.4; 95% CI 0.2 to 0.7). Potential modifiable risk and preventive factors for work-related eye injuries were identified using a case-crossover study. This information should be helpful in the development of preventive strategies.

  11. Behaviour of the Egyptian beach economic minerals during their electrical separation in relation to their electrical conductivity

    International Nuclear Information System (INIS)

    Khazback, A.E.; Soliman, F.A.S.

    1988-01-01

    The most important and strategic minerals in the Egyptian beach sands are monazite, zircon, rutile and ilmenite. Due to their importance, several flowsheets were designed for their separation economically. Electrostatic separation plays an important role in most of these flowsheets depending on the main differences between them concerning their electrical conductivity. This paper describes the design of a cell for the measurement of the electrical conductivities of these minerals. It also establishes a quantitative relationship between the electrical conductivity and the behaviour of these minerals during their electrical separation. A computer program was written to facilitate the calculation of the slope of the discharge curve from which the electrical conductivity or the reciprocal resistivity. Relaxation time and the data correlation coefficient for the tested minerals are obtained. For all the tests performed, the correlation coefficient value was found to be better than 99%. In general the electrical conductivity was shown to be a function of both temperature and grain size. It was found also that the presence of iron staining on the surface of monazite grains and inclusions in the zircon grains alters noticeably the bulk conductivity of the tested minerals

  12. On-chip DNA preconcentration in different media conductivities by electrodeless dielectrophoresis

    KAUST Repository

    Li, Shunbo

    2015-09-01

    © 2015 AIP Publishing LLC. Electrodeless dielectrophoresis is the best choice to achieve preconcentration of nanoparticles and biomolecules due to its simple, robust, and easy implementation. We designed a simple chip with microchannels and nano-slits in between and then studied the trapping of DNA in high conductive medium and low conductive medium, corresponding to positive and negative dielectrophoresis (DEP), respectively. It is very important to investigate the trapping in media with different conductivities since one always has to deal with the sample solutions with different conductivities. The trapping process was analyzed by the fluorescent intensity changes. The results showed that DNA could be trapped at the nano-slit in both high and low conductive media in a lower electric field strength (10 V/cm) compared to the existing methods. This is a significant improvement to suppress the Joule heating effect in DEP related experiments. Our work may give insight to researchers for DNA trapping by a simple and low cost device in the Lab-on-a-Chip system.

  13. 21 CFR 320.25 - Guidelines for the conduct of an in vivo bioavailability study.

    Science.gov (United States)

    2010-04-01

    ... conduct of an in vivo bioavailability study. (a) Guiding principles. (1) The basic principle in an in vivo... not been approved for marketing can be used to measure the following pharmacokinetic data: (i) The bioavailability of the formulation proposed for marketing; and (ii) The essential pharmacokinetic characteristics...

  14. Relations among water levels, specific conductance, and depths of bedrock fractures in four road-salt-contaminated wells in Maine, 2007–9

    Science.gov (United States)

    Schalk, Charles W.; Stasulis, Nicholas W.

    2012-01-01

    Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in

  15. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  16. Impact of Site Selection and Study Conduct on Outcomes in Global Clinical Trials.

    Science.gov (United States)

    Sarwar, Chaudhry M S; Vaduganathan, Muthiah; Butler, Javed

    2017-08-01

    There are over 25 million patients living with heart failure globally. Overall, and especially post-discharge, clinical outcomes have remained poor in heart failure despite multiple trials, with both successes and failures over the last two decades. Matching therapies to the right patient population, identifying high-quality sites, and ensuring optimal trial design and execution represent important considerations in the development of novel therapeutics in this space. While clinical trials have undergone rapid globalization, this has come with regional variation in comorbidities, clinical parameters, and even clinical outcomes and treatment effects across international sites. These issues have now highlighted knowledge gaps about the conduct of trials, selection of study sites, and an unmet need to develop and identify "ideal" sites. There is a need for all stakeholders, including academia, investigators, healthcare organizations, patient advocacy groups, industry sponsors, research organizations, and regulatory authorities, to work as a multidisciplinary group to address these problems and develop practical solutions to improve trial conduct, efficiency, and execution. We review these trial-level issues using examples from contemporary studies to inform and optimize the design of future global clinical trials in heart failure.

  17. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2013-01-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry. Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer

  18. Conductivity studies in SnO–NaPO 3 glasses

    Indian Academy of Sciences (India)

    D.c. activation barriers seem to reflect the structural changes in system. A.c. conductivity analysis has revealed that while the power law exponent, , seem to bear correlation to the structural changes, the exponent of the stretched exponential function describing the dielectric relaxation is largely insensitive to the structure.

  19. Conductivity studies of lithium zinc silicate glasses with varying ...

    Indian Academy of Sciences (India)

    WINTEC

    Values of activation energy derived from σd.c., ωh and τ are almost equal within the ... materials can be changed by varying the proportion of the .... The solid line is a guide to the eye. ... does not show a maximum as d.c. conductivity drops to a.

  20. Physical outcome measures for conductive and mixed hearing loss treatment: A systematic review.

    Science.gov (United States)

    Johansson, M L; Tysome, J R; Hill-Feltham, P; Hodgetts, W E; Ostevik, A; McKinnon, B J; Monksfield, P; Sockalingam, R; Wright, T

    2018-05-07

    The number of potential options for rehabilitation of patients with conductive or mixed hearing loss is continually expanding. To be able to inform patients and other stakeholders there is a need to identify and develop patient-centred outcomes for treatment of hearing loss. To identify outcome measures in the physical core area used when reporting the outcome after treatment of conductive and mixed hearing loss in adult patients. Systematic review. Systematic review of literature related to reported physical outcome measures after treatment of mixed or conductive hearing loss without restrictions regarding type of intervention, treatment or device. Any measure reporting the physical outcome after treatment or intervention of mixed or conductive hearing loss was sought and categorised. The physical outcomes measures that had been extracted were then grouped into domains. The literature search resulted in the identification of 1,434 studies, of which 153 were selected for inclusion in the review. The majority (57%) of papers reported results from middle ear surgery, with the remainder reporting results from either bone conduction hearing devices or middle ear implants. Outcomes related to complications were categorised into 17 domains, whereas outcomes related to treatment success was categorised in 22 domains. The importance of these domains to patients and other stakeholders needs to be further explored in order to establish which of these domains are most relevant to interventions for conductive or mixed hearing loss. This will allow us to then assess which outcomes measures are most suitable for inclusion in the core set This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.